Merge tag 'for-linus-hmm' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
[linux-2.6-block.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_ttm.c
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/hmm.h>
36 #include <linux/pagemap.h>
37 #include <linux/sched/task.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swiotlb.h>
42
43 #include <drm/ttm/ttm_bo_api.h>
44 #include <drm/ttm/ttm_bo_driver.h>
45 #include <drm/ttm/ttm_placement.h>
46 #include <drm/ttm/ttm_module.h>
47 #include <drm/ttm/ttm_page_alloc.h>
48
49 #include <drm/drm_debugfs.h>
50 #include <drm/amdgpu_drm.h>
51
52 #include "amdgpu.h"
53 #include "amdgpu_object.h"
54 #include "amdgpu_trace.h"
55 #include "amdgpu_amdkfd.h"
56 #include "amdgpu_sdma.h"
57 #include "bif/bif_4_1_d.h"
58
59 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
60                              struct ttm_mem_reg *mem, unsigned num_pages,
61                              uint64_t offset, unsigned window,
62                              struct amdgpu_ring *ring,
63                              uint64_t *addr);
64
65 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev);
66 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev);
67
68 static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
69 {
70         return 0;
71 }
72
73 /**
74  * amdgpu_init_mem_type - Initialize a memory manager for a specific type of
75  * memory request.
76  *
77  * @bdev: The TTM BO device object (contains a reference to amdgpu_device)
78  * @type: The type of memory requested
79  * @man: The memory type manager for each domain
80  *
81  * This is called by ttm_bo_init_mm() when a buffer object is being
82  * initialized.
83  */
84 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
85                                 struct ttm_mem_type_manager *man)
86 {
87         struct amdgpu_device *adev;
88
89         adev = amdgpu_ttm_adev(bdev);
90
91         switch (type) {
92         case TTM_PL_SYSTEM:
93                 /* System memory */
94                 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
95                 man->available_caching = TTM_PL_MASK_CACHING;
96                 man->default_caching = TTM_PL_FLAG_CACHED;
97                 break;
98         case TTM_PL_TT:
99                 /* GTT memory  */
100                 man->func = &amdgpu_gtt_mgr_func;
101                 man->gpu_offset = adev->gmc.gart_start;
102                 man->available_caching = TTM_PL_MASK_CACHING;
103                 man->default_caching = TTM_PL_FLAG_CACHED;
104                 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA;
105                 break;
106         case TTM_PL_VRAM:
107                 /* "On-card" video ram */
108                 man->func = &amdgpu_vram_mgr_func;
109                 man->gpu_offset = adev->gmc.vram_start;
110                 man->flags = TTM_MEMTYPE_FLAG_FIXED |
111                              TTM_MEMTYPE_FLAG_MAPPABLE;
112                 man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC;
113                 man->default_caching = TTM_PL_FLAG_WC;
114                 break;
115         case AMDGPU_PL_GDS:
116         case AMDGPU_PL_GWS:
117         case AMDGPU_PL_OA:
118                 /* On-chip GDS memory*/
119                 man->func = &ttm_bo_manager_func;
120                 man->gpu_offset = 0;
121                 man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA;
122                 man->available_caching = TTM_PL_FLAG_UNCACHED;
123                 man->default_caching = TTM_PL_FLAG_UNCACHED;
124                 break;
125         default:
126                 DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
127                 return -EINVAL;
128         }
129         return 0;
130 }
131
132 /**
133  * amdgpu_evict_flags - Compute placement flags
134  *
135  * @bo: The buffer object to evict
136  * @placement: Possible destination(s) for evicted BO
137  *
138  * Fill in placement data when ttm_bo_evict() is called
139  */
140 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
141                                 struct ttm_placement *placement)
142 {
143         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
144         struct amdgpu_bo *abo;
145         static const struct ttm_place placements = {
146                 .fpfn = 0,
147                 .lpfn = 0,
148                 .flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM
149         };
150
151         /* Don't handle scatter gather BOs */
152         if (bo->type == ttm_bo_type_sg) {
153                 placement->num_placement = 0;
154                 placement->num_busy_placement = 0;
155                 return;
156         }
157
158         /* Object isn't an AMDGPU object so ignore */
159         if (!amdgpu_bo_is_amdgpu_bo(bo)) {
160                 placement->placement = &placements;
161                 placement->busy_placement = &placements;
162                 placement->num_placement = 1;
163                 placement->num_busy_placement = 1;
164                 return;
165         }
166
167         abo = ttm_to_amdgpu_bo(bo);
168         switch (bo->mem.mem_type) {
169         case AMDGPU_PL_GDS:
170         case AMDGPU_PL_GWS:
171         case AMDGPU_PL_OA:
172                 placement->num_placement = 0;
173                 placement->num_busy_placement = 0;
174                 return;
175
176         case TTM_PL_VRAM:
177                 if (!adev->mman.buffer_funcs_enabled) {
178                         /* Move to system memory */
179                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
180                 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
181                            !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
182                            amdgpu_bo_in_cpu_visible_vram(abo)) {
183
184                         /* Try evicting to the CPU inaccessible part of VRAM
185                          * first, but only set GTT as busy placement, so this
186                          * BO will be evicted to GTT rather than causing other
187                          * BOs to be evicted from VRAM
188                          */
189                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
190                                                          AMDGPU_GEM_DOMAIN_GTT);
191                         abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
192                         abo->placements[0].lpfn = 0;
193                         abo->placement.busy_placement = &abo->placements[1];
194                         abo->placement.num_busy_placement = 1;
195                 } else {
196                         /* Move to GTT memory */
197                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
198                 }
199                 break;
200         case TTM_PL_TT:
201         default:
202                 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
203                 break;
204         }
205         *placement = abo->placement;
206 }
207
208 /**
209  * amdgpu_verify_access - Verify access for a mmap call
210  *
211  * @bo: The buffer object to map
212  * @filp: The file pointer from the process performing the mmap
213  *
214  * This is called by ttm_bo_mmap() to verify whether a process
215  * has the right to mmap a BO to their process space.
216  */
217 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
218 {
219         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
220
221         /*
222          * Don't verify access for KFD BOs. They don't have a GEM
223          * object associated with them.
224          */
225         if (abo->kfd_bo)
226                 return 0;
227
228         if (amdgpu_ttm_tt_get_usermm(bo->ttm))
229                 return -EPERM;
230         return drm_vma_node_verify_access(&abo->tbo.base.vma_node,
231                                           filp->private_data);
232 }
233
234 /**
235  * amdgpu_move_null - Register memory for a buffer object
236  *
237  * @bo: The bo to assign the memory to
238  * @new_mem: The memory to be assigned.
239  *
240  * Assign the memory from new_mem to the memory of the buffer object bo.
241  */
242 static void amdgpu_move_null(struct ttm_buffer_object *bo,
243                              struct ttm_mem_reg *new_mem)
244 {
245         struct ttm_mem_reg *old_mem = &bo->mem;
246
247         BUG_ON(old_mem->mm_node != NULL);
248         *old_mem = *new_mem;
249         new_mem->mm_node = NULL;
250 }
251
252 /**
253  * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
254  *
255  * @bo: The bo to assign the memory to.
256  * @mm_node: Memory manager node for drm allocator.
257  * @mem: The region where the bo resides.
258  *
259  */
260 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
261                                     struct drm_mm_node *mm_node,
262                                     struct ttm_mem_reg *mem)
263 {
264         uint64_t addr = 0;
265
266         if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) {
267                 addr = mm_node->start << PAGE_SHIFT;
268                 addr += bo->bdev->man[mem->mem_type].gpu_offset;
269         }
270         return addr;
271 }
272
273 /**
274  * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
275  * @offset. It also modifies the offset to be within the drm_mm_node returned
276  *
277  * @mem: The region where the bo resides.
278  * @offset: The offset that drm_mm_node is used for finding.
279  *
280  */
281 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem,
282                                                unsigned long *offset)
283 {
284         struct drm_mm_node *mm_node = mem->mm_node;
285
286         while (*offset >= (mm_node->size << PAGE_SHIFT)) {
287                 *offset -= (mm_node->size << PAGE_SHIFT);
288                 ++mm_node;
289         }
290         return mm_node;
291 }
292
293 /**
294  * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
295  *
296  * The function copies @size bytes from {src->mem + src->offset} to
297  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
298  * move and different for a BO to BO copy.
299  *
300  * @f: Returns the last fence if multiple jobs are submitted.
