objtool: Re-arrange validate_functions()
[linux-block.git] / drivers / gpu / drm / amd / display / dc / clk_mgr / dcn21 / rn_clk_mgr.c
1 /*
2  * Copyright 2018 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25
26 #include "dccg.h"
27 #include "clk_mgr_internal.h"
28
29
30 #include "dcn20/dcn20_clk_mgr.h"
31 #include "rn_clk_mgr.h"
32
33
34 #include "dce100/dce_clk_mgr.h"
35 #include "rn_clk_mgr_vbios_smu.h"
36 #include "reg_helper.h"
37 #include "core_types.h"
38 #include "dm_helpers.h"
39
40 #include "atomfirmware.h"
41 #include "clk/clk_10_0_2_offset.h"
42 #include "clk/clk_10_0_2_sh_mask.h"
43 #include "renoir_ip_offset.h"
44
45
46 /* Constants */
47
48 #define LPDDR_MEM_RETRAIN_LATENCY 4.977 /* Number obtained from LPDDR4 Training Counter Requirement doc */
49
50 /* Macros */
51
52 #define REG(reg_name) \
53         (CLK_BASE.instance[0].segment[mm ## reg_name ## _BASE_IDX] + mm ## reg_name)
54
55
56 /* TODO: evaluate how to lower or disable all dcn clocks in screen off case */
57 int rn_get_active_display_cnt_wa(
58                 struct dc *dc,
59                 struct dc_state *context)
60 {
61         int i, display_count;
62         bool tmds_present = false;
63
64         display_count = 0;
65         for (i = 0; i < context->stream_count; i++) {
66                 const struct dc_stream_state *stream = context->streams[i];
67
68                 if (stream->signal == SIGNAL_TYPE_HDMI_TYPE_A ||
69                                 stream->signal == SIGNAL_TYPE_DVI_SINGLE_LINK ||
70                                 stream->signal == SIGNAL_TYPE_DVI_DUAL_LINK)
71                         tmds_present = true;
72         }
73
74         for (i = 0; i < dc->link_count; i++) {
75                 const struct dc_link *link = dc->links[i];
76
77                 /*
78                  * Only notify active stream or virtual stream.
79                  * Need to notify virtual stream to work around
80                  * headless case. HPD does not fire when system is in
81                  * S0i2.
82                  */
83                 /* abusing the fact that the dig and phy are coupled to see if the phy is enabled */
84                 if (link->connector_signal == SIGNAL_TYPE_VIRTUAL ||
85                                 link->link_enc->funcs->is_dig_enabled(link->link_enc))
86                         display_count++;
87         }
88
89         /* WA for hang on HDMI after display off back back on*/
90         if (display_count == 0 && tmds_present)
91                 display_count = 1;
92
93         return display_count;
94 }
95
96 void rn_update_clocks(struct clk_mgr *clk_mgr_base,
97                         struct dc_state *context,
98                         bool safe_to_lower)
99 {
100         struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
101         struct dc_clocks *new_clocks = &context->bw_ctx.bw.dcn.clk;
102         struct dc *dc = clk_mgr_base->ctx->dc;
103         int display_count;
104         bool update_dppclk = false;
105         bool update_dispclk = false;
106         bool dpp_clock_lowered = false;
107
108         struct dmcu *dmcu = clk_mgr_base->ctx->dc->res_pool->dmcu;
109
110         if (dc->work_arounds.skip_clock_update)
111                 return;
112
113         /*
114          * if it is safe to lower, but we are already in the lower state, we don't have to do anything
115          * also if safe to lower is false, we just go in the higher state
116          */
117         if (safe_to_lower) {
118                 /* check that we're not already in lower */
119                 if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_LOW_POWER) {
120
121                         display_count = rn_get_active_display_cnt_wa(dc, context);
122                         /* if we can go lower, go lower */
123                         if (display_count == 0) {
124                                 rn_vbios_smu_set_dcn_low_power_state(clk_mgr, DCN_PWR_STATE_LOW_POWER);
125                                 /* update power state */
126                                 clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_LOW_POWER;
127                         }
128                 }
129         } else {
130                 /* check that we're not already in D0 */
