Merge tag 'amd-drm-next-5.8-2020-04-24' of git://people.freedesktop.org/~agd5f/linux...
[linux-block.git] / drivers / gpu / drm / amd / amdgpu / sdma_v4_0.c
1 /*
2  * Copyright 2016 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23
24 #include <linux/delay.h>
25 #include <linux/firmware.h>
26 #include <linux/module.h>
27 #include <linux/pci.h>
28
29 #include "amdgpu.h"
30 #include "amdgpu_ucode.h"
31 #include "amdgpu_trace.h"
32
33 #include "sdma0/sdma0_4_2_offset.h"
34 #include "sdma0/sdma0_4_2_sh_mask.h"
35 #include "sdma1/sdma1_4_2_offset.h"
36 #include "sdma1/sdma1_4_2_sh_mask.h"
37 #include "sdma2/sdma2_4_2_2_offset.h"
38 #include "sdma2/sdma2_4_2_2_sh_mask.h"
39 #include "sdma3/sdma3_4_2_2_offset.h"
40 #include "sdma3/sdma3_4_2_2_sh_mask.h"
41 #include "sdma4/sdma4_4_2_2_offset.h"
42 #include "sdma4/sdma4_4_2_2_sh_mask.h"
43 #include "sdma5/sdma5_4_2_2_offset.h"
44 #include "sdma5/sdma5_4_2_2_sh_mask.h"
45 #include "sdma6/sdma6_4_2_2_offset.h"
46 #include "sdma6/sdma6_4_2_2_sh_mask.h"
47 #include "sdma7/sdma7_4_2_2_offset.h"
48 #include "sdma7/sdma7_4_2_2_sh_mask.h"
49 #include "hdp/hdp_4_0_offset.h"
50 #include "sdma0/sdma0_4_1_default.h"
51
52 #include "soc15_common.h"
53 #include "soc15.h"
54 #include "vega10_sdma_pkt_open.h"
55
56 #include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h"
57 #include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h"
58
59 #include "amdgpu_ras.h"
60
61 MODULE_FIRMWARE("amdgpu/vega10_sdma.bin");
62 MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin");
63 MODULE_FIRMWARE("amdgpu/vega12_sdma.bin");
64 MODULE_FIRMWARE("amdgpu/vega12_sdma1.bin");
65 MODULE_FIRMWARE("amdgpu/vega20_sdma.bin");
66 MODULE_FIRMWARE("amdgpu/vega20_sdma1.bin");
67 MODULE_FIRMWARE("amdgpu/raven_sdma.bin");
68 MODULE_FIRMWARE("amdgpu/picasso_sdma.bin");
69 MODULE_FIRMWARE("amdgpu/raven2_sdma.bin");
70 MODULE_FIRMWARE("amdgpu/arcturus_sdma.bin");
71 MODULE_FIRMWARE("amdgpu/renoir_sdma.bin");
72
73 #define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK  0x000000F8L
74 #define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L
75
76 #define WREG32_SDMA(instance, offset, value) \
77         WREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)), value)
78 #define RREG32_SDMA(instance, offset) \
79         RREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)))
80
81 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev);
82 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev);
83 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev);
84 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev);
85 static void sdma_v4_0_set_ras_funcs(struct amdgpu_device *adev);
86
87 static const struct soc15_reg_golden golden_settings_sdma_4[] = {
88         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
89         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xff000ff0, 0x3f000100),
90         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0100, 0x00000100),
91         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
92         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
93         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
94         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003ff006, 0x0003c000),
95         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
96         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
97         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
98         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
99         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
100         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000),
101         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
102         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_IB_CNTL, 0x800f0100, 0x00000100),
103         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
104         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
105         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
106         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_POWER_CNTL, 0x003ff000, 0x0003c000),
107         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
108         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
109         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
110         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
111         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
112         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xfc000000, 0x00000000)
113 };
114
115 static const struct soc15_reg_golden golden_settings_sdma_vg10[] = {
116         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
117         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
118         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
119         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
120         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
121         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
122         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
123 };
124
125 static const struct soc15_reg_golden golden_settings_sdma_vg12[] = {
126         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
127         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
128         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
129         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
130         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
131         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
132         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
133 };
134
135 static const struct soc15_reg_golden golden_settings_sdma_4_1[] = {
136         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
137         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
138         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100),
139         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
140         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0xfc3fffff, 0x40000051),
141         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100),
142         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
143         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100),
144         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
145         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
146         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000)
147 };
148
149 static const struct soc15_reg_golden golden_settings_sdma0_4_2_init[] = {
150         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
151 };
152
153 static const struct soc15_reg_golden golden_settings_sdma0_4_2[] =
154 {
155         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
156         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
157         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
158         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
159         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
160         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
161         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
162         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
163         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RD_BURST_CNTL, 0x0000000f, 0x00000003),
164         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
165         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
166         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
167         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
168         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
169         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
170         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
171         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
172         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
173         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
174         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
175         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
176         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
177         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
178         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
179         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
180         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
181         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
182 };
183
184 static const struct soc15_reg_golden golden_settings_sdma1_4_2[] = {
185         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
186         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
187         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
188         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
189         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
190         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
191         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
192         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
193         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RD_BURST_CNTL, 0x0000000f, 0x00000003),
194         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
195         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
196         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
197         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
198         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
199         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
200         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
201         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
202         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
203         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
204         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
205         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
206         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
207         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
208         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
209         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
210         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
211         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
212 };
213
214 static const struct soc15_reg_golden golden_settings_sdma_rv1[] =
215 {
216         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
217         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002)
218 };
219
220 static const struct soc15_reg_golden golden_settings_sdma_rv2[] =
221 {
222         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00003001),
223         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00003001)
224 };
225
226 static const struct soc15_reg_golden golden_settings_sdma_arct[] =
227 {
228         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
229         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
230         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
231         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
232         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
233         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
234         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
235         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
236         SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
237         SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
238         SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
239         SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
240         SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
241         SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
242         SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
243         SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
244         SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
245         SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
246         SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
247         SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
248         SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
249         SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
250         SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
251         SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
252         SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
253         SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
254         SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
255         SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
256         SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
257         SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
258         SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
259         SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_UTCL1_TIMEOUT, 0xffffffff, 0x00010001)
260 };
261
262 static const struct soc15_reg_golden golden_settings_sdma_4_3[] = {
263         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
264         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
265         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
266         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002),
267         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
268         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003fff07, 0x40000051),
269         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
270         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
271         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
272         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x03fbe1fe)
273 };
274
275 static const struct soc15_ras_field_entry sdma_v4_0_ras_fields[] = {
276         { "SDMA_UCODE_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
277         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UCODE_BUF_SED),
278         0, 0,
279         },
280         { "SDMA_RB_CMD_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
281         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_RB_CMD_BUF_SED),
282         0, 0,
283         },
284         { "SDMA_IB_CMD_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
285         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_IB_CMD_BUF_SED),
286         0, 0,
287         },
288         { "SDMA_UTCL1_RD_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
289         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UTCL1_RD_FIFO_SED),
290         0, 0,
291         },
292         { "SDMA_UTCL1_RDBST_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
293         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UTCL1_RDBST_FIFO_SED),
294         0, 0,
295         },
296         { "SDMA_DATA_LUT_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
297         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_DATA_LUT_FIFO_SED),
298         0, 0,
299         },
300         { "SDMA_MBANK_DATA_BUF0_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
301         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF0_SED),
302         0, 0,
303         },
304         { "SDMA_MBANK_DATA_BUF1_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
305         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF1_SED),
306         0, 0,
307         },
308         { "SDMA_MBANK_DATA_BUF2_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
309         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF2_SED),
310         0, 0,
311         },
312         { "SDMA_MBANK_DATA_BUF3_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
