efi/libstub/x86: Permit cmdline data to be allocated above 4 GB
[linux-block.git] / drivers / firmware / efi / libstub / arm-stub.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * EFI stub implementation that is shared by arm and arm64 architectures.
4  * This should be #included by the EFI stub implementation files.
5  *
6  * Copyright (C) 2013,2014 Linaro Limited
7  *     Roy Franz <roy.franz@linaro.org
8  * Copyright (C) 2013 Red Hat, Inc.
9  *     Mark Salter <msalter@redhat.com>
10  */
11
12 #include <linux/efi.h>
13 #include <linux/libfdt.h>
14 #include <asm/efi.h>
15
16 #include "efistub.h"
17
18 /*
19  * This is the base address at which to start allocating virtual memory ranges
20  * for UEFI Runtime Services. This is in the low TTBR0 range so that we can use
21  * any allocation we choose, and eliminate the risk of a conflict after kexec.
22  * The value chosen is the largest non-zero power of 2 suitable for this purpose
23  * both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can
24  * be mapped efficiently.
25  * Since 32-bit ARM could potentially execute with a 1G/3G user/kernel split,
26  * map everything below 1 GB. (512 MB is a reasonable upper bound for the
27  * entire footprint of the UEFI runtime services memory regions)
28  */
29 #define EFI_RT_VIRTUAL_BASE     SZ_512M
30 #define EFI_RT_VIRTUAL_SIZE     SZ_512M
31
32 #ifdef CONFIG_ARM64
33 # define EFI_RT_VIRTUAL_LIMIT   DEFAULT_MAP_WINDOW_64
34 #else
35 # define EFI_RT_VIRTUAL_LIMIT   TASK_SIZE
36 #endif
37
38 static u64 virtmap_base = EFI_RT_VIRTUAL_BASE;
39 static bool __efistub_global flat_va_mapping;
40
41 static efi_system_table_t *__efistub_global sys_table;
42
43 __pure efi_system_table_t *efi_system_table(void)
44 {
45         return sys_table;
46 }
47
48 static struct screen_info *setup_graphics(void)
49 {
50         efi_guid_t gop_proto = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID;
51         efi_status_t status;
52         unsigned long size;
53         void **gop_handle = NULL;
54         struct screen_info *si = NULL;
55
56         size = 0;
57         status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL,
58                              &gop_proto, NULL, &size, gop_handle);
59         if (status == EFI_BUFFER_TOO_SMALL) {
60                 si = alloc_screen_info();
61                 if (!si)
62                         return NULL;
63                 efi_setup_gop(si, &gop_proto, size);
64         }
65         return si;
66 }
67
68 void install_memreserve_table(void)
69 {
70         struct linux_efi_memreserve *rsv;
71         efi_guid_t memreserve_table_guid = LINUX_EFI_MEMRESERVE_TABLE_GUID;
72         efi_status_t status;
73
74         status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, sizeof(*rsv),
75                              (void **)&rsv);
76         if (status != EFI_SUCCESS) {
77                 pr_efi_err("Failed to allocate memreserve entry!\n");
78                 return;
79         }
80
81         rsv->next = 0;
82         rsv->size = 0;
83         atomic_set(&rsv->count, 0);
84
85         status = efi_bs_call(install_configuration_table,
86                              &memreserve_table_guid, rsv);
87         if (status != EFI_SUCCESS)
88                 pr_efi_err("Failed to install memreserve config table!\n");
89 }
90
91
92 /*
93  * This function handles the architcture specific differences between arm and
94  * arm64 regarding where the kernel image must be loaded and any memory that
95  * must be reserved. On failure it is required to free all
96  * all allocations it has made.
97  */
98 efi_status_t handle_kernel_image(unsigned long *image_addr,
99                                  unsigned long *image_size,
100                                  unsigned long *reserve_addr,
101                                  unsigned long *reserve_size,
102                                  unsigned long dram_base,
103                                  efi_loaded_image_t *image);
104
105 asmlinkage void __noreturn efi_enter_kernel(unsigned long entrypoint,
106                                             unsigned long fdt_addr,
107                                             unsigned long fdt_size);
108
109 /*
110  * EFI entry point for the arm/arm64 EFI stubs.  This is the entrypoint
111  * that is described in the PE/COFF header.  Most of the code is the same
112  * for both archictectures, with the arch-specific code provided in the
113  * handle_kernel_image() function.