131                 if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_MISSION_MODE) {
132                         rn_vbios_smu_set_dcn_low_power_state(clk_mgr, DCN_PWR_STATE_MISSION_MODE);
133                         /* update power state */
134                         clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_MISSION_MODE;
135                 }
136         }
137
138         if (should_set_clock(safe_to_lower, new_clocks->phyclk_khz, clk_mgr_base->clks.phyclk_khz)) {
139                 clk_mgr_base->clks.phyclk_khz = new_clocks->phyclk_khz;
140                 rn_vbios_smu_set_phyclk(clk_mgr, clk_mgr_base->clks.phyclk_khz);
141         }
142
143         if (should_set_clock(safe_to_lower, new_clocks->dcfclk_khz, clk_mgr_base->clks.dcfclk_khz)) {
144                 clk_mgr_base->clks.dcfclk_khz = new_clocks->dcfclk_khz;
145                 rn_vbios_smu_set_hard_min_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_khz);
146         }
147
148         if (should_set_clock(safe_to_lower,
149                         new_clocks->dcfclk_deep_sleep_khz, clk_mgr_base->clks.dcfclk_deep_sleep_khz)) {
150                 clk_mgr_base->clks.dcfclk_deep_sleep_khz = new_clocks->dcfclk_deep_sleep_khz;
151                 rn_vbios_smu_set_min_deep_sleep_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_deep_sleep_khz);
152         }
153
154         if (should_set_clock(safe_to_lower, new_clocks->dppclk_khz, clk_mgr->base.clks.dppclk_khz)) {
155                 if (clk_mgr->base.clks.dppclk_khz > new_clocks->dppclk_khz)
156                         dpp_clock_lowered = true;
157                 clk_mgr_base->clks.dppclk_khz = new_clocks->dppclk_khz;
158                 update_dppclk = true;
159         }
160
161         if (should_set_clock(safe_to_lower, new_clocks->dispclk_khz, clk_mgr_base->clks.dispclk_khz)) {
162                 clk_mgr_base->clks.dispclk_khz = new_clocks->dispclk_khz;
163                 rn_vbios_smu_set_dispclk(clk_mgr, clk_mgr_base->clks.dispclk_khz);
164
165                 update_dispclk = true;
166         }
167
168         if (dpp_clock_lowered) {
169                 // increase per DPP DTO before lowering global dppclk
170                 dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower);
171                 rn_vbios_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
172         } else {
173                 // increase global DPPCLK before lowering per DPP DTO
174                 if (update_dppclk || update_dispclk)
175                         rn_vbios_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
176                 // always update dtos unless clock is lowered and not safe to lower
177                 if (new_clocks->dppclk_khz >= dc->current_state->bw_ctx.bw.dcn.clk.dppclk_khz)
178                         dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower);
179         }
180
181         if (update_dispclk &&
182                         dmcu && dmcu->funcs->is_dmcu_initialized(dmcu)) {
183                 /*update dmcu for wait_loop count*/
184                 dmcu->funcs->set_psr_wait_loop(dmcu,
185                         clk_mgr_base->clks.dispclk_khz / 1000 / 7);
186         }
187 }
188
189
190 static int get_vco_frequency_from_reg(struct clk_mgr_internal *clk_mgr)
191 {
192         /* get FbMult value */
193         struct fixed31_32 pll_req;
194         unsigned int fbmult_frac_val = 0;
195         unsigned int fbmult_int_val = 0;
196
197
198         /*
199          * Register value of fbmult is in 8.16 format, we are converting to 31.32
200          * to leverage the fix point operations available in driver
201          */
202
203         REG_GET(CLK1_CLK_PLL_REQ, FbMult_frac, &fbmult_frac_val); /* 16 bit fractional part*/
204         REG_GET(CLK1_CLK_PLL_REQ, FbMult_int, &fbmult_int_val); /* 8 bit integer part */
205
206         pll_req = dc_fixpt_from_int(fbmult_int_val);
207
208         /*
209          * since fractional part is only 16 bit in register definition but is 32 bit
210          * in our fix point definiton, need to shift left by 16 to obtain correct value
211          */
212         pll_req.value |= fbmult_frac_val << 16;
213
214         /* multiply by REFCLK period */
215         pll_req = dc_fixpt_mul_int(pll_req, clk_mgr->dfs_ref_freq_khz);