301  */
302 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
303                                struct amdgpu_copy_mem *src,
304                                struct amdgpu_copy_mem *dst,
305                                uint64_t size,
306                                struct dma_resv *resv,
307                                struct dma_fence **f)
308 {
309         struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
310         struct drm_mm_node *src_mm, *dst_mm;
311         uint64_t src_node_start, dst_node_start, src_node_size,
312                  dst_node_size, src_page_offset, dst_page_offset;
313         struct dma_fence *fence = NULL;
314         int r = 0;
315         const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
316                                         AMDGPU_GPU_PAGE_SIZE);
317
318         if (!adev->mman.buffer_funcs_enabled) {
319                 DRM_ERROR("Trying to move memory with ring turned off.\n");
320                 return -EINVAL;
321         }
322
323         src_mm = amdgpu_find_mm_node(src->mem, &src->offset);
324         src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) +
325                                              src->offset;
326         src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset;
327         src_page_offset = src_node_start & (PAGE_SIZE - 1);
328
329         dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset);
330         dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) +
331                                              dst->offset;
332         dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset;
333         dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
334
335         mutex_lock(&adev->mman.gtt_window_lock);
336
337         while (size) {
338                 unsigned long cur_size;
339                 uint64_t from = src_node_start, to = dst_node_start;
340                 struct dma_fence *next;
341
342                 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
343                  * begins at an offset, then adjust the size accordingly
344                  */
345                 cur_size = min3(min(src_node_size, dst_node_size), size,
346                                 GTT_MAX_BYTES);
347                 if (cur_size + src_page_offset > GTT_MAX_BYTES ||
348                     cur_size + dst_page_offset > GTT_MAX_BYTES)
349                         cur_size -= max(src_page_offset, dst_page_offset);
350
351                 /* Map only what needs to be accessed. Map src to window 0 and
352                  * dst to window 1
353                  */
354                 if (src->mem->start == AMDGPU_BO_INVALID_OFFSET) {
355                         r = amdgpu_map_buffer(src->bo, src->mem,
356                                         PFN_UP(cur_size + src_page_offset),
357                                         src_node_start, 0, ring,
358                                         &from);
359                         if (r)
360                                 goto error;
361                         /* Adjust the offset because amdgpu_map_buffer returns
362                          * start of mapped page
363                          */
364                         from += src_page_offset;
365                 }
366
367                 if (dst->mem->start == AMDGPU_BO_INVALID_OFFSET) {
368                         r = amdgpu_map_buffer(dst->bo, dst->mem,
369                                         PFN_UP(cur_size + dst_page_offset),
370                                         dst_node_start, 1, ring,
371                                         &to);
372                         if (r)
373                                 goto error;
374                         to += dst_page_offset;
375                 }
376
377                 r = amdgpu_copy_buffer(ring, from, to, cur_size,
378                                        resv, &next, false, true);
379                 if (r)
380                         goto error;
381
382                 dma_fence_put(fence);
383                 fence = next;
384
385                 size -= cur_size;
386                 if (!size)
387                         break;
388
389                 src_node_size -= cur_size;
390                 if (!src_node_size) {
391                         src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm,
392                                                              src->mem);
393                         src_node_size = (src_mm->size << PAGE_SHIFT);
394                         src_page_offset = 0;
395                 } else {
396                         src_node_start += cur_size;
397                         src_page_offset = src_node_start & (PAGE_SIZE - 1);
398                 }
399                 dst_node_size -= cur_size;
400                 if (!dst_node_size) {
401                         dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm,
402                                                              dst->mem);
403                         dst_node_size = (dst_mm->size << PAGE_SHIFT);
404                         dst_page_offset = 0;
405                 } else {
406                         dst_node_start += cur_size;
407                         dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
408                 }
409         }
410 error:
411         mutex_unlock(&adev->mman.gtt_window_lock);
412         if (f)
413                 *f = dma_fence_get(fence);
414         dma_fence_put(fence);
415         return r;
416 }
417
418 /**
419  * amdgpu_move_blit - Copy an entire buffer to another buffer
420  *
421  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
422  * help move buffers to and from VRAM.
423  */
424 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
425                             bool evict, bool no_wait_gpu,
426                             struct ttm_mem_reg *new_mem,
427                             struct ttm_mem_reg *old_mem)
428 {
429         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
430         struct amdgpu_copy_mem src, dst;
431         struct dma_fence *fence = NULL;
432         int r;
433
434         src.bo = bo;
435         dst.bo = bo;
436         src.mem = old_mem;
437         dst.mem = new_mem;
438         src.offset = 0;
439         dst.offset = 0;
440
441         r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
442                                        new_mem->num_pages << PAGE_SHIFT,
443                                        bo->base.resv, &fence);
444         if (r)
445                 goto error;
446
447         /* clear the space being freed */
448         if (old_mem->mem_type == TTM_PL_VRAM &&
449             (ttm_to_amdgpu_bo(bo)->flags &
450              AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
451                 struct dma_fence *wipe_fence = NULL;
452
453                 r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
454                                        NULL, &wipe_fence);
455                 if (r) {
456                         goto error;
457                 } else if (wipe_fence) {
458                         dma_fence_put(fence);
459                         fence = wipe_fence;
460                 }
461         }
462
463         /* Always block for VM page tables before committing the new location */
464         if (bo->type == ttm_bo_type_kernel)
465                 r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem);
466         else
467                 r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
468         dma_fence_put(fence);
469         return r;
470
471 error:
472         if (fence)
473                 dma_fence_wait(fence, false);
474         dma_fence_put(fence);
475         return r;
476 }
477
478 /**
479  * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
480  *
481  * Called by amdgpu_bo_move().
482  */
483 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
484                                 struct ttm_operation_ctx *ctx,
485                                 struct ttm_mem_reg *new_mem)
486 {
487         struct amdgpu_device *adev;
488         struct ttm_mem_reg *old_mem = &bo->mem;
489         struct ttm_mem_reg tmp_mem;
490         struct ttm_place placements;
491         struct ttm_placement placement;
492         int r;
493
494         adev = amdgpu_ttm_adev(bo->bdev);
495
496         /* create space/pages for new_mem in GTT space */
497         tmp_mem = *new_mem;
498         tmp_mem.mm_node = NULL;
499         placement.num_placement = 1;
500         placement.placement = &placements;
501         placement.num_busy_placement = 1;
502         placement.busy_placement = &placements;
503         placements.fpfn = 0;
504         placements.lpfn = 0;
505         placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
506         r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
507         if (unlikely(r)) {
508                 pr_err("Failed to find GTT space for blit from VRAM\n");
509                 return r;
510         }
511
512         /* set caching flags */
513         r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
514         if (unlikely(r)) {
515                 goto out_cleanup;
516         }
517
518         /* Bind the memory to the GTT space */
519         r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx);
520         if (unlikely(r)) {
521                 goto out_cleanup;
522         }
523
524         /* blit VRAM to GTT */
525         r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem);
526         if (unlikely(r)) {
527                 goto out_cleanup;
528         }
529
530         /* move BO (in tmp_mem) to new_mem */
531         r = ttm_bo_move_ttm(bo, ctx, new_mem);
532 out_cleanup:
533         ttm_bo_mem_put(bo, &tmp_mem);
534         return r;
535 }
536
537 /**
538  * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
539  *
540  * Called by amdgpu_bo_move().
541  */
542 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
543                                 struct ttm_operation_ctx *ctx,
544                                 struct ttm_mem_reg *new_mem)
545 {
546         struct amdgpu_device *adev;
547         struct ttm_mem_reg *old_mem = &bo->mem;
548         struct ttm_mem_reg tmp_mem;
549         struct ttm_placement placement;
550         struct ttm_place placements;
551         int r;
552
553         adev = amdgpu_ttm_adev(bo->bdev);
554
555         /* make space in GTT for old_mem buffer */
556         tmp_mem = *new_mem;
557         tmp_mem.mm_node = NULL;
558         placement.num_placement = 1;
559         placement.placement = &placements;
560         placement.num_busy_placement = 1;
561         placement.busy_placement = &placements;
562         placements.fpfn = 0;
563         placements.lpfn = 0;
564         placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
565         r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
566         if (unlikely(r)) {
567                 pr_err("Failed to find GTT space for blit to VRAM\n");
568                 return r;
569         }
570
571         /* move/bind old memory to GTT space */
572         r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
573         if (unlikely(r)) {
574                 goto out_cleanup;
575         }
576
577         /* copy to VRAM */
578         r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem);
579         if (unlikely(r)) {
580                 goto out_cleanup;
581         }
582 out_cleanup:
583         ttm_bo_mem_put(bo, &tmp_mem);
584         return r;
585 }
586
587 /**
588  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
589  *
590  * Called by amdgpu_bo_move()
591  */
592 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
593                                struct ttm_mem_reg *mem)
594 {
595         struct drm_mm_node *nodes = mem->mm_node;
596
597         if (mem->mem_type == TTM_PL_SYSTEM ||
598             mem->mem_type == TTM_PL_TT)
599                 return true;
600         if (mem->mem_type != TTM_PL_VRAM)
601                 return false;
602
603         /* ttm_mem_reg_ioremap only supports contiguous memory */
604         if (nodes->size != mem->num_pages)
605                 return false;
606
607         return ((nodes->start + nodes->size) << PAGE_SHIFT)
608                 <= adev->gmc.visible_vram_size;
609 }
610
611 /**
612  * amdgpu_bo_move - Move a buffer object to a new memory location
613  *
614  * Called by ttm_bo_handle_move_mem()
615  */
616 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
617                           struct ttm_operation_ctx *ctx,
618                           struct ttm_mem_reg *new_mem)
619 {
620         struct amdgpu_device *adev;
621         struct amdgpu_bo *abo;
622         struct ttm_mem_reg *old_mem = &bo->mem;
623         int r;
624
625         /* Can't move a pinned BO */
626         abo = ttm_to_amdgpu_bo(bo);
627         if (WARN_ON_ONCE(abo->pin_count > 0))
628                 return -EINVAL;
629
630         adev = amdgpu_ttm_adev(bo->bdev);
631
632         if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
633                 amdgpu_move_null(bo, new_mem);
634                 return 0;
635         }
636         if ((old_mem->mem_type == TTM_PL_TT &&
637              new_mem->mem_type == TTM_PL_SYSTEM) ||
638             (old_mem->mem_type == TTM_PL_SYSTEM &&
639              new_mem->mem_type == TTM_PL_TT)) {
640                 /* bind is enough */
641                 amdgpu_move_null(bo, new_mem);
642                 return 0;
643         }
644         if (old_mem->mem_type == AMDGPU_PL_GDS ||
645             old_mem->mem_type == AMDGPU_PL_GWS ||
646             old_mem->mem_type == AMDGPU_PL_OA ||
647             new_mem->mem_type == AMDGPU_PL_GDS ||
648             new_mem->mem_type == AMDGPU_PL_GWS ||
649             new_mem->mem_type == AMDGPU_PL_OA) {
650                 /* Nothing to save here */
651                 amdgpu_move_null(bo, new_mem);
652                 return 0;
653         }
654
655         if (!adev->mman.buffer_funcs_enabled) {
656                 r = -ENODEV;
657                 goto memcpy;
658         }
659
660         if (old_mem->mem_type == TTM_PL_VRAM &&
661             new_mem->mem_type == TTM_PL_SYSTEM) {
662                 r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
663         } else if (old_mem->mem_type == TTM_PL_SYSTEM &&
664                    new_mem->mem_type == TTM_PL_VRAM) {
665                 r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
666         } else {
667                 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu,
668                                      new_mem, old_mem);
669         }
670
671         if (r) {
672 memcpy:
673                 /* Check that all memory is CPU accessible */
674                 if (!amdgpu_mem_visible(adev, old_mem) ||
675                     !amdgpu_mem_visible(adev, new_mem)) {
676                         pr_err("Move buffer fallback to memcpy unavailable\n");
677                         return r;
678                 }
679
680                 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
681                 if (r)
682                         return r;
683         }
684
685         if (bo->type == ttm_bo_type_device &&
686             new_mem->mem_type == TTM_PL_VRAM &&
687             old_mem->mem_type != TTM_PL_VRAM) {
688                 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
689                  * accesses the BO after it's moved.
