Merge tag 'ceph-for-6.2-rc1' of https://github.com/ceph/ceph-client
[linux-2.6-block.git] / drivers / gpu / drm / amd / amdkfd / kfd_topology.c
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/pci.h>
27 #include <linux/errno.h>
28 #include <linux/acpi.h>
29 #include <linux/hash.h>
30 #include <linux/cpufreq.h>
31 #include <linux/log2.h>
32 #include <linux/dmi.h>
33 #include <linux/atomic.h>
34
35 #include "kfd_priv.h"
36 #include "kfd_crat.h"
37 #include "kfd_topology.h"
38 #include "kfd_device_queue_manager.h"
39 #include "kfd_iommu.h"
40 #include "kfd_svm.h"
41 #include "amdgpu_amdkfd.h"
42 #include "amdgpu_ras.h"
43 #include "amdgpu.h"
44
45 /* topology_device_list - Master list of all topology devices */
46 static struct list_head topology_device_list;
47 static struct kfd_system_properties sys_props;
48
49 static DECLARE_RWSEM(topology_lock);
50 static uint32_t topology_crat_proximity_domain;
51
52 struct kfd_topology_device *kfd_topology_device_by_proximity_domain_no_lock(
53                                                 uint32_t proximity_domain)
54 {
55         struct kfd_topology_device *top_dev;
56         struct kfd_topology_device *device = NULL;
57
58         list_for_each_entry(top_dev, &topology_device_list, list)
59                 if (top_dev->proximity_domain == proximity_domain) {
60                         device = top_dev;
61                         break;
62                 }
63
64         return device;
65 }
66
67 struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
68                                                 uint32_t proximity_domain)
69 {
70         struct kfd_topology_device *device = NULL;
71
72         down_read(&topology_lock);
73
74         device = kfd_topology_device_by_proximity_domain_no_lock(
75                                                         proximity_domain);
76         up_read(&topology_lock);
77
78         return device;
79 }
80
81 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id)
82 {
83         struct kfd_topology_device *top_dev = NULL;
84         struct kfd_topology_device *ret = NULL;
85
86         down_read(&topology_lock);
87
88         list_for_each_entry(top_dev, &topology_device_list, list)
89                 if (top_dev->gpu_id == gpu_id) {
90                         ret = top_dev;
91                         break;
92                 }
93
94         up_read(&topology_lock);
95
96         return ret;
97 }
98
99 struct kfd_dev *kfd_device_by_id(uint32_t gpu_id)
100 {
101         struct kfd_topology_device *top_dev;
102
103         top_dev = kfd_topology_device_by_id(gpu_id);
104         if (!top_dev)
105                 return NULL;
106
107         return top_dev->gpu;
108 }
109
110 struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev)
111 {
112         struct kfd_topology_device *top_dev;
113         struct kfd_dev *device = NULL;
114
115         down_read(&topology_lock);
116
117         list_for_each_entry(top_dev, &topology_device_list, list)
118                 if (top_dev->gpu && top_dev->gpu->adev->pdev == pdev) {
119                         device = top_dev->gpu;
120                         break;
121                 }
122
123         up_read(&topology_lock);
124
125         return device;
126 }
127
128 struct kfd_dev *kfd_device_by_adev(const struct amdgpu_device *adev)
129 {
130         struct kfd_topology_device *top_dev;
131         struct kfd_dev *device = NULL;
132
133         down_read(&topology_lock);
134
135         list_for_each_entry(top_dev, &topology_device_list, list)
136                 if (top_dev->gpu && top_dev->gpu->adev == adev) {
137                         device = top_dev->gpu;
138                         break;
139                 }
140
141         up_read(&topology_lock);
142
143         return device;
144 }
145
146 /* Called with write topology_lock acquired */
147 static void kfd_release_topology_device(struct kfd_topology_device *dev)
148 {
149         struct kfd_mem_properties *mem;
150         struct kfd_cache_properties *cache;
151         struct kfd_iolink_properties *iolink;
152         struct kfd_iolink_properties *p2plink;
153         struct kfd_perf_properties *perf;
154
155         list_del(&dev->list);
156
157         while (dev->mem_props.next != &dev->mem_props) {
158                 mem = container_of(dev->mem_props.next,
159                                 struct kfd_mem_properties, list);
160                 list_del(&mem->list);
161                 kfree(mem);
162         }
163
164         while (dev->cache_props.next != &dev->cache_props) {
165                 cache = container_of(dev->cache_props.next,
166                                 struct kfd_cache_properties, list);
167                 list_del(&cache->list);
168                 kfree(cache);
169         }
170
171         while (dev->io_link_props.next != &dev->io_link_props) {
172                 iolink = container_of(dev->io_link_props.next,
173                                 struct kfd_iolink_properties, list);
174                 list_del(&iolink->list);
175                 kfree(iolink);
176         }
177
178         while (dev->p2p_link_props.next != &dev->p2p_link_props) {
179                 p2plink = container_of(dev->p2p_link_props.next,
180                                 struct kfd_iolink_properties, list);
181                 list_del(&p2plink->list);
182                 kfree(p2plink);
183         }
184
185         while (dev->perf_props.next != &dev->perf_props) {
186                 perf = container_of(dev->perf_props.next,
187                                 struct kfd_perf_properties, list);
188                 list_del(&perf->list);
189                 kfree(perf);
190         }
191
192         kfree(dev);
193 }
194
195 void kfd_release_topology_device_list(struct list_head *device_list)
196 {
197         struct kfd_topology_device *dev;
198
199         while (!list_empty(device_list)) {
200                 dev = list_first_entry(device_list,
201                                        struct kfd_topology_device, list);
202                 kfd_release_topology_device(dev);
203         }
204 }
205
206 static void kfd_release_live_view(void)
207 {
208         kfd_release_topology_device_list(&topology_device_list);
209         memset(&sys_props, 0, sizeof(sys_props));
210 }
211
212 struct kfd_topology_device *kfd_create_topology_device(
213                                 struct list_head *device_list)
214 {
215         struct kfd_topology_device *dev;
216
217         dev = kfd_alloc_struct(dev);
218         if (!dev) {
219                 pr_err("No memory to allocate a topology device");
220                 return NULL;
221         }
222
223         INIT_LIST_HEAD(&dev->mem_props);
224         INIT_LIST_HEAD(&dev->cache_props);
225         INIT_LIST_HEAD(&dev->io_link_props);
226         INIT_LIST_HEAD(&dev->p2p_link_props);
227         INIT_LIST_HEAD(&dev->perf_props);
228
229         list_add_tail(&dev->list, device_list);
230
231         return dev;
232 }
233
234
235 #define sysfs_show_gen_prop(buffer, offs, fmt, ...)             \
236                 (offs += snprintf(buffer+offs, PAGE_SIZE-offs,  \
237                                   fmt, __VA_ARGS__))
238 #define sysfs_show_32bit_prop(buffer, offs, name, value) \
239                 sysfs_show_gen_prop(buffer, offs, "%s %u\n", name, value)
240 #define sysfs_show_64bit_prop(buffer, offs, name, value) \
241                 sysfs_show_gen_prop(buffer, offs, "%s %llu\n", name, value)
242 #define sysfs_show_32bit_val(buffer, offs, value) \
243                 sysfs_show_gen_prop(buffer, offs, "%u\n", value)
244 #define sysfs_show_str_val(buffer, offs, value) \
245                 sysfs_show_gen_prop(buffer, offs, "%s\n", value)
246
247 static ssize_t sysprops_show(struct kobject *kobj, struct attribute *attr,
248                 char *buffer)
249 {
250         int offs = 0;
251
252         /* Making sure that the buffer is an empty string */
253         buffer[0] = 0;
254
255         if (attr == &sys_props.attr_genid) {
256                 sysfs_show_32bit_val(buffer, offs,
257                                      sys_props.generation_count);
258         } else if (attr == &sys_props.attr_props) {
259                 sysfs_show_64bit_prop(buffer, offs, "platform_oem",
260                                       sys_props.platform_oem);
261                 sysfs_show_64bit_prop(buffer, offs, "platform_id",
262                                       sys_props.platform_id);
263                 sysfs_show_64bit_prop(buffer, offs, "platform_rev",
264                                       sys_props.platform_rev);
265         } else {
266                 offs = -EINVAL;
267         }
268
269         return offs;
270 }
271
272 static void kfd_topology_kobj_release(struct kobject *kobj)
273 {
274         kfree(kobj);
275 }
276
277 static const struct sysfs_ops sysprops_ops = {
278         .show = sysprops_show,
279 };
280
281 static struct kobj_type sysprops_type = {
282         .release = kfd_topology_kobj_release,
283         .sysfs_ops = &sysprops_ops,
284 };
285
286 static ssize_t iolink_show(struct kobject *kobj, struct attribute *attr,
287                 char *buffer)
288 {
289         int offs = 0;
290         struct kfd_iolink_properties *iolink;
291
292         /* Making sure that the buffer is an empty string */
293         buffer[0] = 0;
294
295         iolink = container_of(attr, struct kfd_iolink_properties, attr);
296         if (iolink->gpu && kfd_devcgroup_check_permission(iolink->gpu))
297                 return -EPERM;
298         sysfs_show_32bit_prop(buffer, offs, "type", iolink->iolink_type);
299         sysfs_show_32bit_prop(buffer, offs, "version_major", iolink->ver_maj);
300         sysfs_show_32bit_prop(buffer, offs, "version_minor", iolink->ver_min);
301         sysfs_show_32bit_prop(buffer, offs, "node_from", iolink->node_from);
302         sysfs_show_32bit_prop(buffer, offs, "node_to", iolink->node_to);
303         sysfs_show_32bit_prop(buffer, offs, "weight", iolink->weight);
304         sysfs_show_32bit_prop(buffer, offs, "min_latency", iolink->min_latency);
305         sysfs_show_32bit_prop(buffer, offs, "max_latency", iolink->max_latency);
306         sysfs_show_32bit_prop(buffer, offs, "min_bandwidth",
307                               iolink->min_bandwidth);
308         sysfs_show_32bit_prop(buffer, offs, "max_bandwidth",
309                               iolink->max_bandwidth);
310         sysfs_show_32bit_prop(buffer, offs, "recommended_transfer_size",
311                               iolink->rec_transfer_size);
312         sysfs_show_32bit_prop(buffer, offs, "flags", iolink->flags);
313
314         return offs;
315 }
316
317 static const struct sysfs_ops iolink_ops = {
318         .show = iolink_show,
319 };
320
321 static struct kobj_type iolink_type = {
322         .release = kfd_topology_kobj_release,
323         .sysfs_ops = &iolink_ops,
324 };
325
326 static ssize_t mem_show(struct kobject *kobj, struct attribute *attr,
327                 char *buffer)
