Merge tag 'nfsd-6.12' of git://git.kernel.org/pub/scm/linux/kernel/git/cel/linux
[linux-2.6-block.git] / drivers / firewire / ohci.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Driver for OHCI 1394 controllers
4  *
5  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6  */
7
8 #include <linux/bitops.h>
9 #include <linux/bug.h>
10 #include <linux/compiler.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/firewire.h>
15 #include <linux/firewire-constants.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/mutex.h>
25 #include <linux/pci.h>
26 #include <linux/pci_ids.h>
27 #include <linux/slab.h>
28 #include <linux/spinlock.h>
29 #include <linux/string.h>
30 #include <linux/time.h>
31 #include <linux/vmalloc.h>
32 #include <linux/workqueue.h>
33
34 #include <asm/byteorder.h>
35 #include <asm/page.h>
36
37 #ifdef CONFIG_PPC_PMAC
38 #include <asm/pmac_feature.h>
39 #endif
40
41 #include "core.h"
42 #include "ohci.h"
43 #include "packet-header-definitions.h"
44
45 #define ohci_info(ohci, f, args...)     dev_info(ohci->card.device, f, ##args)
46 #define ohci_notice(ohci, f, args...)   dev_notice(ohci->card.device, f, ##args)
47 #define ohci_err(ohci, f, args...)      dev_err(ohci->card.device, f, ##args)
48
49 #define DESCRIPTOR_OUTPUT_MORE          0
50 #define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
51 #define DESCRIPTOR_INPUT_MORE           (2 << 12)
52 #define DESCRIPTOR_INPUT_LAST           (3 << 12)
53 #define DESCRIPTOR_STATUS               (1 << 11)
54 #define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
55 #define DESCRIPTOR_PING                 (1 << 7)
56 #define DESCRIPTOR_YY                   (1 << 6)
57 #define DESCRIPTOR_NO_IRQ               (0 << 4)
58 #define DESCRIPTOR_IRQ_ERROR            (1 << 4)
59 #define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
60 #define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
61 #define DESCRIPTOR_WAIT                 (3 << 0)
62
63 #define DESCRIPTOR_CMD                  (0xf << 12)
64
65 struct descriptor {
66         __le16 req_count;
67         __le16 control;
68         __le32 data_address;
69         __le32 branch_address;
70         __le16 res_count;
71         __le16 transfer_status;
72 } __attribute__((aligned(16)));
73
74 #define CONTROL_SET(regs)       (regs)
75 #define CONTROL_CLEAR(regs)     ((regs) + 4)
76 #define COMMAND_PTR(regs)       ((regs) + 12)
77 #define CONTEXT_MATCH(regs)     ((regs) + 16)
78
79 #define AR_BUFFER_SIZE  (32*1024)
80 #define AR_BUFFERS_MIN  DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
81 /* we need at least two pages for proper list management */
82 #define AR_BUFFERS      (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
83
84 #define MAX_ASYNC_PAYLOAD       4096
85 #define MAX_AR_PACKET_SIZE      (16 + MAX_ASYNC_PAYLOAD + 4)
86 #define AR_WRAPAROUND_PAGES     DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
87
88 struct ar_context {
89         struct fw_ohci *ohci;
90         struct page *pages[AR_BUFFERS];
91         void *buffer;
92         struct descriptor *descriptors;
93         dma_addr_t descriptors_bus;
94         void *pointer;
95         unsigned int last_buffer_index;
96         u32 regs;
97         struct tasklet_struct tasklet;
98 };
99
100 struct context;
101
102 typedef int (*descriptor_callback_t)(struct context *ctx,
103                                      struct descriptor *d,
104                                      struct descriptor *last);
105
106 /*
107  * A buffer that contains a block of DMA-able coherent memory used for
108  * storing a portion of a DMA descriptor program.
109  */
110 struct descriptor_buffer {
111         struct list_head list;
112         dma_addr_t buffer_bus;
113         size_t buffer_size;
114         size_t used;
115         struct descriptor buffer[];
116 };
117
118 struct context {
119         struct fw_ohci *ohci;
120         u32 regs;
121         int total_allocation;
122         u32 current_bus;
123         bool running;
124         bool flushing;
125
126         /*
127          * List of page-sized buffers for storing DMA descriptors.
128          * Head of list contains buffers in use and tail of list contains
129          * free buffers.
130          */
131         struct list_head buffer_list;
132
133         /*
134          * Pointer to a buffer inside buffer_list that contains the tail
135          * end of the current DMA program.
136          */
137         struct descriptor_buffer *buffer_tail;
138
139         /*
140          * The descriptor containing the branch address of the first
141          * descriptor that has not yet been filled by the device.
142          */
143         struct descriptor *last;
144
145         /*
146          * The last descriptor block in the DMA program. It contains the branch
147          * address that must be updated upon appending a new descriptor.
148          */
149         struct descriptor *prev;
150         int prev_z;
151
152         descriptor_callback_t callback;
153
154         struct tasklet_struct tasklet;
155 };
156
157 #define IT_HEADER_SY(v)          ((v) <<  0)
158 #define IT_HEADER_TCODE(v)       ((v) <<  4)
159 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
160 #define IT_HEADER_TAG(v)         ((v) << 14)
161 #define IT_HEADER_SPEED(v)       ((v) << 16)
162 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
163
164 struct iso_context {
165         struct fw_iso_context base;
166         struct context context;
167         void *header;
168         size_t header_length;
169         unsigned long flushing_completions;
170         u32 mc_buffer_bus;
171         u16 mc_completed;
172         u16 last_timestamp;
173         u8 sync;
174         u8 tags;
175 };
176
177 #define CONFIG_ROM_SIZE 1024
178
179 struct fw_ohci {
180         struct fw_card card;
181
182         __iomem char *registers;
183         int node_id;
184         int generation;
185         int request_generation; /* for timestamping incoming requests */
186         unsigned quirks;
187         unsigned int pri_req_max;
188         u32 bus_time;
189         bool bus_time_running;
190         bool is_root;
191         bool csr_state_setclear_abdicate;
192         int n_ir;
193         int n_it;
194         /*
195          * Spinlock for accessing fw_ohci data.  Never call out of
196          * this driver with this lock held.
197          */
198         spinlock_t lock;
199
200         struct mutex phy_reg_mutex;
201
202         void *misc_buffer;
203         dma_addr_t misc_buffer_bus;
204
205         struct ar_context ar_request_ctx;
206         struct ar_context ar_response_ctx;
207         struct context at_request_ctx;
208         struct context at_response_ctx;
209
210         u32 it_context_support;
211         u32 it_context_mask;     /* unoccupied IT contexts */
212         struct iso_context *it_context_list;
213         u64 ir_context_channels; /* unoccupied channels */
214         u32 ir_context_support;
215         u32 ir_context_mask;     /* unoccupied IR contexts */
216         struct iso_context *ir_context_list;
217         u64 mc_channels; /* channels in use by the multichannel IR context */
218         bool mc_allocated;
219
220         __be32    *config_rom;
221         dma_addr_t config_rom_bus;
222         __be32    *next_config_rom;
223         dma_addr_t next_config_rom_bus;
224         __be32     next_header;
225
226         __le32    *self_id;
227         dma_addr_t self_id_bus;
228         struct work_struct bus_reset_work;
229
230         u32 self_id_buffer[512];
231 };
232
233 static struct workqueue_struct *selfid_workqueue;
234
235 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
236 {
237         return container_of(card, struct fw_ohci, card);
238 }
239
240 #define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
241 #define IR_CONTEXT_BUFFER_FILL          0x80000000
242 #define IR_CONTEXT_ISOCH_HEADER         0x40000000
243 #define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
244 #define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
245 #define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
246
247 #define CONTEXT_RUN     0x8000
248 #define CONTEXT_WAKE    0x1000
249 #define CONTEXT_DEAD    0x0800
250 #define CONTEXT_ACTIVE  0x0400
251
252 #define OHCI1394_MAX_AT_REQ_RETRIES     0xf
253 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
254 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
255
256 #define OHCI1394_REGISTER_SIZE          0x800
257 #define OHCI1394_PCI_HCI_Control        0x40
258 #define SELF_ID_BUF_SIZE                0x800
259 #define OHCI_TCODE_PHY_PACKET           0x0e
260 #define OHCI_VERSION_1_1                0x010010
261
262 static char ohci_driver_name[] = KBUILD_MODNAME;
263
264 #define PCI_VENDOR_ID_PINNACLE_SYSTEMS  0x11bd
265 #define PCI_DEVICE_ID_AGERE_FW643       0x5901
266 #define PCI_DEVICE_ID_CREATIVE_SB1394   0x4001
267 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
268 #define PCI_DEVICE_ID_TI_TSB12LV22      0x8009
269 #define PCI_DEVICE_ID_TI_TSB12LV26      0x8020
270 #define PCI_DEVICE_ID_TI_TSB82AA2       0x8025
271 #define PCI_DEVICE_ID_VIA_VT630X        0x3044
272 #define PCI_REV_ID_VIA_VT6306           0x46
273 #define PCI_DEVICE_ID_VIA_VT6315        0x3403
274
275 #define QUIRK_CYCLE_TIMER               0x1
276 #define QUIRK_RESET_PACKET              0x2
277 #define QUIRK_BE_HEADERS                0x4
278 #define QUIRK_NO_1394A                  0x8
279 #define QUIRK_NO_MSI                    0x10
280 #define QUIRK_TI_SLLZ059                0x20
281 #define QUIRK_IR_WAKE                   0x40
282
283 // On PCI Express Root Complex in any type of AMD Ryzen machine, VIA VT6306/6307/6308 with Asmedia
284 // ASM1083/1085 brings an inconvenience that the read accesses to 'Isochronous Cycle Timer' register
285 // (at offset 0xf0 in PCI I/O space) often causes unexpected system reboot. The mechanism is not
286 // clear, since the read access to the other registers is enough safe; e.g. 'Node ID' register,
287 // while it is probable due to detection of any type of PCIe error.