216
217         /* integer part is now VCO frequency in kHz */
218         return dc_fixpt_floor(pll_req);
219 }
220
221 static void rn_dump_clk_registers_internal(struct rn_clk_internal *internal, struct clk_mgr *clk_mgr_base)
222 {
223         struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
224
225         internal->CLK1_CLK3_CURRENT_CNT = REG_READ(CLK1_CLK3_CURRENT_CNT);
226         internal->CLK1_CLK3_BYPASS_CNTL = REG_READ(CLK1_CLK3_BYPASS_CNTL);
227
228         internal->CLK1_CLK3_DS_CNTL = REG_READ(CLK1_CLK3_DS_CNTL);      //dcf deep sleep divider
229         internal->CLK1_CLK3_ALLOW_DS = REG_READ(CLK1_CLK3_ALLOW_DS);
230
231         internal->CLK1_CLK1_CURRENT_CNT = REG_READ(CLK1_CLK1_CURRENT_CNT);
232         internal->CLK1_CLK1_BYPASS_CNTL = REG_READ(CLK1_CLK1_BYPASS_CNTL);
233
234         internal->CLK1_CLK2_CURRENT_CNT = REG_READ(CLK1_CLK2_CURRENT_CNT);
235         internal->CLK1_CLK2_BYPASS_CNTL = REG_READ(CLK1_CLK2_BYPASS_CNTL);
236
237         internal->CLK1_CLK0_CURRENT_CNT = REG_READ(CLK1_CLK0_CURRENT_CNT);
238         internal->CLK1_CLK0_BYPASS_CNTL = REG_READ(CLK1_CLK0_BYPASS_CNTL);
239 }
240
241 /* This function collect raw clk register values */
242 static void rn_dump_clk_registers(struct clk_state_registers_and_bypass *regs_and_bypass,
243                 struct clk_mgr *clk_mgr_base, struct clk_log_info *log_info)
244 {
245         struct rn_clk_internal internal = {0};
246         char *bypass_clks[5] = {"0x0 DFS", "0x1 REFCLK", "0x2 ERROR", "0x3 400 FCH", "0x4 600 FCH"};
247         unsigned int chars_printed = 0;
248         unsigned int remaining_buffer = log_info->bufSize;
249
250         rn_dump_clk_registers_internal(&internal, clk_mgr_base);
251
252         regs_and_bypass->dcfclk = internal.CLK1_CLK3_CURRENT_CNT / 10;
253         regs_and_bypass->dcf_deep_sleep_divider = internal.CLK1_CLK3_DS_CNTL / 10;
254         regs_and_bypass->dcf_deep_sleep_allow = internal.CLK1_CLK3_ALLOW_DS;
255         regs_and_bypass->dprefclk = internal.CLK1_CLK2_CURRENT_CNT / 10;
256         regs_and_bypass->dispclk = internal.CLK1_CLK0_CURRENT_CNT / 10;
257         regs_and_bypass->dppclk = internal.CLK1_CLK1_CURRENT_CNT / 10;
258
259         regs_and_bypass->dppclk_bypass = internal.CLK1_CLK1_BYPASS_CNTL & 0x0007;
260         if (regs_and_bypass->dppclk_bypass < 0 || regs_and_bypass->dppclk_bypass > 4)
261                 regs_and_bypass->dppclk_bypass = 0;
262         regs_and_bypass->dcfclk_bypass = internal.CLK1_CLK3_BYPASS_CNTL & 0x0007;
263         if (regs_and_bypass->dcfclk_bypass < 0 || regs_and_bypass->dcfclk_bypass > 4)
264                 regs_and_bypass->dcfclk_bypass = 0;
265         regs_and_bypass->dispclk_bypass = internal.CLK1_CLK0_BYPASS_CNTL & 0x0007;
266         if (regs_and_bypass->dispclk_bypass < 0 || regs_and_bypass->dispclk_bypass > 4)
267                 regs_and_bypass->dispclk_bypass = 0;
268         regs_and_bypass->dprefclk_bypass = internal.CLK1_CLK2_BYPASS_CNTL & 0x0007;
269         if (regs_and_bypass->dprefclk_bypass < 0 || regs_and_bypass->dprefclk_bypass > 4)
270                 regs_and_bypass->dprefclk_bypass = 0;
271
272         if (log_info->enabled) {
273                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "clk_type,clk_value,deepsleep_cntl,deepsleep_allow,bypass\n");
274                 remaining_buffer -= chars_printed;
275                 *log_info->sum_chars_printed += chars_printed;
276                 log_info->pBuf += chars_printed;
277
278                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dcfclk,%d,%d,%d,%s\n",
279                         regs_and_bypass->dcfclk,
280                         regs_and_bypass->dcf_deep_sleep_divider,
281                         regs_and_bypass->dcf_deep_sleep_allow,
282                         bypass_clks[(int) regs_and_bypass->dcfclk_bypass]);
283                 remaining_buffer -= chars_printed;
284                 *log_info->sum_chars_printed += chars_printed;
285                 log_info->pBuf += chars_printed;
286
287                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dprefclk,%d,N/A,N/A,%s\n",
288                         regs_and_bypass->dprefclk,
289                         bypass_clks[(int) regs_and_bypass->dprefclk_bypass]);