313         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF3_SED),
314         0, 0,
315         },
316         { "SDMA_MBANK_DATA_BUF4_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
317         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF4_SED),
318         0, 0,
319         },
320         { "SDMA_MBANK_DATA_BUF5_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
321         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF5_SED),
322         0, 0,
323         },
324         { "SDMA_MBANK_DATA_BUF6_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
325         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF6_SED),
326         0, 0,
327         },
328         { "SDMA_MBANK_DATA_BUF7_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
329         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF7_SED),
330         0, 0,
331         },
332         { "SDMA_MBANK_DATA_BUF8_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
333         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF8_SED),
334         0, 0,
335         },
336         { "SDMA_MBANK_DATA_BUF9_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
337         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF9_SED),
338         0, 0,
339         },
340         { "SDMA_MBANK_DATA_BUF10_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
341         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF10_SED),
342         0, 0,
343         },
344         { "SDMA_MBANK_DATA_BUF11_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
345         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF11_SED),
346         0, 0,
347         },
348         { "SDMA_MBANK_DATA_BUF12_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
349         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF12_SED),
350         0, 0,
351         },
352         { "SDMA_MBANK_DATA_BUF13_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
353         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF13_SED),
354         0, 0,
355         },
356         { "SDMA_MBANK_DATA_BUF14_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
357         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF14_SED),
358         0, 0,
359         },
360         { "SDMA_MBANK_DATA_BUF15_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
361         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF15_SED),
362         0, 0,
363         },
364         { "SDMA_SPLIT_DAT_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
365         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_SPLIT_DAT_BUF_SED),
366         0, 0,
367         },
368         { "SDMA_MC_WR_ADDR_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
369         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MC_WR_ADDR_FIFO_SED),
370         0, 0,
371         },
372 };
373
374 static u32 sdma_v4_0_get_reg_offset(struct amdgpu_device *adev,
375                 u32 instance, u32 offset)
376 {
377         switch (instance) {
378         case 0:
379                 return (adev->reg_offset[SDMA0_HWIP][0][0] + offset);
380         case 1:
381                 return (adev->reg_offset[SDMA1_HWIP][0][0] + offset);
382         case 2:
383                 return (adev->reg_offset[SDMA2_HWIP][0][1] + offset);
384         case 3:
385                 return (adev->reg_offset[SDMA3_HWIP][0][1] + offset);
386         case 4:
387                 return (adev->reg_offset[SDMA4_HWIP][0][1] + offset);
388         case 5:
389                 return (adev->reg_offset[SDMA5_HWIP][0][1] + offset);
390         case 6:
391                 return (adev->reg_offset[SDMA6_HWIP][0][1] + offset);
392         case 7:
393                 return (adev->reg_offset[SDMA7_HWIP][0][1] + offset);
394         default:
395                 break;
396         }
397         return 0;
398 }
399
400 static unsigned sdma_v4_0_seq_to_irq_id(int seq_num)
401 {
402         switch (seq_num) {
403         case 0:
404                 return SOC15_IH_CLIENTID_SDMA0;
405         case 1:
406                 return SOC15_IH_CLIENTID_SDMA1;
407         case 2:
408                 return SOC15_IH_CLIENTID_SDMA2;
409         case 3:
410                 return SOC15_IH_CLIENTID_SDMA3;
411         case 4:
412                 return SOC15_IH_CLIENTID_SDMA4;
413         case 5:
414                 return SOC15_IH_CLIENTID_SDMA5;
415         case 6:
416                 return SOC15_IH_CLIENTID_SDMA6;
417         case 7:
418                 return SOC15_IH_CLIENTID_SDMA7;
419         default:
420                 break;
421         }
422         return -EINVAL;
423 }
424
425 static int sdma_v4_0_irq_id_to_seq(unsigned client_id)
426 {
427         switch (client_id) {
428         case SOC15_IH_CLIENTID_SDMA0:
429                 return 0;
430         case SOC15_IH_CLIENTID_SDMA1:
431                 return 1;
432         case SOC15_IH_CLIENTID_SDMA2:
433                 return 2;
434         case SOC15_IH_CLIENTID_SDMA3:
435                 return 3;
436         case SOC15_IH_CLIENTID_SDMA4:
437                 return 4;
438         case SOC15_IH_CLIENTID_SDMA5:
439                 return 5;
440         case SOC15_IH_CLIENTID_SDMA6:
441                 return 6;
442         case SOC15_IH_CLIENTID_SDMA7:
443                 return 7;
444         default:
445                 break;
446         }
447         return -EINVAL;
448 }
449
450 static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev)
451 {
452         switch (adev->asic_type) {
453         case CHIP_VEGA10:
454                 soc15_program_register_sequence(adev,
455                                                 golden_settings_sdma_4,
456                                                 ARRAY_SIZE(golden_settings_sdma_4));
457                 soc15_program_register_sequence(adev,
458                                                 golden_settings_sdma_vg10,
459                                                 ARRAY_SIZE(golden_settings_sdma_vg10));
460                 break;
461         case CHIP_VEGA12:
462                 soc15_program_register_sequence(adev,
463                                                 golden_settings_sdma_4,
464                                                 ARRAY_SIZE(golden_settings_sdma_4));
465                 soc15_program_register_sequence(adev,
466                                                 golden_settings_sdma_vg12,
467                                                 ARRAY_SIZE(golden_settings_sdma_vg12));
468                 break;
469         case CHIP_VEGA20:
470                 soc15_program_register_sequence(adev,
471                                                 golden_settings_sdma0_4_2_init,
472                                                 ARRAY_SIZE(golden_settings_sdma0_4_2_init));
473                 soc15_program_register_sequence(adev,
474                                                 golden_settings_sdma0_4_2,
475                                                 ARRAY_SIZE(golden_settings_sdma0_4_2));
476                 soc15_program_register_sequence(adev,
477                                                 golden_settings_sdma1_4_2,
478                                                 ARRAY_SIZE(golden_settings_sdma1_4_2));
479                 break;
480         case CHIP_ARCTURUS:
481                 soc15_program_register_sequence(adev,
482                                                 golden_settings_sdma_arct,
483                                                 ARRAY_SIZE(golden_settings_sdma_arct));
484                 break;
485         case CHIP_RAVEN:
486                 soc15_program_register_sequence(adev,
487                                                 golden_settings_sdma_4_1,
488                                                 ARRAY_SIZE(golden_settings_sdma_4_1));
489                 if (adev->rev_id >= 8)
490                         soc15_program_register_sequence(adev,
491                                                         golden_settings_sdma_rv2,
492                                                         ARRAY_SIZE(golden_settings_sdma_rv2));
493                 else
494                         soc15_program_register_sequence(adev,
495                                                         golden_settings_sdma_rv1,
496                                                         ARRAY_SIZE(golden_settings_sdma_rv1));
497                 break;
498         case CHIP_RENOIR:
499                 soc15_program_register_sequence(adev,
500                                                 golden_settings_sdma_4_3,
501                                                 ARRAY_SIZE(golden_settings_sdma_4_3));
502                 break;
503         default:
504                 break;
505         }
506 }
507
508 static int sdma_v4_0_init_inst_ctx(struct amdgpu_sdma_instance *sdma_inst)
509 {
510         int err = 0;
511         const struct sdma_firmware_header_v1_0 *hdr;
512
513         err = amdgpu_ucode_validate(sdma_inst->fw);
514         if (err)
515                 return err;
516
517         hdr = (const struct sdma_firmware_header_v1_0 *)sdma_inst->fw->data;
518         sdma_inst->fw_version = le32_to_cpu(hdr->header.ucode_version);
519         sdma_inst->feature_version = le32_to_cpu(hdr->ucode_feature_version);
520
521         if (sdma_inst->feature_version >= 20)
522                 sdma_inst->burst_nop = true;
523
524         return 0;
525 }
526
527 static void sdma_v4_0_destroy_inst_ctx(struct amdgpu_device *adev)
528 {
529         int i;
530
531         for (i = 0; i < adev->sdma.num_instances; i++) {
532                 if (adev->sdma.instance[i].fw != NULL)
533                         release_firmware(adev->sdma.instance[i].fw);
534
535                 /* arcturus shares the same FW memory across
536                    all SDMA isntances */
537                 if (adev->asic_type == CHIP_ARCTURUS)
538                         break;
539         }
540
541         memset((void*)adev->sdma.instance, 0,
542                 sizeof(struct amdgpu_sdma_instance) * AMDGPU_MAX_SDMA_INSTANCES);
543 }
544
545 /**
546  * sdma_v4_0_init_microcode - load ucode images from disk
547  *
548  * @adev: amdgpu_device pointer
549  *
550  * Use the firmware interface to load the ucode images into
551  * the driver (not loaded into hw).
552  * Returns 0 on success, error on failure.
553  */
554
555 // emulation only, won't work on real chip
556 // vega10 real chip need to use PSP to load firmware
557 static int sdma_v4_0_init_microcode(struct amdgpu_device *adev)
558 {
559         const char *chip_name;
560         char fw_name[30];
561         int err = 0, i;
562         struct amdgpu_firmware_info *info = NULL;
563         const struct common_firmware_header *header = NULL;
564
565         DRM_DEBUG("\n");
566
567         switch (adev->asic_type) {
568         case CHIP_VEGA10:
569                 chip_name = "vega10";
570                 break;
571         case CHIP_VEGA12:
572                 chip_name = "vega12";
573                 break;
574         case CHIP_VEGA20:
575                 chip_name = "vega20";
576                 break;
577         case CHIP_RAVEN:
578                 if (adev->rev_id >= 8)
579                         chip_name = "raven2";
580                 else if (adev->pdev->device == 0x15d8)
581                         chip_name = "picasso";
582                 else
583                         chip_name = "raven";
584                 break;
585         case CHIP_ARCTURUS:
586                 chip_name = "arcturus";
587                 break;
588         case CHIP_RENOIR:
589                 chip_name = "renoir";
590                 break;
591         default:
592                 BUG();
593         }
594
595         snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
596
597         err = request_firmware(&adev->sdma.instance[0].fw, fw_name, adev->dev);
598         if (err)
599                 goto out;
600
601         err = sdma_v4_0_init_inst_ctx(&adev->sdma.instance[0]);
602         if (err)
603                 goto out;
604
605         for (i = 1; i < adev->sdma.num_instances; i++) {
606                 if (adev->asic_type == CHIP_ARCTURUS) {
607                         /* Acturus will leverage the same FW memory
608                            for every SDMA instance */
609                         memcpy((void*)&adev->sdma.instance[i],
610                                (void*)&adev->sdma.instance[0],
611                                sizeof(struct amdgpu_sdma_instance));
612                 }
613                 else {
614                         snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma%d.bin", chip_name, i);
615
616                         err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
617                         if (err)
618                                 goto out;
619
620                         err = sdma_v4_0_init_inst_ctx(&adev->sdma.instance[i]);
621                         if (err)
622                                 goto out;
623                 }
624         }
625
626         DRM_DEBUG("psp_load == '%s'\n",
627                 adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false");
628
629         if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
630                 for (i = 0; i < adev->sdma.num_instances; i++) {
631                         info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
632                         info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
633                         info->fw = adev->sdma.instance[i].fw;
634                         header = (const struct common_firmware_header *)info->fw->data;
635                         adev->firmware.fw_size +=
636                                 ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
637                 }
638         }
639
640 out:
641         if (err) {
642                 DRM_ERROR("sdma_v4_0: Failed to load firmware \"%s\"\n", fw_name);
643                 sdma_v4_0_destroy_inst_ctx(adev);
644         }
645         return err;
646 }
647
648 /**
649  * sdma_v4_0_ring_get_rptr - get the current read pointer
650  *
651  * @ring: amdgpu ring pointer
652  *
653  * Get the current rptr from the hardware (VEGA10+).
654  */
655 static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring)
656 {
657         u64 *rptr;
658
659         /* XXX check if swapping is necessary on BE */
660         rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]);
661
662         DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
663         return ((*rptr) >> 2);
664 }
665
666 /**
667  * sdma_v4_0_ring_get_wptr - get the current write pointer
668  *
669  * @ring: amdgpu ring pointer
670  *
671  * Get the current wptr from the hardware (VEGA10+).
672  */
673 static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring)
674 {
675         struct amdgpu_device *adev = ring->adev;
676         u64 wptr;
677
678         if (ring->use_doorbell) {
679                 /* XXX check if swapping is necessary on BE */
680                 wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
681                 DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
682         } else {
683                 wptr = RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI);
684                 wptr = wptr << 32;
685                 wptr |= RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR);
686                 DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n",
687                                 ring->me, wptr);
688         }
689
690         return wptr >> 2;
691 }
692
693 /**
694  * sdma_v4_0_page_ring_set_wptr - commit the write pointer
695  *
696  * @ring: amdgpu ring pointer
697  *
698  * Write the wptr back to the hardware (VEGA10+).