288 #define QUIRK_REBOOT_BY_CYCLE_TIMER_READ        0x80000000
289
290 #if IS_ENABLED(CONFIG_X86)
291
292 static bool has_reboot_by_cycle_timer_read_quirk(const struct fw_ohci *ohci)
293 {
294         return !!(ohci->quirks & QUIRK_REBOOT_BY_CYCLE_TIMER_READ);
295 }
296
297 #define PCI_DEVICE_ID_ASMEDIA_ASM108X   0x1080
298
299 static bool detect_vt630x_with_asm1083_on_amd_ryzen_machine(const struct pci_dev *pdev)
300 {
301         const struct pci_dev *pcie_to_pci_bridge;
302
303         // Detect any type of AMD Ryzen machine.
304         if (!static_cpu_has(X86_FEATURE_ZEN))
305                 return false;
306
307         // Detect VIA VT6306/6307/6308.
308         if (pdev->vendor != PCI_VENDOR_ID_VIA)
309                 return false;
310         if (pdev->device != PCI_DEVICE_ID_VIA_VT630X)
311                 return false;
312
313         // Detect Asmedia ASM1083/1085.
314         pcie_to_pci_bridge = pdev->bus->self;
315         if (pcie_to_pci_bridge->vendor != PCI_VENDOR_ID_ASMEDIA)
316                 return false;
317         if (pcie_to_pci_bridge->device != PCI_DEVICE_ID_ASMEDIA_ASM108X)
318                 return false;
319
320         return true;
321 }
322
323 #else
324 #define has_reboot_by_cycle_timer_read_quirk(ohci) false
325 #define detect_vt630x_with_asm1083_on_amd_ryzen_machine(pdev)   false
326 #endif
327
328 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
329 static const struct {
330         unsigned short vendor, device, revision, flags;
331 } ohci_quirks[] = {
332         {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
333                 QUIRK_CYCLE_TIMER},
334
335         {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
336                 QUIRK_BE_HEADERS},
337
338         {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
339                 QUIRK_NO_MSI},
340
341         {PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
342                 QUIRK_RESET_PACKET},
343
344         {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
345                 QUIRK_NO_MSI},
346
347         {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
348                 QUIRK_CYCLE_TIMER},
349
350         {PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
351                 QUIRK_NO_MSI},
352
353         {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
354                 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
355
356         {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
357                 QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
358
359         {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
360                 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
361
362         {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
363                 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
364
365         {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
366                 QUIRK_RESET_PACKET},
367
368         {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306,
369                 QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE},
370
371         {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, 0,
372                 QUIRK_CYCLE_TIMER /* FIXME: necessary? */ | QUIRK_NO_MSI},
373
374         {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, PCI_ANY_ID,
375                 QUIRK_NO_MSI},
376
377         {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
378                 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
379 };
380
381 /* This overrides anything that was found in ohci_quirks[]. */
382 static int param_quirks;
383 module_param_named(quirks, param_quirks, int, 0644);
384 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
385         ", nonatomic cycle timer = "    __stringify(QUIRK_CYCLE_TIMER)
386         ", reset packet generation = "  __stringify(QUIRK_RESET_PACKET)
387         ", AR/selfID endianness = "     __stringify(QUIRK_BE_HEADERS)
388         ", no 1394a enhancements = "    __stringify(QUIRK_NO_1394A)
389         ", disable MSI = "              __stringify(QUIRK_NO_MSI)
390         ", TI SLLZ059 erratum = "       __stringify(QUIRK_TI_SLLZ059)
391         ", IR wake unreliable = "       __stringify(QUIRK_IR_WAKE)
392         ")");
393
394 #define OHCI_PARAM_DEBUG_AT_AR          1
395 #define OHCI_PARAM_DEBUG_SELFIDS        2
396 #define OHCI_PARAM_DEBUG_IRQS           4
397
398 static int param_debug;
399 module_param_named(debug, param_debug, int, 0644);
400 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
401         ", AT/AR events = "     __stringify(OHCI_PARAM_DEBUG_AT_AR)
402         ", self-IDs = "         __stringify(OHCI_PARAM_DEBUG_SELFIDS)
403         ", IRQs = "             __stringify(OHCI_PARAM_DEBUG_IRQS)
404         ", or a combination, or all = -1)");
405
406 static bool param_remote_dma;
407 module_param_named(remote_dma, param_remote_dma, bool, 0444);
408 MODULE_PARM_DESC(remote_dma, "Enable unfiltered remote DMA (default = N)");
409
410 static void log_irqs(struct fw_ohci *ohci, u32 evt)
411 {
412         if (likely(!(param_debug & OHCI_PARAM_DEBUG_IRQS)))
413                 return;
414
415         ohci_notice(ohci, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
416             evt & OHCI1394_selfIDComplete       ? " selfID"             : "",
417             evt & OHCI1394_RQPkt                ? " AR_req"             : "",
418             evt & OHCI1394_RSPkt                ? " AR_resp"            : "",
419             evt & OHCI1394_reqTxComplete        ? " AT_req"             : "",
420             evt & OHCI1394_respTxComplete       ? " AT_resp"            : "",
421             evt & OHCI1394_isochRx              ? " IR"                 : "",
422             evt & OHCI1394_isochTx              ? " IT"                 : "",
423             evt & OHCI1394_postedWriteErr       ? " postedWriteErr"     : "",
424             evt & OHCI1394_cycleTooLong         ? " cycleTooLong"       : "",
425             evt & OHCI1394_cycle64Seconds       ? " cycle64Seconds"     : "",
426             evt & OHCI1394_cycleInconsistent    ? " cycleInconsistent"  : "",
427             evt & OHCI1394_regAccessFail        ? " regAccessFail"      : "",
428             evt & OHCI1394_unrecoverableError   ? " unrecoverableError" : "",
429             evt & OHCI1394_busReset             ? " busReset"           : "",
430             evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
431                     OHCI1394_RSPkt | OHCI1394_reqTxComplete |
432                     OHCI1394_respTxComplete | OHCI1394_isochRx |
433                     OHCI1394_isochTx | OHCI1394_postedWriteErr |
434                     OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
435                     OHCI1394_cycleInconsistent |
436                     OHCI1394_regAccessFail | OHCI1394_busReset)
437                                                 ? " ?"                  : "");
438 }
439
440 static const char *speed[] = {
441         [0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
442 };
443 static const char *power[] = {
444         [0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
445         [4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
446 };
447 static const char port[] = { '.', '-', 'p', 'c', };
448
449 static char _p(u32 *s, int shift)
450 {
451         return port[*s >> shift & 3];
452 }
453
454 static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
455 {
456         u32 *s;
457
458         if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
459                 return;
460
461         ohci_notice(ohci, "%d selfIDs, generation %d, local node ID %04x\n",
462                     self_id_count, generation, ohci->node_id);
463
464         for (s = ohci->self_id_buffer; self_id_count--; ++s)
465                 if ((*s & 1 << 23) == 0)
466                         ohci_notice(ohci,
467                             "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n",
468                             *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
469                             speed[*s >> 14 & 3], *s >> 16 & 63,
470                             power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
471                             *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
472                 else
473                         ohci_notice(ohci,
474                             "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
475                             *s, *s >> 24 & 63,
476                             _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
477                             _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
478 }
479
480 static const char *evts[] = {
481         [0x00] = "evt_no_status",       [0x01] = "-reserved-",
482         [0x02] = "evt_long_packet",     [0x03] = "evt_missing_ack",
483         [0x04] = "evt_underrun",        [0x05] = "evt_overrun",
484         [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
485         [0x08] = "evt_data_write",      [0x09] = "evt_bus_reset",
486         [0x0a] = "evt_timeout",         [0x0b] = "evt_tcode_err",
487         [0x0c] = "-reserved-",          [0x0d] = "-reserved-",
488         [0x0e] = "evt_unknown",         [0x0f] = "evt_flushed",
489         [0x10] = "-reserved-",          [0x11] = "ack_complete",
490         [0x12] = "ack_pending ",        [0x13] = "-reserved-",
491         [0x14] = "ack_busy_X",          [0x15] = "ack_busy_A",
492         [0x16] = "ack_busy_B",          [0x17] = "-reserved-",
493         [0x18] = "-reserved-",          [0x19] = "-reserved-",
494         [0x1a] = "-reserved-",          [0x1b] = "ack_tardy",
495         [0x1c] = "-reserved-",          [0x1d] = "ack_data_error",
496         [0x1e] = "ack_type_error",      [0x1f] = "-reserved-",
497         [0x20] = "pending/cancelled",
498 };
499 static const char *tcodes[] = {
500         [0x0] = "QW req",               [0x1] = "BW req",
501         [0x2] = "W resp",               [0x3] = "-reserved-",
502         [0x4] = "QR req",               [0x5] = "BR req",
503         [0x6] = "QR resp",              [0x7] = "BR resp",