690                  */
691                 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
692         }
693
694         /* update statistics */
695         atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
696         return 0;
697 }
698
699 /**
700  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
701  *
702  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
703  */
704 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
705 {
706         struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
707         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
708         struct drm_mm_node *mm_node = mem->mm_node;
709
710         mem->bus.addr = NULL;
711         mem->bus.offset = 0;
712         mem->bus.size = mem->num_pages << PAGE_SHIFT;
713         mem->bus.base = 0;
714         mem->bus.is_iomem = false;
715         if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
716                 return -EINVAL;
717         switch (mem->mem_type) {
718         case TTM_PL_SYSTEM:
719                 /* system memory */
720                 return 0;
721         case TTM_PL_TT:
722                 break;
723         case TTM_PL_VRAM:
724                 mem->bus.offset = mem->start << PAGE_SHIFT;
725                 /* check if it's visible */
726                 if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size)
727                         return -EINVAL;
728                 /* Only physically contiguous buffers apply. In a contiguous
729                  * buffer, size of the first mm_node would match the number of
730                  * pages in ttm_mem_reg.
731                  */
732                 if (adev->mman.aper_base_kaddr &&
733                     (mm_node->size == mem->num_pages))
734                         mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
735                                         mem->bus.offset;
736
737                 mem->bus.base = adev->gmc.aper_base;
738                 mem->bus.is_iomem = true;
739                 break;
740         default:
741                 return -EINVAL;
742         }
743         return 0;
744 }
745
746 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
747 {
748 }
749
750 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
751                                            unsigned long page_offset)
752 {
753         struct drm_mm_node *mm;
754         unsigned long offset = (page_offset << PAGE_SHIFT);
755
756         mm = amdgpu_find_mm_node(&bo->mem, &offset);
757         return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start +
758                 (offset >> PAGE_SHIFT);
759 }
760
761 /*
762  * TTM backend functions.
763  */
764 struct amdgpu_ttm_tt {
765         struct ttm_dma_tt       ttm;
766         u64                     offset;
767         uint64_t                userptr;
768         struct task_struct      *usertask;
769         uint32_t                userflags;
770 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
771         struct hmm_range        *range;
772 #endif
773 };
774
775 /**
776  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
777  * memory and start HMM tracking CPU page table update
778  *
779  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
780  * once afterwards to stop HMM tracking
781  */
782 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
783
784 #define MAX_RETRY_HMM_RANGE_FAULT       16
785
786 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
787 {
788         struct hmm_mirror *mirror = bo->mn ? &bo->mn->mirror : NULL;
789         struct ttm_tt *ttm = bo->tbo.ttm;
790         struct amdgpu_ttm_tt *gtt = (void *)ttm;
791         struct mm_struct *mm = gtt->usertask->mm;
792         unsigned long start = gtt->userptr;
793         struct vm_area_struct *vma;
794         struct hmm_range *range;
795         unsigned long i;
796         uint64_t *pfns;
797         int r = 0;
798
799         if (!mm) /* Happens during process shutdown */
800                 return -ESRCH;
801
802         if (unlikely(!mirror)) {
803                 DRM_DEBUG_DRIVER("Failed to get hmm_mirror\n");
804                 r = -EFAULT;
805                 goto out;
806         }
807
808         vma = find_vma(mm, start);
809         if (unlikely(!vma || start < vma->vm_start)) {
810                 r = -EFAULT;
811                 goto out;
812         }
813         if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
814                 vma->vm_file)) {
815                 r = -EPERM;
816                 goto out;
817         }
818
819         range = kzalloc(sizeof(*range), GFP_KERNEL);
820         if (unlikely(!range)) {
821                 r = -ENOMEM;
822                 goto out;
823         }
824
825         pfns = kvmalloc_array(ttm->num_pages, sizeof(*pfns), GFP_KERNEL);
826         if (unlikely(!pfns)) {
827                 r = -ENOMEM;
828                 goto out_free_ranges;
829         }
830
831         amdgpu_hmm_init_range(range);
832         range->default_flags = range->flags[HMM_PFN_VALID];
833         range->default_flags |= amdgpu_ttm_tt_is_readonly(ttm) ?
834                                 0 : range->flags[HMM_PFN_WRITE];
835         range->pfn_flags_mask = 0;
836         range->pfns = pfns;
837         range->start = start;
838         range->end = start + ttm->num_pages * PAGE_SIZE;
839
840         hmm_range_register(range, mirror);
841
842         /*
843          * Just wait for range to be valid, safe to ignore return value as we
844          * will use the return value of hmm_range_fault() below under the
845          * mmap_sem to ascertain the validity of the range.
846          */
847         hmm_range_wait_until_valid(range, HMM_RANGE_DEFAULT_TIMEOUT);
848
849         down_read(&mm->mmap_sem);
850         r = hmm_range_fault(range, 0);
851         up_read(&mm->mmap_sem);
852
853         if (unlikely(r < 0))
854                 goto out_free_pfns;
855
856         for (i = 0; i < ttm->num_pages; i++) {
857                 pages[i] = hmm_device_entry_to_page(range, pfns[i]);
858                 if (unlikely(!pages[i])) {
859                         pr_err("Page fault failed for pfn[%lu] = 0x%llx\n",
860                                i, pfns[i]);
861                         r = -ENOMEM;
862
863                         goto out_free_pfns;
864                 }
865         }
866
867         gtt->range = range;
868
869         return 0;
870
871 out_free_pfns:
872         hmm_range_unregister(range);
873         kvfree(pfns);
874 out_free_ranges:
875         kfree(range);
876 out:
877         return r;
878 }
879
880 /**
881  * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
882  * Check if the pages backing this ttm range have been invalidated
883  *
884  * Returns: true if pages are still valid
885  */
886 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
887 {
888         struct amdgpu_ttm_tt *gtt = (void *)ttm;
889         bool r = false;
890
891         if (!gtt || !gtt->userptr)
892                 return false;
893
894         DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n",
895                 gtt->userptr, ttm->num_pages);
896
897         WARN_ONCE(!gtt->range || !gtt->range->pfns,
898                 "No user pages to check\n");
899
900         if (gtt->range) {
901                 r = hmm_range_valid(gtt->range);
902                 hmm_range_unregister(gtt->range);
903
904                 kvfree(gtt->range->pfns);
905                 kfree(gtt->range);
906                 gtt->range = NULL;
907         }
908
909         return r;
910 }
911 #endif
912
913 /**
914  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
915  *
916  * Called by amdgpu_cs_list_validate(). This creates the page list
917  * that backs user memory and will ultimately be mapped into the device
918  * address space.
919  */
920 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
921 {
922         unsigned long i;
923
924         for (i = 0; i < ttm->num_pages; ++i)
925                 ttm->pages[i] = pages ? pages[i] : NULL;
926 }
927
928 /**
929  * amdgpu_ttm_tt_pin_userptr -  prepare the sg table with the user pages
930  *
931  * Called by amdgpu_ttm_backend_bind()
932  **/
933 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm)
934 {
935         struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
936         struct amdgpu_ttm_tt *gtt = (void *)ttm;
937         unsigned nents;
938         int r;
939
940         int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
941         enum dma_data_direction direction = write ?