699  */
700 static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring)
701 {
702         struct amdgpu_device *adev = ring->adev;
703
704         DRM_DEBUG("Setting write pointer\n");
705         if (ring->use_doorbell) {
706                 u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
707
708                 DRM_DEBUG("Using doorbell -- "
709                                 "wptr_offs == 0x%08x "
710                                 "lower_32_bits(ring->wptr) << 2 == 0x%08x "
711                                 "upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
712                                 ring->wptr_offs,
713                                 lower_32_bits(ring->wptr << 2),
714                                 upper_32_bits(ring->wptr << 2));
715                 /* XXX check if swapping is necessary on BE */
716                 WRITE_ONCE(*wb, (ring->wptr << 2));
717                 DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
718                                 ring->doorbell_index, ring->wptr << 2);
719                 WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
720         } else {
721                 DRM_DEBUG("Not using doorbell -- "
722                                 "mmSDMA%i_GFX_RB_WPTR == 0x%08x "
723                                 "mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
724                                 ring->me,
725                                 lower_32_bits(ring->wptr << 2),
726                                 ring->me,
727                                 upper_32_bits(ring->wptr << 2));
728                 WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR,
729                             lower_32_bits(ring->wptr << 2));
730                 WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI,
731                             upper_32_bits(ring->wptr << 2));
732         }
733 }
734
735 /**
736  * sdma_v4_0_page_ring_get_wptr - get the current write pointer
737  *
738  * @ring: amdgpu ring pointer
739  *
740  * Get the current wptr from the hardware (VEGA10+).
741  */
742 static uint64_t sdma_v4_0_page_ring_get_wptr(struct amdgpu_ring *ring)
743 {
744         struct amdgpu_device *adev = ring->adev;
745         u64 wptr;
746
747         if (ring->use_doorbell) {
748                 /* XXX check if swapping is necessary on BE */
749                 wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
750         } else {
751                 wptr = RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI);
752                 wptr = wptr << 32;
753                 wptr |= RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR);
754         }
755
756         return wptr >> 2;
757 }
758
759 /**
760  * sdma_v4_0_ring_set_wptr - commit the write pointer
761  *
762  * @ring: amdgpu ring pointer
763  *
764  * Write the wptr back to the hardware (VEGA10+).
765  */
766 static void sdma_v4_0_page_ring_set_wptr(struct amdgpu_ring *ring)
767 {
768         struct amdgpu_device *adev = ring->adev;
769
770         if (ring->use_doorbell) {
771                 u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
772
773                 /* XXX check if swapping is necessary on BE */
774                 WRITE_ONCE(*wb, (ring->wptr << 2));
775                 WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
776         } else {
777                 uint64_t wptr = ring->wptr << 2;
778
779                 WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR,
780                             lower_32_bits(wptr));
781                 WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI,
782                             upper_32_bits(wptr));
783         }
784 }
785
786 static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
787 {
788         struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
789         int i;
790
791         for (i = 0; i < count; i++)
792                 if (sdma && sdma->burst_nop && (i == 0))
793                         amdgpu_ring_write(ring, ring->funcs->nop |
794                                 SDMA_PKT_NOP_HEADER_COUNT(count - 1));
795                 else
796                         amdgpu_ring_write(ring, ring->funcs->nop);
797 }
798
799 /**
800  * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine
801  *
802  * @ring: amdgpu ring pointer
803  * @ib: IB object to schedule
804  *
805  * Schedule an IB in the DMA ring (VEGA10).
806  */
807 static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring,
808                                    struct amdgpu_job *job,
809                                    struct amdgpu_ib *ib,
810                                    uint32_t flags)
811 {
812         unsigned vmid = AMDGPU_JOB_GET_VMID(job);
813
814         /* IB packet must end on a 8 DW boundary */
815         sdma_v4_0_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7);
816
817         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
818                           SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
819         /* base must be 32 byte aligned */
820         amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
821         amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
822         amdgpu_ring_write(ring, ib->length_dw);
823         amdgpu_ring_write(ring, 0);
824         amdgpu_ring_write(ring, 0);
825
826 }
827
828 static void sdma_v4_0_wait_reg_mem(struct amdgpu_ring *ring,
829                                    int mem_space, int hdp,
830                                    uint32_t addr0, uint32_t addr1,
831                                    uint32_t ref, uint32_t mask,
832                                    uint32_t inv)
833 {
834         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
835                           SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) |
836                           SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) |
837                           SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
838         if (mem_space) {
839                 /* memory */
840                 amdgpu_ring_write(ring, addr0);
841                 amdgpu_ring_write(ring, addr1);
842         } else {
843                 /* registers */
844                 amdgpu_ring_write(ring, addr0 << 2);
845                 amdgpu_ring_write(ring, addr1 << 2);
846         }
847         amdgpu_ring_write(ring, ref); /* reference */
848         amdgpu_ring_write(ring, mask); /* mask */
849         amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
850                           SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */
851 }
852
853 /**
854  * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
855  *
856  * @ring: amdgpu ring pointer
857  *
858  * Emit an hdp flush packet on the requested DMA ring.
859  */
860 static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
861 {
862         struct amdgpu_device *adev = ring->adev;
863         u32 ref_and_mask = 0;
864         const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg;
865
866         ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0 << ring->me;
867
868         sdma_v4_0_wait_reg_mem(ring, 0, 1,
869                                adev->nbio.funcs->get_hdp_flush_done_offset(adev),
870                                adev->nbio.funcs->get_hdp_flush_req_offset(adev),
871                                ref_and_mask, ref_and_mask, 10);
872 }
873
874 /**
875  * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring
876  *
877  * @ring: amdgpu ring pointer
878  * @fence: amdgpu fence object
879  *
880  * Add a DMA fence packet to the ring to write
881  * the fence seq number and DMA trap packet to generate
882  * an interrupt if needed (VEGA10).
883  */
884 static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
885                                       unsigned flags)
886 {
887         bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
888         /* write the fence */
889         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
890         /* zero in first two bits */
891         BUG_ON(addr & 0x3);
892         amdgpu_ring_write(ring, lower_32_bits(addr));
893         amdgpu_ring_write(ring, upper_32_bits(addr));
894         amdgpu_ring_write(ring, lower_32_bits(seq));
895
896         /* optionally write high bits as well */
897         if (write64bit) {
898                 addr += 4;
899                 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
900                 /* zero in first two bits */
901                 BUG_ON(addr & 0x3);
902                 amdgpu_ring_write(ring, lower_32_bits(addr));
903                 amdgpu_ring_write(ring, upper_32_bits(addr));
904                 amdgpu_ring_write(ring, upper_32_bits(seq));
905         }
906
907         /* generate an interrupt */
908         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
909         amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
910 }
911
912
913 /**
914  * sdma_v4_0_gfx_stop - stop the gfx async dma engines
915  *
916  * @adev: amdgpu_device pointer
917  *
918  * Stop the gfx async dma ring buffers (VEGA10).
919  */
920 static void sdma_v4_0_gfx_stop(struct amdgpu_device *adev)
921 {
922         struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES];
923         u32 rb_cntl, ib_cntl;
924         int i, unset = 0;
925
926         for (i = 0; i < adev->sdma.num_instances; i++) {
927                 sdma[i] = &adev->sdma.instance[i].ring;
928
929                 if ((adev->mman.buffer_funcs_ring == sdma[i]) && unset != 1) {
930                         amdgpu_ttm_set_buffer_funcs_status(adev, false);
931                         unset = 1;
932                 }
933
934                 rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
935                 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
936                 WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
937                 ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
938                 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
939                 WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
940         }
941 }
942
943 /**
944  * sdma_v4_0_rlc_stop - stop the compute async dma engines
945  *
946  * @adev: amdgpu_device pointer
947  *
948  * Stop the compute async dma queues (VEGA10).
949  */
950 static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev)
951 {
952         /* XXX todo */
953 }
954
955 /**
956  * sdma_v4_0_page_stop - stop the page async dma engines
957  *
958  * @adev: amdgpu_device pointer
959  *
960  * Stop the page async dma ring buffers (VEGA10).
961  */
962 static void sdma_v4_0_page_stop(struct amdgpu_device *adev)
963 {
964         struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES];
965         u32 rb_cntl, ib_cntl;
966         int i;
967         bool unset = false;
968
969         for (i = 0; i < adev->sdma.num_instances; i++) {
970                 sdma[i] = &adev->sdma.instance[i].page;
971
972                 if ((adev->mman.buffer_funcs_ring == sdma[i]) &&
973                         (unset == false)) {
974                         amdgpu_ttm_set_buffer_funcs_status(adev, false);
975                         unset = true;
976                 }
977
978                 rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
979                 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
980                                         RB_ENABLE, 0);
981                 WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
982                 ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
983                 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL,
984                                         IB_ENABLE, 0);
985                 WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
986         }
987 }
988
989 /**
990  * sdma_v4_0_ctx_switch_enable - stop the async dma engines context switch
991  *
992  * @adev: amdgpu_device pointer
993  * @enable: enable/disable the DMA MEs context switch.
994  *
995  * Halt or unhalt the async dma engines context switch (VEGA10).
996  */
997 static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
998 {
999         u32 f32_cntl, phase_quantum = 0;
1000         int i;
1001
1002         if (amdgpu_sdma_phase_quantum) {
1003                 unsigned value = amdgpu_sdma_phase_quantum;
1004                 unsigned unit = 0;
1005
1006                 while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
1007                                 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
1008                         value = (value + 1) >> 1;
1009                         unit++;
1010                 }
1011                 if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
1012                             SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
1013                         value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
1014                                  SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
1015                         unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
1016                                 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
1017                         WARN_ONCE(1,
1018                         "clamping sdma_phase_quantum to %uK clock cycles\n",
1019                                   value << unit);
1020                 }
1021                 phase_quantum =
1022                         value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
1023                         unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
1024         }
1025
1026         for (i = 0; i < adev->sdma.num_instances; i++) {
1027                 f32_cntl = RREG32_SDMA(i, mmSDMA0_CNTL);
1028                 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
1029                                 AUTO_CTXSW_ENABLE, enable ? 1 : 0);
1030                 if (enable && amdgpu_sdma_phase_quantum) {
1031                         WREG32_SDMA(i, mmSDMA0_PHASE0_QUANTUM, phase_quantum);
1032                         WREG32_SDMA(i, mmSDMA0_PHASE1_QUANTUM, phase_quantum);
1033                         WREG32_SDMA(i, mmSDMA0_PHASE2_QUANTUM, phase_quantum);
1034                 }
1035                 WREG32_SDMA(i, mmSDMA0_CNTL, f32_cntl);
1036         }
1037
1038 }
1039
1040 /**
1041  * sdma_v4_0_enable - stop the async dma engines
1042  *
1043  * @adev: amdgpu_device pointer
1044  * @enable: enable/disable the DMA MEs.
1045  *
1046  * Halt or unhalt the async dma engines (VEGA10).