504         [0x8] = "cycle start",          [0x9] = "Lk req",
505         [0xa] = "async stream packet",  [0xb] = "Lk resp",
506         [0xc] = "-reserved-",           [0xd] = "-reserved-",
507         [0xe] = "link internal",        [0xf] = "-reserved-",
508 };
509
510 static void log_ar_at_event(struct fw_ohci *ohci,
511                             char dir, int speed, u32 *header, int evt)
512 {
513         int tcode = async_header_get_tcode(header);
514         char specific[12];
515
516         if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
517                 return;
518
519         if (unlikely(evt >= ARRAY_SIZE(evts)))
520                 evt = 0x1f;
521
522         if (evt == OHCI1394_evt_bus_reset) {
523                 ohci_notice(ohci, "A%c evt_bus_reset, generation %d\n",
524                             dir, (header[2] >> 16) & 0xff);
525                 return;
526         }
527
528         switch (tcode) {
529         case TCODE_WRITE_QUADLET_REQUEST:
530         case TCODE_READ_QUADLET_RESPONSE:
531         case TCODE_CYCLE_START:
532                 snprintf(specific, sizeof(specific), " = %08x",
533                          be32_to_cpu((__force __be32)header[3]));
534                 break;
535         case TCODE_WRITE_BLOCK_REQUEST:
536         case TCODE_READ_BLOCK_REQUEST:
537         case TCODE_READ_BLOCK_RESPONSE:
538         case TCODE_LOCK_REQUEST:
539         case TCODE_LOCK_RESPONSE:
540                 snprintf(specific, sizeof(specific), " %x,%x",
541                          async_header_get_data_length(header),
542                          async_header_get_extended_tcode(header));
543                 break;
544         default:
545                 specific[0] = '\0';
546         }
547
548         switch (tcode) {
549         case TCODE_STREAM_DATA:
550                 ohci_notice(ohci, "A%c %s, %s\n",
551                             dir, evts[evt], tcodes[tcode]);
552                 break;
553         case 0xe:
554                 ohci_notice(ohci, "A%c %s, PHY %08x %08x\n",
555                             dir, evts[evt], header[1], header[2]);
556                 break;
557         case TCODE_WRITE_QUADLET_REQUEST:
558         case TCODE_WRITE_BLOCK_REQUEST:
559         case TCODE_READ_QUADLET_REQUEST:
560         case TCODE_READ_BLOCK_REQUEST:
561         case TCODE_LOCK_REQUEST:
562                 ohci_notice(ohci,
563                             "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %012llx%s\n",
564                             dir, speed, async_header_get_tlabel(header),
565                             async_header_get_source(header), async_header_get_destination(header),
566                             evts[evt], tcodes[tcode], async_header_get_offset(header), specific);
567                 break;
568         default:
569                 ohci_notice(ohci,
570                             "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n",
571                             dir, speed, async_header_get_tlabel(header),
572                             async_header_get_source(header), async_header_get_destination(header),
573                             evts[evt], tcodes[tcode], specific);
574         }
575 }
576
577 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
578 {
579         writel(data, ohci->registers + offset);
580 }
581
582 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
583 {
584         return readl(ohci->registers + offset);
585 }
586
587 static inline void flush_writes(const struct fw_ohci *ohci)
588 {
589         /* Do a dummy read to flush writes. */
590         reg_read(ohci, OHCI1394_Version);
591 }
592
593 /*
594  * Beware!  read_phy_reg(), write_phy_reg(), update_phy_reg(), and
595  * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
596  * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
597  * directly.  Exceptions are intrinsically serialized contexts like pci_probe.
598  */
599 static int read_phy_reg(struct fw_ohci *ohci, int addr)
600 {
601         u32 val;
602         int i;
603
604         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
605         for (i = 0; i < 3 + 100; i++) {
606                 val = reg_read(ohci, OHCI1394_PhyControl);
607                 if (!~val)
608                         return -ENODEV; /* Card was ejected. */
609
610                 if (val & OHCI1394_PhyControl_ReadDone)
611                         return OHCI1394_PhyControl_ReadData(val);
612
613                 /*
614                  * Try a few times without waiting.  Sleeping is necessary
615                  * only when the link/PHY interface is busy.
616                  */
617                 if (i >= 3)
618                         msleep(1);
619         }
620         ohci_err(ohci, "failed to read phy reg %d\n", addr);
621         dump_stack();
622
623         return -EBUSY;
624 }
625
626 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
627 {
628         int i;
629
630         reg_write(ohci, OHCI1394_PhyControl,
631                   OHCI1394_PhyControl_Write(addr, val));
632         for (i = 0; i < 3 + 100; i++) {
633                 val = reg_read(ohci, OHCI1394_PhyControl);
634                 if (!~val)
635                         return -ENODEV; /* Card was ejected. */
636
637                 if (!(val & OHCI1394_PhyControl_WritePending))
638                         return 0;
639
640                 if (i >= 3)
641                         msleep(1);
642         }
643         ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val);
644         dump_stack();
645
646         return -EBUSY;
647 }
648
649 static int update_phy_reg(struct fw_ohci *ohci, int addr,
650                           int clear_bits, int set_bits)
651 {
652         int ret = read_phy_reg(ohci, addr);
653         if (ret < 0)
654                 return ret;
655
656         /*
657          * The interrupt status bits are cleared by writing a one bit.
658          * Avoid clearing them unless explicitly requested in set_bits.
659          */
660         if (addr == 5)
661                 clear_bits |= PHY_INT_STATUS_BITS;
662
663         return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
664 }
665
666 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
667 {
668         int ret;
669
670         ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
671         if (ret < 0)
672                 return ret;
673
674         return read_phy_reg(ohci, addr);
675 }
676
677 static int ohci_read_phy_reg(struct fw_card *card, int addr)
678 {
679         struct fw_ohci *ohci = fw_ohci(card);
680         int ret;
681
682         mutex_lock(&ohci->phy_reg_mutex);
683         ret = read_phy_reg(ohci, addr);
684         mutex_unlock(&ohci->phy_reg_mutex);
685
686         return ret;
687 }
688
689 static int ohci_update_phy_reg(struct fw_card *card, int addr,
690                                int clear_bits, int set_bits)
691 {
692         struct fw_ohci *ohci = fw_ohci(card);
693         int ret;
694
695         mutex_lock(&ohci->phy_reg_mutex);
696         ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
697         mutex_unlock(&ohci->phy_reg_mutex);
698
699         return ret;
700 }
701
702 static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
703 {
704         return page_private(ctx->pages[i]);
705 }
706
707 static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
708 {
709         struct descriptor *d;
710
711         d = &ctx->descriptors[index];
712         d->branch_address  &= cpu_to_le32(~0xf);
713         d->res_count       =  cpu_to_le16(PAGE_SIZE);
714         d->transfer_status =  0;
715
716         wmb(); /* finish init of new descriptors before branch_address update */
717         d = &ctx->descriptors[ctx->last_buffer_index];
718         d->branch_address  |= cpu_to_le32(1);
719
720         ctx->last_buffer_index = index;
721
722         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
723 }
724
725 static void ar_context_release(struct ar_context *ctx)
726 {
727         struct device *dev = ctx->ohci->card.device;
728         unsigned int i;
729
730         if (!ctx->buffer)
731                 return;
732
733         vunmap(ctx->buffer);
734
735         for (i = 0; i < AR_BUFFERS; i++) {
736                 if (ctx->pages[i])
737                         dma_free_pages(dev, PAGE_SIZE, ctx->pages[i],
738                                        ar_buffer_bus(ctx, i), DMA_FROM_DEVICE);
739         }
740 }
741
742 static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
743 {
744         struct fw_ohci *ohci = ctx->ohci;
745
746         if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
747                 reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
748                 flush_writes(ohci);
749
750                 ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg);
751         }
752         /* FIXME: restart? */
753 }
754
755 static inline unsigned int ar_next_buffer_index(unsigned int index)
756 {
757         return (index + 1) % AR_BUFFERS;
758 }
759
760 static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
761 {
762         return ar_next_buffer_index(ctx->last_buffer_index);
763 }
764
765 /*
766  * We search for the buffer that contains the last AR packet DMA data written
767  * by the controller.
768  */
769 static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
770                                                  unsigned int *buffer_offset)
771 {
772         unsigned int i, next_i, last = ctx->last_buffer_index;
773         __le16 res_count, next_res_count;
774
775         i = ar_first_buffer_index(ctx);
776         res_count = READ_ONCE(ctx->descriptors[i].res_count);
777
778         /* A buffer that is not yet completely filled must be the last one. */
779         while (i != last && res_count == 0) {
780
781                 /* Peek at the next descriptor. */
782                 next_i = ar_next_buffer_index(i);
783                 rmb(); /* read descriptors in order */
784                 next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
785                 /*
786                  * If the next descriptor is still empty, we must stop at this
787                  * descriptor.