942                 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
943
944         /* Allocate an SG array and squash pages into it */
945         r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
946                                       ttm->num_pages << PAGE_SHIFT,
947                                       GFP_KERNEL);
948         if (r)
949                 goto release_sg;
950
951         /* Map SG to device */
952         r = -ENOMEM;
953         nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
954         if (nents != ttm->sg->nents)
955                 goto release_sg;
956
957         /* convert SG to linear array of pages and dma addresses */
958         drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
959                                          gtt->ttm.dma_address, ttm->num_pages);
960
961         return 0;
962
963 release_sg:
964         kfree(ttm->sg);
965         return r;
966 }
967
968 /**
969  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
970  */
971 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm)
972 {
973         struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
974         struct amdgpu_ttm_tt *gtt = (void *)ttm;
975
976         int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
977         enum dma_data_direction direction = write ?
978                 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
979
980         /* double check that we don't free the table twice */
981         if (!ttm->sg->sgl)
982                 return;
983
984         /* unmap the pages mapped to the device */
985         dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
986
987         sg_free_table(ttm->sg);
988
989 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
990         if (gtt->range &&
991             ttm->pages[0] == hmm_device_entry_to_page(gtt->range,
992                                                       gtt->range->pfns[0]))
993                 WARN_ONCE(1, "Missing get_user_page_done\n");
994 #endif
995 }
996
997 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
998                                 struct ttm_buffer_object *tbo,
999                                 uint64_t flags)
1000 {
1001         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
1002         struct ttm_tt *ttm = tbo->ttm;
1003         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1004         int r;
1005
1006         if (abo->flags & AMDGPU_GEM_CREATE_MQD_GFX9) {
1007                 uint64_t page_idx = 1;
1008
1009                 r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
1010                                 ttm->pages, gtt->ttm.dma_address, flags);
1011                 if (r)
1012                         goto gart_bind_fail;
1013
1014                 /* Patch mtype of the second part BO */
1015                 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
1016                 flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
1017
1018                 r = amdgpu_gart_bind(adev,
1019                                 gtt->offset + (page_idx << PAGE_SHIFT),
1020                                 ttm->num_pages - page_idx,
1021                                 &ttm->pages[page_idx],
1022                                 &(gtt->ttm.dma_address[page_idx]), flags);
1023         } else {
1024                 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1025                                      ttm->pages, gtt->ttm.dma_address, flags);
1026         }
1027
1028 gart_bind_fail:
1029         if (r)
1030                 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1031                           ttm->num_pages, gtt->offset);
1032
1033         return r;
1034 }
1035
1036 /**
1037  * amdgpu_ttm_backend_bind - Bind GTT memory
1038  *
1039  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
1040  * This handles binding GTT memory to the device address space.
1041  */
1042 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm,
1043                                    struct ttm_mem_reg *bo_mem)
1044 {
1045         struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1046         struct amdgpu_ttm_tt *gtt = (void*)ttm;
1047         uint64_t flags;
1048         int r = 0;
1049
1050         if (gtt->userptr) {
1051                 r = amdgpu_ttm_tt_pin_userptr(ttm);
1052                 if (r) {
1053                         DRM_ERROR("failed to pin userptr\n");
1054                         return r;
1055                 }
1056         }
1057         if (!ttm->num_pages) {
1058                 WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
1059                      ttm->num_pages, bo_mem, ttm);
1060         }
1061
1062         if (bo_mem->mem_type == AMDGPU_PL_GDS ||
1063             bo_mem->mem_type == AMDGPU_PL_GWS ||
1064             bo_mem->mem_type == AMDGPU_PL_OA)
1065                 return -EINVAL;
1066
1067         if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
1068                 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
1069                 return 0;
1070         }
1071
1072         /* compute PTE flags relevant to this BO memory */
1073         flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
1074
1075         /* bind pages into GART page tables */
1076         gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
1077         r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1078                 ttm->pages, gtt->ttm.dma_address, flags);
1079
1080         if (r)
1081                 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1082                           ttm->num_pages, gtt->offset);
1083         return r;
1084 }
1085
1086 /**
1087  * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object
1088  */
1089 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1090 {
1091         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1092         struct ttm_operation_ctx ctx = { false, false };
1093         struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
1094         struct ttm_mem_reg tmp;
1095         struct ttm_placement placement;
1096         struct ttm_place placements;
1097         uint64_t addr, flags;
1098         int r;
1099
1100         if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
1101                 return 0;
1102
1103         addr = amdgpu_gmc_agp_addr(bo);
1104         if (addr != AMDGPU_BO_INVALID_OFFSET) {
1105                 bo->mem.start = addr >> PAGE_SHIFT;
1106         } else {
1107
1108                 /* allocate GART space */
1109                 tmp = bo->mem;
1110                 tmp.mm_node = NULL;
1111                 placement.num_placement = 1;
1112                 placement.placement = &placements;
1113                 placement.num_busy_placement = 1;
1114                 placement.busy_placement = &placements;
1115                 placements.fpfn = 0;
1116                 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1117                 placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) |
1118                         TTM_PL_FLAG_TT;
1119
1120                 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1121                 if (unlikely(r))
1122                         return r;
1123
1124                 /* compute PTE flags for this buffer object */
1125                 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1126
1127                 /* Bind pages */
1128                 gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1129                 r = amdgpu_ttm_gart_bind(adev, bo, flags);
1130                 if (unlikely(r)) {
1131                         ttm_bo_mem_put(bo, &tmp);
1132                         return r;
1133                 }
1134
1135                 ttm_bo_mem_put(bo, &bo->mem);
1136                 bo->mem = tmp;
1137         }
1138
1139         bo->offset = (bo->mem.start << PAGE_SHIFT) +
1140                 bo->bdev->man[bo->mem.mem_type].gpu_offset;
1141
1142         return 0;
1143 }
1144
1145 /**
1146  * amdgpu_ttm_recover_gart - Rebind GTT pages
1147  *
1148  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1149  * rebind GTT pages during a GPU reset.
1150  */
1151 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1152 {
1153         struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1154         uint64_t flags;
1155         int r;
1156
1157         if (!tbo->ttm)
1158                 return 0;
1159
1160         flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1161         r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1162
1163         return r;
1164 }
1165
1166 /**
1167  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1168  *
1169  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1170  * ttm_tt_destroy().
1171  */
1172 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm)
1173 {
1174         struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1175         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1176         int r;
1177
1178         /* if the pages have userptr pinning then clear that first */
1179         if (gtt->userptr)
1180                 amdgpu_ttm_tt_unpin_userptr(ttm);
1181
1182         if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1183                 return 0;
1184
1185         /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1186         r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1187         if (r)
1188                 DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n",
1189                           gtt->ttm.ttm.num_pages, gtt->offset);
1190         return r;
1191 }
1192
1193 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm)
1194 {
1195         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1196
1197         if (gtt->usertask)
1198                 put_task_struct(gtt->usertask);
1199
1200         ttm_dma_tt_fini(&gtt->ttm);
1201         kfree(gtt);
1202 }
1203
1204 static struct ttm_backend_func amdgpu_backend_func = {
1205         .bind = &amdgpu_ttm_backend_bind,
1206         .unbind = &amdgpu_ttm_backend_unbind,
1207         .destroy = &amdgpu_ttm_backend_destroy,
1208 };
1209
1210 /**
1211  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1212  *
1213  * @bo: The buffer object to create a GTT ttm_tt object around
1214  *
1215  * Called by ttm_tt_create().
1216  */
1217 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1218                                            uint32_t page_flags)
1219 {
1220         struct amdgpu_device *adev;
1221         struct amdgpu_ttm_tt *gtt;
1222
1223         adev = amdgpu_ttm_adev(bo->bdev);
1224
1225         gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1226         if (gtt == NULL) {
1227                 return NULL;
1228         }
1229         gtt->ttm.ttm.func = &amdgpu_backend_func;
1230
1231         /* allocate space for the uninitialized page entries */
1232         if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags)) {
1233                 kfree(gtt);
1234                 return NULL;
1235         }
1236         return &gtt->ttm.ttm;
1237 }
1238
1239 /**
1240  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1241  *
1242  * Map the pages of a ttm_tt object to an address space visible
1243  * to the underlying device.
1244  */
1245 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm,
1246                         struct ttm_operation_ctx *ctx)
1247 {
1248         struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1249         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1250         bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1251
1252         /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1253         if (gtt && gtt->userptr) {
1254                 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1255                 if (!ttm->sg)
1256                         return -ENOMEM;
1257
1258                 ttm->page_flags |= TTM_PAGE_FLAG_SG;
1259                 ttm->state = tt_unbound;
1260                 return 0;
1261         }
1262
1263         if (slave && ttm->sg) {
1264                 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1265                                                  gtt->ttm.dma_address,
1266                                                  ttm->num_pages);
1267                 ttm->state = tt_unbound;
1268                 return 0;
1269         }
1270
1271 #ifdef CONFIG_SWIOTLB
1272         if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1273                 return ttm_dma_populate(&gtt->ttm, adev->dev, ctx);
1274         }
1275 #endif
1276
1277         /* fall back to generic helper to populate the page array
1278          * and map them to the device */
1279         return ttm_populate_and_map_pages(adev->dev, &gtt->ttm, ctx);
1280 }
1281
1282 /**
1283  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1284  *
1285  * Unmaps pages of a ttm_tt object from the device address space and
1286  * unpopulates the page array backing it.