1047  */
1048 static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable)
1049 {
1050         u32 f32_cntl;
1051         int i;
1052
1053         if (enable == false) {
1054                 sdma_v4_0_gfx_stop(adev);
1055                 sdma_v4_0_rlc_stop(adev);
1056                 if (adev->sdma.has_page_queue)
1057                         sdma_v4_0_page_stop(adev);
1058         }
1059
1060         for (i = 0; i < adev->sdma.num_instances; i++) {
1061                 f32_cntl = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1062                 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
1063                 WREG32_SDMA(i, mmSDMA0_F32_CNTL, f32_cntl);
1064         }
1065 }
1066
1067 /**
1068  * sdma_v4_0_rb_cntl - get parameters for rb_cntl
1069  */
1070 static uint32_t sdma_v4_0_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl)
1071 {
1072         /* Set ring buffer size in dwords */
1073         uint32_t rb_bufsz = order_base_2(ring->ring_size / 4);
1074
1075         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
1076 #ifdef __BIG_ENDIAN
1077         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
1078         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
1079                                 RPTR_WRITEBACK_SWAP_ENABLE, 1);
1080 #endif
1081         return rb_cntl;
1082 }
1083
1084 /**
1085  * sdma_v4_0_gfx_resume - setup and start the async dma engines
1086  *
1087  * @adev: amdgpu_device pointer
1088  * @i: instance to resume
1089  *
1090  * Set up the gfx DMA ring buffers and enable them (VEGA10).
1091  * Returns 0 for success, error for failure.
1092  */
1093 static void sdma_v4_0_gfx_resume(struct amdgpu_device *adev, unsigned int i)
1094 {
1095         struct amdgpu_ring *ring = &adev->sdma.instance[i].ring;
1096         u32 rb_cntl, ib_cntl, wptr_poll_cntl;
1097         u32 wb_offset;
1098         u32 doorbell;
1099         u32 doorbell_offset;
1100         u64 wptr_gpu_addr;
1101
1102         wb_offset = (ring->rptr_offs * 4);
1103
1104         rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
1105         rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
1106         WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
1107
1108         /* Initialize the ring buffer's read and write pointers */
1109         WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR, 0);
1110         WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_HI, 0);
1111         WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR, 0);
1112         WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_HI, 0);
1113
1114         /* set the wb address whether it's enabled or not */
1115         WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_HI,
1116                upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
1117         WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_LO,
1118                lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
1119
1120         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
1121                                 RPTR_WRITEBACK_ENABLE, 1);
1122
1123         WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE, ring->gpu_addr >> 8);
1124         WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE_HI, ring->gpu_addr >> 40);
1125
1126         ring->wptr = 0;
1127
1128         /* before programing wptr to a less value, need set minor_ptr_update first */
1129         WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 1);
1130
1131         doorbell = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL);
1132         doorbell_offset = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET);
1133
1134         doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE,
1135                                  ring->use_doorbell);
1136         doorbell_offset = REG_SET_FIELD(doorbell_offset,
1137                                         SDMA0_GFX_DOORBELL_OFFSET,
1138                                         OFFSET, ring->doorbell_index);
1139         WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL, doorbell);
1140         WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET, doorbell_offset);
1141
1142         sdma_v4_0_ring_set_wptr(ring);
1143
1144         /* set minor_ptr_update to 0 after wptr programed */
1145         WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 0);
1146
1147         /* setup the wptr shadow polling */
1148         wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
1149         WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO,
1150                     lower_32_bits(wptr_gpu_addr));
1151         WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI,
1152                     upper_32_bits(wptr_gpu_addr));
1153         wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL);
1154         wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
1155                                        SDMA0_GFX_RB_WPTR_POLL_CNTL,
1156                                        F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
1157         WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
1158
1159         /* enable DMA RB */
1160         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
1161         WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
1162
1163         ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
1164         ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
1165 #ifdef __BIG_ENDIAN
1166         ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
1167 #endif
1168         /* enable DMA IBs */
1169         WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
1170
1171         ring->sched.ready = true;
1172 }
1173
1174 /**
1175  * sdma_v4_0_page_resume - setup and start the async dma engines
1176  *
1177  * @adev: amdgpu_device pointer
1178  * @i: instance to resume
1179  *
1180  * Set up the page DMA ring buffers and enable them (VEGA10).
1181  * Returns 0 for success, error for failure.
1182  */
1183 static void sdma_v4_0_page_resume(struct amdgpu_device *adev, unsigned int i)
1184 {
1185         struct amdgpu_ring *ring = &adev->sdma.instance[i].page;
1186         u32 rb_cntl, ib_cntl, wptr_poll_cntl;
1187         u32 wb_offset;
1188         u32 doorbell;
1189         u32 doorbell_offset;
1190         u64 wptr_gpu_addr;
1191
1192         wb_offset = (ring->rptr_offs * 4);
1193
1194         rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
1195         rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
1196         WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1197
1198         /* Initialize the ring buffer's read and write pointers */
1199         WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR, 0);
1200         WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_HI, 0);
1201         WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR, 0);
1202         WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_HI, 0);
1203
1204         /* set the wb address whether it's enabled or not */
1205         WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_HI,
1206                upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
1207         WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_LO,
1208                lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
1209
1210         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
1211                                 RPTR_WRITEBACK_ENABLE, 1);
1212
1213         WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE, ring->gpu_addr >> 8);
1214         WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE_HI, ring->gpu_addr >> 40);
1215
1216         ring->wptr = 0;
1217
1218         /* before programing wptr to a less value, need set minor_ptr_update first */
1219         WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 1);
1220
1221         doorbell = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL);
1222         doorbell_offset = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET);
1223
1224         doorbell = REG_SET_FIELD(doorbell, SDMA0_PAGE_DOORBELL, ENABLE,
1225                                  ring->use_doorbell);
1226         doorbell_offset = REG_SET_FIELD(doorbell_offset,
1227                                         SDMA0_PAGE_DOORBELL_OFFSET,
1228                                         OFFSET, ring->doorbell_index);
1229         WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL, doorbell);
1230         WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET, doorbell_offset);
1231
1232         /* paging queue doorbell range is setup at sdma_v4_0_gfx_resume */
1233         sdma_v4_0_page_ring_set_wptr(ring);
1234
1235         /* set minor_ptr_update to 0 after wptr programed */
1236         WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 0);
1237
1238         /* setup the wptr shadow polling */
1239         wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
1240         WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_LO,
1241                     lower_32_bits(wptr_gpu_addr));
1242         WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_HI,
1243                     upper_32_bits(wptr_gpu_addr));
1244         wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL);
1245         wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
1246                                        SDMA0_PAGE_RB_WPTR_POLL_CNTL,
1247                                        F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
1248         WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
1249
1250         /* enable DMA RB */
1251         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, RB_ENABLE, 1);
1252         WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1253
1254         ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
1255         ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_ENABLE, 1);
1256 #ifdef __BIG_ENDIAN
1257         ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1);
1258 #endif
1259         /* enable DMA IBs */
1260         WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
1261
1262         ring->sched.ready = true;
1263 }
1264
1265 static void
1266 sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable)
1267 {
1268         uint32_t def, data;
1269
1270         if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) {
1271                 /* enable idle interrupt */
1272                 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1273                 data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1274
1275                 if (data != def)
1276                         WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1277         } else {
1278                 /* disable idle interrupt */
1279                 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1280                 data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1281                 if (data != def)
1282                         WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1283         }
1284 }
1285
1286 static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev)
1287 {
1288         uint32_t def, data;
1289
1290         /* Enable HW based PG. */
1291         def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1292         data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK;
1293         if (data != def)
1294                 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1295
1296         /* enable interrupt */
1297         def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1298         data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1299         if (data != def)
1300                 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1301
1302         /* Configure hold time to filter in-valid power on/off request. Use default right now */
1303         def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1304         data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK;
1305         data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK);
1306         /* Configure switch time for hysteresis purpose. Use default right now */
1307         data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK;
1308         data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK);
1309         if(data != def)
1310                 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1311 }
1312
1313 static void sdma_v4_0_init_pg(struct amdgpu_device *adev)
1314 {
1315         if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA))
1316                 return;
1317
1318         switch (adev->asic_type) {
1319         case CHIP_RAVEN:
1320         case CHIP_RENOIR:
1321                 sdma_v4_1_init_power_gating(adev);
1322                 sdma_v4_1_update_power_gating(adev, true);
1323                 break;
1324         default:
1325                 break;
1326         }
1327 }
1328
1329 /**
1330  * sdma_v4_0_rlc_resume - setup and start the async dma engines
1331  *
1332  * @adev: amdgpu_device pointer
1333  *
1334  * Set up the compute DMA queues and enable them (VEGA10).
1335  * Returns 0 for success, error for failure.
1336  */
1337 static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev)
1338 {
1339         sdma_v4_0_init_pg(adev);
1340
1341         return 0;
1342 }
1343
1344 /**
1345  * sdma_v4_0_load_microcode - load the sDMA ME ucode
1346  *
1347  * @adev: amdgpu_device pointer
1348  *
1349  * Loads the sDMA0/1 ucode.
1350  * Returns 0 for success, -EINVAL if the ucode is not available.
1351  */
1352 static int sdma_v4_0_load_microcode(struct amdgpu_device *adev)
1353 {
1354         const struct sdma_firmware_header_v1_0 *hdr;
1355         const __le32 *fw_data;
1356         u32 fw_size;
1357         int i, j;
1358
1359         /* halt the MEs */
1360         sdma_v4_0_enable(adev, false);
1361
1362         for (i = 0; i < adev->sdma.num_instances; i++) {
1363                 if (!adev->sdma.instance[i].fw)
1364                         return -EINVAL;
1365
1366                 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
1367                 amdgpu_ucode_print_sdma_hdr(&hdr->header);
1368                 fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
1369
1370                 fw_data = (const __le32 *)
1371                         (adev->sdma.instance[i].fw->data +
1372                                 le32_to_cpu(hdr->header.ucode_array_offset_bytes));
1373
1374                 WREG32_SDMA(i, mmSDMA0_UCODE_ADDR, 0);
1375
1376                 for (j = 0; j < fw_size; j++)
1377                         WREG32_SDMA(i, mmSDMA0_UCODE_DATA,
1378                                     le32_to_cpup(fw_data++));
1379
1380                 WREG32_SDMA(i, mmSDMA0_UCODE_ADDR,
1381                             adev->sdma.instance[i].fw_version);
1382         }
1383
1384         return 0;
1385 }
1386
1387 /**
1388  * sdma_v4_0_start - setup and start the async dma engines
1389  *
1390  * @adev: amdgpu_device pointer
1391  *
1392  * Set up the DMA engines and enable them (VEGA10).