788                  */
789                 if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
790                         /*
791                          * The exception is when the DMA data for one packet is
792                          * split over three buffers; in this case, the middle
793                          * buffer's descriptor might be never updated by the
794                          * controller and look still empty, and we have to peek
795                          * at the third one.
796                          */
797                         if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
798                                 next_i = ar_next_buffer_index(next_i);
799                                 rmb();
800                                 next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
801                                 if (next_res_count != cpu_to_le16(PAGE_SIZE))
802                                         goto next_buffer_is_active;
803                         }
804
805                         break;
806                 }
807
808 next_buffer_is_active:
809                 i = next_i;
810                 res_count = next_res_count;
811         }
812
813         rmb(); /* read res_count before the DMA data */
814
815         *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
816         if (*buffer_offset > PAGE_SIZE) {
817                 *buffer_offset = 0;
818                 ar_context_abort(ctx, "corrupted descriptor");
819         }
820
821         return i;
822 }
823
824 static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
825                                     unsigned int end_buffer_index,
826                                     unsigned int end_buffer_offset)
827 {
828         unsigned int i;
829
830         i = ar_first_buffer_index(ctx);
831         while (i != end_buffer_index) {
832                 dma_sync_single_for_cpu(ctx->ohci->card.device,
833                                         ar_buffer_bus(ctx, i),
834                                         PAGE_SIZE, DMA_FROM_DEVICE);
835                 i = ar_next_buffer_index(i);
836         }
837         if (end_buffer_offset > 0)
838                 dma_sync_single_for_cpu(ctx->ohci->card.device,
839                                         ar_buffer_bus(ctx, i),
840                                         end_buffer_offset, DMA_FROM_DEVICE);
841 }
842
843 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
844 #define cond_le32_to_cpu(v) \
845         (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
846 #else
847 #define cond_le32_to_cpu(v) le32_to_cpu(v)
848 #endif
849
850 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
851 {
852         struct fw_ohci *ohci = ctx->ohci;
853         struct fw_packet p;
854         u32 status, length, tcode;
855         int evt;
856
857         p.header[0] = cond_le32_to_cpu(buffer[0]);
858         p.header[1] = cond_le32_to_cpu(buffer[1]);
859         p.header[2] = cond_le32_to_cpu(buffer[2]);
860
861         tcode = async_header_get_tcode(p.header);
862         switch (tcode) {
863         case TCODE_WRITE_QUADLET_REQUEST:
864         case TCODE_READ_QUADLET_RESPONSE:
865                 p.header[3] = (__force __u32) buffer[3];
866                 p.header_length = 16;
867                 p.payload_length = 0;
868                 break;
869
870         case TCODE_READ_BLOCK_REQUEST :
871                 p.header[3] = cond_le32_to_cpu(buffer[3]);
872                 p.header_length = 16;
873                 p.payload_length = 0;
874                 break;
875
876         case TCODE_WRITE_BLOCK_REQUEST:
877         case TCODE_READ_BLOCK_RESPONSE:
878         case TCODE_LOCK_REQUEST:
879         case TCODE_LOCK_RESPONSE:
880                 p.header[3] = cond_le32_to_cpu(buffer[3]);
881                 p.header_length = 16;
882                 p.payload_length = async_header_get_data_length(p.header);
883                 if (p.payload_length > MAX_ASYNC_PAYLOAD) {
884                         ar_context_abort(ctx, "invalid packet length");
885                         return NULL;
886                 }
887                 break;
888
889         case TCODE_WRITE_RESPONSE:
890         case TCODE_READ_QUADLET_REQUEST:
891         case OHCI_TCODE_PHY_PACKET:
892                 p.header_length = 12;
893                 p.payload_length = 0;
894                 break;
895
896         default:
897                 ar_context_abort(ctx, "invalid tcode");
898                 return NULL;
899         }
900
901         p.payload = (void *) buffer + p.header_length;
902
903         /* FIXME: What to do about evt_* errors? */
904         length = (p.header_length + p.payload_length + 3) / 4;
905         status = cond_le32_to_cpu(buffer[length]);
906         evt    = (status >> 16) & 0x1f;
907
908         p.ack        = evt - 16;
909         p.speed      = (status >> 21) & 0x7;
910         p.timestamp  = status & 0xffff;
911         p.generation = ohci->request_generation;
912
913         log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
914
915         /*
916          * Several controllers, notably from NEC and VIA, forget to
917          * write ack_complete status at PHY packet reception.
918          */
919         if (evt == OHCI1394_evt_no_status && tcode == OHCI1394_phy_tcode)
920                 p.ack = ACK_COMPLETE;
921
922         /*
923          * The OHCI bus reset handler synthesizes a PHY packet with
924          * the new generation number when a bus reset happens (see
925          * section 8.4.2.3).  This helps us determine when a request
926          * was received and make sure we send the response in the same
927          * generation.  We only need this for requests; for responses
928          * we use the unique tlabel for finding the matching
929          * request.
930          *
931          * Alas some chips sometimes emit bus reset packets with a
932          * wrong generation.  We set the correct generation for these
933          * at a slightly incorrect time (in bus_reset_work).
934          */
935         if (evt == OHCI1394_evt_bus_reset) {
936                 if (!(ohci->quirks & QUIRK_RESET_PACKET))
937                         ohci->request_generation = (p.header[2] >> 16) & 0xff;
938         } else if (ctx == &ohci->ar_request_ctx) {
939                 fw_core_handle_request(&ohci->card, &p);
940         } else {
941                 fw_core_handle_response(&ohci->card, &p);
942         }
943
944         return buffer + length + 1;
945 }
946
947 static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
948 {
949         void *next;
950
951         while (p < end) {
952                 next = handle_ar_packet(ctx, p);
953                 if (!next)
954                         return p;
955                 p = next;
956         }
957
958         return p;
959 }
960
961 static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
962 {
963         unsigned int i;
964
965         i = ar_first_buffer_index(ctx);
966         while (i != end_buffer) {
967                 dma_sync_single_for_device(ctx->ohci->card.device,
968                                            ar_buffer_bus(ctx, i),
969                                            PAGE_SIZE, DMA_FROM_DEVICE);
970                 ar_context_link_page(ctx, i);
971                 i = ar_next_buffer_index(i);
972         }
973 }
974
975 static void ar_context_tasklet(unsigned long data)
976 {
977         struct ar_context *ctx = (struct ar_context *)data;
978         unsigned int end_buffer_index, end_buffer_offset;
979         void *p, *end;
980
981         p = ctx->pointer;
982         if (!p)
983                 return;
984
985         end_buffer_index = ar_search_last_active_buffer(ctx,
986                                                         &end_buffer_offset);
987         ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
988         end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
989
990         if (end_buffer_index < ar_first_buffer_index(ctx)) {
991                 /*
992                  * The filled part of the overall buffer wraps around; handle
993                  * all packets up to the buffer end here.  If the last packet
994                  * wraps around, its tail will be visible after the buffer end
995                  * because the buffer start pages are mapped there again.