290                 remaining_buffer -= chars_printed;
291                 *log_info->sum_chars_printed += chars_printed;
292                 log_info->pBuf += chars_printed;
293
294                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dispclk,%d,N/A,N/A,%s\n",
295                         regs_and_bypass->dispclk,
296                         bypass_clks[(int) regs_and_bypass->dispclk_bypass]);
297                 remaining_buffer -= chars_printed;
298                 *log_info->sum_chars_printed += chars_printed;
299                 log_info->pBuf += chars_printed;
300
301                 //split
302                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "SPLIT\n");
303                 remaining_buffer -= chars_printed;
304                 *log_info->sum_chars_printed += chars_printed;
305                 log_info->pBuf += chars_printed;
306
307                 // REGISTER VALUES
308                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "reg_name,value,clk_type\n");
309                 remaining_buffer -= chars_printed;
310                 *log_info->sum_chars_printed += chars_printed;
311                 log_info->pBuf += chars_printed;
312
313                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_CURRENT_CNT,%d,dcfclk\n",
314                                 internal.CLK1_CLK3_CURRENT_CNT);
315                 remaining_buffer -= chars_printed;
316                 *log_info->sum_chars_printed += chars_printed;
317                 log_info->pBuf += chars_printed;
318
319                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_DS_CNTL,%d,dcf_deep_sleep_divider\n",
320                                         internal.CLK1_CLK3_DS_CNTL);
321                 remaining_buffer -= chars_printed;
322                 *log_info->sum_chars_printed += chars_printed;
323                 log_info->pBuf += chars_printed;
324
325                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_ALLOW_DS,%d,dcf_deep_sleep_allow\n",
326                                         internal.CLK1_CLK3_ALLOW_DS);
327                 remaining_buffer -= chars_printed;
328                 *log_info->sum_chars_printed += chars_printed;
329                 log_info->pBuf += chars_printed;
330
331                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK2_CURRENT_CNT,%d,dprefclk\n",
332                                         internal.CLK1_CLK2_CURRENT_CNT);
333                 remaining_buffer -= chars_printed;
334                 *log_info->sum_chars_printed += chars_printed;
335                 log_info->pBuf += chars_printed;
336
337                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK0_CURRENT_CNT,%d,dispclk\n",
338                                         internal.CLK1_CLK0_CURRENT_CNT);
339                 remaining_buffer -= chars_printed;
340                 *log_info->sum_chars_printed += chars_printed;
341                 log_info->pBuf += chars_printed;
342
343                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK1_CURRENT_CNT,%d,dppclk\n",
344                                         internal.CLK1_CLK1_CURRENT_CNT);
345                 remaining_buffer -= chars_printed;
346                 *log_info->sum_chars_printed += chars_printed;
347                 log_info->pBuf += chars_printed;
348
349                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_BYPASS_CNTL,%d,dcfclk_bypass\n",
350                                         internal.CLK1_CLK3_BYPASS_CNTL);
351                 remaining_buffer -= chars_printed;
352                 *log_info->sum_chars_printed += chars_printed;
353                 log_info->pBuf += chars_printed;
354
355                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK2_BYPASS_CNTL,%d,dprefclk_bypass\n",
356                                         internal.CLK1_CLK2_BYPASS_CNTL);
357                 remaining_buffer -= chars_printed;
358                 *log_info->sum_chars_printed += chars_printed;
359                 log_info->pBuf += chars_printed;
360
361                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK0_BYPASS_CNTL,%d,dispclk_bypass\n",
362                                         internal.CLK1_CLK0_BYPASS_CNTL);