1393  * Returns 0 for success, error for failure.
1394  */
1395 static int sdma_v4_0_start(struct amdgpu_device *adev)
1396 {
1397         struct amdgpu_ring *ring;
1398         int i, r = 0;
1399
1400         if (amdgpu_sriov_vf(adev)) {
1401                 sdma_v4_0_ctx_switch_enable(adev, false);
1402                 sdma_v4_0_enable(adev, false);
1403         } else {
1404
1405                 if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
1406                         r = sdma_v4_0_load_microcode(adev);
1407                         if (r)
1408                                 return r;
1409                 }
1410
1411                 /* unhalt the MEs */
1412                 sdma_v4_0_enable(adev, true);
1413                 /* enable sdma ring preemption */
1414                 sdma_v4_0_ctx_switch_enable(adev, true);
1415         }
1416
1417         /* start the gfx rings and rlc compute queues */
1418         for (i = 0; i < adev->sdma.num_instances; i++) {
1419                 uint32_t temp;
1420
1421                 WREG32_SDMA(i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL, 0);
1422                 sdma_v4_0_gfx_resume(adev, i);
1423                 if (adev->sdma.has_page_queue)
1424                         sdma_v4_0_page_resume(adev, i);
1425
1426                 /* set utc l1 enable flag always to 1 */
1427                 temp = RREG32_SDMA(i, mmSDMA0_CNTL);
1428                 temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
1429                 WREG32_SDMA(i, mmSDMA0_CNTL, temp);
1430
1431                 if (!amdgpu_sriov_vf(adev)) {
1432                         /* unhalt engine */
1433                         temp = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1434                         temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
1435                         WREG32_SDMA(i, mmSDMA0_F32_CNTL, temp);
1436                 }
1437         }
1438
1439         if (amdgpu_sriov_vf(adev)) {
1440                 sdma_v4_0_ctx_switch_enable(adev, true);
1441                 sdma_v4_0_enable(adev, true);
1442         } else {
1443                 r = sdma_v4_0_rlc_resume(adev);
1444                 if (r)
1445                         return r;
1446         }
1447
1448         for (i = 0; i < adev->sdma.num_instances; i++) {
1449                 ring = &adev->sdma.instance[i].ring;
1450
1451                 r = amdgpu_ring_test_helper(ring);
1452                 if (r)
1453                         return r;
1454
1455                 if (adev->sdma.has_page_queue) {
1456                         struct amdgpu_ring *page = &adev->sdma.instance[i].page;
1457
1458                         r = amdgpu_ring_test_helper(page);
1459                         if (r)
1460                                 return r;
1461
1462                         if (adev->mman.buffer_funcs_ring == page)
1463                                 amdgpu_ttm_set_buffer_funcs_status(adev, true);
1464                 }
1465
1466                 if (adev->mman.buffer_funcs_ring == ring)
1467                         amdgpu_ttm_set_buffer_funcs_status(adev, true);
1468         }
1469
1470         return r;
1471 }
1472
1473 /**
1474  * sdma_v4_0_ring_test_ring - simple async dma engine test
1475  *
1476  * @ring: amdgpu_ring structure holding ring information
1477  *
1478  * Test the DMA engine by writing using it to write an
1479  * value to memory. (VEGA10).
1480  * Returns 0 for success, error for failure.
1481  */
1482 static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring)
1483 {
1484         struct amdgpu_device *adev = ring->adev;
1485         unsigned i;
1486         unsigned index;
1487         int r;
1488         u32 tmp;
1489         u64 gpu_addr;
1490
1491         r = amdgpu_device_wb_get(adev, &index);
1492         if (r)
1493                 return r;
1494
1495         gpu_addr = adev->wb.gpu_addr + (index * 4);
1496         tmp = 0xCAFEDEAD;
1497         adev->wb.wb[index] = cpu_to_le32(tmp);
1498
1499         r = amdgpu_ring_alloc(ring, 5);
1500         if (r)
1501                 goto error_free_wb;
1502
1503         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1504                           SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
1505         amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
1506         amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
1507         amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
1508         amdgpu_ring_write(ring, 0xDEADBEEF);
1509         amdgpu_ring_commit(ring);
1510
1511         for (i = 0; i < adev->usec_timeout; i++) {
1512                 tmp = le32_to_cpu(adev->wb.wb[index]);
1513                 if (tmp == 0xDEADBEEF)
1514                         break;
1515                 udelay(1);
1516         }
1517
1518         if (i >= adev->usec_timeout)
1519                 r = -ETIMEDOUT;
1520
1521 error_free_wb:
1522         amdgpu_device_wb_free(adev, index);
1523         return r;
1524 }
1525
1526 /**
1527  * sdma_v4_0_ring_test_ib - test an IB on the DMA engine
1528  *
1529  * @ring: amdgpu_ring structure holding ring information
1530  *
1531  * Test a simple IB in the DMA ring (VEGA10).
1532  * Returns 0 on success, error on failure.
1533  */
1534 static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
1535 {
1536         struct amdgpu_device *adev = ring->adev;
1537         struct amdgpu_ib ib;
1538         struct dma_fence *f = NULL;
1539         unsigned index;
1540         long r;
1541         u32 tmp = 0;
1542         u64 gpu_addr;
1543
1544         r = amdgpu_device_wb_get(adev, &index);
1545         if (r)
1546                 return r;
1547
1548         gpu_addr = adev->wb.gpu_addr + (index * 4);
1549         tmp = 0xCAFEDEAD;
1550         adev->wb.wb[index] = cpu_to_le32(tmp);
1551         memset(&ib, 0, sizeof(ib));
1552         r = amdgpu_ib_get(adev, NULL, 256,
1553                                         AMDGPU_IB_POOL_DIRECT, &ib);
1554         if (r)
1555                 goto err0;
1556
1557         ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1558                 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1559         ib.ptr[1] = lower_32_bits(gpu_addr);
1560         ib.ptr[2] = upper_32_bits(gpu_addr);
1561         ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
1562         ib.ptr[4] = 0xDEADBEEF;
1563         ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1564         ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1565         ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1566         ib.length_dw = 8;
1567
1568         r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
1569         if (r)
1570                 goto err1;
1571
1572         r = dma_fence_wait_timeout(f, false, timeout);
1573         if (r == 0) {
1574                 r = -ETIMEDOUT;
1575                 goto err1;
1576         } else if (r < 0) {
1577                 goto err1;
1578         }
1579         tmp = le32_to_cpu(adev->wb.wb[index]);
1580         if (tmp == 0xDEADBEEF)
1581                 r = 0;
1582         else
1583                 r = -EINVAL;
1584
1585 err1:
1586         amdgpu_ib_free(adev, &ib, NULL);
1587         dma_fence_put(f);
1588 err0:
1589         amdgpu_device_wb_free(adev, index);
1590         return r;
1591 }
1592
1593
1594 /**
1595  * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART
1596  *
1597  * @ib: indirect buffer to fill with commands
1598  * @pe: addr of the page entry
1599  * @src: src addr to copy from
1600  * @count: number of page entries to update
1601  *
1602  * Update PTEs by copying them from the GART using sDMA (VEGA10).
1603  */
1604 static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib,
1605                                   uint64_t pe, uint64_t src,
1606                                   unsigned count)
1607 {
1608         unsigned bytes = count * 8;
1609
1610         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1611                 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1612         ib->ptr[ib->length_dw++] = bytes - 1;
1613         ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1614         ib->ptr[ib->length_dw++] = lower_32_bits(src);
1615         ib->ptr[ib->length_dw++] = upper_32_bits(src);
1616         ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1617         ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1618
1619 }
1620
1621 /**
1622  * sdma_v4_0_vm_write_pte - update PTEs by writing them manually
1623  *
1624  * @ib: indirect buffer to fill with commands
1625  * @pe: addr of the page entry
1626  * @addr: dst addr to write into pe
1627  * @count: number of page entries to update
1628  * @incr: increase next addr by incr bytes
1629  * @flags: access flags
1630  *
1631  * Update PTEs by writing them manually using sDMA (VEGA10).
1632  */
1633 static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1634                                    uint64_t value, unsigned count,
1635                                    uint32_t incr)
1636 {
1637         unsigned ndw = count * 2;
1638
1639         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1640                 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1641         ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1642         ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1643         ib->ptr[ib->length_dw++] = ndw - 1;
1644         for (; ndw > 0; ndw -= 2) {
1645                 ib->ptr[ib->length_dw++] = lower_32_bits(value);
1646                 ib->ptr[ib->length_dw++] = upper_32_bits(value);
1647                 value += incr;
1648         }
1649 }
1650
1651 /**
1652  * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA
1653  *
1654  * @ib: indirect buffer to fill with commands
1655  * @pe: addr of the page entry
1656  * @addr: dst addr to write into pe
1657  * @count: number of page entries to update
1658  * @incr: increase next addr by incr bytes
1659  * @flags: access flags
1660  *
1661  * Update the page tables using sDMA (VEGA10).
1662  */
1663 static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib,
1664                                      uint64_t pe,
1665                                      uint64_t addr, unsigned count,
1666                                      uint32_t incr, uint64_t flags)
1667 {
1668         /* for physically contiguous pages (vram) */
1669         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1670         ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1671         ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1672         ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1673         ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1674         ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1675         ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1676         ib->ptr[ib->length_dw++] = incr; /* increment size */
1677         ib->ptr[ib->length_dw++] = 0;
1678         ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1679 }
1680
1681 /**
1682  * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw
1683  *
1684  * @ib: indirect buffer to fill with padding
1685  *
1686  */
1687 static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1688 {
1689         struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1690         u32 pad_count;
1691         int i;
1692
1693         pad_count = (-ib->length_dw) & 7;
1694         for (i = 0; i < pad_count; i++)
1695                 if (sdma && sdma->burst_nop && (i == 0))
1696                         ib->ptr[ib->length_dw++] =
1697                                 SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1698                                 SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1699                 else
1700                         ib->ptr[ib->length_dw++] =
1701                                 SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1702 }
1703
1704
1705 /**
1706  * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline
1707  *
1708  * @ring: amdgpu_ring pointer
1709  *
1710  * Make sure all previous operations are completed (CIK).