1287  */
1288 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm)
1289 {
1290         struct amdgpu_device *adev;
1291         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1292         bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1293
1294         if (gtt && gtt->userptr) {
1295                 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1296                 kfree(ttm->sg);
1297                 ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1298                 return;
1299         }
1300
1301         if (slave)
1302                 return;
1303
1304         adev = amdgpu_ttm_adev(ttm->bdev);
1305
1306 #ifdef CONFIG_SWIOTLB
1307         if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1308                 ttm_dma_unpopulate(&gtt->ttm, adev->dev);
1309                 return;
1310         }
1311 #endif
1312
1313         /* fall back to generic helper to unmap and unpopulate array */
1314         ttm_unmap_and_unpopulate_pages(adev->dev, &gtt->ttm);
1315 }
1316
1317 /**
1318  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1319  * task
1320  *
1321  * @ttm: The ttm_tt object to bind this userptr object to
1322  * @addr:  The address in the current tasks VM space to use
1323  * @flags: Requirements of userptr object.
1324  *
1325  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1326  * to current task
1327  */
1328 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr,
1329                               uint32_t flags)
1330 {
1331         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1332
1333         if (gtt == NULL)
1334                 return -EINVAL;
1335
1336         gtt->userptr = addr;
1337         gtt->userflags = flags;
1338
1339         if (gtt->usertask)
1340                 put_task_struct(gtt->usertask);
1341         gtt->usertask = current->group_leader;
1342         get_task_struct(gtt->usertask);
1343
1344         return 0;
1345 }
1346
1347 /**
1348  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1349  */
1350 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1351 {
1352         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1353
1354         if (gtt == NULL)
1355                 return NULL;
1356
1357         if (gtt->usertask == NULL)
1358                 return NULL;
1359
1360         return gtt->usertask->mm;
1361 }
1362
1363 /**
1364  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1365  * address range for the current task.
1366  *
1367  */
1368 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1369                                   unsigned long end)
1370 {
1371         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1372         unsigned long size;
1373
1374         if (gtt == NULL || !gtt->userptr)
1375                 return false;
1376
1377         /* Return false if no part of the ttm_tt object lies within
1378          * the range
1379          */
1380         size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
1381         if (gtt->userptr > end || gtt->userptr + size <= start)
1382                 return false;
1383
1384         return true;
1385 }
1386
1387 /**
1388  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1389  */
1390 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1391 {
1392         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1393
1394         if (gtt == NULL || !gtt->userptr)
1395                 return false;
1396
1397         return true;
1398 }
1399
1400 /**
1401  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1402  */
1403 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1404 {
1405         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1406
1407         if (gtt == NULL)
1408                 return false;
1409
1410         return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1411 }
1412
1413 /**
1414  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1415  *
1416  * @ttm: The ttm_tt object to compute the flags for
1417  * @mem: The memory registry backing this ttm_tt object
1418  *
1419  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1420  */
1421 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem)
1422 {
1423         uint64_t flags = 0;
1424
1425         if (mem && mem->mem_type != TTM_PL_SYSTEM)
1426                 flags |= AMDGPU_PTE_VALID;
1427
1428         if (mem && mem->mem_type == TTM_PL_TT) {
1429                 flags |= AMDGPU_PTE_SYSTEM;
1430
1431                 if (ttm->caching_state == tt_cached)
1432                         flags |= AMDGPU_PTE_SNOOPED;
1433         }
1434
1435         return flags;
1436 }
1437
1438 /**
1439  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1440  *
1441  * @ttm: The ttm_tt object to compute the flags for
1442  * @mem: The memory registry backing this ttm_tt object
1443
1444  * Figure out the flags to use for a VM PTE (Page Table Entry).
1445  */
1446 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1447                                  struct ttm_mem_reg *mem)
1448 {
1449         uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1450
1451         flags |= adev->gart.gart_pte_flags;
1452         flags |= AMDGPU_PTE_READABLE;
1453
1454         if (!amdgpu_ttm_tt_is_readonly(ttm))
1455                 flags |= AMDGPU_PTE_WRITEABLE;
1456
1457         return flags;
1458 }
1459
1460 /**
1461  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1462  * object.
1463  *
1464  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1465  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1466  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1467  * used to clean out a memory space.
1468  */
1469 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1470                                             const struct ttm_place *place)
1471 {
1472         unsigned long num_pages = bo->mem.num_pages;
1473         struct drm_mm_node *node = bo->mem.mm_node;
1474         struct dma_resv_list *flist;
1475         struct dma_fence *f;
1476         int i;
1477
1478         /* Don't evict VM page tables while they are busy, otherwise we can't
1479          * cleanly handle page faults.
1480          */
1481         if (bo->type == ttm_bo_type_kernel &&
1482             !dma_resv_test_signaled_rcu(bo->base.resv, true))
1483                 return false;
1484
1485         /* If bo is a KFD BO, check if the bo belongs to the current process.
1486          * If true, then return false as any KFD process needs all its BOs to
1487          * be resident to run successfully
1488          */
1489         flist = dma_resv_get_list(bo->base.resv);
1490         if (flist) {
1491                 for (i = 0; i < flist->shared_count; ++i) {
1492                         f = rcu_dereference_protected(flist->shared[i],
1493                                 dma_resv_held(bo->base.resv));
1494                         if (amdkfd_fence_check_mm(f, current->mm))
1495                                 return false;
1496                 }
1497         }
1498
1499         switch (bo->mem.mem_type) {
1500         case TTM_PL_TT:
1501                 return true;
1502
1503         case TTM_PL_VRAM:
1504                 /* Check each drm MM node individually */
1505                 while (num_pages) {
1506                         if (place->fpfn < (node->start + node->size) &&
1507                             !(place->lpfn && place->lpfn <= node->start))
1508                                 return true;
1509
1510                         num_pages -= node->size;
1511                         ++node;
1512                 }
1513                 return false;
1514
1515         default:
1516                 break;
1517         }
1518
1519         return ttm_bo_eviction_valuable(bo, place);
1520 }
1521
1522 /**
1523  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1524  *
1525  * @bo:  The buffer object to read/write
1526  * @offset:  Offset into buffer object
1527  * @buf:  Secondary buffer to write/read from
1528  * @len: Length in bytes of access
1529  * @write:  true if writing
1530  *
1531  * This is used to access VRAM that backs a buffer object via MMIO
1532  * access for debugging purposes.
1533  */
1534 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1535                                     unsigned long offset,
1536                                     void *buf, int len, int write)
1537 {
1538         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1539         struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1540         struct drm_mm_node *nodes;
1541         uint32_t value = 0;
1542         int ret = 0;
1543         uint64_t pos;
1544         unsigned long flags;
1545
1546         if (bo->mem.mem_type != TTM_PL_VRAM)
1547                 return -EIO;
1548
1549         nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset);
1550         pos = (nodes->start << PAGE_SHIFT) + offset;
1551
1552         while (len && pos < adev->gmc.mc_vram_size) {
1553                 uint64_t aligned_pos = pos & ~(uint64_t)3;
1554                 uint32_t bytes = 4 - (pos & 3);
1555                 uint32_t shift = (pos & 3) * 8;
1556                 uint32_t mask = 0xffffffff << shift;
1557
1558                 if (len < bytes) {
1559                         mask &= 0xffffffff >> (bytes - len) * 8;
1560                         bytes = len;
1561                 }
1562
1563                 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1564                 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1565                 WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1566                 if (!write || mask != 0xffffffff)
1567                         value = RREG32_NO_KIQ(mmMM_DATA);
1568                 if (write) {
1569                         value &= ~mask;
1570                         value |= (*(uint32_t *)buf << shift) & mask;
1571                         WREG32_NO_KIQ(mmMM_DATA, value);
1572                 }
1573                 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1574                 if (!write) {
1575                         value = (value & mask) >> shift;
1576                         memcpy(buf, &value, bytes);
1577                 }
1578
1579                 ret += bytes;
1580                 buf = (uint8_t *)buf + bytes;
1581                 pos += bytes;
1582                 len -= bytes;
1583                 if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1584                         ++nodes;
1585                         pos = (nodes->start << PAGE_SHIFT);
1586                 }
1587         }
1588
1589         return ret;
1590 }
1591
1592 static struct ttm_bo_driver amdgpu_bo_driver = {
1593         .ttm_tt_create = &amdgpu_ttm_tt_create,
1594         .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1595         .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1596         .invalidate_caches = &amdgpu_invalidate_caches,
1597         .init_mem_type = &amdgpu_init_mem_type,
1598         .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1599         .evict_flags = &amdgpu_evict_flags,
1600         .move = &amdgpu_bo_move,
1601         .verify_access = &amdgpu_verify_access,
1602         .move_notify = &amdgpu_bo_move_notify,
1603         .release_notify = &amdgpu_bo_release_notify,
1604         .fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
1605         .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1606         .io_mem_free = &amdgpu_ttm_io_mem_free,
1607         .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1608         .access_memory = &amdgpu_ttm_access_memory,
1609         .del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1610 };
1611
1612 /*
1613  * Firmware Reservation functions
1614  */
1615 /**
1616  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1617  *
1618  * @adev: amdgpu_device pointer
1619  *
1620  * free fw reserved vram if it has been reserved.