328 {
329         int offs = 0;
330         struct kfd_mem_properties *mem;
331
332         /* Making sure that the buffer is an empty string */
333         buffer[0] = 0;
334
335         mem = container_of(attr, struct kfd_mem_properties, attr);
336         if (mem->gpu && kfd_devcgroup_check_permission(mem->gpu))
337                 return -EPERM;
338         sysfs_show_32bit_prop(buffer, offs, "heap_type", mem->heap_type);
339         sysfs_show_64bit_prop(buffer, offs, "size_in_bytes",
340                               mem->size_in_bytes);
341         sysfs_show_32bit_prop(buffer, offs, "flags", mem->flags);
342         sysfs_show_32bit_prop(buffer, offs, "width", mem->width);
343         sysfs_show_32bit_prop(buffer, offs, "mem_clk_max",
344                               mem->mem_clk_max);
345
346         return offs;
347 }
348
349 static const struct sysfs_ops mem_ops = {
350         .show = mem_show,
351 };
352
353 static struct kobj_type mem_type = {
354         .release = kfd_topology_kobj_release,
355         .sysfs_ops = &mem_ops,
356 };
357
358 static ssize_t kfd_cache_show(struct kobject *kobj, struct attribute *attr,
359                 char *buffer)
360 {
361         int offs = 0;
362         uint32_t i, j;
363         struct kfd_cache_properties *cache;
364
365         /* Making sure that the buffer is an empty string */
366         buffer[0] = 0;
367         cache = container_of(attr, struct kfd_cache_properties, attr);
368         if (cache->gpu && kfd_devcgroup_check_permission(cache->gpu))
369                 return -EPERM;
370         sysfs_show_32bit_prop(buffer, offs, "processor_id_low",
371                         cache->processor_id_low);
372         sysfs_show_32bit_prop(buffer, offs, "level", cache->cache_level);
373         sysfs_show_32bit_prop(buffer, offs, "size", cache->cache_size);
374         sysfs_show_32bit_prop(buffer, offs, "cache_line_size",
375                               cache->cacheline_size);
376         sysfs_show_32bit_prop(buffer, offs, "cache_lines_per_tag",
377                               cache->cachelines_per_tag);
378         sysfs_show_32bit_prop(buffer, offs, "association", cache->cache_assoc);
379         sysfs_show_32bit_prop(buffer, offs, "latency", cache->cache_latency);
380         sysfs_show_32bit_prop(buffer, offs, "type", cache->cache_type);
381
382         offs += snprintf(buffer+offs, PAGE_SIZE-offs, "sibling_map ");
383         for (i = 0; i < cache->sibling_map_size; i++)
384                 for (j = 0; j < sizeof(cache->sibling_map[0])*8; j++)
385                         /* Check each bit */
386                         offs += snprintf(buffer+offs, PAGE_SIZE-offs, "%d,",
387                                                 (cache->sibling_map[i] >> j) & 1);
388
389         /* Replace the last "," with end of line */
390         buffer[offs-1] = '\n';
391         return offs;
392 }
393
394 static const struct sysfs_ops cache_ops = {
395         .show = kfd_cache_show,
396 };
397
398 static struct kobj_type cache_type = {
399         .release = kfd_topology_kobj_release,
400         .sysfs_ops = &cache_ops,
401 };
402
403 /****** Sysfs of Performance Counters ******/
404
405 struct kfd_perf_attr {
406         struct kobj_attribute attr;
407         uint32_t data;
408 };
409
410 static ssize_t perf_show(struct kobject *kobj, struct kobj_attribute *attrs,
411                         char *buf)
412 {
413         int offs = 0;
414         struct kfd_perf_attr *attr;
415
416         buf[0] = 0;
417         attr = container_of(attrs, struct kfd_perf_attr, attr);
418         if (!attr->data) /* invalid data for PMC */
419                 return 0;
420         else
421                 return sysfs_show_32bit_val(buf, offs, attr->data);
422 }
423
424 #define KFD_PERF_DESC(_name, _data)                     \
425 {                                                       \
426         .attr  = __ATTR(_name, 0444, perf_show, NULL),  \
427         .data = _data,                                  \
428 }
429
430 static struct kfd_perf_attr perf_attr_iommu[] = {
431         KFD_PERF_DESC(max_concurrent, 0),
432         KFD_PERF_DESC(num_counters, 0),
433         KFD_PERF_DESC(counter_ids, 0),
434 };
435 /****************************************/
436
437 static ssize_t node_show(struct kobject *kobj, struct attribute *attr,
438                 char *buffer)
439 {
440         int offs = 0;
441         struct kfd_topology_device *dev;
442         uint32_t log_max_watch_addr;
443
444         /* Making sure that the buffer is an empty string */
445         buffer[0] = 0;
446
447         if (strcmp(attr->name, "gpu_id") == 0) {
448                 dev = container_of(attr, struct kfd_topology_device,
449                                 attr_gpuid);
450                 if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
451                         return -EPERM;
452                 return sysfs_show_32bit_val(buffer, offs, dev->gpu_id);
453         }
454
455         if (strcmp(attr->name, "name") == 0) {
456                 dev = container_of(attr, struct kfd_topology_device,
457                                 attr_name);
458
459                 if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
460                         return -EPERM;
461                 return sysfs_show_str_val(buffer, offs, dev->node_props.name);
462         }
463
464         dev = container_of(attr, struct kfd_topology_device,
465                         attr_props);
466         if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
467                 return -EPERM;
468         sysfs_show_32bit_prop(buffer, offs, "cpu_cores_count",
469                               dev->node_props.cpu_cores_count);
470         sysfs_show_32bit_prop(buffer, offs, "simd_count",
471                               dev->gpu ? dev->node_props.simd_count : 0);
472         sysfs_show_32bit_prop(buffer, offs, "mem_banks_count",
473                               dev->node_props.mem_banks_count);
474         sysfs_show_32bit_prop(buffer, offs, "caches_count",
475                               dev->node_props.caches_count);
476         sysfs_show_32bit_prop(buffer, offs, "io_links_count",
477                               dev->node_props.io_links_count);
478         sysfs_show_32bit_prop(buffer, offs, "p2p_links_count",
479                               dev->node_props.p2p_links_count);
480         sysfs_show_32bit_prop(buffer, offs, "cpu_core_id_base",
481                               dev->node_props.cpu_core_id_base);
482         sysfs_show_32bit_prop(buffer, offs, "simd_id_base",
483                               dev->node_props.simd_id_base);
484         sysfs_show_32bit_prop(buffer, offs, "max_waves_per_simd",
485                               dev->node_props.max_waves_per_simd);
486         sysfs_show_32bit_prop(buffer, offs, "lds_size_in_kb",
487                               dev->node_props.lds_size_in_kb);
488         sysfs_show_32bit_prop(buffer, offs, "gds_size_in_kb",
489                               dev->node_props.gds_size_in_kb);
490         sysfs_show_32bit_prop(buffer, offs, "num_gws",
491                               dev->node_props.num_gws);
492         sysfs_show_32bit_prop(buffer, offs, "wave_front_size",
493                               dev->node_props.wave_front_size);
494         sysfs_show_32bit_prop(buffer, offs, "array_count",
495                               dev->node_props.array_count);
496         sysfs_show_32bit_prop(buffer, offs, "simd_arrays_per_engine",
497                               dev->node_props.simd_arrays_per_engine);
498         sysfs_show_32bit_prop(buffer, offs, "cu_per_simd_array",
499                               dev->node_props.cu_per_simd_array);
500         sysfs_show_32bit_prop(buffer, offs, "simd_per_cu",
501                               dev->node_props.simd_per_cu);
502         sysfs_show_32bit_prop(buffer, offs, "max_slots_scratch_cu",
503                               dev->node_props.max_slots_scratch_cu);
504         sysfs_show_32bit_prop(buffer, offs, "gfx_target_version",
505                               dev->node_props.gfx_target_version);
506         sysfs_show_32bit_prop(buffer, offs, "vendor_id",
507                               dev->node_props.vendor_id);
508         sysfs_show_32bit_prop(buffer, offs, "device_id",
509                               dev->node_props.device_id);
510         sysfs_show_32bit_prop(buffer, offs, "location_id",
511                               dev->node_props.location_id);
512         sysfs_show_32bit_prop(buffer, offs, "domain",
513                               dev->node_props.domain);
514         sysfs_show_32bit_prop(buffer, offs, "drm_render_minor",
515                               dev->node_props.drm_render_minor);
516         sysfs_show_64bit_prop(buffer, offs, "hive_id",
517                               dev->node_props.hive_id);
518         sysfs_show_32bit_prop(buffer, offs, "num_sdma_engines",
519                               dev->node_props.num_sdma_engines);
520         sysfs_show_32bit_prop(buffer, offs, "num_sdma_xgmi_engines",
521                               dev->node_props.num_sdma_xgmi_engines);
522         sysfs_show_32bit_prop(buffer, offs, "num_sdma_queues_per_engine",
523                               dev->node_props.num_sdma_queues_per_engine);
524         sysfs_show_32bit_prop(buffer, offs, "num_cp_queues",
525                               dev->node_props.num_cp_queues);
526
527         if (dev->gpu) {
528                 log_max_watch_addr =
529                         __ilog2_u32(dev->gpu->device_info.num_of_watch_points);
530
531                 if (log_max_watch_addr) {
532                         dev->node_props.capability |=
533                                         HSA_CAP_WATCH_POINTS_SUPPORTED;
534
535                         dev->node_props.capability |=
536                                 ((log_max_watch_addr <<
537                                         HSA_CAP_WATCH_POINTS_TOTALBITS_SHIFT) &
538                                 HSA_CAP_WATCH_POINTS_TOTALBITS_MASK);
539                 }
540
541                 if (dev->gpu->adev->asic_type == CHIP_TONGA)
542                         dev->node_props.capability |=
543                                         HSA_CAP_AQL_QUEUE_DOUBLE_MAP;
544
545                 sysfs_show_32bit_prop(buffer, offs, "max_engine_clk_fcompute",
546                         dev->node_props.max_engine_clk_fcompute);
547
548                 sysfs_show_64bit_prop(buffer, offs, "local_mem_size", 0ULL);
549
550                 sysfs_show_32bit_prop(buffer, offs, "fw_version",
551                                       dev->gpu->mec_fw_version);
552                 sysfs_show_32bit_prop(buffer, offs, "capability",
553                                       dev->node_props.capability);
554                 sysfs_show_32bit_prop(buffer, offs, "sdma_fw_version",
555                                       dev->gpu->sdma_fw_version);
556                 sysfs_show_64bit_prop(buffer, offs, "unique_id",