363                 remaining_buffer -= chars_printed;
364                 *log_info->sum_chars_printed += chars_printed;
365                 log_info->pBuf += chars_printed;
366
367                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK1_BYPASS_CNTL,%d,dppclk_bypass\n",
368                                         internal.CLK1_CLK1_BYPASS_CNTL);
369                 remaining_buffer -= chars_printed;
370                 *log_info->sum_chars_printed += chars_printed;
371                 log_info->pBuf += chars_printed;
372         }
373 }
374
375 /* This function produce translated logical clk state values*/
376 void rn_get_clk_states(struct clk_mgr *clk_mgr_base, struct clk_states *s)
377 {
378         struct clk_state_registers_and_bypass sb = { 0 };
379         struct clk_log_info log_info = { 0 };
380
381         rn_dump_clk_registers(&sb, clk_mgr_base, &log_info);
382
383         s->dprefclk_khz = sb.dprefclk * 1000;
384 }
385
386 void rn_enable_pme_wa(struct clk_mgr *clk_mgr_base)
387 {
388         struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
389
390         rn_vbios_smu_enable_pme_wa(clk_mgr);
391 }
392
393 void rn_init_clocks(struct clk_mgr *clk_mgr)
394 {
395         memset(&(clk_mgr->clks), 0, sizeof(struct dc_clocks));
396         // Assumption is that boot state always supports pstate
397         clk_mgr->clks.p_state_change_support = true;
398         clk_mgr->clks.prev_p_state_change_support = true;
399         clk_mgr->clks.pwr_state = DCN_PWR_STATE_UNKNOWN;
400 }
401
402 void build_watermark_ranges(struct clk_bw_params *bw_params, struct pp_smu_wm_range_sets *ranges)
403 {
404         int i, num_valid_sets;
405
406         num_valid_sets = 0;
407
408         for (i = 0; i < WM_SET_COUNT; i++) {
409                 /* skip empty entries, the smu array has no holes*/
410                 if (!bw_params->wm_table.entries[i].valid)
411                         continue;
412
413                 ranges->reader_wm_sets[num_valid_sets].wm_inst = bw_params->wm_table.entries[i].wm_inst;
414                 ranges->reader_wm_sets[num_valid_sets].wm_type = bw_params->wm_table.entries[i].wm_type;
415                 /* We will not select WM based on dcfclk, so leave it as unconstrained */
416                 ranges->reader_wm_sets[num_valid_sets].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
417                 ranges->reader_wm_sets[num_valid_sets].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
418                 /* fclk wil be used to select WM*/
419
420                 if (ranges->reader_wm_sets[num_valid_sets].wm_type == WM_TYPE_PSTATE_CHG) {
421                         if (i == 0)
422                                 ranges->reader_wm_sets[num_valid_sets].min_fill_clk_mhz = 0;
423                         else {
424                                 /* add 1 to make it non-overlapping with next lvl */
425                                 ranges->reader_wm_sets[num_valid_sets].min_fill_clk_mhz = bw_params->clk_table.entries[i - 1].fclk_mhz + 1;
426                         }
427                         ranges->reader_wm_sets[num_valid_sets].max_fill_clk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
428
429                 } else {
430                         /* unconstrained for memory retraining */
431                         ranges->reader_wm_sets[num_valid_sets].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
432                         ranges->reader_wm_sets[num_valid_sets].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
433
434                         /* Modify previous watermark range to cover up to max */
435                         ranges->reader_wm_sets[num_valid_sets - 1].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
436                 }
437                 num_valid_sets++;
438         }
439
440         ASSERT(num_valid_sets != 0); /* Must have at least one set of valid watermarks */
441         ranges->num_reader_wm_sets = num_valid_sets;
442
443         /* modify the min and max to make sure we cover the whole range*/
444         ranges->reader_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
445         ranges->reader_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