1621  */
1622 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1623 {
1624         amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo,
1625                 NULL, &adev->fw_vram_usage.va);
1626 }
1627
1628 /**
1629  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1630  *
1631  * @adev: amdgpu_device pointer
1632  *
1633  * create bo vram reservation from fw.
1634  */
1635 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1636 {
1637         struct ttm_operation_ctx ctx = { false, false };
1638         struct amdgpu_bo_param bp;
1639         int r = 0;
1640         int i;
1641         u64 vram_size = adev->gmc.visible_vram_size;
1642         u64 offset = adev->fw_vram_usage.start_offset;
1643         u64 size = adev->fw_vram_usage.size;
1644         struct amdgpu_bo *bo;
1645
1646         memset(&bp, 0, sizeof(bp));
1647         bp.size = adev->fw_vram_usage.size;
1648         bp.byte_align = PAGE_SIZE;
1649         bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
1650         bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED |
1651                 AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
1652         bp.type = ttm_bo_type_kernel;
1653         bp.resv = NULL;
1654         adev->fw_vram_usage.va = NULL;
1655         adev->fw_vram_usage.reserved_bo = NULL;
1656
1657         if (adev->fw_vram_usage.size > 0 &&
1658                 adev->fw_vram_usage.size <= vram_size) {
1659
1660                 r = amdgpu_bo_create(adev, &bp,
1661                                      &adev->fw_vram_usage.reserved_bo);
1662                 if (r)
1663                         goto error_create;
1664
1665                 r = amdgpu_bo_reserve(adev->fw_vram_usage.reserved_bo, false);
1666                 if (r)
1667                         goto error_reserve;
1668
1669                 /* remove the original mem node and create a new one at the
1670                  * request position
1671                  */
1672                 bo = adev->fw_vram_usage.reserved_bo;
1673                 offset = ALIGN(offset, PAGE_SIZE);
1674                 for (i = 0; i < bo->placement.num_placement; ++i) {
1675                         bo->placements[i].fpfn = offset >> PAGE_SHIFT;
1676                         bo->placements[i].lpfn = (offset + size) >> PAGE_SHIFT;
1677                 }
1678
1679                 ttm_bo_mem_put(&bo->tbo, &bo->tbo.mem);
1680                 r = ttm_bo_mem_space(&bo->tbo, &bo->placement,
1681                                      &bo->tbo.mem, &ctx);
1682                 if (r)
1683                         goto error_pin;
1684
1685                 r = amdgpu_bo_pin_restricted(adev->fw_vram_usage.reserved_bo,
1686                         AMDGPU_GEM_DOMAIN_VRAM,
1687                         adev->fw_vram_usage.start_offset,
1688                         (adev->fw_vram_usage.start_offset +
1689                         adev->fw_vram_usage.size));
1690                 if (r)
1691                         goto error_pin;
1692                 r = amdgpu_bo_kmap(adev->fw_vram_usage.reserved_bo,
1693                         &adev->fw_vram_usage.va);
1694                 if (r)
1695                         goto error_kmap;
1696
1697                 amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo);
1698         }
1699         return r;
1700
1701 error_kmap:
1702         amdgpu_bo_unpin(adev->fw_vram_usage.reserved_bo);
1703 error_pin:
1704         amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo);
1705 error_reserve:
1706         amdgpu_bo_unref(&adev->fw_vram_usage.reserved_bo);
1707 error_create:
1708         adev->fw_vram_usage.va = NULL;
1709         adev->fw_vram_usage.reserved_bo = NULL;
1710         return r;
1711 }
1712 /**
1713  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1714  * gtt/vram related fields.
1715  *
1716  * This initializes all of the memory space pools that the TTM layer
1717  * will need such as the GTT space (system memory mapped to the device),
1718  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1719  * can be mapped per VMID.
1720  */
1721 int amdgpu_ttm_init(struct amdgpu_device *adev)
1722 {
1723         uint64_t gtt_size;
1724         int r;
1725         u64 vis_vram_limit;
1726         void *stolen_vga_buf;
1727
1728         mutex_init(&adev->mman.gtt_window_lock);
1729
1730         /* No others user of address space so set it to 0 */
1731         r = ttm_bo_device_init(&adev->mman.bdev,
1732                                &amdgpu_bo_driver,
1733                                adev->ddev->anon_inode->i_mapping,
1734                                dma_addressing_limited(adev->dev));
1735         if (r) {
1736                 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1737                 return r;
1738         }
1739         adev->mman.initialized = true;
1740
1741         /* We opt to avoid OOM on system pages allocations */
1742         adev->mman.bdev.no_retry = true;
1743
1744         /* Initialize VRAM pool with all of VRAM divided into pages */
1745         r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM,
1746                                 adev->gmc.real_vram_size >> PAGE_SHIFT);
1747         if (r) {
1748                 DRM_ERROR("Failed initializing VRAM heap.\n");
1749                 return r;
1750         }
1751
1752         /* Reduce size of CPU-visible VRAM if requested */
1753         vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1754         if (amdgpu_vis_vram_limit > 0 &&
1755             vis_vram_limit <= adev->gmc.visible_vram_size)
1756                 adev->gmc.visible_vram_size = vis_vram_limit;
1757
1758         /* Change the size here instead of the init above so only lpfn is affected */
1759         amdgpu_ttm_set_buffer_funcs_status(adev, false);
1760 #ifdef CONFIG_64BIT
1761         adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1762                                                 adev->gmc.visible_vram_size);
1763 #endif
1764
1765         /*
1766          *The reserved vram for firmware must be pinned to the specified
1767          *place on the VRAM, so reserve it early.
1768          */
1769         r = amdgpu_ttm_fw_reserve_vram_init(adev);
1770         if (r) {
1771                 return r;
1772         }
1773
1774         /* allocate memory as required for VGA
1775          * This is used for VGA emulation and pre-OS scanout buffers to
1776          * avoid display artifacts while transitioning between pre-OS
1777          * and driver.  */
1778         r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE,
1779                                     AMDGPU_GEM_DOMAIN_VRAM,
1780                                     &adev->stolen_vga_memory,
1781                                     NULL, &stolen_vga_buf);
1782         if (r)
1783                 return r;
1784         DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1785                  (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1786
1787         /* Compute GTT size, either bsaed on 3/4th the size of RAM size
1788          * or whatever the user passed on module init */
1789         if (amdgpu_gtt_size == -1) {
1790                 struct sysinfo si;
1791
1792                 si_meminfo(&si);
1793                 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1794                                adev->gmc.mc_vram_size),
1795                                ((uint64_t)si.totalram * si.mem_unit * 3/4));
1796         }
1797         else
1798                 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1799
1800         /* Initialize GTT memory pool */
1801         r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT);
1802         if (r) {
1803                 DRM_ERROR("Failed initializing GTT heap.\n");
1804                 return r;
1805         }
1806         DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1807                  (unsigned)(gtt_size / (1024 * 1024)));
1808
1809         /* Initialize various on-chip memory pools */
1810         r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS,
1811                            adev->gds.gds_size);
1812         if (r) {
1813                 DRM_ERROR("Failed initializing GDS heap.\n");
1814                 return r;
1815         }
1816
1817         r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS,
1818                            adev->gds.gws_size);
1819         if (r) {
1820                 DRM_ERROR("Failed initializing gws heap.\n");
1821                 return r;
1822         }
1823
1824         r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA,
1825                            adev->gds.oa_size);
1826         if (r) {
1827                 DRM_ERROR("Failed initializing oa heap.\n");
1828                 return r;
1829         }
1830
1831         /* Register debugfs entries for amdgpu_ttm */
1832         r = amdgpu_ttm_debugfs_init(adev);
1833         if (r) {
1834                 DRM_ERROR("Failed to init debugfs\n");
1835                 return r;
1836         }
1837         return 0;
1838 }
1839
1840 /**
1841  * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
1842  */
1843 void amdgpu_ttm_late_init(struct amdgpu_device *adev)
1844 {
1845         void *stolen_vga_buf;
1846         /* return the VGA stolen memory (if any) back to VRAM */
1847         amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, &stolen_vga_buf);
1848 }
1849
1850 /**
1851  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1852  */
1853 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1854 {
1855         if (!adev->mman.initialized)
1856                 return;
1857
1858         amdgpu_ttm_debugfs_fini(adev);
1859         amdgpu_ttm_fw_reserve_vram_fini(adev);
1860         if (adev->mman.aper_base_kaddr)
1861                 iounmap(adev->mman.aper_base_kaddr);
1862         adev->mman.aper_base_kaddr = NULL;
1863
1864         ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM);
1865         ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT);
1866         ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS);
1867         ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS);
1868         ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA);
1869         ttm_bo_device_release(&adev->mman.bdev);
1870         adev->mman.initialized = false;
1871         DRM_INFO("amdgpu: ttm finalized\n");
1872 }
1873
1874 /**
1875  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1876  *
1877  * @adev: amdgpu_device pointer
1878  * @enable: true when we can use buffer functions.