1711  */
1712 static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1713 {
1714         uint32_t seq = ring->fence_drv.sync_seq;
1715         uint64_t addr = ring->fence_drv.gpu_addr;
1716
1717         /* wait for idle */
1718         sdma_v4_0_wait_reg_mem(ring, 1, 0,
1719                                addr & 0xfffffffc,
1720                                upper_32_bits(addr) & 0xffffffff,
1721                                seq, 0xffffffff, 4);
1722 }
1723
1724
1725 /**
1726  * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA
1727  *
1728  * @ring: amdgpu_ring pointer
1729  * @vm: amdgpu_vm pointer
1730  *
1731  * Update the page table base and flush the VM TLB
1732  * using sDMA (VEGA10).
1733  */
1734 static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1735                                          unsigned vmid, uint64_t pd_addr)
1736 {
1737         amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1738 }
1739
1740 static void sdma_v4_0_ring_emit_wreg(struct amdgpu_ring *ring,
1741                                      uint32_t reg, uint32_t val)
1742 {
1743         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1744                           SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1745         amdgpu_ring_write(ring, reg);
1746         amdgpu_ring_write(ring, val);
1747 }
1748
1749 static void sdma_v4_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1750                                          uint32_t val, uint32_t mask)
1751 {
1752         sdma_v4_0_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10);
1753 }
1754
1755 static bool sdma_v4_0_fw_support_paging_queue(struct amdgpu_device *adev)
1756 {
1757         uint fw_version = adev->sdma.instance[0].fw_version;
1758
1759         switch (adev->asic_type) {
1760         case CHIP_VEGA10:
1761                 return fw_version >= 430;
1762         case CHIP_VEGA12:
1763                 /*return fw_version >= 31;*/
1764                 return false;
1765         case CHIP_VEGA20:
1766                 return fw_version >= 123;
1767         default:
1768                 return false;
1769         }
1770 }
1771
1772 static int sdma_v4_0_early_init(void *handle)
1773 {
1774         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1775         int r;
1776
1777         if (adev->asic_type == CHIP_RAVEN || adev->asic_type == CHIP_RENOIR)
1778                 adev->sdma.num_instances = 1;
1779         else if (adev->asic_type == CHIP_ARCTURUS)
1780                 adev->sdma.num_instances = 8;
1781         else
1782                 adev->sdma.num_instances = 2;
1783
1784         r = sdma_v4_0_init_microcode(adev);
1785         if (r) {
1786                 DRM_ERROR("Failed to load sdma firmware!\n");
1787                 return r;
1788         }
1789
1790         /* TODO: Page queue breaks driver reload under SRIOV */
1791         if ((adev->asic_type == CHIP_VEGA10) && amdgpu_sriov_vf((adev)))
1792                 adev->sdma.has_page_queue = false;
1793         else if (sdma_v4_0_fw_support_paging_queue(adev))
1794                 adev->sdma.has_page_queue = true;
1795
1796         sdma_v4_0_set_ring_funcs(adev);
1797         sdma_v4_0_set_buffer_funcs(adev);
1798         sdma_v4_0_set_vm_pte_funcs(adev);
1799         sdma_v4_0_set_irq_funcs(adev);
1800         sdma_v4_0_set_ras_funcs(adev);
1801
1802         return 0;
1803 }
1804
1805 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
1806                 void *err_data,
1807                 struct amdgpu_iv_entry *entry);
1808
1809 static int sdma_v4_0_late_init(void *handle)
1810 {
1811         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1812         struct ras_ih_if ih_info = {
1813                 .cb = sdma_v4_0_process_ras_data_cb,
1814         };
1815
1816         if (adev->sdma.funcs && adev->sdma.funcs->reset_ras_error_count)
1817                 adev->sdma.funcs->reset_ras_error_count(adev);
1818
1819         if (adev->sdma.funcs && adev->sdma.funcs->ras_late_init)
1820                 return adev->sdma.funcs->ras_late_init(adev, &ih_info);
1821         else
1822                 return 0;
1823 }
1824
1825 static int sdma_v4_0_sw_init(void *handle)
1826 {
1827         struct amdgpu_ring *ring;
1828         int r, i;
1829         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1830
1831         /* SDMA trap event */
1832         for (i = 0; i < adev->sdma.num_instances; i++) {
1833                 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1834                                       SDMA0_4_0__SRCID__SDMA_TRAP,
1835                                       &adev->sdma.trap_irq);
1836                 if (r)
1837                         return r;
1838         }
1839
1840         /* SDMA SRAM ECC event */
1841         for (i = 0; i < adev->sdma.num_instances; i++) {
1842                 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1843                                       SDMA0_4_0__SRCID__SDMA_SRAM_ECC,
1844                                       &adev->sdma.ecc_irq);
1845                 if (r)
1846                         return r;
1847         }
1848
1849         for (i = 0; i < adev->sdma.num_instances; i++) {
1850                 ring = &adev->sdma.instance[i].ring;
1851                 ring->ring_obj = NULL;
1852                 ring->use_doorbell = true;
1853
1854                 DRM_DEBUG("SDMA %d use_doorbell being set to: [%s]\n", i,
1855                                 ring->use_doorbell?"true":"false");
1856
1857                 /* doorbell size is 2 dwords, get DWORD offset */
1858                 ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1859
1860                 sprintf(ring->name, "sdma%d", i);
1861                 r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq,
1862                                      AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1863                                      AMDGPU_RING_PRIO_DEFAULT);
1864                 if (r)
1865                         return r;
1866
1867                 if (adev->sdma.has_page_queue) {
1868                         ring = &adev->sdma.instance[i].page;
1869                         ring->ring_obj = NULL;
1870                         ring->use_doorbell = true;
1871
1872                         /* paging queue use same doorbell index/routing as gfx queue
1873                          * with 0x400 (4096 dwords) offset on second doorbell page
1874                          */
1875                         ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1876                         ring->doorbell_index += 0x400;
1877
1878                         sprintf(ring->name, "page%d", i);
1879                         r = amdgpu_ring_init(adev, ring, 1024,
1880                                              &adev->sdma.trap_irq,
1881                                              AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1882                                              AMDGPU_RING_PRIO_DEFAULT);
1883                         if (r)
1884                                 return r;
1885                 }
1886         }
1887
1888         return r;
1889 }
1890
1891 static int sdma_v4_0_sw_fini(void *handle)
1892 {
1893         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1894         int i;
1895
1896         if (adev->sdma.funcs && adev->sdma.funcs->ras_fini)
1897                 adev->sdma.funcs->ras_fini(adev);
1898
1899         for (i = 0; i < adev->sdma.num_instances; i++) {
1900                 amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1901                 if (adev->sdma.has_page_queue)
1902                         amdgpu_ring_fini(&adev->sdma.instance[i].page);
1903         }
1904
1905         sdma_v4_0_destroy_inst_ctx(adev);
1906
1907         return 0;
1908 }
1909
1910 static int sdma_v4_0_hw_init(void *handle)
1911 {
1912         int r;
1913         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1914
1915         if ((adev->asic_type == CHIP_RAVEN && adev->powerplay.pp_funcs &&
1916                         adev->powerplay.pp_funcs->set_powergating_by_smu) ||
1917                         (adev->asic_type == CHIP_RENOIR && !adev->in_gpu_reset))
1918                 amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, false);
1919
1920         if (!amdgpu_sriov_vf(adev))
1921                 sdma_v4_0_init_golden_registers(adev);
1922
1923         r = sdma_v4_0_start(adev);
1924
1925         return r;
1926 }
1927
1928 static int sdma_v4_0_hw_fini(void *handle)
1929 {
1930         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1931         int i;
1932
1933         if (amdgpu_sriov_vf(adev))
1934                 return 0;
1935
1936         for (i = 0; i < adev->sdma.num_instances; i++) {
1937                 amdgpu_irq_put(adev, &adev->sdma.ecc_irq,
1938                                AMDGPU_SDMA_IRQ_INSTANCE0 + i);
1939         }
1940
1941         sdma_v4_0_ctx_switch_enable(adev, false);
1942         sdma_v4_0_enable(adev, false);
1943
1944         if ((adev->asic_type == CHIP_RAVEN && adev->powerplay.pp_funcs
1945                         && adev->powerplay.pp_funcs->set_powergating_by_smu) ||
1946                         adev->asic_type == CHIP_RENOIR)
1947                 amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, true);
1948
1949         return 0;
1950 }
1951
1952 static int sdma_v4_0_suspend(void *handle)
1953 {
1954         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1955
1956         return sdma_v4_0_hw_fini(adev);
1957 }
1958
1959 static int sdma_v4_0_resume(void *handle)
1960 {
1961         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1962
1963         return sdma_v4_0_hw_init(adev);
1964 }
1965
1966 static bool sdma_v4_0_is_idle(void *handle)
1967 {
1968         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1969         u32 i;
1970
1971         for (i = 0; i < adev->sdma.num_instances; i++) {
1972                 u32 tmp = RREG32_SDMA(i, mmSDMA0_STATUS_REG);
1973
1974                 if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
1975                         return false;
1976         }
1977
1978         return true;
1979 }
1980
1981 static int sdma_v4_0_wait_for_idle(void *handle)
1982 {
1983         unsigned i, j;
1984         u32 sdma[AMDGPU_MAX_SDMA_INSTANCES];
1985         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1986
1987         for (i = 0; i < adev->usec_timeout; i++) {
1988                 for (j = 0; j < adev->sdma.num_instances; j++) {
1989                         sdma[j] = RREG32_SDMA(j, mmSDMA0_STATUS_REG);
1990                         if (!(sdma[j] & SDMA0_STATUS_REG__IDLE_MASK))
1991                                 break;
1992                 }
1993                 if (j == adev->sdma.num_instances)
1994                         return 0;
1995                 udelay(1);
1996         }
1997         return -ETIMEDOUT;
1998 }
1999
2000 static int sdma_v4_0_soft_reset(void *handle)
2001 {
2002         /* todo */
2003
2004         return 0;
2005 }
2006
2007 static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev,
2008                                         struct amdgpu_irq_src *source,
2009                                         unsigned type,
2010                                         enum amdgpu_interrupt_state state)
2011 {
2012         u32 sdma_cntl;
2013
2014         sdma_cntl = RREG32_SDMA(type, mmSDMA0_CNTL);
2015         sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
2016                        state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
2017         WREG32_SDMA(type, mmSDMA0_CNTL, sdma_cntl);
2018
2019         return 0;
2020 }
2021