557                                       dev->gpu->adev->unique_id);
558
559         }
560
561         return sysfs_show_32bit_prop(buffer, offs, "max_engine_clk_ccompute",
562                                      cpufreq_quick_get_max(0)/1000);
563 }
564
565 static const struct sysfs_ops node_ops = {
566         .show = node_show,
567 };
568
569 static struct kobj_type node_type = {
570         .release = kfd_topology_kobj_release,
571         .sysfs_ops = &node_ops,
572 };
573
574 static void kfd_remove_sysfs_file(struct kobject *kobj, struct attribute *attr)
575 {
576         sysfs_remove_file(kobj, attr);
577         kobject_del(kobj);
578         kobject_put(kobj);
579 }
580
581 static void kfd_remove_sysfs_node_entry(struct kfd_topology_device *dev)
582 {
583         struct kfd_iolink_properties *p2plink;
584         struct kfd_iolink_properties *iolink;
585         struct kfd_cache_properties *cache;
586         struct kfd_mem_properties *mem;
587         struct kfd_perf_properties *perf;
588
589         if (dev->kobj_iolink) {
590                 list_for_each_entry(iolink, &dev->io_link_props, list)
591                         if (iolink->kobj) {
592                                 kfd_remove_sysfs_file(iolink->kobj,
593                                                         &iolink->attr);
594                                 iolink->kobj = NULL;
595                         }
596                 kobject_del(dev->kobj_iolink);
597                 kobject_put(dev->kobj_iolink);
598                 dev->kobj_iolink = NULL;
599         }
600
601         if (dev->kobj_p2plink) {
602                 list_for_each_entry(p2plink, &dev->p2p_link_props, list)
603                         if (p2plink->kobj) {
604                                 kfd_remove_sysfs_file(p2plink->kobj,
605                                                         &p2plink->attr);
606                                 p2plink->kobj = NULL;
607                         }
608                 kobject_del(dev->kobj_p2plink);
609                 kobject_put(dev->kobj_p2plink);
610                 dev->kobj_p2plink = NULL;
611         }
612
613         if (dev->kobj_cache) {
614                 list_for_each_entry(cache, &dev->cache_props, list)
615                         if (cache->kobj) {
616                                 kfd_remove_sysfs_file(cache->kobj,
617                                                         &cache->attr);
618                                 cache->kobj = NULL;
619                         }
620                 kobject_del(dev->kobj_cache);
621                 kobject_put(dev->kobj_cache);
622                 dev->kobj_cache = NULL;
623         }
624
625         if (dev->kobj_mem) {
626                 list_for_each_entry(mem, &dev->mem_props, list)
627                         if (mem->kobj) {
628                                 kfd_remove_sysfs_file(mem->kobj, &mem->attr);
629                                 mem->kobj = NULL;
630                         }
631                 kobject_del(dev->kobj_mem);
632                 kobject_put(dev->kobj_mem);
633                 dev->kobj_mem = NULL;
634         }
635
636         if (dev->kobj_perf) {
637                 list_for_each_entry(perf, &dev->perf_props, list) {
638                         kfree(perf->attr_group);
639                         perf->attr_group = NULL;
640                 }
641                 kobject_del(dev->kobj_perf);
642                 kobject_put(dev->kobj_perf);
643                 dev->kobj_perf = NULL;
644         }
645
646         if (dev->kobj_node) {
647                 sysfs_remove_file(dev->kobj_node, &dev->attr_gpuid);
648                 sysfs_remove_file(dev->kobj_node, &dev->attr_name);
649                 sysfs_remove_file(dev->kobj_node, &dev->attr_props);
650                 kobject_del(dev->kobj_node);
651                 kobject_put(dev->kobj_node);
652                 dev->kobj_node = NULL;
653         }
654 }
655
656 static int kfd_build_sysfs_node_entry(struct kfd_topology_device *dev,
657                 uint32_t id)
658 {
659         struct kfd_iolink_properties *p2plink;
660         struct kfd_iolink_properties *iolink;
661         struct kfd_cache_properties *cache;
662         struct kfd_mem_properties *mem;
663         struct kfd_perf_properties *perf;
664         int ret;
665         uint32_t i, num_attrs;
666         struct attribute **attrs;
667
668         if (WARN_ON(dev->kobj_node))
669                 return -EEXIST;
670
671         /*
672          * Creating the sysfs folders
673          */
674         dev->kobj_node = kfd_alloc_struct(dev->kobj_node);
675         if (!dev->kobj_node)
676                 return -ENOMEM;
677
678         ret = kobject_init_and_add(dev->kobj_node, &node_type,
679                         sys_props.kobj_nodes, "%d", id);
680         if (ret < 0) {
681                 kobject_put(dev->kobj_node);
682                 return ret;
683         }
684
685         dev->kobj_mem = kobject_create_and_add("mem_banks", dev->kobj_node);
686         if (!dev->kobj_mem)
687                 return -ENOMEM;
688
689         dev->kobj_cache = kobject_create_and_add("caches", dev->kobj_node);
690         if (!dev->kobj_cache)
691                 return -ENOMEM;
692
693         dev->kobj_iolink = kobject_create_and_add("io_links", dev->kobj_node);
694         if (!dev->kobj_iolink)
695                 return -ENOMEM;
696
697         dev->kobj_p2plink = kobject_create_and_add("p2p_links", dev->kobj_node);
698         if (!dev->kobj_p2plink)
699                 return -ENOMEM;
700
701         dev->kobj_perf = kobject_create_and_add("perf", dev->kobj_node);
702         if (!dev->kobj_perf)
703                 return -ENOMEM;
704
705         /*
706          * Creating sysfs files for node properties
707          */
708         dev->attr_gpuid.name = "gpu_id";
709         dev->attr_gpuid.mode = KFD_SYSFS_FILE_MODE;
710         sysfs_attr_init(&dev->attr_gpuid);
711         dev->attr_name.name = "name";
712         dev->attr_name.mode = KFD_SYSFS_FILE_MODE;
713         sysfs_attr_init(&dev->attr_name);
714         dev->attr_props.name = "properties";
715         dev->attr_props.mode = KFD_SYSFS_FILE_MODE;
716         sysfs_attr_init(&dev->attr_props);
717         ret = sysfs_create_file(dev->kobj_node, &dev->attr_gpuid);
718         if (ret < 0)
719                 return ret;
720         ret = sysfs_create_file(dev->kobj_node, &dev->attr_name);
721         if (ret < 0)
722                 return ret;
723         ret = sysfs_create_file(dev->kobj_node, &dev->attr_props);
724         if (ret < 0)
725                 return ret;
726
727         i = 0;
728         list_for_each_entry(mem, &dev->mem_props, list) {
729                 mem->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
730                 if (!mem->kobj)
731                         return -ENOMEM;
732                 ret = kobject_init_and_add(mem->kobj, &mem_type,
733                                 dev->kobj_mem, "%d", i);
734                 if (ret < 0) {
735                         kobject_put(mem->kobj);
736                         return ret;
737                 }
738
739                 mem->attr.name = "properties";
740                 mem->attr.mode = KFD_SYSFS_FILE_MODE;
741                 sysfs_attr_init(&mem->attr);
742                 ret = sysfs_create_file(mem->kobj, &mem->attr);
743                 if (ret < 0)
744                         return ret;
745                 i++;
746         }
747
748         i = 0;
749         list_for_each_entry(cache, &dev->cache_props, list) {
750                 cache->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
751                 if (!cache->kobj)
752                         return -ENOMEM;
753                 ret = kobject_init_and_add(cache->kobj, &cache_type,
754                                 dev->kobj_cache, "%d", i);
755                 if (ret < 0) {
756                         kobject_put(cache->kobj);
757                         return ret;
758                 }
759
760                 cache->attr.name = "properties";
761                 cache->attr.mode = KFD_SYSFS_FILE_MODE;
762                 sysfs_attr_init(&cache->attr);
763                 ret = sysfs_create_file(cache->kobj, &cache->attr);
764                 if (ret < 0)
765                         return ret;
766                 i++;
767         }
768
769         i = 0;
770         list_for_each_entry(iolink, &dev->io_link_props, list) {
771                 iolink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
772                 if (!iolink->kobj)
773                         return -ENOMEM;
774                 ret = kobject_init_and_add(iolink->kobj, &iolink_type,
775                                 dev->kobj_iolink, "%d", i);
776                 if (ret < 0) {
777                         kobject_put(iolink->kobj);
778                         return ret;
779                 }
780
781                 iolink->attr.name = "properties";
782                 iolink->attr.mode = KFD_SYSFS_FILE_MODE;
783                 sysfs_attr_init(&iolink->attr);
784                 ret = sysfs_create_file(iolink->kobj, &iolink->attr);
785                 if (ret < 0)
786                         return ret;
787                 i++;
788         }
789
790         i = 0;
791         list_for_each_entry(p2plink, &dev->p2p_link_props, list) {
792                 p2plink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
793                 if (!p2plink->kobj)
794                         return -ENOMEM;
795                 ret = kobject_init_and_add(p2plink->kobj, &iolink_type,
796                                 dev->kobj_p2plink, "%d", i);
797                 if (ret < 0) {
798                         kobject_put(p2plink->kobj);
799                         return ret;
800                 }
801
802                 p2plink->attr.name = "properties";
803                 p2plink->attr.mode = KFD_SYSFS_FILE_MODE;
804                 sysfs_attr_init(&iolink->attr);
805                 ret = sysfs_create_file(p2plink->kobj, &p2plink->attr);
806                 if (ret < 0)
807                         return ret;
808                 i++;
809         }
810
811         /* All hardware blocks have the same number of attributes. */
812         num_attrs = ARRAY_SIZE(perf_attr_iommu);
813         list_for_each_entry(perf, &dev->perf_props, list) {
814                 perf->attr_group = kzalloc(sizeof(struct kfd_perf_attr)
815                         * num_attrs + sizeof(struct attribute_group),
816                         GFP_KERNEL);
817                 if (!perf->attr_group)
818                         return -ENOMEM;
819
820                 attrs = (struct attribute **)(perf->attr_group + 1);
821                 if (!strcmp(perf->block_name, "iommu")) {
822                 /* Information of IOMMU's num_counters and counter_ids is shown
823                  * under /sys/bus/event_source/devices/amd_iommu. We don't
824                  * duplicate here.