446         ranges->reader_wm_sets[ranges->num_reader_wm_sets - 1].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
447         ranges->reader_wm_sets[ranges->num_reader_wm_sets - 1].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
448
449         /* This is for writeback only, does not matter currently as no writeback support*/
450         ranges->num_writer_wm_sets = 1;
451         ranges->writer_wm_sets[0].wm_inst = WM_A;
452         ranges->writer_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
453         ranges->writer_wm_sets[0].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
454         ranges->writer_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
455         ranges->writer_wm_sets[0].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
456
457 }
458
459 static void rn_notify_wm_ranges(struct clk_mgr *clk_mgr_base)
460 {
461         struct dc_debug_options *debug = &clk_mgr_base->ctx->dc->debug;
462         struct pp_smu_wm_range_sets ranges = {0};
463         struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
464         struct pp_smu_funcs *pp_smu = clk_mgr->pp_smu;
465
466         if (!debug->disable_pplib_wm_range) {
467                 build_watermark_ranges(clk_mgr_base->bw_params, &ranges);
468
469                 /* Notify PP Lib/SMU which Watermarks to use for which clock ranges */
470                 if (pp_smu && pp_smu->rn_funcs.set_wm_ranges)
471                         pp_smu->rn_funcs.set_wm_ranges(&pp_smu->rn_funcs.pp_smu, &ranges);
472         }
473
474 }
475
476 static bool rn_are_clock_states_equal(struct dc_clocks *a,
477                 struct dc_clocks *b)
478 {
479         if (a->dispclk_khz != b->dispclk_khz)
480                 return false;
481         else if (a->dppclk_khz != b->dppclk_khz)
482                 return false;
483         else if (a->dcfclk_khz != b->dcfclk_khz)
484                 return false;
485         else if (a->dcfclk_deep_sleep_khz != b->dcfclk_deep_sleep_khz)
486                 return false;
487
488         return true;
489 }
490
491
492 static struct clk_mgr_funcs dcn21_funcs = {
493         .get_dp_ref_clk_frequency = dce12_get_dp_ref_freq_khz,
494         .update_clocks = rn_update_clocks,
495         .init_clocks = rn_init_clocks,
496         .enable_pme_wa = rn_enable_pme_wa,
497         .are_clock_states_equal = rn_are_clock_states_equal,
498         .notify_wm_ranges = rn_notify_wm_ranges
499 };
500
501 struct clk_bw_params rn_bw_params = {
502         .vram_type = Ddr4MemType,
503         .num_channels = 1,
504         .clk_table = {
505                 .entries = {
506                         {
507                                 .voltage = 0,
508                                 .dcfclk_mhz = 400,
509                                 .fclk_mhz = 400,
510                                 .memclk_mhz = 800,
511                                 .socclk_mhz = 0,
512                         },
513                         {
514                                 .voltage = 0,
515                                 .dcfclk_mhz = 483,
516                                 .fclk_mhz = 800,
517                                 .memclk_mhz = 1600,
518                                 .socclk_mhz = 0,
519                         },
520                         {
521                                 .voltage = 0,
522                                 .dcfclk_mhz = 602,
523                                 .fclk_mhz = 1067,
524                                 .memclk_mhz = 1067,
525                                 .socclk_mhz = 0,
526                         },
527                         {
528                                 .voltage = 0,
529                                 .dcfclk_mhz = 738,
530                                 .fclk_mhz = 1333,
531                                 .memclk_mhz = 1600,
532                                 .socclk_mhz = 0,
533                         },
534                 },
535
536                 .num_entries = 4,
537         },
538
539 };
540
541 struct wm_table ddr4_wm_table = {
542         .entries = {
543                 {
544                         .wm_inst = WM_A,
545                         .wm_type = WM_TYPE_PSTATE_CHG,
546                         .pstate_latency_us = 11.72,
547                         .sr_exit_time_us = 6.09,