996                  */
997                 void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
998                 p = handle_ar_packets(ctx, p, buffer_end);
999                 if (p < buffer_end)
1000                         goto error;
1001                 /* adjust p to point back into the actual buffer */
1002                 p -= AR_BUFFERS * PAGE_SIZE;
1003         }
1004
1005         p = handle_ar_packets(ctx, p, end);
1006         if (p != end) {
1007                 if (p > end)
1008                         ar_context_abort(ctx, "inconsistent descriptor");
1009                 goto error;
1010         }
1011
1012         ctx->pointer = p;
1013         ar_recycle_buffers(ctx, end_buffer_index);
1014
1015         return;
1016
1017 error:
1018         ctx->pointer = NULL;
1019 }
1020
1021 static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
1022                            unsigned int descriptors_offset, u32 regs)
1023 {
1024         struct device *dev = ohci->card.device;
1025         unsigned int i;
1026         dma_addr_t dma_addr;
1027         struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
1028         struct descriptor *d;
1029
1030         ctx->regs        = regs;
1031         ctx->ohci        = ohci;
1032         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
1033
1034         for (i = 0; i < AR_BUFFERS; i++) {
1035                 ctx->pages[i] = dma_alloc_pages(dev, PAGE_SIZE, &dma_addr,
1036                                                 DMA_FROM_DEVICE, GFP_KERNEL);
1037                 if (!ctx->pages[i])
1038                         goto out_of_memory;
1039                 set_page_private(ctx->pages[i], dma_addr);
1040                 dma_sync_single_for_device(dev, dma_addr, PAGE_SIZE,
1041                                            DMA_FROM_DEVICE);
1042         }
1043
1044         for (i = 0; i < AR_BUFFERS; i++)
1045                 pages[i]              = ctx->pages[i];
1046         for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
1047                 pages[AR_BUFFERS + i] = ctx->pages[i];
1048         ctx->buffer = vmap(pages, ARRAY_SIZE(pages), VM_MAP, PAGE_KERNEL);
1049         if (!ctx->buffer)
1050                 goto out_of_memory;
1051
1052         ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
1053         ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1054
1055         for (i = 0; i < AR_BUFFERS; i++) {
1056                 d = &ctx->descriptors[i];
1057                 d->req_count      = cpu_to_le16(PAGE_SIZE);
1058                 d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1059                                                 DESCRIPTOR_STATUS |
1060                                                 DESCRIPTOR_BRANCH_ALWAYS);
1061                 d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
1062                 d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1063                         ar_next_buffer_index(i) * sizeof(struct descriptor));
1064         }
1065
1066         return 0;
1067
1068 out_of_memory:
1069         ar_context_release(ctx);
1070
1071         return -ENOMEM;
1072 }
1073
1074 static void ar_context_run(struct ar_context *ctx)
1075 {
1076         unsigned int i;
1077
1078         for (i = 0; i < AR_BUFFERS; i++)
1079                 ar_context_link_page(ctx, i);
1080
1081         ctx->pointer = ctx->buffer;
1082
1083         reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1084         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1085 }
1086
1087 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1088 {
1089         __le16 branch;
1090
1091         branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1092
1093         /* figure out which descriptor the branch address goes in */
1094         if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1095                 return d;
1096         else
1097                 return d + z - 1;
1098 }
1099
1100 static void context_tasklet(unsigned long data)
1101 {
1102         struct context *ctx = (struct context *) data;
1103         struct descriptor *d, *last;
1104         u32 address;
1105         int z;
1106         struct descriptor_buffer *desc;
1107
1108         desc = list_entry(ctx->buffer_list.next,
1109                         struct descriptor_buffer, list);
1110         last = ctx->last;
1111         while (last->branch_address != 0) {
1112                 struct descriptor_buffer *old_desc = desc;
1113                 address = le32_to_cpu(last->branch_address);
1114                 z = address & 0xf;
1115                 address &= ~0xf;
1116                 ctx->current_bus = address;
1117
1118                 /* If the branch address points to a buffer outside of the
1119                  * current buffer, advance to the next buffer. */
1120                 if (address < desc->buffer_bus ||
1121                                 address >= desc->buffer_bus + desc->used)
1122                         desc = list_entry(desc->list.next,
1123                                         struct descriptor_buffer, list);
1124                 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1125                 last = find_branch_descriptor(d, z);
1126
1127                 if (!ctx->callback(ctx, d, last))
1128                         break;
1129
1130                 if (old_desc != desc) {
1131                         /* If we've advanced to the next buffer, move the
1132                          * previous buffer to the free list. */
1133                         unsigned long flags;
1134                         old_desc->used = 0;
1135                         spin_lock_irqsave(&ctx->ohci->lock, flags);
1136                         list_move_tail(&old_desc->list, &ctx->buffer_list);
1137                         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1138                 }
1139                 ctx->last = last;
1140         }
1141 }
1142
1143 /*
1144  * Allocate a new buffer and add it to the list of free buffers for this
1145  * context.  Must be called with ohci->lock held.
1146  */
1147 static int context_add_buffer(struct context *ctx)
1148 {
1149         struct descriptor_buffer *desc;
1150         dma_addr_t bus_addr;
1151         int offset;
1152
1153         /*
1154          * 16MB of descriptors should be far more than enough for any DMA
1155          * program.  This will catch run-away userspace or DoS attacks.
1156          */
1157         if (ctx->total_allocation >= 16*1024*1024)
1158                 return -ENOMEM;
1159
1160         desc = dmam_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE, &bus_addr, GFP_ATOMIC);
1161         if (!desc)
1162                 return -ENOMEM;
1163
1164         offset = (void *)&desc->buffer - (void *)desc;
1165         /*
1166          * Some controllers, like JMicron ones, always issue 0x20-byte DMA reads
1167          * for descriptors, even 0x10-byte ones. This can cause page faults when
1168          * an IOMMU is in use and the oversized read crosses a page boundary.
1169          * Work around this by always leaving at least 0x10 bytes of padding.
1170          */
1171         desc->buffer_size = PAGE_SIZE - offset - 0x10;
1172         desc->buffer_bus = bus_addr + offset;
1173         desc->used = 0;
1174
1175         list_add_tail(&desc->list, &ctx->buffer_list);
1176         ctx->total_allocation += PAGE_SIZE;
1177
1178         return 0;
1179 }
1180
1181 static int context_init(struct context *ctx, struct fw_ohci *ohci,
1182                         u32 regs, descriptor_callback_t callback)
1183 {
1184         ctx->ohci = ohci;
1185         ctx->regs = regs;
1186         ctx->total_allocation = 0;
1187
1188         INIT_LIST_HEAD(&ctx->buffer_list);
1189         if (context_add_buffer(ctx) < 0)
1190                 return -ENOMEM;
1191
1192         ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1193                         struct descriptor_buffer, list);
1194
1195         tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1196         ctx->callback = callback;
1197
1198         /*
1199          * We put a dummy descriptor in the buffer that has a NULL
1200          * branch address and looks like it's been sent.  That way we
1201          * have a descriptor to append DMA programs to.
1202          */
1203         memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1204         ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1205         ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1206         ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1207         ctx->last = ctx->buffer_tail->buffer;
1208         ctx->prev = ctx->buffer_tail->buffer;
1209         ctx->prev_z = 1;
1210
1211         return 0;
1212 }
1213
1214 static void context_release(struct context *ctx)
1215 {
1216         struct fw_card *card = &ctx->ohci->card;
1217         struct descriptor_buffer *desc, *tmp;
1218
1219         list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list) {
1220                 dmam_free_coherent(card->device, PAGE_SIZE, desc,
1221                                    desc->buffer_bus - ((void *)&desc->buffer - (void *)desc));
1222         }
1223 }
1224
1225 /* Must be called with ohci->lock held */
1226 static struct descriptor *context_get_descriptors(struct context *ctx,
1227                                                   int z, dma_addr_t *d_bus)
1228 {
1229         struct descriptor *d = NULL;
1230         struct descriptor_buffer *desc = ctx->buffer_tail;
1231
1232         if (z * sizeof(*d) > desc->buffer_size)
1233                 return NULL;
1234
1235         if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1236                 /* No room for the descriptor in this buffer, so advance to the
1237                  * next one. */
1238
1239                 if (desc->list.next == &ctx->buffer_list) {
1240                         /* If there is no free buffer next in the list,
1241                          * allocate one. */
1242                         if (context_add_buffer(ctx) < 0)
1243                                 return NULL;
1244                 }
1245                 desc = list_entry(desc->list.next,
1246                                 struct descriptor_buffer, list);
1247                 ctx->buffer_tail = desc;
1248         }
1249
1250         d = desc->buffer + desc->used / sizeof(*d);
1251         memset(d, 0, z * sizeof(*d));
1252         *d_bus = desc->buffer_bus + desc->used;
1253
1254         return d;
1255 }
1256
1257 static void context_run(struct context *ctx, u32 extra)
1258 {
1259         struct fw_ohci *ohci = ctx->ohci;
1260
1261         reg_write(ohci, COMMAND_PTR(ctx->regs),
1262                   le32_to_cpu(ctx->last->branch_address));
1263         reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1264         reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1265         ctx->running = true;
1266         flush_writes(ohci);
1267 }
1268
1269 static void context_append(struct context *ctx,
1270                            struct descriptor *d, int z, int extra)
1271 {
1272         dma_addr_t d_bus;
1273         struct descriptor_buffer *desc = ctx->buffer_tail;
1274         struct descriptor *d_branch;
1275
1276         d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1277
1278         desc->used += (z + extra) * sizeof(*d);
1279
1280         wmb(); /* finish init of new descriptors before branch_address update */
1281
1282         d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z);
1283         d_branch->branch_address = cpu_to_le32(d_bus | z);
1284
1285         /*
1286          * VT6306 incorrectly checks only the single descriptor at the
1287          * CommandPtr when the wake bit is written, so if it's a
1288          * multi-descriptor block starting with an INPUT_MORE, put a copy of
1289          * the branch address in the first descriptor.
1290          *
1291          * Not doing this for transmit contexts since not sure how it interacts
1292          * with skip addresses.
1293          */
1294         if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) &&
1295             d_branch != ctx->prev &&
1296             (ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) ==
1297              cpu_to_le16(DESCRIPTOR_INPUT_MORE)) {
1298                 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1299         }
1300
1301         ctx->prev = d;
1302         ctx->prev_z = z;
1303 }
1304
1305 static void context_stop(struct context *ctx)
1306 {
1307         struct fw_ohci *ohci = ctx->ohci;
1308         u32 reg;
1309         int i;
1310
1311         reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1312         ctx->running = false;
1313
1314         for (i = 0; i < 1000; i++) {
1315                 reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1316                 if ((reg & CONTEXT_ACTIVE) == 0)
1317                         return;
1318
1319                 if (i)
1320                         udelay(10);
1321         }
1322         ohci_err(ohci, "DMA context still active (0x%08x)\n", reg);
1323 }
1324
1325 struct driver_data {
1326         u8 inline_data[8];
1327         struct fw_packet *packet;
1328 };
1329
1330 /*
1331  * This function apppends a packet to the DMA queue for transmission.
1332  * Must always be called with the ochi->lock held to ensure proper
1333  * generation handling and locking around packet queue manipulation.