825                  */
826                         perf_attr_iommu[0].data = perf->max_concurrent;
827                         for (i = 0; i < num_attrs; i++)
828                                 attrs[i] = &perf_attr_iommu[i].attr.attr;
829                 }
830                 perf->attr_group->name = perf->block_name;
831                 perf->attr_group->attrs = attrs;
832                 ret = sysfs_create_group(dev->kobj_perf, perf->attr_group);
833                 if (ret < 0)
834                         return ret;
835         }
836
837         return 0;
838 }
839
840 /* Called with write topology lock acquired */
841 static int kfd_build_sysfs_node_tree(void)
842 {
843         struct kfd_topology_device *dev;
844         int ret;
845         uint32_t i = 0;
846
847         list_for_each_entry(dev, &topology_device_list, list) {
848                 ret = kfd_build_sysfs_node_entry(dev, i);
849                 if (ret < 0)
850                         return ret;
851                 i++;
852         }
853
854         return 0;
855 }
856
857 /* Called with write topology lock acquired */
858 static void kfd_remove_sysfs_node_tree(void)
859 {
860         struct kfd_topology_device *dev;
861
862         list_for_each_entry(dev, &topology_device_list, list)
863                 kfd_remove_sysfs_node_entry(dev);
864 }
865
866 static int kfd_topology_update_sysfs(void)
867 {
868         int ret;
869
870         if (!sys_props.kobj_topology) {
871                 sys_props.kobj_topology =
872                                 kfd_alloc_struct(sys_props.kobj_topology);
873                 if (!sys_props.kobj_topology)
874                         return -ENOMEM;
875
876                 ret = kobject_init_and_add(sys_props.kobj_topology,
877                                 &sysprops_type,  &kfd_device->kobj,
878                                 "topology");
879                 if (ret < 0) {
880                         kobject_put(sys_props.kobj_topology);
881                         return ret;
882                 }
883
884                 sys_props.kobj_nodes = kobject_create_and_add("nodes",
885                                 sys_props.kobj_topology);
886                 if (!sys_props.kobj_nodes)
887                         return -ENOMEM;
888
889                 sys_props.attr_genid.name = "generation_id";
890                 sys_props.attr_genid.mode = KFD_SYSFS_FILE_MODE;
891                 sysfs_attr_init(&sys_props.attr_genid);
892                 ret = sysfs_create_file(sys_props.kobj_topology,
893                                 &sys_props.attr_genid);
894                 if (ret < 0)
895                         return ret;
896
897                 sys_props.attr_props.name = "system_properties";
898                 sys_props.attr_props.mode = KFD_SYSFS_FILE_MODE;
899                 sysfs_attr_init(&sys_props.attr_props);
900                 ret = sysfs_create_file(sys_props.kobj_topology,
901                                 &sys_props.attr_props);
902                 if (ret < 0)
903                         return ret;
904         }
905
906         kfd_remove_sysfs_node_tree();
907
908         return kfd_build_sysfs_node_tree();
909 }
910
911 static void kfd_topology_release_sysfs(void)
912 {
913         kfd_remove_sysfs_node_tree();
914         if (sys_props.kobj_topology) {
915                 sysfs_remove_file(sys_props.kobj_topology,
916                                 &sys_props.attr_genid);
917                 sysfs_remove_file(sys_props.kobj_topology,
918                                 &sys_props.attr_props);
919                 if (sys_props.kobj_nodes) {
920                         kobject_del(sys_props.kobj_nodes);
921                         kobject_put(sys_props.kobj_nodes);
922                         sys_props.kobj_nodes = NULL;
923                 }
924                 kobject_del(sys_props.kobj_topology);
925                 kobject_put(sys_props.kobj_topology);
926                 sys_props.kobj_topology = NULL;
927         }
928 }
929
930 /* Called with write topology_lock acquired */
931 static void kfd_topology_update_device_list(struct list_head *temp_list,
932                                         struct list_head *master_list)
933 {
934         while (!list_empty(temp_list)) {
935                 list_move_tail(temp_list->next, master_list);
936                 sys_props.num_devices++;
937         }
938 }
939
940 static void kfd_debug_print_topology(void)
941 {
942         struct kfd_topology_device *dev;
943
944         down_read(&topology_lock);
945
946         dev = list_last_entry(&topology_device_list,
947                         struct kfd_topology_device, list);
948         if (dev) {
949                 if (dev->node_props.cpu_cores_count &&
950                                 dev->node_props.simd_count) {
951                         pr_info("Topology: Add APU node [0x%0x:0x%0x]\n",
952                                 dev->node_props.device_id,
953                                 dev->node_props.vendor_id);
954                 } else if (dev->node_props.cpu_cores_count)
955                         pr_info("Topology: Add CPU node\n");
956                 else if (dev->node_props.simd_count)
957                         pr_info("Topology: Add dGPU node [0x%0x:0x%0x]\n",
958                                 dev->node_props.device_id,
959                                 dev->node_props.vendor_id);
960         }
961         up_read(&topology_lock);
962 }
963
964 /* Helper function for intializing platform_xx members of
965  * kfd_system_properties. Uses OEM info from the last CPU/APU node.
966  */
967 static void kfd_update_system_properties(void)
968 {
969         struct kfd_topology_device *dev;
970
971         down_read(&topology_lock);
972         dev = list_last_entry(&topology_device_list,
973                         struct kfd_topology_device, list);
974         if (dev) {
975                 sys_props.platform_id =
976                         (*((uint64_t *)dev->oem_id)) & CRAT_OEMID_64BIT_MASK;
977                 sys_props.platform_oem = *((uint64_t *)dev->oem_table_id);
978                 sys_props.platform_rev = dev->oem_revision;
979         }
980         up_read(&topology_lock);
981 }
982
983 static void find_system_memory(const struct dmi_header *dm,
984         void *private)
985 {
986         struct kfd_mem_properties *mem;
987         u16 mem_width, mem_clock;
988         struct kfd_topology_device *kdev =
989                 (struct kfd_topology_device *)private;
990         const u8 *dmi_data = (const u8 *)(dm + 1);
991
992         if (dm->type == DMI_ENTRY_MEM_DEVICE && dm->length >= 0x15) {
993                 mem_width = (u16)(*(const u16 *)(dmi_data + 0x6));
994                 mem_clock = (u16)(*(const u16 *)(dmi_data + 0x11));
995                 list_for_each_entry(mem, &kdev->mem_props, list) {
996                         if (mem_width != 0xFFFF && mem_width != 0)
997                                 mem->width = mem_width;
998                         if (mem_clock != 0)
999                                 mem->mem_clk_max = mem_clock;
1000                 }
1001         }
1002 }
1003
1004 /*
1005  * Performance counters information is not part of CRAT but we would like to
1006  * put them in the sysfs under topology directory for Thunk to get the data.
1007  * This function is called before updating the sysfs.
1008  */
1009 static int kfd_add_perf_to_topology(struct kfd_topology_device *kdev)
1010 {
1011         /* These are the only counters supported so far */
1012         return kfd_iommu_add_perf_counters(kdev);
1013 }
1014
1015 /* kfd_add_non_crat_information - Add information that is not currently
1016  *      defined in CRAT but is necessary for KFD topology
1017  * @dev - topology device to which addition info is added
1018  */
1019 static void kfd_add_non_crat_information(struct kfd_topology_device *kdev)
1020 {
1021         /* Check if CPU only node. */
1022         if (!kdev->gpu) {
1023                 /* Add system memory information */
1024                 dmi_walk(find_system_memory, kdev);
1025         }
1026         /* TODO: For GPU node, rearrange code from kfd_topology_add_device */
1027 }
1028
1029 /* kfd_is_acpi_crat_invalid - CRAT from ACPI is valid only for AMD APU devices.
1030  *      Ignore CRAT for all other devices. AMD APU is identified if both CPU
1031  *      and GPU cores are present.
1032  * @device_list - topology device list created by parsing ACPI CRAT table.
1033  * @return - TRUE if invalid, FALSE is valid.
1034  */
1035 static bool kfd_is_acpi_crat_invalid(struct list_head *device_list)
1036 {
1037         struct kfd_topology_device *dev;
1038
1039         list_for_each_entry(dev, device_list, list) {
1040                 if (dev->node_props.cpu_cores_count &&
1041                         dev->node_props.simd_count)
1042                         return false;
1043         }
1044         pr_info("Ignoring ACPI CRAT on non-APU system\n");
1045         return true;
1046 }
1047
1048 int kfd_topology_init(void)
1049 {
1050         void *crat_image = NULL;
1051         size_t image_size = 0;
1052         int ret;
1053         struct list_head temp_topology_device_list;
1054         int cpu_only_node = 0;
1055         struct kfd_topology_device *kdev;
1056         int proximity_domain;
1057
1058         /* topology_device_list - Master list of all topology devices
1059          * temp_topology_device_list - temporary list created while parsing CRAT
1060          * or VCRAT. Once parsing is complete the contents of list is moved to
1061          * topology_device_list
1062          */
1063
1064         /* Initialize the head for the both the lists */
1065         INIT_LIST_HEAD(&topology_device_list);
1066         INIT_LIST_HEAD(&temp_topology_device_list);
1067         init_rwsem(&topology_lock);
1068
1069         memset(&sys_props, 0, sizeof(sys_props));
1070
1071         /* Proximity domains in ACPI CRAT tables start counting at
1072          * 0. The same should be true for virtual CRAT tables created
1073          * at this stage. GPUs added later in kfd_topology_add_device
1074          * use a counter.
1075          */
1076         proximity_domain = 0;
1077
1078         /*
1079          * Get the CRAT image from the ACPI. If ACPI doesn't have one
1080          * or if ACPI CRAT is invalid create a virtual CRAT.
1081          * NOTE: The current implementation expects all AMD APUs to have
1082          *      CRAT. If no CRAT is available, it is assumed to be a CPU
1083          */
1084         ret = kfd_create_crat_image_acpi(&crat_image, &image_size);
1085         if (!ret) {
1086                 ret = kfd_parse_crat_table(crat_image,
1087                                            &temp_topology_device_list,
1088                                            proximity_domain);
1089                 if (ret ||
1090                     kfd_is_acpi_crat_invalid(&temp_topology_device_list)) {
1091                         kfd_release_topology_device_list(
1092                                 &temp_topology_device_list);
1093                         kfd_destroy_crat_image(crat_image);
1094                         crat_image = NULL;
1095                 }
1096         }
1097
1098         if (!crat_image) {
1099                 ret = kfd_create_crat_image_virtual(&crat_image, &image_size,
1100                                                     COMPUTE_UNIT_CPU, NULL,
1101                                                     proximity_domain);
1102                 cpu_only_node = 1;
1103                 if (ret) {
1104                         pr_err("Error creating VCRAT table for CPU\n");
1105                         return ret;
1106                 }
1107
1108                 ret = kfd_parse_crat_table(crat_image,
1109                                            &temp_topology_device_list,
1110                                            proximity_domain);
1111                 if (ret) {
1112                         pr_err("Error parsing VCRAT table for CPU\n");
1113                         goto err;
1114                 }
1115         }
1116
1117         kdev = list_first_entry(&temp_topology_device_list,
1118                                 struct kfd_topology_device, list);
1119         kfd_add_perf_to_topology(kdev);
1120
1121         down_write(&topology_lock);
1122         kfd_topology_update_device_list(&temp_topology_device_list,
1123                                         &topology_device_list);
1124         topology_crat_proximity_domain = sys_props.num_devices-1;
1125         ret = kfd_topology_update_sysfs();
1126         up_write(&topology_lock);
1127
1128         if (!ret) {
1129                 sys_props.generation_count++;
1130                 kfd_update_system_properties();
1131                 kfd_debug_print_topology();
1132         } else
1133                 pr_err("Failed to update topology in sysfs ret=%d\n", ret);
1134
1135         /* For nodes with GPU, this information gets added
1136          * when GPU is detected (kfd_topology_add_device).