548                         .sr_enter_plus_exit_time_us = 7.14,
549                         .valid = true,
550                 },
551                 {
552                         .wm_inst = WM_B,
553                         .wm_type = WM_TYPE_PSTATE_CHG,
554                         .pstate_latency_us = 11.72,
555                         .sr_exit_time_us = 10.12,
556                         .sr_enter_plus_exit_time_us = 11.48,
557                         .valid = true,
558                 },
559                 {
560                         .wm_inst = WM_C,
561                         .wm_type = WM_TYPE_PSTATE_CHG,
562                         .pstate_latency_us = 11.72,
563                         .sr_exit_time_us = 10.12,
564                         .sr_enter_plus_exit_time_us = 11.48,
565                         .valid = true,
566                 },
567                 {
568                         .wm_inst = WM_D,
569                         .wm_type = WM_TYPE_PSTATE_CHG,
570                         .pstate_latency_us = 11.72,
571                         .sr_exit_time_us = 10.12,
572                         .sr_enter_plus_exit_time_us = 11.48,
573                         .valid = true,
574                 },
575         }
576 };
577
578 struct wm_table lpddr4_wm_table = {
579         .entries = {
580                 {
581                         .wm_inst = WM_A,
582                         .wm_type = WM_TYPE_PSTATE_CHG,
583                         .pstate_latency_us = 11.65333,
584                         .sr_exit_time_us = 5.32,
585                         .sr_enter_plus_exit_time_us = 6.38,
586                         .valid = true,
587                 },
588                 {
589                         .wm_inst = WM_B,
590                         .wm_type = WM_TYPE_PSTATE_CHG,
591                         .pstate_latency_us = 11.65333,
592                         .sr_exit_time_us = 9.82,
593                         .sr_enter_plus_exit_time_us = 11.196,
594                         .valid = true,
595                 },
596                 {
597                         .wm_inst = WM_C,
598                         .wm_type = WM_TYPE_PSTATE_CHG,
599                         .pstate_latency_us = 11.65333,
600                         .sr_exit_time_us = 9.89,
601                         .sr_enter_plus_exit_time_us = 11.24,
602                         .valid = true,
603                 },
604                 {
605                         .wm_inst = WM_D,
606                         .wm_type = WM_TYPE_PSTATE_CHG,
607                         .pstate_latency_us = 11.65333,
608                         .sr_exit_time_us = 9.748,
609                         .sr_enter_plus_exit_time_us = 11.102,
610                         .valid = true,
611                 },
612         }
613 };
614
615
616 static unsigned int find_dcfclk_for_voltage(struct dpm_clocks *clock_table, unsigned int voltage)
617 {
618         int i;
619
620         for (i = 0; i < PP_SMU_NUM_DCFCLK_DPM_LEVELS; i++) {
621                 if (clock_table->DcfClocks[i].Vol == voltage)
622                         return clock_table->DcfClocks[i].Freq;
623         }
624
625         ASSERT(0);
626         return 0;
627 }
628
629 static void rn_clk_mgr_helper_populate_bw_params(struct clk_bw_params *bw_params, struct dpm_clocks *clock_table, struct integrated_info *bios_info)
630 {
631         int i, j = 0;
632
633         j = -1;
634
635         ASSERT(PP_SMU_NUM_FCLK_DPM_LEVELS <= MAX_NUM_DPM_LVL);
636
637         /* Find lowest DPM, FCLK is filled in reverse order*/
638
639         for (i = PP_SMU_NUM_FCLK_DPM_LEVELS - 1; i >= 0; i--) {
640                 if (clock_table->FClocks[i].Freq != 0) {
641                         j = i;
642                         break;
643                 }
644         }
645
646         if (j == -1) {
647                 /* clock table is all 0s, just use our own hardcode */
648                 ASSERT(0);
649                 return;
650         }
651
652         bw_params->clk_table.num_entries = j + 1;
653
654         for (i = 0; i < bw_params->clk_table.num_entries; i++, j--) {
655                 bw_params->clk_table.entries[i].fclk_mhz = clock_table->FClocks[j].Freq;