1334  */
1335 static int at_context_queue_packet(struct context *ctx,
1336                                    struct fw_packet *packet)
1337 {
1338         struct fw_ohci *ohci = ctx->ohci;
1339         dma_addr_t d_bus, payload_bus;
1340         struct driver_data *driver_data;
1341         struct descriptor *d, *last;
1342         __le32 *header;
1343         int z, tcode;
1344
1345         d = context_get_descriptors(ctx, 4, &d_bus);
1346         if (d == NULL) {
1347                 packet->ack = RCODE_SEND_ERROR;
1348                 return -1;
1349         }
1350
1351         d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1352         d[0].res_count = cpu_to_le16(packet->timestamp);
1353
1354         /*
1355          * The DMA format for asynchronous link packets is different
1356          * from the IEEE1394 layout, so shift the fields around
1357          * accordingly.
1358          */
1359
1360         tcode = async_header_get_tcode(packet->header);
1361         header = (__le32 *) &d[1];
1362         switch (tcode) {
1363         case TCODE_WRITE_QUADLET_REQUEST:
1364         case TCODE_WRITE_BLOCK_REQUEST:
1365         case TCODE_WRITE_RESPONSE:
1366         case TCODE_READ_QUADLET_REQUEST:
1367         case TCODE_READ_BLOCK_REQUEST:
1368         case TCODE_READ_QUADLET_RESPONSE:
1369         case TCODE_READ_BLOCK_RESPONSE:
1370         case TCODE_LOCK_REQUEST:
1371         case TCODE_LOCK_RESPONSE:
1372                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1373                                         (packet->speed << 16));
1374                 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1375                                         (packet->header[0] & 0xffff0000));
1376                 header[2] = cpu_to_le32(packet->header[2]);
1377
1378                 if (tcode_is_block_packet(tcode))
1379                         header[3] = cpu_to_le32(packet->header[3]);
1380                 else
1381                         header[3] = (__force __le32) packet->header[3];
1382
1383                 d[0].req_count = cpu_to_le16(packet->header_length);
1384                 break;
1385
1386         case TCODE_LINK_INTERNAL:
1387                 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1388                                         (packet->speed << 16));
1389                 header[1] = cpu_to_le32(packet->header[1]);
1390                 header[2] = cpu_to_le32(packet->header[2]);
1391                 d[0].req_count = cpu_to_le16(12);
1392
1393                 if (is_ping_packet(&packet->header[1]))
1394                         d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1395                 break;
1396
1397         case TCODE_STREAM_DATA:
1398                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1399                                         (packet->speed << 16));
1400                 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1401                 d[0].req_count = cpu_to_le16(8);
1402                 break;
1403
1404         default:
1405                 /* BUG(); */
1406                 packet->ack = RCODE_SEND_ERROR;
1407                 return -1;
1408         }
1409
1410         BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1411         driver_data = (struct driver_data *) &d[3];
1412         driver_data->packet = packet;
1413         packet->driver_data = driver_data;
1414
1415         if (packet->payload_length > 0) {
1416                 if (packet->payload_length > sizeof(driver_data->inline_data)) {
1417                         payload_bus = dma_map_single(ohci->card.device,
1418                                                      packet->payload,
1419                                                      packet->payload_length,
1420                                                      DMA_TO_DEVICE);
1421                         if (dma_mapping_error(ohci->card.device, payload_bus)) {
1422                                 packet->ack = RCODE_SEND_ERROR;
1423                                 return -1;
1424                         }
1425                         packet->payload_bus     = payload_bus;
1426                         packet->payload_mapped  = true;
1427                 } else {
1428                         memcpy(driver_data->inline_data, packet->payload,
1429                                packet->payload_length);
1430                         payload_bus = d_bus + 3 * sizeof(*d);
1431                 }
1432
1433                 d[2].req_count    = cpu_to_le16(packet->payload_length);
1434                 d[2].data_address = cpu_to_le32(payload_bus);
1435                 last = &d[2];
1436                 z = 3;
1437         } else {
1438                 last = &d[0];
1439                 z = 2;
1440         }
1441
1442         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1443                                      DESCRIPTOR_IRQ_ALWAYS |
1444                                      DESCRIPTOR_BRANCH_ALWAYS);
1445
1446         /* FIXME: Document how the locking works. */
1447         if (ohci->generation != packet->generation) {
1448                 if (packet->payload_mapped)
1449                         dma_unmap_single(ohci->card.device, payload_bus,
1450                                          packet->payload_length, DMA_TO_DEVICE);
1451                 packet->ack = RCODE_GENERATION;
1452                 return -1;
1453         }
1454
1455         context_append(ctx, d, z, 4 - z);
1456
1457         if (ctx->running)
1458                 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1459         else
1460                 context_run(ctx, 0);
1461
1462         return 0;
1463 }
1464
1465 static void at_context_flush(struct context *ctx)
1466 {
1467         tasklet_disable(&ctx->tasklet);
1468
1469         ctx->flushing = true;
1470         context_tasklet((unsigned long)ctx);
1471         ctx->flushing = false;
1472
1473         tasklet_enable(&ctx->tasklet);
1474 }
1475
1476 static int handle_at_packet(struct context *context,
1477                             struct descriptor *d,
1478                             struct descriptor *last)
1479 {
1480         struct driver_data *driver_data;
1481         struct fw_packet *packet;
1482         struct fw_ohci *ohci = context->ohci;
1483         int evt;
1484
1485         if (last->transfer_status == 0 && !context->flushing)
1486                 /* This descriptor isn't done yet, stop iteration. */
1487                 return 0;
1488
1489         driver_data = (struct driver_data *) &d[3];
1490         packet = driver_data->packet;
1491         if (packet == NULL)
1492                 /* This packet was cancelled, just continue. */
1493                 return 1;
1494
1495         if (packet->payload_mapped)
1496                 dma_unmap_single(ohci->card.device, packet->payload_bus,
1497                                  packet->payload_length, DMA_TO_DEVICE);
1498
1499         evt = le16_to_cpu(last->transfer_status) & 0x1f;
1500         packet->timestamp = le16_to_cpu(last->res_count);
1501
1502         log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1503
1504         switch (evt) {
1505         case OHCI1394_evt_timeout:
1506                 /* Async response transmit timed out. */
1507                 packet->ack = RCODE_CANCELLED;
1508                 break;
1509
1510         case OHCI1394_evt_flushed:
1511                 /*
1512                  * The packet was flushed should give same error as
1513                  * when we try to use a stale generation count.
1514                  */
1515                 packet->ack = RCODE_GENERATION;
1516                 break;
1517
1518         case OHCI1394_evt_missing_ack:
1519                 if (context->flushing)
1520                         packet->ack = RCODE_GENERATION;
1521                 else {
1522                         /*
1523                          * Using a valid (current) generation count, but the
1524                          * node is not on the bus or not sending acks.
1525                          */
1526                         packet->ack = RCODE_NO_ACK;
1527                 }
1528                 break;
1529
1530         case ACK_COMPLETE + 0x10:
1531         case ACK_PENDING + 0x10:
1532         case ACK_BUSY_X + 0x10:
1533         case ACK_BUSY_A + 0x10:
1534         case ACK_BUSY_B + 0x10:
1535         case ACK_DATA_ERROR + 0x10:
1536         case ACK_TYPE_ERROR + 0x10:
1537                 packet->ack = evt - 0x10;
1538                 break;
1539
1540         case OHCI1394_evt_no_status:
1541                 if (context->flushing) {
1542                         packet->ack = RCODE_GENERATION;
1543                         break;
1544                 }
1545                 fallthrough;
1546
1547         default:
1548                 packet->ack = RCODE_SEND_ERROR;
1549                 break;
1550         }
1551
1552         packet->callback(packet, &ohci->card, packet->ack);
1553
1554         return 1;
1555 }
1556
1557 static u32 get_cycle_time(struct fw_ohci *ohci);
1558
1559 static void handle_local_rom(struct fw_ohci *ohci,
1560                              struct fw_packet *packet, u32 csr)
1561 {
1562         struct fw_packet response;
1563         int tcode, length, i;
1564
1565         tcode = async_header_get_tcode(packet->header);
1566         if (tcode_is_block_packet(tcode))
1567                 length = async_header_get_data_length(packet->header);
1568         else
1569                 length = 4;
1570
1571         i = csr - CSR_CONFIG_ROM;
1572         if (i + length > CONFIG_ROM_SIZE) {
1573                 fw_fill_response(&response, packet->header,
1574                                  RCODE_ADDRESS_ERROR, NULL, 0);
1575         } else if (!tcode_is_read_request(tcode)) {
1576                 fw_fill_response(&response, packet->header,
1577                                  RCODE_TYPE_ERROR, NULL, 0);
1578         } else {
1579                 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1580                                  (void *) ohci->config_rom + i, length);
1581         }
1582
1583         // Timestamping on behalf of the hardware.