1137          */
1138         if (cpu_only_node) {
1139                 /* Add additional information to CPU only node created above */
1140                 down_write(&topology_lock);
1141                 kdev = list_first_entry(&topology_device_list,
1142                                 struct kfd_topology_device, list);
1143                 up_write(&topology_lock);
1144                 kfd_add_non_crat_information(kdev);
1145         }
1146
1147 err:
1148         kfd_destroy_crat_image(crat_image);
1149         return ret;
1150 }
1151
1152 void kfd_topology_shutdown(void)
1153 {
1154         down_write(&topology_lock);
1155         kfd_topology_release_sysfs();
1156         kfd_release_live_view();
1157         up_write(&topology_lock);
1158 }
1159
1160 static uint32_t kfd_generate_gpu_id(struct kfd_dev *gpu)
1161 {
1162         uint32_t hashout;
1163         uint32_t buf[7];
1164         uint64_t local_mem_size;
1165         int i;
1166
1167         if (!gpu)
1168                 return 0;
1169
1170         local_mem_size = gpu->local_mem_info.local_mem_size_private +
1171                         gpu->local_mem_info.local_mem_size_public;
1172         buf[0] = gpu->adev->pdev->devfn;
1173         buf[1] = gpu->adev->pdev->subsystem_vendor |
1174                 (gpu->adev->pdev->subsystem_device << 16);
1175         buf[2] = pci_domain_nr(gpu->adev->pdev->bus);
1176         buf[3] = gpu->adev->pdev->device;
1177         buf[4] = gpu->adev->pdev->bus->number;
1178         buf[5] = lower_32_bits(local_mem_size);
1179         buf[6] = upper_32_bits(local_mem_size);
1180
1181         for (i = 0, hashout = 0; i < 7; i++)
1182                 hashout ^= hash_32(buf[i], KFD_GPU_ID_HASH_WIDTH);
1183
1184         return hashout;
1185 }
1186 /* kfd_assign_gpu - Attach @gpu to the correct kfd topology device. If
1187  *              the GPU device is not already present in the topology device
1188  *              list then return NULL. This means a new topology device has to
1189  *              be created for this GPU.
1190  */
1191 static struct kfd_topology_device *kfd_assign_gpu(struct kfd_dev *gpu)
1192 {
1193         struct kfd_topology_device *dev;
1194         struct kfd_topology_device *out_dev = NULL;
1195         struct kfd_mem_properties *mem;
1196         struct kfd_cache_properties *cache;
1197         struct kfd_iolink_properties *iolink;
1198         struct kfd_iolink_properties *p2plink;
1199
1200         list_for_each_entry(dev, &topology_device_list, list) {
1201                 /* Discrete GPUs need their own topology device list
1202                  * entries. Don't assign them to CPU/APU nodes.
1203                  */
1204                 if (!gpu->use_iommu_v2 &&
1205                     dev->node_props.cpu_cores_count)
1206                         continue;
1207
1208                 if (!dev->gpu && (dev->node_props.simd_count > 0)) {
1209                         dev->gpu = gpu;
1210                         out_dev = dev;
1211
1212                         list_for_each_entry(mem, &dev->mem_props, list)
1213                                 mem->gpu = dev->gpu;
1214                         list_for_each_entry(cache, &dev->cache_props, list)
1215                                 cache->gpu = dev->gpu;
1216                         list_for_each_entry(iolink, &dev->io_link_props, list)
1217                                 iolink->gpu = dev->gpu;
1218                         list_for_each_entry(p2plink, &dev->p2p_link_props, list)
1219                                 p2plink->gpu = dev->gpu;
1220                         break;
1221                 }
1222         }
1223         return out_dev;
1224 }
1225
1226 static void kfd_notify_gpu_change(uint32_t gpu_id, int arrival)
1227 {
1228         /*
1229          * TODO: Generate an event for thunk about the arrival/removal
1230          * of the GPU
1231          */
1232 }
1233
1234 /* kfd_fill_mem_clk_max_info - Since CRAT doesn't have memory clock info,
1235  *              patch this after CRAT parsing.
1236  */
1237 static void kfd_fill_mem_clk_max_info(struct kfd_topology_device *dev)
1238 {
1239         struct kfd_mem_properties *mem;
1240         struct kfd_local_mem_info local_mem_info;
1241
1242         if (!dev)
1243                 return;
1244
1245         /* Currently, amdgpu driver (amdgpu_mc) deals only with GPUs with
1246          * single bank of VRAM local memory.
1247          * for dGPUs - VCRAT reports only one bank of Local Memory
1248          * for APUs - If CRAT from ACPI reports more than one bank, then
1249          *      all the banks will report the same mem_clk_max information
1250          */
1251         amdgpu_amdkfd_get_local_mem_info(dev->gpu->adev, &local_mem_info);
1252
1253         list_for_each_entry(mem, &dev->mem_props, list)
1254                 mem->mem_clk_max = local_mem_info.mem_clk_max;
1255 }
1256
1257 static void kfd_set_iolink_no_atomics(struct kfd_topology_device *dev,
1258                                         struct kfd_topology_device *target_gpu_dev,
1259                                         struct kfd_iolink_properties *link)
1260 {
1261         /* xgmi always supports atomics between links. */
1262         if (link->iolink_type == CRAT_IOLINK_TYPE_XGMI)
1263                 return;
1264
1265         /* check pcie support to set cpu(dev) flags for target_gpu_dev link. */
1266         if (target_gpu_dev) {
1267                 uint32_t cap;
1268
1269                 pcie_capability_read_dword(target_gpu_dev->gpu->adev->pdev,
1270                                 PCI_EXP_DEVCAP2, &cap);
1271
1272                 if (!(cap & (PCI_EXP_DEVCAP2_ATOMIC_COMP32 |
1273                              PCI_EXP_DEVCAP2_ATOMIC_COMP64)))
1274                         link->flags |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT |
1275                                 CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT;
1276         /* set gpu (dev) flags. */
1277         } else {
1278                 if (!dev->gpu->pci_atomic_requested ||
1279                                 dev->gpu->adev->asic_type == CHIP_HAWAII)
1280                         link->flags |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT |
1281                                 CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT;
1282         }
1283 }
1284
1285 static void kfd_set_iolink_non_coherent(struct kfd_topology_device *to_dev,
1286                 struct kfd_iolink_properties *outbound_link,
1287                 struct kfd_iolink_properties *inbound_link)
1288 {
1289         /* CPU -> GPU with PCIe */
1290         if (!to_dev->gpu &&
1291             inbound_link->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS)
1292                 inbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1293
1294         if (to_dev->gpu) {
1295                 /* GPU <-> GPU with PCIe and
1296                  * Vega20 with XGMI
1297                  */
1298                 if (inbound_link->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS ||
1299                     (inbound_link->iolink_type == CRAT_IOLINK_TYPE_XGMI &&
1300                     KFD_GC_VERSION(to_dev->gpu) == IP_VERSION(9, 4, 0))) {
1301                         outbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1302                         inbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1303                 }
1304         }
1305 }
1306
1307 static void kfd_fill_iolink_non_crat_info(struct kfd_topology_device *dev)
1308 {
1309         struct kfd_iolink_properties *link, *inbound_link;
1310         struct kfd_topology_device *peer_dev;
1311
1312         if (!dev || !dev->gpu)
1313                 return;
1314
1315         /* GPU only creates direct links so apply flags setting to all */
1316         list_for_each_entry(link, &dev->io_link_props, list) {
1317                 link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1318                 kfd_set_iolink_no_atomics(dev, NULL, link);
1319                 peer_dev = kfd_topology_device_by_proximity_domain(
1320                                 link->node_to);
1321
1322                 if (!peer_dev)
1323                         continue;
1324
1325                 /* Include the CPU peer in GPU hive if connected over xGMI. */
1326                 if (!peer_dev->gpu && !peer_dev->node_props.hive_id &&
1327                                 dev->node_props.hive_id &&
1328                                 dev->gpu->adev->gmc.xgmi.connected_to_cpu)
1329                         peer_dev->node_props.hive_id = dev->node_props.hive_id;
1330
1331                 list_for_each_entry(inbound_link, &peer_dev->io_link_props,
1332                                                                         list) {
1333                         if (inbound_link->node_to != link->node_from)
1334                                 continue;
1335
1336                         inbound_link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1337                         kfd_set_iolink_no_atomics(peer_dev, dev, inbound_link);
1338                         kfd_set_iolink_non_coherent(peer_dev, link, inbound_link);
1339                 }
1340         }
1341
1342         /* Create indirect links so apply flags setting to all */
1343         list_for_each_entry(link, &dev->p2p_link_props, list) {
1344                 link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1345                 kfd_set_iolink_no_atomics(dev, NULL, link);
1346                 peer_dev = kfd_topology_device_by_proximity_domain(
1347                                 link->node_to);
1348
1349                 if (!peer_dev)
1350                         continue;
1351
1352                 list_for_each_entry(inbound_link, &peer_dev->p2p_link_props,
1353                                                                         list) {
1354                         if (inbound_link->node_to != link->node_from)
1355                                 continue;
1356
1357                         inbound_link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1358                         kfd_set_iolink_no_atomics(peer_dev, dev, inbound_link);
1359                         kfd_set_iolink_non_coherent(peer_dev, link, inbound_link);
1360                 }
1361         }
1362 }
1363
1364 static int kfd_build_p2p_node_entry(struct kfd_topology_device *dev,
1365                                 struct kfd_iolink_properties *p2plink)
1366 {
1367         int ret;
1368
1369         p2plink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
1370         if (!p2plink->kobj)
1371                 return -ENOMEM;
1372
1373         ret = kobject_init_and_add(p2plink->kobj, &iolink_type,
1374                         dev->kobj_p2plink, "%d", dev->node_props.p2p_links_count - 1);
1375         if (ret < 0) {
1376                 kobject_put(p2plink->kobj);
1377                 return ret;
1378         }
1379
1380         p2plink->attr.name = "properties";
1381         p2plink->attr.mode = KFD_SYSFS_FILE_MODE;
1382         sysfs_attr_init(&p2plink->attr);
1383         ret = sysfs_create_file(p2plink->kobj, &p2plink->attr);
1384         if (ret < 0)
1385                 return ret;
1386
1387         return 0;
1388 }
1389
1390 static int kfd_create_indirect_link_prop(struct kfd_topology_device *kdev, int gpu_node)
1391 {
1392         struct kfd_iolink_properties *gpu_link, *tmp_link, *cpu_link;
1393         struct kfd_iolink_properties *props = NULL, *props2 = NULL;
1394         struct kfd_topology_device *cpu_dev;
1395         int ret = 0;
1396         int i, num_cpu;
1397
1398         num_cpu = 0;
1399         list_for_each_entry(cpu_dev, &topology_device_list, list) {
1400                 if (cpu_dev->gpu)
1401                         break;
1402                 num_cpu++;
1403         }
1404
1405         gpu_link = list_first_entry(&kdev->io_link_props,
1406                                         struct kfd_iolink_properties, list);
1407         if (!gpu_link)
1408                 return -ENOMEM;
1409
1410         for (i = 0; i < num_cpu; i++) {
1411                 /* CPU <--> GPU */
1412                 if (gpu_link->node_to == i)
1413                         continue;
1414
1415                 /* find CPU <-->  CPU links */
1416                 cpu_link = NULL;
1417                 cpu_dev = kfd_topology_device_by_proximity_domain(i);
1418                 if (cpu_dev) {
1419                         list_for_each_entry(tmp_link,
1420                                         &cpu_dev->io_link_props, list) {
1421                                 if (tmp_link->node_to == gpu_link->node_to) {
1422                                         cpu_link = tmp_link;
1423                                         break;
1424                                 }
1425                         }
1426                 }
1427
1428                 if (!cpu_link)
1429                         return -ENOMEM;
1430
1431                 /* CPU <--> CPU <--> GPU, GPU node*/
1432                 props = kfd_alloc_struct(props);
1433                 if (!props)
1434                         return -ENOMEM;
1435
1436                 memcpy(props, gpu_link, sizeof(struct kfd_iolink_properties));
1437                 props->weight = gpu_link->weight + cpu_link->weight;
1438                 props->min_latency = gpu_link->min_latency + cpu_link->min_latency;
1439                 props->max_latency = gpu_link->max_latency + cpu_link->max_latency;
1440                 props->min_bandwidth = min(gpu_link->min_bandwidth, cpu_link->min_bandwidth);
1441                 props->max_bandwidth = min(gpu_link->max_bandwidth, cpu_link->max_bandwidth);
1442
1443                 props->node_from = gpu_node;
1444                 props->node_to = i;
1445                 kdev->node_props.p2p_links_count++;
1446                 list_add_tail(&props->list, &kdev->p2p_link_props);
1447                 ret = kfd_build_p2p_node_entry(kdev, props);
1448                 if (ret < 0)