2022 static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev,
2023                                       struct amdgpu_irq_src *source,
2024                                       struct amdgpu_iv_entry *entry)
2025 {
2026         uint32_t instance;
2027
2028         DRM_DEBUG("IH: SDMA trap\n");
2029         instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2030         switch (entry->ring_id) {
2031         case 0:
2032                 amdgpu_fence_process(&adev->sdma.instance[instance].ring);
2033                 break;
2034         case 1:
2035                 if (adev->asic_type == CHIP_VEGA20)
2036                         amdgpu_fence_process(&adev->sdma.instance[instance].page);
2037                 break;
2038         case 2:
2039                 /* XXX compute */
2040                 break;
2041         case 3:
2042                 if (adev->asic_type != CHIP_VEGA20)
2043                         amdgpu_fence_process(&adev->sdma.instance[instance].page);
2044                 break;
2045         }
2046         return 0;
2047 }
2048
2049 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
2050                 void *err_data,
2051                 struct amdgpu_iv_entry *entry)
2052 {
2053         int instance;
2054
2055         /* When “Full RAS” is enabled, the per-IP interrupt sources should
2056          * be disabled and the driver should only look for the aggregated
2057          * interrupt via sync flood
2058          */
2059         if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX))
2060                 goto out;
2061
2062         instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2063         if (instance < 0)
2064                 goto out;
2065
2066         amdgpu_sdma_process_ras_data_cb(adev, err_data, entry);
2067
2068 out:
2069         return AMDGPU_RAS_SUCCESS;
2070 }
2071
2072 static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev,
2073                                               struct amdgpu_irq_src *source,
2074                                               struct amdgpu_iv_entry *entry)
2075 {
2076         int instance;
2077
2078         DRM_ERROR("Illegal instruction in SDMA command stream\n");
2079
2080         instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2081         if (instance < 0)
2082                 return 0;
2083
2084         switch (entry->ring_id) {
2085         case 0:
2086                 drm_sched_fault(&adev->sdma.instance[instance].ring.sched);
2087                 break;
2088         }
2089         return 0;
2090 }
2091
2092 static int sdma_v4_0_set_ecc_irq_state(struct amdgpu_device *adev,
2093                                         struct amdgpu_irq_src *source,
2094                                         unsigned type,
2095                                         enum amdgpu_interrupt_state state)
2096 {
2097         u32 sdma_edc_config;
2098
2099         sdma_edc_config = RREG32_SDMA(type, mmSDMA0_EDC_CONFIG);
2100         sdma_edc_config = REG_SET_FIELD(sdma_edc_config, SDMA0_EDC_CONFIG, ECC_INT_ENABLE,
2101                        state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
2102         WREG32_SDMA(type, mmSDMA0_EDC_CONFIG, sdma_edc_config);
2103
2104         return 0;
2105 }
2106
2107 static void sdma_v4_0_update_medium_grain_clock_gating(
2108                 struct amdgpu_device *adev,
2109                 bool enable)
2110 {
2111         uint32_t data, def;
2112         int i;
2113
2114         if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
2115                 for (i = 0; i < adev->sdma.num_instances; i++) {
2116                         def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL);
2117                         data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2118                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2119                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2120                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2121                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2122                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2123                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2124                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2125                         if (def != data)
2126                                 WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data);
2127                 }
2128         } else {
2129                 for (i = 0; i < adev->sdma.num_instances; i++) {
2130                         def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL);
2131                         data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2132                                  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2133                                  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2134                                  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2135                                  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2136                                  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2137                                  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2138                                  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2139                         if (def != data)
2140                                 WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data);
2141                 }
2142         }
2143 }
2144
2145
2146 static void sdma_v4_0_update_medium_grain_light_sleep(
2147                 struct amdgpu_device *adev,
2148                 bool enable)
2149 {
2150         uint32_t data, def;
2151         int i;
2152
2153         if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
2154                 for (i = 0; i < adev->sdma.num_instances; i++) {
2155                         /* 1-not override: enable sdma mem light sleep */
2156                         def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL);
2157                         data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2158                         if (def != data)
2159                                 WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data);
2160                 }
2161         } else {
2162                 for (i = 0; i < adev->sdma.num_instances; i++) {
2163                 /* 0-override:disable sdma mem light sleep */
2164                         def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL);
2165                         data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2166                         if (def != data)
2167                                 WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data);
2168                 }
2169         }
2170 }
2171
2172 static int sdma_v4_0_set_clockgating_state(void *handle,
2173                                           enum amd_clockgating_state state)
2174 {
2175         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2176
2177         if (amdgpu_sriov_vf(adev))
2178                 return 0;
2179
2180         switch (adev->asic_type) {
2181         case CHIP_VEGA10:
2182         case CHIP_VEGA12:
2183         case CHIP_VEGA20:
2184         case CHIP_RAVEN:
2185         case CHIP_ARCTURUS:
2186         case CHIP_RENOIR:
2187                 sdma_v4_0_update_medium_grain_clock_gating(adev,
2188                                 state == AMD_CG_STATE_GATE);
2189                 sdma_v4_0_update_medium_grain_light_sleep(adev,
2190                                 state == AMD_CG_STATE_GATE);
2191                 break;
2192         default:
2193                 break;
2194         }
2195         return 0;
2196 }
2197
2198 static int sdma_v4_0_set_powergating_state(void *handle,
2199                                           enum amd_powergating_state state)
2200 {
2201         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2202
2203         switch (adev->asic_type) {
2204         case CHIP_RAVEN:
2205                 sdma_v4_1_update_power_gating(adev,
2206                                 state == AMD_PG_STATE_GATE ? true : false);
2207                 break;
2208         default:
2209                 break;
2210         }
2211
2212         return 0;
2213 }
2214
2215 static void sdma_v4_0_get_clockgating_state(void *handle, u32 *flags)
2216 {
2217         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2218         int data;
2219
2220         if (amdgpu_sriov_vf(adev))
2221                 *flags = 0;
2222
2223         /* AMD_CG_SUPPORT_SDMA_MGCG */
2224         data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
2225         if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
2226                 *flags |= AMD_CG_SUPPORT_SDMA_MGCG;
2227
2228         /* AMD_CG_SUPPORT_SDMA_LS */
2229         data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
2230         if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
2231                 *flags |= AMD_CG_SUPPORT_SDMA_LS;
2232 }
2233
2234 const struct amd_ip_funcs sdma_v4_0_ip_funcs = {
2235         .name = "sdma_v4_0",
2236         .early_init = sdma_v4_0_early_init,
2237         .late_init = sdma_v4_0_late_init,
2238         .sw_init = sdma_v4_0_sw_init,
2239         .sw_fini = sdma_v4_0_sw_fini,
2240         .hw_init = sdma_v4_0_hw_init,
2241         .hw_fini = sdma_v4_0_hw_fini,
2242         .suspend = sdma_v4_0_suspend,
2243         .resume = sdma_v4_0_resume,
2244         .is_idle = sdma_v4_0_is_idle,
2245         .wait_for_idle = sdma_v4_0_wait_for_idle,
2246         .soft_reset = sdma_v4_0_soft_reset,
2247         .set_clockgating_state = sdma_v4_0_set_clockgating_state,
2248         .set_powergating_state = sdma_v4_0_set_powergating_state,
2249         .get_clockgating_state = sdma_v4_0_get_clockgating_state,
2250 };
2251
2252 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = {
2253         .type = AMDGPU_RING_TYPE_SDMA,
2254         .align_mask = 0xf,
2255         .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2256         .support_64bit_ptrs = true,
2257         .vmhub = AMDGPU_MMHUB_0,
2258         .get_rptr = sdma_v4_0_ring_get_rptr,
2259         .get_wptr = sdma_v4_0_ring_get_wptr,
2260         .set_wptr = sdma_v4_0_ring_set_wptr,
2261         .emit_frame_size =
2262                 6 + /* sdma_v4_0_ring_emit_hdp_flush */
2263                 3 + /* hdp invalidate */
2264                 6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2265                 /* sdma_v4_0_ring_emit_vm_flush */
2266                 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2267                 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2268                 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2269         .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2270         .emit_ib = sdma_v4_0_ring_emit_ib,
2271         .emit_fence = sdma_v4_0_ring_emit_fence,
2272         .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2273         .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2274         .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2275         .test_ring = sdma_v4_0_ring_test_ring,
2276         .test_ib = sdma_v4_0_ring_test_ib,
2277         .insert_nop = sdma_v4_0_ring_insert_nop,
2278         .pad_ib = sdma_v4_0_ring_pad_ib,
2279         .emit_wreg = sdma_v4_0_ring_emit_wreg,
2280         .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2281         .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2282 };
2283
2284 /*
2285  * On Arcturus, SDMA instance 5~7 has a different vmhub type(AMDGPU_MMHUB_1).
2286  * So create a individual constant ring_funcs for those instances.