1584         response.timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
1585         fw_core_handle_response(&ohci->card, &response);
1586 }
1587
1588 static void handle_local_lock(struct fw_ohci *ohci,
1589                               struct fw_packet *packet, u32 csr)
1590 {
1591         struct fw_packet response;
1592         int tcode, length, ext_tcode, sel, try;
1593         __be32 *payload, lock_old;
1594         u32 lock_arg, lock_data;
1595
1596         tcode = async_header_get_tcode(packet->header);
1597         length = async_header_get_data_length(packet->header);
1598         payload = packet->payload;
1599         ext_tcode = async_header_get_extended_tcode(packet->header);
1600
1601         if (tcode == TCODE_LOCK_REQUEST &&
1602             ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1603                 lock_arg = be32_to_cpu(payload[0]);
1604                 lock_data = be32_to_cpu(payload[1]);
1605         } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1606                 lock_arg = 0;
1607                 lock_data = 0;
1608         } else {
1609                 fw_fill_response(&response, packet->header,
1610                                  RCODE_TYPE_ERROR, NULL, 0);
1611                 goto out;
1612         }
1613
1614         sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1615         reg_write(ohci, OHCI1394_CSRData, lock_data);
1616         reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1617         reg_write(ohci, OHCI1394_CSRControl, sel);
1618
1619         for (try = 0; try < 20; try++)
1620                 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1621                         lock_old = cpu_to_be32(reg_read(ohci,
1622                                                         OHCI1394_CSRData));
1623                         fw_fill_response(&response, packet->header,
1624                                          RCODE_COMPLETE,
1625                                          &lock_old, sizeof(lock_old));
1626                         goto out;
1627                 }
1628
1629         ohci_err(ohci, "swap not done (CSR lock timeout)\n");
1630         fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1631
1632  out:
1633         // Timestamping on behalf of the hardware.
1634         response.timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
1635         fw_core_handle_response(&ohci->card, &response);
1636 }
1637
1638 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1639 {
1640         u64 offset, csr;
1641
1642         if (ctx == &ctx->ohci->at_request_ctx) {
1643                 packet->ack = ACK_PENDING;
1644                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1645         }
1646
1647         offset = async_header_get_offset(packet->header);
1648         csr = offset - CSR_REGISTER_BASE;
1649
1650         /* Handle config rom reads. */
1651         if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1652                 handle_local_rom(ctx->ohci, packet, csr);
1653         else switch (csr) {
1654         case CSR_BUS_MANAGER_ID:
1655         case CSR_BANDWIDTH_AVAILABLE:
1656         case CSR_CHANNELS_AVAILABLE_HI:
1657         case CSR_CHANNELS_AVAILABLE_LO:
1658                 handle_local_lock(ctx->ohci, packet, csr);
1659                 break;
1660         default:
1661                 if (ctx == &ctx->ohci->at_request_ctx)
1662                         fw_core_handle_request(&ctx->ohci->card, packet);
1663                 else
1664                         fw_core_handle_response(&ctx->ohci->card, packet);
1665                 break;
1666         }
1667
1668         if (ctx == &ctx->ohci->at_response_ctx) {
1669                 packet->ack = ACK_COMPLETE;
1670                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1671         }
1672 }
1673
1674 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1675 {
1676         unsigned long flags;
1677         int ret;
1678
1679         spin_lock_irqsave(&ctx->ohci->lock, flags);
1680
1681         if (async_header_get_destination(packet->header) == ctx->ohci->node_id &&
1682             ctx->ohci->generation == packet->generation) {
1683                 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1684
1685                 // Timestamping on behalf of the hardware.
1686                 packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ctx->ohci));
1687
1688                 handle_local_request(ctx, packet);
1689                 return;
1690         }
1691
1692         ret = at_context_queue_packet(ctx, packet);
1693         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1694
1695         if (ret < 0) {
1696                 // Timestamping on behalf of the hardware.
1697                 packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ctx->ohci));
1698
1699                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1700         }
1701 }
1702
1703 static void detect_dead_context(struct fw_ohci *ohci,
1704                                 const char *name, unsigned int regs)
1705 {
1706         u32 ctl;
1707
1708         ctl = reg_read(ohci, CONTROL_SET(regs));
1709         if (ctl & CONTEXT_DEAD)
1710                 ohci_err(ohci, "DMA context %s has stopped, error code: %s\n",
1711                         name, evts[ctl & 0x1f]);
1712 }
1713
1714 static void handle_dead_contexts(struct fw_ohci *ohci)
1715 {
1716         unsigned int i;
1717         char name[8];
1718
1719         detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1720         detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1721         detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1722         detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1723         for (i = 0; i < 32; ++i) {
1724                 if (!(ohci->it_context_support & (1 << i)))
1725                         continue;
1726                 sprintf(name, "IT%u", i);
1727                 detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1728         }
1729         for (i = 0; i < 32; ++i) {
1730                 if (!(ohci->ir_context_support & (1 << i)))
1731                         continue;
1732                 sprintf(name, "IR%u", i);
1733                 detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1734         }
1735         /* TODO: maybe try to flush and restart the dead contexts */
1736 }
1737
1738 static u32 cycle_timer_ticks(u32 cycle_timer)
1739 {
1740         u32 ticks;
1741
1742         ticks = cycle_timer & 0xfff;
1743         ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1744         ticks += (3072 * 8000) * (cycle_timer >> 25);
1745
1746         return ticks;
1747 }
1748
1749 /*
1750  * Some controllers exhibit one or more of the following bugs when updating the
1751  * iso cycle timer register:
1752  *  - When the lowest six bits are wrapping around to zero, a read that happens
1753  *    at the same time will return garbage in the lowest ten bits.
1754  *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1755  *    not incremented for about 60 ns.
1756  *  - Occasionally, the entire register reads zero.
1757  *
1758  * To catch these, we read the register three times and ensure that the
1759  * difference between each two consecutive reads is approximately the same, i.e.
1760  * less than twice the other.  Furthermore, any negative difference indicates an
1761  * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1762  * execute, so we have enough precision to compute the ratio of the differences.)
1763  */
1764 static u32 get_cycle_time(struct fw_ohci *ohci)
1765 {
1766         u32 c0, c1, c2;
1767         u32 t0, t1, t2;
1768         s32 diff01, diff12;
1769         int i;
1770
1771         if (has_reboot_by_cycle_timer_read_quirk(ohci))
1772                 return 0;
1773
1774         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1775
1776         if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1777                 i = 0;
1778                 c1 = c2;
1779                 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1780                 do {
1781                         c0 = c1;
1782                         c1 = c2;
1783                         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1784                         t0 = cycle_timer_ticks(c0);
1785                         t1 = cycle_timer_ticks(c1);
1786                         t2 = cycle_timer_ticks(c2);
1787                         diff01 = t1 - t0;
1788                         diff12 = t2 - t1;
1789                 } while ((diff01 <= 0 || diff12 <= 0 ||
1790                           diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1791                          && i++ < 20);
1792         }
1793
1794         return c2;
1795 }
1796
1797 /*
1798  * This function has to be called at least every 64 seconds.  The bus_time
1799  * field stores not only the upper 25 bits of the BUS_TIME register but also
1800  * the most significant bit of the cycle timer in bit 6 so that we can detect
1801  * changes in this bit.
1802  */
1803 static u32 update_bus_time(struct fw_ohci *ohci)
1804 {
1805         u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1806
1807         if (unlikely(!ohci->bus_time_running)) {
1808                 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
1809                 ohci->bus_time = (lower_32_bits(ktime_get_seconds()) & ~0x7f) |
1810                                  (cycle_time_seconds & 0x40);
1811                 ohci->bus_time_running = true;
1812         }
1813
1814         if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1815                 ohci->bus_time += 0x40;
1816
1817         return ohci->bus_time | cycle_time_seconds;
1818 }
1819
1820 static int get_status_for_port(struct fw_ohci *ohci, int port_index)
1821 {
1822         int reg;
1823
1824         mutex_lock(&ohci->phy_reg_mutex);
1825         reg = write_phy_reg(ohci, 7, port_index);
1826         if (reg >= 0)
1827                 reg = read_phy_reg(ohci, 8);
1828         mutex_unlock(&ohci->phy_reg_mutex);
1829         if (reg < 0)
1830                 return reg;
1831
1832         switch (reg & 0x0f) {
1833         case 0x06:
1834                 return 2;       /* is child node (connected to parent node) */
1835         case 0x0e:
1836                 return 3;       /* is parent node (connected to child node) */
1837         }
1838         return 1;               /* not connected */
1839 }
1840
1841 static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1842         int self_id_count)
1843 {
1844         int i;
1845         u32 entry;
1846
1847         for (i = 0; i < self_id_count; i++) {
1848                 entry = ohci->self_id_buffer[i];
1849                 if ((self_id & 0xff000000) == (entry & 0xff000000))
1850                         return -1;
1851                 if ((self_id & 0xff000000) < (entry & 0xff000000))
1852                         return i;
1853         }
1854         return i;
1855 }
1856
1857 static int initiated_reset(struct fw_ohci *ohci)
1858 {
1859         int reg;
1860         int ret = 0;
1861
1862         mutex_lock(&ohci->phy_reg_mutex);
1863         reg = write_phy_reg(ohci, 7, 0xe0); /* Select page 7 */
1864         if (reg >= 0) {
1865                 reg = read_phy_reg(ohci, 8);
1866                 reg |= 0x40;
1867                 reg = write_phy_reg(ohci, 8, reg); /* set PMODE bit */
1868                 if (reg >= 0) {
1869                         reg = read_phy_reg(ohci, 12); /* read register 12 */
1870                         if (reg >= 0) {
1871                                 if ((reg & 0x08) == 0x08) {
1872                                         /* bit 3 indicates "initiated reset" */
1873                                         ret = 0x2;
1874                                 }
1875                         }
1876                 }
1877         }
1878         mutex_unlock(&ohci->phy_reg_mutex);
1879         return ret;
1880 }
1881
1882 /*
1883  * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1884  * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1885  * Construct the selfID from phy register contents.