1449                         return ret;
1450
1451                 /* for small Bar, no CPU --> GPU in-direct links */
1452                 if (kfd_dev_is_large_bar(kdev->gpu)) {
1453                         /* CPU <--> CPU <--> GPU, CPU node*/
1454                         props2 = kfd_alloc_struct(props2);
1455                         if (!props2)
1456                                 return -ENOMEM;
1457
1458                         memcpy(props2, props, sizeof(struct kfd_iolink_properties));
1459                         props2->node_from = i;
1460                         props2->node_to = gpu_node;
1461                         props2->kobj = NULL;
1462                         cpu_dev->node_props.p2p_links_count++;
1463                         list_add_tail(&props2->list, &cpu_dev->p2p_link_props);
1464                         ret = kfd_build_p2p_node_entry(cpu_dev, props2);
1465                         if (ret < 0)
1466                                 return ret;
1467                 }
1468         }
1469         return ret;
1470 }
1471
1472 #if defined(CONFIG_HSA_AMD_P2P)
1473 static int kfd_add_peer_prop(struct kfd_topology_device *kdev,
1474                 struct kfd_topology_device *peer, int from, int to)
1475 {
1476         struct kfd_iolink_properties *props = NULL;
1477         struct kfd_iolink_properties *iolink1, *iolink2, *iolink3;
1478         struct kfd_topology_device *cpu_dev;
1479         int ret = 0;
1480
1481         if (!amdgpu_device_is_peer_accessible(
1482                                 kdev->gpu->adev,
1483                                 peer->gpu->adev))
1484                 return ret;
1485
1486         iolink1 = list_first_entry(&kdev->io_link_props,
1487                                                         struct kfd_iolink_properties, list);
1488         if (!iolink1)
1489                 return -ENOMEM;
1490
1491         iolink2 = list_first_entry(&peer->io_link_props,
1492                                                         struct kfd_iolink_properties, list);
1493         if (!iolink2)
1494                 return -ENOMEM;
1495
1496         props = kfd_alloc_struct(props);
1497         if (!props)
1498                 return -ENOMEM;
1499
1500         memcpy(props, iolink1, sizeof(struct kfd_iolink_properties));
1501
1502         props->weight = iolink1->weight + iolink2->weight;
1503         props->min_latency = iolink1->min_latency + iolink2->min_latency;
1504         props->max_latency = iolink1->max_latency + iolink2->max_latency;
1505         props->min_bandwidth = min(iolink1->min_bandwidth, iolink2->min_bandwidth);
1506         props->max_bandwidth = min(iolink2->max_bandwidth, iolink2->max_bandwidth);
1507
1508         if (iolink1->node_to != iolink2->node_to) {
1509                 /* CPU->CPU  link*/
1510                 cpu_dev = kfd_topology_device_by_proximity_domain(iolink1->node_to);
1511                 if (cpu_dev) {
1512                         list_for_each_entry(iolink3, &cpu_dev->io_link_props, list)
1513                                 if (iolink3->node_to == iolink2->node_to)
1514                                         break;
1515
1516                         props->weight += iolink3->weight;
1517                         props->min_latency += iolink3->min_latency;
1518                         props->max_latency += iolink3->max_latency;
1519                         props->min_bandwidth = min(props->min_bandwidth,
1520                                                         iolink3->min_bandwidth);
1521                         props->max_bandwidth = min(props->max_bandwidth,
1522                                                         iolink3->max_bandwidth);
1523                 } else {
1524                         WARN(1, "CPU node not found");
1525                 }
1526         }
1527
1528         props->node_from = from;
1529         props->node_to = to;
1530         peer->node_props.p2p_links_count++;
1531         list_add_tail(&props->list, &peer->p2p_link_props);
1532         ret = kfd_build_p2p_node_entry(peer, props);
1533
1534         return ret;
1535 }
1536 #endif
1537
1538 static int kfd_dev_create_p2p_links(void)
1539 {
1540         struct kfd_topology_device *dev;
1541         struct kfd_topology_device *new_dev;
1542 #if defined(CONFIG_HSA_AMD_P2P)
1543         uint32_t i;
1544 #endif
1545         uint32_t k;
1546         int ret = 0;
1547
1548         k = 0;
1549         list_for_each_entry(dev, &topology_device_list, list)
1550                 k++;
1551         if (k < 2)
1552                 return 0;
1553
1554         new_dev = list_last_entry(&topology_device_list, struct kfd_topology_device, list);
1555         if (WARN_ON(!new_dev->gpu))
1556                 return 0;
1557
1558         k--;
1559
1560         /* create in-direct links */
1561         ret = kfd_create_indirect_link_prop(new_dev, k);
1562         if (ret < 0)
1563                 goto out;
1564
1565         /* create p2p links */
1566 #if defined(CONFIG_HSA_AMD_P2P)
1567         i = 0;
1568         list_for_each_entry(dev, &topology_device_list, list) {
1569                 if (dev == new_dev)
1570                         break;
1571                 if (!dev->gpu || !dev->gpu->adev ||
1572                     (dev->gpu->hive_id &&
1573                      dev->gpu->hive_id == new_dev->gpu->hive_id))
1574                         goto next;
1575
1576                 /* check if node(s) is/are peer accessible in one direction or bi-direction */
1577                 ret = kfd_add_peer_prop(new_dev, dev, i, k);
1578                 if (ret < 0)
1579                         goto out;
1580
1581                 ret = kfd_add_peer_prop(dev, new_dev, k, i);
1582                 if (ret < 0)
1583                         goto out;
1584 next:
1585                 i++;
1586         }
1587 #endif
1588
1589 out:
1590         return ret;
1591 }
1592
1593
1594 /* Helper function. See kfd_fill_gpu_cache_info for parameter description */
1595 static int fill_in_l1_pcache(struct kfd_cache_properties **props_ext,
1596                                 struct kfd_gpu_cache_info *pcache_info,
1597                                 struct kfd_cu_info *cu_info,
1598                                 int cu_bitmask,
1599                                 int cache_type, unsigned int cu_processor_id,
1600                                 int cu_block)
1601 {
1602         unsigned int cu_sibling_map_mask;
1603         int first_active_cu;
1604         struct kfd_cache_properties *pcache = NULL;
1605
1606         cu_sibling_map_mask = cu_bitmask;
1607         cu_sibling_map_mask >>= cu_block;
1608         cu_sibling_map_mask &= ((1 << pcache_info[cache_type].num_cu_shared) - 1);
1609         first_active_cu = ffs(cu_sibling_map_mask);
1610
1611         /* CU could be inactive. In case of shared cache find the first active
1612          * CU. and incase of non-shared cache check if the CU is inactive. If
1613          * inactive active skip it
1614          */
1615         if (first_active_cu) {
1616                 pcache = kfd_alloc_struct(pcache);
1617                 if (!pcache)
1618                         return -ENOMEM;
1619
1620                 memset(pcache, 0, sizeof(struct kfd_cache_properties));
1621                 pcache->processor_id_low = cu_processor_id + (first_active_cu - 1);
1622                 pcache->cache_level = pcache_info[cache_type].cache_level;
1623                 pcache->cache_size = pcache_info[cache_type].cache_size;
1624
1625                 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_DATA_CACHE)
1626                         pcache->cache_type |= HSA_CACHE_TYPE_DATA;
1627                 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_INST_CACHE)
1628                         pcache->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
1629                 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_CPU_CACHE)
1630                         pcache->cache_type |= HSA_CACHE_TYPE_CPU;
1631                 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
1632                         pcache->cache_type |= HSA_CACHE_TYPE_HSACU;
1633
1634                 /* Sibling map is w.r.t processor_id_low, so shift out
1635                  * inactive CU
1636                  */
1637                 cu_sibling_map_mask =
1638                         cu_sibling_map_mask >> (first_active_cu - 1);
1639
1640                 pcache->sibling_map[0] = (uint8_t)(cu_sibling_map_mask & 0xFF);
1641                 pcache->sibling_map[1] =
1642                                 (uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
1643                 pcache->sibling_map[2] =
1644                                 (uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
1645                 pcache->sibling_map[3] =
1646                                 (uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
1647
1648                 pcache->sibling_map_size = 4;
1649                 *props_ext = pcache;
1650
1651                 return 0;
1652         }
1653         return 1;
1654 }
1655
1656 /* Helper function. See kfd_fill_gpu_cache_info for parameter description */
1657 static int fill_in_l2_l3_pcache(struct kfd_cache_properties **props_ext,
1658                                 struct kfd_gpu_cache_info *pcache_info,
1659                                 struct kfd_cu_info *cu_info,
1660                                 int cache_type, unsigned int cu_processor_id)
1661 {
1662         unsigned int cu_sibling_map_mask;
1663         int first_active_cu;
1664         int i, j, k;
1665         struct kfd_cache_properties *pcache = NULL;
1666
1667         cu_sibling_map_mask = cu_info->cu_bitmap[0][0];
1668         cu_sibling_map_mask &=
1669                 ((1 << pcache_info[cache_type].num_cu_shared) - 1);
1670         first_active_cu = ffs(cu_sibling_map_mask);
1671
1672         /* CU could be inactive. In case of shared cache find the first active
1673          * CU. and incase of non-shared cache check if the CU is inactive. If
1674          * inactive active skip it
1675          */
1676         if (first_active_cu) {
1677                 pcache = kfd_alloc_struct(pcache);
1678                 if (!pcache)
1679                         return -ENOMEM;
1680
1681                 memset(pcache, 0, sizeof(struct kfd_cache_properties));
1682                 pcache->processor_id_low = cu_processor_id
1683                                         + (first_active_cu - 1);
1684                 pcache->cache_level = pcache_info[cache_type].cache_level;
1685                 pcache->cache_size = pcache_info[cache_type].cache_size;
1686
1687                 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_DATA_CACHE)
1688                         pcache->cache_type |= HSA_CACHE_TYPE_DATA;
1689                 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_INST_CACHE)
1690                         pcache->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
1691                 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_CPU_CACHE)
1692                         pcache->cache_type |= HSA_CACHE_TYPE_CPU;
1693                 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
1694                         pcache->cache_type |= HSA_CACHE_TYPE_HSACU;
1695
1696                 /* Sibling map is w.r.t processor_id_low, so shift out
1697                  * inactive CU
1698                  */
1699                 cu_sibling_map_mask = cu_sibling_map_mask >> (first_active_cu - 1);
1700                 k = 0;
1701
1702                 for (i = 0; i < cu_info->num_shader_engines; i++) {
1703                         for (j = 0; j < cu_info->num_shader_arrays_per_engine; j++) {
1704                                 pcache->sibling_map[k] = (uint8_t)(cu_sibling_map_mask & 0xFF);
1705                                 pcache->sibling_map[k+1] = (uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
1706                                 pcache->sibling_map[k+2] = (uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
1707                                 pcache->sibling_map[k+3] = (uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
1708                                 k += 4;
1709
1710                                 cu_sibling_map_mask = cu_info->cu_bitmap[i % 4][j + i / 4];
1711                                 cu_sibling_map_mask &= ((1 << pcache_info[cache_type].num_cu_shared) - 1);
1712                         }
1713                 }
1714                 pcache->sibling_map_size = k;
1715                 *props_ext = pcache;
1716                 return 0;
1717         }
1718         return 1;
1719 }
1720
1721 #define KFD_MAX_CACHE_TYPES 6
1722
1723 /* kfd_fill_cache_non_crat_info - Fill GPU cache info using kfd_gpu_cache_info
1724  * tables
1725  */
1726 static void kfd_fill_cache_non_crat_info(struct kfd_topology_device *dev, struct kfd_dev *kdev)
1727 {
1728         struct kfd_gpu_cache_info *pcache_info = NULL;
1729         int i, j, k;
1730         int ct = 0;
1731         unsigned int cu_processor_id;
1732         int ret;
1733         unsigned int num_cu_shared;
1734         struct kfd_cu_info cu_info;
1735         struct kfd_cu_info *pcu_info;
1736         int gpu_processor_id;
1737         struct kfd_cache_properties *props_ext;
1738         int num_of_entries = 0;
1739         int num_of_cache_types = 0;
1740         struct kfd_gpu_cache_info cache_info[KFD_MAX_CACHE_TYPES];
1741
1742         amdgpu_amdkfd_get_cu_info(kdev->adev, &cu_info);
1743         pcu_info = &cu_info;
1744
1745         gpu_processor_id = dev->node_props.simd_id_base;
1746
1747         pcache_info = cache_info;
1748         num_of_cache_types = kfd_get_gpu_cache_info(kdev, &pcache_info);
1749         if (!num_of_cache_types) {
1750                 pr_warn("no cache info found\n");
1751                 return;
1752         }
1753
1754         /* For each type of cache listed in the kfd_gpu_cache_info table,
1755          * go through all available Compute Units.