1879  *
1880  * Enable/disable use of buffer functions during suspend/resume. This should
1881  * only be called at bootup or when userspace isn't running.
1882  */
1883 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1884 {
1885         struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM];
1886         uint64_t size;
1887         int r;
1888
1889         if (!adev->mman.initialized || adev->in_gpu_reset ||
1890             adev->mman.buffer_funcs_enabled == enable)
1891                 return;
1892
1893         if (enable) {
1894                 struct amdgpu_ring *ring;
1895                 struct drm_sched_rq *rq;
1896
1897                 ring = adev->mman.buffer_funcs_ring;
1898                 rq = &ring->sched.sched_rq[DRM_SCHED_PRIORITY_KERNEL];
1899                 r = drm_sched_entity_init(&adev->mman.entity, &rq, 1, NULL);
1900                 if (r) {
1901                         DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1902                                   r);
1903                         return;
1904                 }
1905         } else {
1906                 drm_sched_entity_destroy(&adev->mman.entity);
1907                 dma_fence_put(man->move);
1908                 man->move = NULL;
1909         }
1910
1911         /* this just adjusts TTM size idea, which sets lpfn to the correct value */
1912         if (enable)
1913                 size = adev->gmc.real_vram_size;
1914         else
1915                 size = adev->gmc.visible_vram_size;
1916         man->size = size >> PAGE_SHIFT;
1917         adev->mman.buffer_funcs_enabled = enable;
1918 }
1919
1920 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
1921 {
1922         struct drm_file *file_priv = filp->private_data;
1923         struct amdgpu_device *adev = file_priv->minor->dev->dev_private;
1924
1925         if (adev == NULL)
1926                 return -EINVAL;
1927
1928         return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
1929 }
1930
1931 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
1932                              struct ttm_mem_reg *mem, unsigned num_pages,
1933                              uint64_t offset, unsigned window,
1934                              struct amdgpu_ring *ring,
1935                              uint64_t *addr)
1936 {
1937         struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
1938         struct amdgpu_device *adev = ring->adev;
1939         struct ttm_tt *ttm = bo->ttm;
1940         struct amdgpu_job *job;
1941         unsigned num_dw, num_bytes;
1942         dma_addr_t *dma_address;
1943         struct dma_fence *fence;
1944         uint64_t src_addr, dst_addr;
1945         uint64_t flags;
1946         int r;
1947
1948         BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
1949                AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
1950
1951         *addr = adev->gmc.gart_start;
1952         *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
1953                 AMDGPU_GPU_PAGE_SIZE;
1954
1955         num_dw = adev->mman.buffer_funcs->copy_num_dw;
1956         while (num_dw & 0x7)
1957                 num_dw++;
1958
1959         num_bytes = num_pages * 8;
1960
1961         r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job);
1962         if (r)
1963                 return r;
1964
1965         src_addr = num_dw * 4;
1966         src_addr += job->ibs[0].gpu_addr;
1967
1968         dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
1969         dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
1970         amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
1971                                 dst_addr, num_bytes);
1972
1973         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
1974         WARN_ON(job->ibs[0].length_dw > num_dw);
1975
1976         dma_address = &gtt->ttm.dma_address[offset >> PAGE_SHIFT];
1977         flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem);
1978         r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
1979                             &job->ibs[0].ptr[num_dw]);
1980         if (r)
1981                 goto error_free;
1982
1983         r = amdgpu_job_submit(job, &adev->mman.entity,
1984                               AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
1985         if (r)
1986                 goto error_free;
1987
1988         dma_fence_put(fence);
1989
1990         return r;
1991
1992 error_free:
1993         amdgpu_job_free(job);
1994         return r;
1995 }
1996
1997 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
1998                        uint64_t dst_offset, uint32_t byte_count,
1999                        struct dma_resv *resv,
2000                        struct dma_fence **fence, bool direct_submit,
2001                        bool vm_needs_flush)
2002 {
2003         struct amdgpu_device *adev = ring->adev;
2004         struct amdgpu_job *job;
2005
2006         uint32_t max_bytes;
2007         unsigned num_loops, num_dw;
2008         unsigned i;
2009         int r;
2010
2011         if (direct_submit && !ring->sched.ready) {
2012                 DRM_ERROR("Trying to move memory with ring turned off.\n");
2013                 return -EINVAL;
2014         }
2015
2016         max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2017         num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2018         num_dw = num_loops * adev->mman.buffer_funcs->copy_num_dw;
2019
2020         /* for IB padding */
2021         while (num_dw & 0x7)
2022                 num_dw++;
2023
2024         r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2025         if (r)
2026                 return r;
2027
2028         if (vm_needs_flush) {
2029                 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
2030                 job->vm_needs_flush = true;
2031         }
2032         if (resv) {
2033                 r = amdgpu_sync_resv(adev, &job->sync, resv,
2034                                      AMDGPU_FENCE_OWNER_UNDEFINED,
2035                                      false);
2036                 if (r) {
2037                         DRM_ERROR("sync failed (%d).\n", r);
2038                         goto error_free;
2039                 }
2040         }
2041
2042         for (i = 0; i < num_loops; i++) {
2043                 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2044
2045                 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2046                                         dst_offset, cur_size_in_bytes);
2047
2048                 src_offset += cur_size_in_bytes;
2049                 dst_offset += cur_size_in_bytes;
2050                 byte_count -= cur_size_in_bytes;
2051         }
2052
2053         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2054         WARN_ON(job->ibs[0].length_dw > num_dw);
2055         if (direct_submit)
2056                 r = amdgpu_job_submit_direct(job, ring, fence);
2057         else
2058                 r = amdgpu_job_submit(job, &adev->mman.entity,
2059                                       AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2060         if (r)
2061                 goto error_free;
2062
2063         return r;
2064
2065 error_free:
2066         amdgpu_job_free(job);
2067         DRM_ERROR("Error scheduling IBs (%d)\n", r);
2068         return r;
2069 }
2070
2071 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2072                        uint32_t src_data,
2073                        struct dma_resv *resv,
2074                        struct dma_fence **fence)
2075 {
2076         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2077         uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2078         struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2079
2080         struct drm_mm_node *mm_node;
2081         unsigned long num_pages;
2082         unsigned int num_loops, num_dw;
2083
2084         struct amdgpu_job *job;
2085         int r;
2086
2087         if (!adev->mman.buffer_funcs_enabled) {
2088                 DRM_ERROR("Trying to clear memory with ring turned off.\n");
2089                 return -EINVAL;
2090         }
2091
2092         if (bo->tbo.mem.mem_type == TTM_PL_TT) {
2093                 r = amdgpu_ttm_alloc_gart(&bo->tbo);
2094                 if (r)
2095                         return r;
2096         }
2097
2098         num_pages = bo->tbo.num_pages;
2099         mm_node = bo->tbo.mem.mm_node;
2100         num_loops = 0;
2101         while (num_pages) {
2102                 uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2103
2104                 num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes);
2105                 num_pages -= mm_node->size;
2106                 ++mm_node;
2107         }
2108         num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2109
2110         /* for IB padding */
2111         num_dw += 64;
2112
2113         r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2114         if (r)
2115                 return r;
2116
2117         if (resv) {
2118                 r = amdgpu_sync_resv(adev, &job->sync, resv,
2119                                      AMDGPU_FENCE_OWNER_UNDEFINED, false);
2120                 if (r) {
2121                         DRM_ERROR("sync failed (%d).\n", r);
2122                         goto error_free;
2123                 }
2124         }
2125
2126         num_pages = bo->tbo.num_pages;
2127         mm_node = bo->tbo.mem.mm_node;
2128
2129         while (num_pages) {
2130                 uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2131                 uint64_t dst_addr;
2132
2133                 dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2134                 while (byte_count) {
2135                         uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count,
2136                                                            max_bytes);
2137
2138                         amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2139                                                 dst_addr, cur_size_in_bytes);
2140
2141                         dst_addr += cur_size_in_bytes;
2142                         byte_count -= cur_size_in_bytes;
2143                 }
2144
2145                 num_pages -= mm_node->size;
2146                 ++mm_node;
2147         }
2148
2149         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2150         WARN_ON(job->ibs[0].length_dw > num_dw);
2151         r = amdgpu_job_submit(job, &adev->mman.entity,
2152                               AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2153         if (r)
2154                 goto error_free;
2155
2156         return 0;
2157
2158 error_free:
2159         amdgpu_job_free(job);
2160         return r;
2161 }
2162
2163 #if defined(CONFIG_DEBUG_FS)
2164
2165 static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
2166 {
2167         struct drm_info_node *node = (struct drm_info_node *)m->private;
2168         unsigned ttm_pl = (uintptr_t)node->info_ent->data;
2169         struct drm_device *dev = node->minor->dev;
2170         struct amdgpu_device *adev = dev->dev_private;
2171         struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl];
2172         struct drm_printer p = drm_seq_file_printer(m);
2173
2174         man->func->debug(man, &p);
2175         return 0;
2176 }
2177
2178 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
2179         {"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM},
2180         {"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT},
2181         {"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS},
2182         {"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS},
2183         {"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA},
2184         {"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
2185 #ifdef CONFIG_SWIOTLB
2186         {"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
2187 #endif
2188 };
2189
2190 /**
2191  * amdgpu_ttm_vram_read - Linear read access to VRAM
2192  *
2193  * Accesses VRAM via MMIO for debugging purposes.