2287  */
2288 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs_2nd_mmhub = {
2289         .type = AMDGPU_RING_TYPE_SDMA,
2290         .align_mask = 0xf,
2291         .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2292         .support_64bit_ptrs = true,
2293         .vmhub = AMDGPU_MMHUB_1,
2294         .get_rptr = sdma_v4_0_ring_get_rptr,
2295         .get_wptr = sdma_v4_0_ring_get_wptr,
2296         .set_wptr = sdma_v4_0_ring_set_wptr,
2297         .emit_frame_size =
2298                 6 + /* sdma_v4_0_ring_emit_hdp_flush */
2299                 3 + /* hdp invalidate */
2300                 6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2301                 /* sdma_v4_0_ring_emit_vm_flush */
2302                 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2303                 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2304                 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2305         .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2306         .emit_ib = sdma_v4_0_ring_emit_ib,
2307         .emit_fence = sdma_v4_0_ring_emit_fence,
2308         .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2309         .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2310         .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2311         .test_ring = sdma_v4_0_ring_test_ring,
2312         .test_ib = sdma_v4_0_ring_test_ib,
2313         .insert_nop = sdma_v4_0_ring_insert_nop,
2314         .pad_ib = sdma_v4_0_ring_pad_ib,
2315         .emit_wreg = sdma_v4_0_ring_emit_wreg,
2316         .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2317         .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2318 };
2319
2320 static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs = {
2321         .type = AMDGPU_RING_TYPE_SDMA,
2322         .align_mask = 0xf,
2323         .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2324         .support_64bit_ptrs = true,
2325         .vmhub = AMDGPU_MMHUB_0,
2326         .get_rptr = sdma_v4_0_ring_get_rptr,
2327         .get_wptr = sdma_v4_0_page_ring_get_wptr,
2328         .set_wptr = sdma_v4_0_page_ring_set_wptr,
2329         .emit_frame_size =
2330                 6 + /* sdma_v4_0_ring_emit_hdp_flush */
2331                 3 + /* hdp invalidate */
2332                 6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2333                 /* sdma_v4_0_ring_emit_vm_flush */
2334                 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2335                 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2336                 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2337         .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2338         .emit_ib = sdma_v4_0_ring_emit_ib,
2339         .emit_fence = sdma_v4_0_ring_emit_fence,
2340         .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2341         .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2342         .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2343         .test_ring = sdma_v4_0_ring_test_ring,
2344         .test_ib = sdma_v4_0_ring_test_ib,
2345         .insert_nop = sdma_v4_0_ring_insert_nop,
2346         .pad_ib = sdma_v4_0_ring_pad_ib,
2347         .emit_wreg = sdma_v4_0_ring_emit_wreg,
2348         .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2349         .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2350 };
2351
2352 static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs_2nd_mmhub = {
2353         .type = AMDGPU_RING_TYPE_SDMA,
2354         .align_mask = 0xf,
2355         .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2356         .support_64bit_ptrs = true,
2357         .vmhub = AMDGPU_MMHUB_1,
2358         .get_rptr = sdma_v4_0_ring_get_rptr,
2359         .get_wptr = sdma_v4_0_page_ring_get_wptr,
2360         .set_wptr = sdma_v4_0_page_ring_set_wptr,
2361         .emit_frame_size =
2362                 6 + /* sdma_v4_0_ring_emit_hdp_flush */
2363                 3 + /* hdp invalidate */
2364                 6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2365                 /* sdma_v4_0_ring_emit_vm_flush */
2366                 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2367                 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2368                 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2369         .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2370         .emit_ib = sdma_v4_0_ring_emit_ib,
2371         .emit_fence = sdma_v4_0_ring_emit_fence,
2372         .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2373         .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2374         .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2375         .test_ring = sdma_v4_0_ring_test_ring,
2376         .test_ib = sdma_v4_0_ring_test_ib,
2377         .insert_nop = sdma_v4_0_ring_insert_nop,
2378         .pad_ib = sdma_v4_0_ring_pad_ib,
2379         .emit_wreg = sdma_v4_0_ring_emit_wreg,
2380         .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2381         .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2382 };
2383
2384 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev)
2385 {
2386         int i;
2387
2388         for (i = 0; i < adev->sdma.num_instances; i++) {
2389                 if (adev->asic_type == CHIP_ARCTURUS && i >= 5)
2390                         adev->sdma.instance[i].ring.funcs =
2391                                         &sdma_v4_0_ring_funcs_2nd_mmhub;
2392                 else
2393                         adev->sdma.instance[i].ring.funcs =
2394                                         &sdma_v4_0_ring_funcs;
2395                 adev->sdma.instance[i].ring.me = i;
2396                 if (adev->sdma.has_page_queue) {
2397                         if (adev->asic_type == CHIP_ARCTURUS && i >= 5)
2398                                 adev->sdma.instance[i].page.funcs =
2399                                         &sdma_v4_0_page_ring_funcs_2nd_mmhub;
2400                         else
2401                                 adev->sdma.instance[i].page.funcs =
2402                                         &sdma_v4_0_page_ring_funcs;
2403                         adev->sdma.instance[i].page.me = i;
2404                 }
2405         }
2406 }
2407
2408 static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = {
2409         .set = sdma_v4_0_set_trap_irq_state,
2410         .process = sdma_v4_0_process_trap_irq,
2411 };
2412
2413 static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = {
2414         .process = sdma_v4_0_process_illegal_inst_irq,
2415 };
2416
2417 static const struct amdgpu_irq_src_funcs sdma_v4_0_ecc_irq_funcs = {
2418         .set = sdma_v4_0_set_ecc_irq_state,
2419         .process = amdgpu_sdma_process_ecc_irq,
2420 };
2421
2422
2423
2424 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev)
2425 {
2426         switch (adev->sdma.num_instances) {
2427         case 1:
2428                 adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE1;
2429                 adev->sdma.ecc_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE1;
2430                 break;
2431         case 8:
2432                 adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
2433                 adev->sdma.ecc_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
2434                 break;
2435         case 2:
2436         default:
2437                 adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE2;
2438                 adev->sdma.ecc_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE2;
2439                 break;
2440         }
2441         adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs;
2442         adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs;
2443         adev->sdma.ecc_irq.funcs = &sdma_v4_0_ecc_irq_funcs;
2444 }
2445
2446 /**
2447  * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine
2448  *
2449  * @ring: amdgpu_ring structure holding ring information
2450  * @src_offset: src GPU address
2451  * @dst_offset: dst GPU address
2452  * @byte_count: number of bytes to xfer
2453  *
2454  * Copy GPU buffers using the DMA engine (VEGA10/12).
2455  * Used by the amdgpu ttm implementation to move pages if
2456  * registered as the asic copy callback.
2457  */
2458 static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib,
2459                                        uint64_t src_offset,
2460                                        uint64_t dst_offset,
2461                                        uint32_t byte_count)
2462 {
2463         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
2464                 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
2465         ib->ptr[ib->length_dw++] = byte_count - 1;
2466         ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
2467         ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
2468         ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
2469         ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2470         ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2471 }
2472
2473 /**
2474  * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine
2475  *
2476  * @ring: amdgpu_ring structure holding ring information
2477  * @src_data: value to write to buffer
2478  * @dst_offset: dst GPU address
2479  * @byte_count: number of bytes to xfer
2480  *
2481  * Fill GPU buffers using the DMA engine (VEGA10/12).
2482  */
2483 static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib,
2484                                        uint32_t src_data,
2485                                        uint64_t dst_offset,
2486                                        uint32_t byte_count)
2487 {
2488         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
2489         ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2490         ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2491         ib->ptr[ib->length_dw++] = src_data;
2492         ib->ptr[ib->length_dw++] = byte_count - 1;
2493 }
2494
2495 static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = {
2496         .copy_max_bytes = 0x400000,
2497         .copy_num_dw = 7,
2498         .emit_copy_buffer = sdma_v4_0_emit_copy_buffer,
2499
2500         .fill_max_bytes = 0x400000,
2501         .fill_num_dw = 5,
2502         .emit_fill_buffer = sdma_v4_0_emit_fill_buffer,
2503 };
2504
2505 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev)
2506 {
2507         adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs;
2508         if (adev->sdma.has_page_queue)
2509                 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].page;
2510         else
2511                 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
2512 }
2513
2514 static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = {
2515         .copy_pte_num_dw = 7,
2516         .copy_pte = sdma_v4_0_vm_copy_pte,
2517
2518         .write_pte = sdma_v4_0_vm_write_pte,
2519         .set_pte_pde = sdma_v4_0_vm_set_pte_pde,
2520 };
2521
2522 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev)
2523 {
2524         struct drm_gpu_scheduler *sched;
2525         unsigned i;
2526
2527         adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs;
2528         for (i = 0; i < adev->sdma.num_instances; i++) {
2529                 if (adev->sdma.has_page_queue)
2530                         sched = &adev->sdma.instance[i].page.sched;
2531                 else
2532                         sched = &adev->sdma.instance[i].ring.sched;
2533                 adev->vm_manager.vm_pte_scheds[i] = sched;
2534         }
2535         adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances;
2536 }
2537
2538 static void sdma_v4_0_get_ras_error_count(uint32_t value,
2539                                         uint32_t instance,
2540                                         uint32_t *sec_count)
2541 {
2542         uint32_t i;
2543         uint32_t sec_cnt;
2544
2545         /* double bits error (multiple bits) error detection is not supported */
2546         for (i = 0; i < ARRAY_SIZE(sdma_v4_0_ras_fields); i++) {
2547                 /* the SDMA_EDC_COUNTER register in each sdma instance
2548                  * shares the same sed shift_mask
2549                  * */
2550                 sec_cnt = (value &
2551                         sdma_v4_0_ras_fields[i].sec_count_mask) >>
2552                         sdma_v4_0_ras_fields[i].sec_count_shift;
2553                 if (sec_cnt) {
2554                         DRM_INFO("Detected %s in SDMA%d, SED %d\n",
2555                                 sdma_v4_0_ras_fields[i].name,
2556                                 instance, sec_cnt);
2557                         *sec_count += sec_cnt;
2558                 }
2559         }
2560 }
2561
2562 static int sdma_v4_0_query_ras_error_count(struct amdgpu_device *adev,
2563                         uint32_t instance, void *ras_error_status)
2564 {
2565         struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status;
2566         uint32_t sec_count = 0;
2567         uint32_t reg_value = 0;
2568
2569         reg_value = RREG32_SDMA(instance, mmSDMA0_EDC_COUNTER);
2570         /* double bit error is not supported */
2571         if (reg_value)
2572                 sdma_v4_0_get_ras_error_count(reg_value,
2573                                 instance, &sec_count);
2574         /* err_data->ce_count should be initialized to 0
2575          * before calling into this function */
2576         err_data->ce_count += sec_count;
2577         /* double bit error is not supported
2578          * set ue count to 0 */
2579         err_data->ue_count = 0;
2580
2581         return 0;
2582 };
2583
2584 static void sdma_v4_0_reset_ras_error_count(struct amdgpu_device *adev)
2585 {
2586         int i;
2587
2588         /* read back edc counter registers to clear the counters */
2589         if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
2590                 for (i = 0; i < adev->sdma.num_instances; i++)
2591                         RREG32_SDMA(i, mmSDMA0_EDC_COUNTER);
2592         }
2593 }
2594
2595 static const struct amdgpu_sdma_ras_funcs sdma_v4_0_ras_funcs = {
2596         .ras_late_init = amdgpu_sdma_ras_late_init,
2597         .ras_fini = amdgpu_sdma_ras_fini,
2598         .query_ras_error_count = sdma_v4_0_query_ras_error_count,
2599         .reset_ras_error_count = sdma_v4_0_reset_ras_error_count,
2600 };
2601
2602 static void sdma_v4_0_set_ras_funcs(struct amdgpu_device *adev)
2603 {
2604         switch (adev->asic_type) {
2605         case CHIP_VEGA20:
2606         case CHIP_ARCTURUS:
2607                 adev->sdma.funcs = &sdma_v4_0_ras_funcs;
2608                 break;
2609         default:
2610                 break;
2611         }
2612 }
2613
2614 const struct amdgpu_ip_block_version sdma_v4_0_ip_block = {
2615         .type = AMD_IP_BLOCK_TYPE_SDMA,
2616         .major = 4,
2617         .minor = 0,
2618         .rev = 0,
2619         .funcs = &sdma_v4_0_ip_funcs,
2620 };