1756          * The [i,j,k] loop will
1757          *              if kfd_gpu_cache_info.num_cu_shared = 1
1758          *                      will parse through all available CU
1759          *              If (kfd_gpu_cache_info.num_cu_shared != 1)
1760          *                      then it will consider only one CU from
1761          *                      the shared unit
1762          */
1763         for (ct = 0; ct < num_of_cache_types; ct++) {
1764                 cu_processor_id = gpu_processor_id;
1765                 if (pcache_info[ct].cache_level == 1) {
1766                         for (i = 0; i < pcu_info->num_shader_engines; i++) {
1767                                 for (j = 0; j < pcu_info->num_shader_arrays_per_engine; j++) {
1768                                         for (k = 0; k < pcu_info->num_cu_per_sh; k += pcache_info[ct].num_cu_shared) {
1769
1770                                                 ret = fill_in_l1_pcache(&props_ext, pcache_info, pcu_info,
1771                                                                                 pcu_info->cu_bitmap[i % 4][j + i / 4], ct,
1772                                                                                 cu_processor_id, k);
1773
1774                                                 if (ret < 0)
1775                                                         break;
1776
1777                                                 if (!ret) {
1778                                                         num_of_entries++;
1779                                                         list_add_tail(&props_ext->list, &dev->cache_props);
1780                                                 }
1781
1782                                                 /* Move to next CU block */
1783                                                 num_cu_shared = ((k + pcache_info[ct].num_cu_shared) <=
1784                                                         pcu_info->num_cu_per_sh) ?
1785                                                         pcache_info[ct].num_cu_shared :
1786                                                         (pcu_info->num_cu_per_sh - k);
1787                                                 cu_processor_id += num_cu_shared;
1788                                         }
1789                                 }
1790                         }
1791                 } else {
1792                         ret = fill_in_l2_l3_pcache(&props_ext, pcache_info,
1793                                                                 pcu_info, ct, cu_processor_id);
1794
1795                         if (ret < 0)
1796                                 break;
1797
1798                         if (!ret) {
1799                                 num_of_entries++;
1800                                 list_add_tail(&props_ext->list, &dev->cache_props);
1801                         }
1802                 }
1803         }
1804         dev->node_props.caches_count += num_of_entries;
1805         pr_debug("Added [%d] GPU cache entries\n", num_of_entries);
1806 }
1807
1808 static int kfd_topology_add_device_locked(struct kfd_dev *gpu, uint32_t gpu_id,
1809                                           struct kfd_topology_device **dev)
1810 {
1811         int proximity_domain = ++topology_crat_proximity_domain;
1812         struct list_head temp_topology_device_list;
1813         void *crat_image = NULL;
1814         size_t image_size = 0;
1815         int res;
1816
1817         res = kfd_create_crat_image_virtual(&crat_image, &image_size,
1818                                             COMPUTE_UNIT_GPU, gpu,
1819                                             proximity_domain);
1820         if (res) {
1821                 pr_err("Error creating VCRAT for GPU (ID: 0x%x)\n",
1822                        gpu_id);
1823                 topology_crat_proximity_domain--;
1824                 goto err;
1825         }
1826
1827         INIT_LIST_HEAD(&temp_topology_device_list);
1828
1829         res = kfd_parse_crat_table(crat_image,
1830                                    &temp_topology_device_list,
1831                                    proximity_domain);
1832         if (res) {
1833                 pr_err("Error parsing VCRAT for GPU (ID: 0x%x)\n",
1834                        gpu_id);
1835                 topology_crat_proximity_domain--;
1836                 goto err;
1837         }
1838
1839         kfd_topology_update_device_list(&temp_topology_device_list,
1840                                         &topology_device_list);
1841
1842         *dev = kfd_assign_gpu(gpu);
1843         if (WARN_ON(!*dev)) {
1844                 res = -ENODEV;
1845                 goto err;
1846         }
1847
1848         /* Fill the cache affinity information here for the GPUs
1849          * using VCRAT
1850          */
1851         kfd_fill_cache_non_crat_info(*dev, gpu);
1852
1853         /* Update the SYSFS tree, since we added another topology
1854          * device
1855          */
1856         res = kfd_topology_update_sysfs();
1857         if (!res)
1858                 sys_props.generation_count++;
1859         else
1860                 pr_err("Failed to update GPU (ID: 0x%x) to sysfs topology. res=%d\n",
1861                        gpu_id, res);
1862
1863 err:
1864         kfd_destroy_crat_image(crat_image);
1865         return res;
1866 }
1867
1868 int kfd_topology_add_device(struct kfd_dev *gpu)
1869 {
1870         uint32_t gpu_id;
1871         struct kfd_topology_device *dev;
1872         struct kfd_cu_info cu_info;
1873         int res = 0;
1874         int i;
1875         const char *asic_name = amdgpu_asic_name[gpu->adev->asic_type];
1876
1877         gpu_id = kfd_generate_gpu_id(gpu);
1878         pr_debug("Adding new GPU (ID: 0x%x) to topology\n", gpu_id);
1879
1880         /* Check to see if this gpu device exists in the topology_device_list.
1881          * If so, assign the gpu to that device,
1882          * else create a Virtual CRAT for this gpu device and then parse that
1883          * CRAT to create a new topology device. Once created assign the gpu to
1884          * that topology device
1885          */
1886         down_write(&topology_lock);
1887         dev = kfd_assign_gpu(gpu);
1888         if (!dev)
1889                 res = kfd_topology_add_device_locked(gpu, gpu_id, &dev);
1890         up_write(&topology_lock);
1891         if (res)
1892                 return res;
1893
1894         dev->gpu_id = gpu_id;
1895         gpu->id = gpu_id;
1896
1897         kfd_dev_create_p2p_links();
1898
1899         /* TODO: Move the following lines to function
1900          *      kfd_add_non_crat_information
1901          */
1902
1903         /* Fill-in additional information that is not available in CRAT but
1904          * needed for the topology
1905          */
1906
1907         amdgpu_amdkfd_get_cu_info(dev->gpu->adev, &cu_info);
1908
1909         for (i = 0; i < KFD_TOPOLOGY_PUBLIC_NAME_SIZE-1; i++) {
1910                 dev->node_props.name[i] = __tolower(asic_name[i]);
1911                 if (asic_name[i] == '\0')
1912                         break;
1913         }
1914         dev->node_props.name[i] = '\0';
1915
1916         dev->node_props.simd_arrays_per_engine =
1917                 cu_info.num_shader_arrays_per_engine;
1918
1919         dev->node_props.gfx_target_version = gpu->device_info.gfx_target_version;
1920         dev->node_props.vendor_id = gpu->adev->pdev->vendor;
1921         dev->node_props.device_id = gpu->adev->pdev->device;
1922         dev->node_props.capability |=
1923                 ((dev->gpu->adev->rev_id << HSA_CAP_ASIC_REVISION_SHIFT) &
1924                         HSA_CAP_ASIC_REVISION_MASK);
1925         dev->node_props.location_id = pci_dev_id(gpu->adev->pdev);
1926         dev->node_props.domain = pci_domain_nr(gpu->adev->pdev->bus);
1927         dev->node_props.max_engine_clk_fcompute =
1928                 amdgpu_amdkfd_get_max_engine_clock_in_mhz(dev->gpu->adev);
1929         dev->node_props.max_engine_clk_ccompute =
1930                 cpufreq_quick_get_max(0) / 1000;
1931         dev->node_props.drm_render_minor =
1932                 gpu->shared_resources.drm_render_minor;
1933
1934         dev->node_props.hive_id = gpu->hive_id;
1935         dev->node_props.num_sdma_engines = kfd_get_num_sdma_engines(gpu);
1936         dev->node_props.num_sdma_xgmi_engines =
1937                                         kfd_get_num_xgmi_sdma_engines(gpu);
1938         dev->node_props.num_sdma_queues_per_engine =
1939                                 gpu->device_info.num_sdma_queues_per_engine -
1940                                 gpu->device_info.num_reserved_sdma_queues_per_engine;
1941         dev->node_props.num_gws = (dev->gpu->gws &&
1942                 dev->gpu->dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) ?