114  */
115 efi_status_t efi_entry(efi_handle_t handle, efi_system_table_t *sys_table_arg)
116 {
117         efi_loaded_image_t *image;
118         efi_status_t status;
119         unsigned long image_addr;
120         unsigned long image_size = 0;
121         unsigned long dram_base;
122         /* addr/point and size pairs for memory management*/
123         unsigned long initrd_addr;
124         u64 initrd_size = 0;
125         unsigned long fdt_addr = 0;  /* Original DTB */
126         unsigned long fdt_size = 0;
127         char *cmdline_ptr = NULL;
128         int cmdline_size = 0;
129         efi_guid_t loaded_image_proto = LOADED_IMAGE_PROTOCOL_GUID;
130         unsigned long reserve_addr = 0;
131         unsigned long reserve_size = 0;
132         enum efi_secureboot_mode secure_boot;
133         struct screen_info *si;
134         efi_properties_table_t *prop_tbl;
135
136         sys_table = sys_table_arg;
137
138         /* Check if we were booted by the EFI firmware */
139         if (sys_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
140                 status = EFI_INVALID_PARAMETER;
141                 goto fail;
142         }
143
144         status = check_platform_features();
145         if (status != EFI_SUCCESS)
146                 goto fail;
147
148         /*
149          * Get a handle to the loaded image protocol.  This is used to get
150          * information about the running image, such as size and the command
151          * line.
152          */
153         status = sys_table->boottime->handle_protocol(handle,
154                                         &loaded_image_proto, (void *)&image);
155         if (status != EFI_SUCCESS) {
156                 pr_efi_err("Failed to get loaded image protocol\n");
157                 goto fail;
158         }
159
160         dram_base = get_dram_base();
161         if (dram_base == EFI_ERROR) {
162                 pr_efi_err("Failed to find DRAM base\n");
163                 status = EFI_LOAD_ERROR;
164                 goto fail;
165         }
166
167         /*
168          * Get the command line from EFI, using the LOADED_IMAGE
169          * protocol. We are going to copy the command line into the
170          * device tree, so this can be allocated anywhere.
171          */
172         cmdline_ptr = efi_convert_cmdline(image, &cmdline_size, ULONG_MAX);
173         if (!cmdline_ptr) {
174                 pr_efi_err("getting command line via LOADED_IMAGE_PROTOCOL\n");
175                 status = EFI_OUT_OF_RESOURCES;
176                 goto fail;
177         }
178
179         if (IS_ENABLED(CONFIG_CMDLINE_EXTEND) ||
180             IS_ENABLED(CONFIG_CMDLINE_FORCE) ||
181             cmdline_size == 0)
182                 efi_parse_options(CONFIG_CMDLINE);
183
184         if (!IS_ENABLED(CONFIG_CMDLINE_FORCE) && cmdline_size > 0)
185                 efi_parse_options(cmdline_ptr);
186
187         pr_efi("Booting Linux Kernel...\n");
188
189         si = setup_graphics();
190
191         status = handle_kernel_image(&image_addr, &image_size,
192                                      &reserve_addr,
193                                      &reserve_size,
194                                      dram_base, image);
195         if (status != EFI_SUCCESS) {
196                 pr_efi_err("Failed to relocate kernel\n");
197                 goto fail_free_cmdline;
198         }
199
200         efi_retrieve_tpm2_eventlog();
201
202         /* Ask the firmware to clear memory on unclean shutdown */
203         efi_enable_reset_attack_mitigation();
204
205         secure_boot = efi_get_secureboot();
206
207         /*
208          * Unauthenticated device tree data is a security hazard, so ignore
209          * 'dtb=' unless UEFI Secure Boot is disabled.  We assume that secure
210          * boot is enabled if we can't determine its state.
211          */
212         if (!IS_ENABLED(CONFIG_EFI_ARMSTUB_DTB_LOADER) ||
213              secure_boot != efi_secureboot_mode_disabled) {
214                 if (strstr(cmdline_ptr, "dtb="))
215                         pr_efi("Ignoring DTB from command line.\n");
216         } else {
217                 status = handle_cmdline_files(image, cmdline_ptr, "dtb=",
218                                               ~0UL, &fdt_addr, &fdt_size);
219
220                 if (status != EFI_SUCCESS) {
221                         pr_efi_err("Failed to load device tree!\n");
222                         goto fail_free_image;
223                 }
224         }
225
226         if (fdt_addr) {
227                 pr_efi("Using DTB from command line\n");
228         } else {
229                 /* Look for a device tree configuration table entry. */
230                 fdt_addr = (uintptr_t)get_fdt(&fdt_size);
231                 if (fdt_addr)
232                         pr_efi("Using DTB from configuration table\n");
233         }
234
235         if (!fdt_addr)
236                 pr_efi("Generating empty DTB\n");
237
238         status = handle_cmdline_files(image, cmdline_ptr, "initrd=",
239                                       efi_get_max_initrd_addr(dram_base,
240                                                               image_addr),
241                                       (unsigned long *)&initrd_addr,
242                                       (unsigned long *)&initrd_size);
243         if (status != EFI_SUCCESS)
244                 pr_efi_err("Failed initrd from command line!\n");
245
246         efi_random_get_seed();
247
248         /*
249          * If the NX PE data feature is enabled in the properties table, we
250          * should take care not to create a virtual mapping that changes the
251          * relative placement of runtime services code and data regions, as
252          * they may belong to the same PE/COFF executable image in memory.