656                 bw_params->clk_table.entries[i].memclk_mhz = clock_table->MemClocks[j].Freq;
657                 bw_params->clk_table.entries[i].voltage = clock_table->FClocks[j].Vol;
658                 bw_params->clk_table.entries[i].dcfclk_mhz = find_dcfclk_for_voltage(clock_table, clock_table->FClocks[j].Vol);
659         }
660
661         bw_params->vram_type = bios_info->memory_type;
662         bw_params->num_channels = bios_info->ma_channel_number;
663
664         for (i = 0; i < WM_SET_COUNT; i++) {
665                 bw_params->wm_table.entries[i].wm_inst = i;
666
667                 if (i >= bw_params->clk_table.num_entries) {
668                         bw_params->wm_table.entries[i].valid = false;
669                         continue;
670                 }
671
672                 bw_params->wm_table.entries[i].wm_type = WM_TYPE_PSTATE_CHG;
673                 bw_params->wm_table.entries[i].valid = true;
674         }
675
676         if (bw_params->vram_type == LpDdr4MemType) {
677                 /*
678                  * WM set D will be re-purposed for memory retraining
679                  */
680                 bw_params->wm_table.entries[WM_D].pstate_latency_us = LPDDR_MEM_RETRAIN_LATENCY;
681                 bw_params->wm_table.entries[WM_D].wm_inst = WM_D;
682                 bw_params->wm_table.entries[WM_D].wm_type = WM_TYPE_RETRAINING;
683                 bw_params->wm_table.entries[WM_D].valid = true;
684         }
685
686 }
687
688 void rn_clk_mgr_construct(
689                 struct dc_context *ctx,
690                 struct clk_mgr_internal *clk_mgr,
691                 struct pp_smu_funcs *pp_smu,
692                 struct dccg *dccg)
693 {
694         struct dc_debug_options *debug = &ctx->dc->debug;
695         struct dpm_clocks clock_table = { 0 };
696
697         clk_mgr->base.ctx = ctx;
698         clk_mgr->base.funcs = &dcn21_funcs;
699
700         clk_mgr->pp_smu = pp_smu;
701
702         clk_mgr->dccg = dccg;
703         clk_mgr->dfs_bypass_disp_clk = 0;
704
705         clk_mgr->dprefclk_ss_percentage = 0;
706         clk_mgr->dprefclk_ss_divider = 1000;
707         clk_mgr->ss_on_dprefclk = false;
708         clk_mgr->dfs_ref_freq_khz = 48000;
709
710         clk_mgr->smu_ver = rn_vbios_smu_get_smu_version(clk_mgr);
711
712         if (IS_FPGA_MAXIMUS_DC(ctx->dce_environment)) {
713                 dcn21_funcs.update_clocks = dcn2_update_clocks_fpga;
714                 clk_mgr->base.dentist_vco_freq_khz = 3600000;
715         } else {
716                 struct clk_log_info log_info = {0};
717
718                 /* TODO: Check we get what we expect during bringup */
719                 clk_mgr->base.dentist_vco_freq_khz = get_vco_frequency_from_reg(clk_mgr);
720
721                 /* in case we don't get a value from the register, use default */
722                 if (clk_mgr->base.dentist_vco_freq_khz == 0)
723                         clk_mgr->base.dentist_vco_freq_khz = 3600000;
724
725                 if (ctx->dc_bios->integrated_info->memory_type == LpDdr4MemType) {
726                         rn_bw_params.wm_table = lpddr4_wm_table;
727                 } else {
728                         rn_bw_params.wm_table = ddr4_wm_table;
729                 }
730                 /* Saved clocks configured at boot for debug purposes */
731                 rn_dump_clk_registers(&clk_mgr->base.boot_snapshot, &clk_mgr->base, &log_info);
732         }
733
734         clk_mgr->base.dprefclk_khz = 600000;
735         dce_clock_read_ss_info(clk_mgr);
736
737
738         clk_mgr->base.bw_params = &rn_bw_params;
739
740         if (pp_smu && pp_smu->rn_funcs.get_dpm_clock_table) {
741                 pp_smu->rn_funcs.get_dpm_clock_table(&pp_smu->rn_funcs.pp_smu, &clock_table);
742                 if (ctx->dc_bios && ctx->dc_bios->integrated_info) {
743                         rn_clk_mgr_helper_populate_bw_params (clk_mgr->base.bw_params, &clock_table, ctx->dc_bios->integrated_info);
744                 }
745         }
746
747         if (!IS_FPGA_MAXIMUS_DC(ctx->dce_environment) && clk_mgr->smu_ver >= 0x00371500) {
748                 /* enable powerfeatures when displaycount goes to 0 */
749                 rn_vbios_smu_enable_48mhz_tmdp_refclk_pwrdwn(clk_mgr, !debug->disable_48mhz_pwrdwn);
750         }
751 }
752