1943                 dev->gpu->adev->gds.gws_size : 0;
1944         dev->node_props.num_cp_queues = get_cp_queues_num(dev->gpu->dqm);
1945
1946         kfd_fill_mem_clk_max_info(dev);
1947         kfd_fill_iolink_non_crat_info(dev);
1948
1949         switch (dev->gpu->adev->asic_type) {
1950         case CHIP_KAVERI:
1951         case CHIP_HAWAII:
1952         case CHIP_TONGA:
1953                 dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_PRE_1_0 <<
1954                         HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
1955                         HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
1956                 break;
1957         case CHIP_CARRIZO:
1958         case CHIP_FIJI:
1959         case CHIP_POLARIS10:
1960         case CHIP_POLARIS11:
1961         case CHIP_POLARIS12:
1962         case CHIP_VEGAM:
1963                 pr_debug("Adding doorbell packet type capability\n");
1964                 dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_1_0 <<
1965                         HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
1966                         HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
1967                 break;
1968         default:
1969                 if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(9, 0, 1))
1970                         dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_2_0 <<
1971                                 HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
1972                                 HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
1973                 else
1974                         WARN(1, "Unexpected ASIC family %u",
1975                              dev->gpu->adev->asic_type);
1976         }
1977
1978         /*
1979          * Overwrite ATS capability according to needs_iommu_device to fix
1980          * potential missing corresponding bit in CRAT of BIOS.
1981          */
1982         if (dev->gpu->use_iommu_v2)
1983                 dev->node_props.capability |= HSA_CAP_ATS_PRESENT;
1984         else
1985                 dev->node_props.capability &= ~HSA_CAP_ATS_PRESENT;
1986
1987         /* Fix errors in CZ CRAT.
1988          * simd_count: Carrizo CRAT reports wrong simd_count, probably
1989          *              because it doesn't consider masked out CUs
1990          * max_waves_per_simd: Carrizo reports wrong max_waves_per_simd
1991          */
1992         if (dev->gpu->adev->asic_type == CHIP_CARRIZO) {
1993                 dev->node_props.simd_count =
1994                         cu_info.simd_per_cu * cu_info.cu_active_number;
1995                 dev->node_props.max_waves_per_simd = 10;
1996         }
1997
1998         /* kfd only concerns sram ecc on GFX and HBM ecc on UMC */
1999         dev->node_props.capability |=
2000                 ((dev->gpu->adev->ras_enabled & BIT(AMDGPU_RAS_BLOCK__GFX)) != 0) ?
2001                 HSA_CAP_SRAM_EDCSUPPORTED : 0;
2002         dev->node_props.capability |=
2003                 ((dev->gpu->adev->ras_enabled & BIT(AMDGPU_RAS_BLOCK__UMC)) != 0) ?
2004                 HSA_CAP_MEM_EDCSUPPORTED : 0;
2005
2006         if (KFD_GC_VERSION(dev->gpu) != IP_VERSION(9, 0, 1))
2007                 dev->node_props.capability |= (dev->gpu->adev->ras_enabled != 0) ?
2008                         HSA_CAP_RASEVENTNOTIFY : 0;
2009
2010         if (KFD_IS_SVM_API_SUPPORTED(dev->gpu->adev->kfd.dev))
2011                 dev->node_props.capability |= HSA_CAP_SVMAPI_SUPPORTED;
2012
2013         kfd_debug_print_topology();
2014
2015         kfd_notify_gpu_change(gpu_id, 1);
2016
2017         return 0;
2018 }
2019
2020 /**
2021  * kfd_topology_update_io_links() - Update IO links after device removal.
2022  * @proximity_domain: Proximity domain value of the dev being removed.
2023  *
2024  * The topology list currently is arranged in increasing order of
2025  * proximity domain.
2026  *
2027  * Two things need to be done when a device is removed:
2028  * 1. All the IO links to this device need to be removed.
2029  * 2. All nodes after the current device node need to move
2030  *    up once this device node is removed from the topology
2031  *    list. As a result, the proximity domain values for
2032  *    all nodes after the node being deleted reduce by 1.
2033  *    This would also cause the proximity domain values for
2034  *    io links to be updated based on new proximity domain
2035  *    values.
2036  *
2037  * Context: The caller must hold write topology_lock.
2038  */
2039 static void kfd_topology_update_io_links(int proximity_domain)
2040 {
2041         struct kfd_topology_device *dev;
2042         struct kfd_iolink_properties *iolink, *p2plink, *tmp;
2043
2044         list_for_each_entry(dev, &topology_device_list, list) {
2045                 if (dev->proximity_domain > proximity_domain)
2046                         dev->proximity_domain--;
2047
2048                 list_for_each_entry_safe(iolink, tmp, &dev->io_link_props, list) {
2049                         /*
2050                          * If there is an io link to the dev being deleted
2051                          * then remove that IO link also.
2052                          */
2053                         if (iolink->node_to == proximity_domain) {
2054                                 list_del(&iolink->list);
2055                                 dev->node_props.io_links_count--;
2056                         } else {
2057                                 if (iolink->node_from > proximity_domain)
2058                                         iolink->node_from--;
2059                                 if (iolink->node_to > proximity_domain)
2060                                         iolink->node_to--;
2061                         }
2062                 }
2063
2064                 list_for_each_entry_safe(p2plink, tmp, &dev->p2p_link_props, list) {
2065                         /*
2066                          * If there is a p2p link to the dev being deleted
2067                          * then remove that p2p link also.
2068                          */
2069                         if (p2plink->node_to == proximity_domain) {
2070                                 list_del(&p2plink->list);
2071                                 dev->node_props.p2p_links_count--;
2072                         } else {
2073                                 if (p2plink->node_from > proximity_domain)
2074                                         p2plink->node_from--;
2075                                 if (p2plink->node_to > proximity_domain)
2076                                         p2plink->node_to--;
2077                         }
2078                 }
2079         }
2080 }
2081
2082 int kfd_topology_remove_device(struct kfd_dev *gpu)
2083 {
2084         struct kfd_topology_device *dev, *tmp;
2085         uint32_t gpu_id;
2086         int res = -ENODEV;
2087         int i = 0;
2088
2089         down_write(&topology_lock);
2090
2091         list_for_each_entry_safe(dev, tmp, &topology_device_list, list) {
2092                 if (dev->gpu == gpu) {
2093                         gpu_id = dev->gpu_id;
2094                         kfd_remove_sysfs_node_entry(dev);
2095                         kfd_release_topology_device(dev);
2096                         sys_props.num_devices--;
2097                         kfd_topology_update_io_links(i);
2098                         topology_crat_proximity_domain = sys_props.num_devices-1;
2099                         sys_props.generation_count++;
2100                         res = 0;
2101                         if (kfd_topology_update_sysfs() < 0)
2102                                 kfd_topology_release_sysfs();
2103                         break;
2104                 }
2105                 i++;
2106         }
2107
2108         up_write(&topology_lock);
2109
2110         if (!res)
2111                 kfd_notify_gpu_change(gpu_id, 0);
2112
2113         return res;
2114 }
2115
2116 /* kfd_topology_enum_kfd_devices - Enumerate through all devices in KFD
2117  *      topology. If GPU device is found @idx, then valid kfd_dev pointer is
2118  *      returned through @kdev
2119  * Return -     0: On success (@kdev will be NULL for non GPU nodes)
2120  *              -1: If end of list
2121  */
2122 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev)
2123 {
2124
2125         struct kfd_topology_device *top_dev;
2126         uint8_t device_idx = 0;
2127
2128         *kdev = NULL;
2129         down_read(&topology_lock);
2130
2131         list_for_each_entry(top_dev, &topology_device_list, list) {
2132                 if (device_idx == idx) {
2133                         *kdev = top_dev->gpu;
2134                         up_read(&topology_lock);
2135                         return 0;
2136                 }
2137
2138                 device_idx++;
2139         }
2140
2141         up_read(&topology_lock);
2142
2143         return -1;
2144
2145 }
2146
2147 static int kfd_cpumask_to_apic_id(const struct cpumask *cpumask)
2148 {
2149         int first_cpu_of_numa_node;
2150
2151         if (!cpumask || cpumask == cpu_none_mask)
2152                 return -1;
2153         first_cpu_of_numa_node = cpumask_first(cpumask);
2154         if (first_cpu_of_numa_node >= nr_cpu_ids)
2155                 return -1;
2156 #ifdef CONFIG_X86_64
2157         return cpu_data(first_cpu_of_numa_node).apicid;
2158 #else
2159         return first_cpu_of_numa_node;
2160 #endif
2161 }
2162
2163 /* kfd_numa_node_to_apic_id - Returns the APIC ID of the first logical processor
2164  *      of the given NUMA node (numa_node_id)
2165  * Return -1 on failure
2166  */
2167 int kfd_numa_node_to_apic_id(int numa_node_id)
2168 {
2169         if (numa_node_id == -1) {
2170                 pr_warn("Invalid NUMA Node. Use online CPU mask\n");
2171                 return kfd_cpumask_to_apic_id(cpu_online_mask);
2172         }
2173         return kfd_cpumask_to_apic_id(cpumask_of_node(numa_node_id));
2174 }
2175
2176 void kfd_double_confirm_iommu_support(struct kfd_dev *gpu)
2177 {
2178         struct kfd_topology_device *dev;
2179
2180         gpu->use_iommu_v2 = false;
2181
2182         if (!gpu->device_info.needs_iommu_device)
2183                 return;
2184
2185         down_read(&topology_lock);
2186
2187         /* Only use IOMMUv2 if there is an APU topology node with no GPU
2188          * assigned yet. This GPU will be assigned to it.
2189          */
2190         list_for_each_entry(dev, &topology_device_list, list)
2191                 if (dev->node_props.cpu_cores_count &&
2192                     dev->node_props.simd_count &&
2193                     !dev->gpu)
2194                         gpu->use_iommu_v2 = true;
2195
2196         up_read(&topology_lock);
2197 }
2198
2199 #if defined(CONFIG_DEBUG_FS)
2200
2201 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data)
2202 {
2203         struct kfd_topology_device *dev;
2204         unsigned int i = 0;
2205         int r = 0;
2206
2207         down_read(&topology_lock);
2208
2209         list_for_each_entry(dev, &topology_device_list, list) {
2210                 if (!dev->gpu) {
2211                         i++;
2212                         continue;
2213                 }
2214
2215                 seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
2216                 r = dqm_debugfs_hqds(m, dev->gpu->dqm);
2217                 if (r)
2218                         break;
2219         }
2220
2221         up_read(&topology_lock);
2222
2223         return r;
2224 }
2225
2226 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data)
2227 {
2228         struct kfd_topology_device *dev;
2229         unsigned int i = 0;
2230         int r = 0;
2231
2232         down_read(&topology_lock);
2233
2234         list_for_each_entry(dev, &topology_device_list, list) {
2235                 if (!dev->gpu) {
2236                         i++;
2237                         continue;
2238                 }
2239
2240                 seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
2241                 r = pm_debugfs_runlist(m, &dev->gpu->dqm->packet_mgr);
2242                 if (r)
2243                         break;
2244         }
2245
2246         up_read(&topology_lock);
2247
2248         return r;
2249 }
2250
2251 #endif