253          * The easiest way to achieve that is to simply use a 1:1 mapping.
254          */
255         prop_tbl = get_efi_config_table(EFI_PROPERTIES_TABLE_GUID);
256         flat_va_mapping = prop_tbl &&
257                           (prop_tbl->memory_protection_attribute &
258                            EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA);
259
260         /* hibernation expects the runtime regions to stay in the same place */
261         if (!IS_ENABLED(CONFIG_HIBERNATION) && !nokaslr() && !flat_va_mapping) {
262                 /*
263                  * Randomize the base of the UEFI runtime services region.
264                  * Preserve the 2 MB alignment of the region by taking a
265                  * shift of 21 bit positions into account when scaling
266                  * the headroom value using a 32-bit random value.
267                  */
268                 static const u64 headroom = EFI_RT_VIRTUAL_LIMIT -
269                                             EFI_RT_VIRTUAL_BASE -
270                                             EFI_RT_VIRTUAL_SIZE;
271                 u32 rnd;
272
273                 status = efi_get_random_bytes(sizeof(rnd), (u8 *)&rnd);
274                 if (status == EFI_SUCCESS) {
275                         virtmap_base = EFI_RT_VIRTUAL_BASE +
276                                        (((headroom >> 21) * rnd) >> (32 - 21));
277                 }
278         }
279
280         install_memreserve_table();
281
282         status = allocate_new_fdt_and_exit_boot(handle, &fdt_addr,
283                                                 efi_get_max_fdt_addr(dram_base),
284                                                 initrd_addr, initrd_size,
285                                                 cmdline_ptr, fdt_addr, fdt_size);
286         if (status != EFI_SUCCESS)
287                 goto fail_free_initrd;
288
289         efi_enter_kernel(image_addr, fdt_addr, fdt_totalsize((void *)fdt_addr));
290         /* not reached */
291
292 fail_free_initrd:
293         pr_efi_err("Failed to update FDT and exit boot services\n");
294
295         efi_free(initrd_size, initrd_addr);
296         efi_free(fdt_size, fdt_addr);
297
298 fail_free_image:
299         efi_free(image_size, image_addr);
300         efi_free(reserve_size, reserve_addr);
301 fail_free_cmdline:
302         free_screen_info(si);
303         efi_free(cmdline_size, (unsigned long)cmdline_ptr);
304 fail:
305         return status;
306 }
307
308 /*
309  * efi_get_virtmap() - create a virtual mapping for the EFI memory map
310  *
311  * This function populates the virt_addr fields of all memory region descriptors
312  * in @memory_map whose EFI_MEMORY_RUNTIME attribute is set. Those descriptors
313  * are also copied to @runtime_map, and their total count is returned in @count.
314  */
315 void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size,
316                      unsigned long desc_size, efi_memory_desc_t *runtime_map,
317                      int *count)
318 {
319         u64 efi_virt_base = virtmap_base;
320         efi_memory_desc_t *in, *out = runtime_map;
321         int l;
322
323         for (l = 0; l < map_size; l += desc_size) {
324                 u64 paddr, size;
325
326                 in = (void *)memory_map + l;
327                 if (!(in->attribute & EFI_MEMORY_RUNTIME))
328                         continue;
329
330                 paddr = in->phys_addr;
331                 size = in->num_pages * EFI_PAGE_SIZE;
332
333                 in->virt_addr = in->phys_addr;
334                 if (novamap()) {
335                         continue;
336                 }
337
338                 /*
339                  * Make the mapping compatible with 64k pages: this allows
340                  * a 4k page size kernel to kexec a 64k page size kernel and
341                  * vice versa.
342                  */
343                 if (!flat_va_mapping) {
344
345                         paddr = round_down(in->phys_addr, SZ_64K);
346                         size += in->phys_addr - paddr;
347
348                         /*
349                          * Avoid wasting memory on PTEs by choosing a virtual
350                          * base that is compatible with section mappings if this
351                          * region has the appropriate size and physical
352                          * alignment. (Sections are 2 MB on 4k granule kernels)
353                          */
354                         if (IS_ALIGNED(in->phys_addr, SZ_2M) && size >= SZ_2M)
355                                 efi_virt_base = round_up(efi_virt_base, SZ_2M);
356                         else
357                                 efi_virt_base = round_up(efi_virt_base, SZ_64K);
358
359                         in->virt_addr += efi_virt_base - paddr;
360                         efi_virt_base += size;
361                 }
362
363                 memcpy(out, in, desc_size);
364                 out = (void *)out + desc_size;
365                 ++*count;
366         }
367 }