2194  */
2195 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2196                                     size_t size, loff_t *pos)
2197 {
2198         struct amdgpu_device *adev = file_inode(f)->i_private;
2199         ssize_t result = 0;
2200         int r;
2201
2202         if (size & 0x3 || *pos & 0x3)
2203                 return -EINVAL;
2204
2205         if (*pos >= adev->gmc.mc_vram_size)
2206                 return -ENXIO;
2207
2208         while (size) {
2209                 unsigned long flags;
2210                 uint32_t value;
2211
2212                 if (*pos >= adev->gmc.mc_vram_size)
2213                         return result;
2214
2215                 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2216                 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2217                 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2218                 value = RREG32_NO_KIQ(mmMM_DATA);
2219                 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2220
2221                 r = put_user(value, (uint32_t *)buf);
2222                 if (r)
2223                         return r;
2224
2225                 result += 4;
2226                 buf += 4;
2227                 *pos += 4;
2228                 size -= 4;
2229         }
2230
2231         return result;
2232 }
2233
2234 /**
2235  * amdgpu_ttm_vram_write - Linear write access to VRAM
2236  *
2237  * Accesses VRAM via MMIO for debugging purposes.
2238  */
2239 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2240                                     size_t size, loff_t *pos)
2241 {
2242         struct amdgpu_device *adev = file_inode(f)->i_private;
2243         ssize_t result = 0;
2244         int r;
2245
2246         if (size & 0x3 || *pos & 0x3)
2247                 return -EINVAL;
2248
2249         if (*pos >= adev->gmc.mc_vram_size)
2250                 return -ENXIO;
2251
2252         while (size) {
2253                 unsigned long flags;
2254                 uint32_t value;
2255
2256                 if (*pos >= adev->gmc.mc_vram_size)
2257                         return result;
2258
2259                 r = get_user(value, (uint32_t *)buf);
2260                 if (r)
2261                         return r;
2262
2263                 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2264                 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2265                 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2266                 WREG32_NO_KIQ(mmMM_DATA, value);
2267                 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2268
2269                 result += 4;
2270                 buf += 4;
2271                 *pos += 4;
2272                 size -= 4;
2273         }
2274
2275         return result;
2276 }
2277
2278 static const struct file_operations amdgpu_ttm_vram_fops = {
2279         .owner = THIS_MODULE,
2280         .read = amdgpu_ttm_vram_read,
2281         .write = amdgpu_ttm_vram_write,
2282         .llseek = default_llseek,
2283 };
2284
2285 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2286
2287 /**
2288  * amdgpu_ttm_gtt_read - Linear read access to GTT memory
2289  */
2290 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
2291                                    size_t size, loff_t *pos)
2292 {
2293         struct amdgpu_device *adev = file_inode(f)->i_private;
2294         ssize_t result = 0;
2295         int r;
2296
2297         while (size) {
2298                 loff_t p = *pos / PAGE_SIZE;
2299                 unsigned off = *pos & ~PAGE_MASK;
2300                 size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
2301                 struct page *page;
2302                 void *ptr;
2303
2304                 if (p >= adev->gart.num_cpu_pages)
2305                         return result;
2306
2307                 page = adev->gart.pages[p];
2308                 if (page) {
2309                         ptr = kmap(page);
2310                         ptr += off;
2311
2312                         r = copy_to_user(buf, ptr, cur_size);
2313                         kunmap(adev->gart.pages[p]);
2314                 } else
2315                         r = clear_user(buf, cur_size);
2316
2317                 if (r)
2318                         return -EFAULT;
2319
2320                 result += cur_size;
2321                 buf += cur_size;
2322                 *pos += cur_size;
2323                 size -= cur_size;
2324         }
2325
2326         return result;
2327 }
2328
2329 static const struct file_operations amdgpu_ttm_gtt_fops = {
2330         .owner = THIS_MODULE,
2331         .read = amdgpu_ttm_gtt_read,
2332         .llseek = default_llseek
2333 };
2334
2335 #endif
2336
2337 /**
2338  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2339  *
2340  * This function is used to read memory that has been mapped to the
2341  * GPU and the known addresses are not physical addresses but instead
2342  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2343  */
2344 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2345                                  size_t size, loff_t *pos)
2346 {
2347         struct amdgpu_device *adev = file_inode(f)->i_private;
2348         struct iommu_domain *dom;
2349         ssize_t result = 0;
2350         int r;
2351
2352         /* retrieve the IOMMU domain if any for this device */
2353         dom = iommu_get_domain_for_dev(adev->dev);
2354
2355         while (size) {
2356                 phys_addr_t addr = *pos & PAGE_MASK;
2357                 loff_t off = *pos & ~PAGE_MASK;
2358                 size_t bytes = PAGE_SIZE - off;
2359                 unsigned long pfn;
2360                 struct page *p;
2361                 void *ptr;
2362
2363                 bytes = bytes < size ? bytes : size;
2364
2365                 /* Translate the bus address to a physical address.  If
2366                  * the domain is NULL it means there is no IOMMU active
2367                  * and the address translation is the identity
2368                  */
2369                 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2370
2371                 pfn = addr >> PAGE_SHIFT;
2372                 if (!pfn_valid(pfn))
2373                         return -EPERM;
2374
2375                 p = pfn_to_page(pfn);
2376                 if (p->mapping != adev->mman.bdev.dev_mapping)
2377                         return -EPERM;
2378
2379                 ptr = kmap(p);
2380                 r = copy_to_user(buf, ptr + off, bytes);
2381                 kunmap(p);
2382                 if (r)
2383                         return -EFAULT;
2384
2385                 size -= bytes;
2386                 *pos += bytes;
2387                 result += bytes;
2388         }
2389
2390         return result;
2391 }
2392
2393 /**
2394  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2395  *
2396  * This function is used to write memory that has been mapped to the
2397  * GPU and the known addresses are not physical addresses but instead
2398  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2399  */
2400 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2401                                  size_t size, loff_t *pos)
2402 {
2403         struct amdgpu_device *adev = file_inode(f)->i_private;
2404         struct iommu_domain *dom;
2405         ssize_t result = 0;
2406         int r;
2407
2408         dom = iommu_get_domain_for_dev(adev->dev);
2409
2410         while (size) {
2411                 phys_addr_t addr = *pos & PAGE_MASK;
2412                 loff_t off = *pos & ~PAGE_MASK;
2413                 size_t bytes = PAGE_SIZE - off;
2414                 unsigned long pfn;
2415                 struct page *p;
2416                 void *ptr;
2417
2418                 bytes = bytes < size ? bytes : size;
2419
2420                 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2421
2422                 pfn = addr >> PAGE_SHIFT;
2423                 if (!pfn_valid(pfn))
2424                         return -EPERM;
2425
2426                 p = pfn_to_page(pfn);
2427                 if (p->mapping != adev->mman.bdev.dev_mapping)
2428                         return -EPERM;
2429
2430                 ptr = kmap(p);
2431                 r = copy_from_user(ptr + off, buf, bytes);
2432                 kunmap(p);
2433                 if (r)
2434                         return -EFAULT;
2435
2436                 size -= bytes;
2437                 *pos += bytes;
2438                 result += bytes;
2439         }
2440
2441         return result;
2442 }
2443
2444 static const struct file_operations amdgpu_ttm_iomem_fops = {
2445         .owner = THIS_MODULE,
2446         .read = amdgpu_iomem_read,
2447         .write = amdgpu_iomem_write,
2448         .llseek = default_llseek
2449 };
2450
2451 static const struct {
2452         char *name;
2453         const struct file_operations *fops;
2454         int domain;
2455 } ttm_debugfs_entries[] = {
2456         { "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
2457 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2458         { "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
2459 #endif
2460         { "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
2461 };
2462
2463 #endif
2464
2465 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2466 {
2467 #if defined(CONFIG_DEBUG_FS)
2468         unsigned count;
2469
2470         struct drm_minor *minor = adev->ddev->primary;
2471         struct dentry *ent, *root = minor->debugfs_root;
2472
2473         for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
2474                 ent = debugfs_create_file(
2475                                 ttm_debugfs_entries[count].name,
2476                                 S_IFREG | S_IRUGO, root,
2477                                 adev,
2478                                 ttm_debugfs_entries[count].fops);
2479                 if (IS_ERR(ent))
2480                         return PTR_ERR(ent);
2481                 if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
2482                         i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
2483                 else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
2484                         i_size_write(ent->d_inode, adev->gmc.gart_size);
2485                 adev->mman.debugfs_entries[count] = ent;
2486         }
2487
2488         count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
2489
2490 #ifdef CONFIG_SWIOTLB
2491         if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
2492                 --count;
2493 #endif
2494
2495         return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
2496 #else
2497         return 0;
2498 #endif
2499 }
2500
2501 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev)
2502 {
2503 #if defined(CONFIG_DEBUG_FS)
2504         unsigned i;
2505
2506         for (i = 0; i < ARRAY_SIZE(ttm_debugfs_entries); i++)
2507                 debugfs_remove(adev->mman.debugfs_entries[i]);
2508 #endif
2509 }