1886  */
1887 static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1888 {
1889         int reg, i, pos, status;
1890         /* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1891         u32 self_id = 0x8040c800;
1892
1893         reg = reg_read(ohci, OHCI1394_NodeID);
1894         if (!(reg & OHCI1394_NodeID_idValid)) {
1895                 ohci_notice(ohci,
1896                             "node ID not valid, new bus reset in progress\n");
1897                 return -EBUSY;
1898         }
1899         self_id |= ((reg & 0x3f) << 24); /* phy ID */
1900
1901         reg = ohci_read_phy_reg(&ohci->card, 4);
1902         if (reg < 0)
1903                 return reg;
1904         self_id |= ((reg & 0x07) << 8); /* power class */
1905
1906         reg = ohci_read_phy_reg(&ohci->card, 1);
1907         if (reg < 0)
1908                 return reg;
1909         self_id |= ((reg & 0x3f) << 16); /* gap count */
1910
1911         for (i = 0; i < 3; i++) {
1912                 status = get_status_for_port(ohci, i);
1913                 if (status < 0)
1914                         return status;
1915                 self_id |= ((status & 0x3) << (6 - (i * 2)));
1916         }
1917
1918         self_id |= initiated_reset(ohci);
1919
1920         pos = get_self_id_pos(ohci, self_id, self_id_count);
1921         if (pos >= 0) {
1922                 memmove(&(ohci->self_id_buffer[pos+1]),
1923                         &(ohci->self_id_buffer[pos]),
1924                         (self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1925                 ohci->self_id_buffer[pos] = self_id;
1926                 self_id_count++;
1927         }
1928         return self_id_count;
1929 }
1930
1931 static void bus_reset_work(struct work_struct *work)
1932 {
1933         struct fw_ohci *ohci =
1934                 container_of(work, struct fw_ohci, bus_reset_work);
1935         int self_id_count, generation, new_generation, i, j;
1936         u32 reg;
1937         void *free_rom = NULL;
1938         dma_addr_t free_rom_bus = 0;
1939         bool is_new_root;
1940
1941         reg = reg_read(ohci, OHCI1394_NodeID);
1942         if (!(reg & OHCI1394_NodeID_idValid)) {
1943                 ohci_notice(ohci,
1944                             "node ID not valid, new bus reset in progress\n");
1945                 return;
1946         }
1947         if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1948                 ohci_notice(ohci, "malconfigured bus\n");
1949                 return;
1950         }
1951         ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1952                                OHCI1394_NodeID_nodeNumber);
1953
1954         is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1955         if (!(ohci->is_root && is_new_root))
1956                 reg_write(ohci, OHCI1394_LinkControlSet,
1957                           OHCI1394_LinkControl_cycleMaster);
1958         ohci->is_root = is_new_root;
1959
1960         reg = reg_read(ohci, OHCI1394_SelfIDCount);
1961         if (reg & OHCI1394_SelfIDCount_selfIDError) {
1962                 ohci_notice(ohci, "self ID receive error\n");
1963                 return;
1964         }
1965         /*
1966          * The count in the SelfIDCount register is the number of
1967          * bytes in the self ID receive buffer.  Since we also receive
1968          * the inverted quadlets and a header quadlet, we shift one
1969          * bit extra to get the actual number of self IDs.
1970          */
1971         self_id_count = (reg >> 3) & 0xff;
1972
1973         if (self_id_count > 252) {
1974                 ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg);
1975                 return;
1976         }
1977
1978         generation = (cond_le32_to_cpu(ohci->self_id[0]) >> 16) & 0xff;
1979         rmb();
1980
1981         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1982                 u32 id  = cond_le32_to_cpu(ohci->self_id[i]);
1983                 u32 id2 = cond_le32_to_cpu(ohci->self_id[i + 1]);
1984
1985                 if (id != ~id2) {
1986                         /*
1987                          * If the invalid data looks like a cycle start packet,
1988                          * it's likely to be the result of the cycle master
1989                          * having a wrong gap count.  In this case, the self IDs
1990                          * so far are valid and should be processed so that the
1991                          * bus manager can then correct the gap count.
1992                          */
1993                         if (id == 0xffff008f) {
1994                                 ohci_notice(ohci, "ignoring spurious self IDs\n");
1995                                 self_id_count = j;
1996                                 break;
1997                         }
1998
1999                         ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n",
2000                                     j, self_id_count, id, id2);
2001                         return;
2002                 }
2003                 ohci->self_id_buffer[j] = id;
2004         }
2005
2006         if (ohci->quirks & QUIRK_TI_SLLZ059) {
2007                 self_id_count = find_and_insert_self_id(ohci, self_id_count);
2008                 if (self_id_count < 0) {
2009                         ohci_notice(ohci,
2010                                     "could not construct local self ID\n");
2011                         return;
2012                 }
2013         }
2014
2015         if (self_id_count == 0) {
2016                 ohci_notice(ohci, "no self IDs\n");
2017                 return;
2018         }
2019         rmb();
2020
2021         /*
2022          * Check the consistency of the self IDs we just read.  The
2023          * problem we face is that a new bus reset can start while we
2024          * read out the self IDs from the DMA buffer. If this happens,
2025          * the DMA buffer will be overwritten with new self IDs and we
2026          * will read out inconsistent data.  The OHCI specification
2027          * (section 11.2) recommends a technique similar to
2028          * linux/seqlock.h, where we remember the generation of the
2029          * self IDs in the buffer before reading them out and compare
2030          * it to the current generation after reading them out.  If
2031          * the two generations match we know we have a consistent set
2032          * of self IDs.
2033          */
2034
2035         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
2036         if (new_generation != generation) {
2037                 ohci_notice(ohci, "new bus reset, discarding self ids\n");
2038                 return;
2039         }
2040
2041         /* FIXME: Document how the locking works. */
2042         spin_lock_irq(&ohci->lock);
2043
2044         ohci->generation = -1; /* prevent AT packet queueing */
2045         context_stop(&ohci->at_request_ctx);
2046         context_stop(&ohci->at_response_ctx);
2047
2048         spin_unlock_irq(&ohci->lock);
2049
2050         /*
2051          * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
2052          * packets in the AT queues and software needs to drain them.
2053          * Some OHCI 1.1 controllers (JMicron) apparently require this too.
2054          */
2055         at_context_flush(&ohci->at_request_ctx);
2056         at_context_flush(&ohci->at_response_ctx);
2057
2058         spin_lock_irq(&ohci->lock);
2059
2060         ohci->generation = generation;
2061         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2062         reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
2063
2064         if (ohci->quirks & QUIRK_RESET_PACKET)
2065                 ohci->request_generation = generation;
2066
2067         /*
2068          * This next bit is unrelated to the AT context stuff but we
2069          * have to do it under the spinlock also.  If a new config rom
2070          * was set up before this reset, the old one is now no longer
2071          * in use and we can free it. Update the config rom pointers
2072          * to point to the current config rom and clear the
2073          * next_config_rom pointer so a new update can take place.
2074          */
2075
2076         if (ohci->next_config_rom != NULL) {
2077                 if (ohci->next_config_rom != ohci->config_rom) {
2078                         free_rom      = ohci->config_rom;
2079                         free_rom_bus  = ohci->config_rom_bus;
2080                 }
2081                 ohci->config_rom      = ohci->next_config_rom;
2082                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
2083                 ohci->next_config_rom = NULL;
2084
2085                 /*
2086                  * Restore config_rom image and manually update
2087                  * config_rom registers.  Writing the header quadlet
2088                  * will indicate that the config rom is ready, so we
2089                  * do that last.
2090                  */
2091                 reg_write(ohci, OHCI1394_BusOptions,
2092                           be32_to_cpu(ohci->config_rom[2]));
2093                 ohci->config_rom[0] = ohci->next_header;
2094                 reg_write(ohci, OHCI1394_ConfigROMhdr,
2095                           be32_to_cpu(ohci->next_header));
2096         }
2097
2098         if (param_remote_dma) {
2099                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
2100                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
2101         }
2102
2103         spin_unlock_irq(&ohci->lock);
2104
2105         if (free_rom)
2106                 dmam_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, free_rom, free_rom_bus);
2107
2108         log_selfids(ohci, generation, self_id_count);
2109
2110         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2111                                  self_id_count, ohci->self_id_buffer,
2112                                  ohci->csr_state_setclear_abdicate);
2113         ohci->csr_state_setclear_abdicate = false;
2114 }
2115
2116 static irqreturn_t irq_handler(int irq, void *data)
2117 {
2118         struct fw_ohci *ohci = data;
2119         u32 event, iso_event;
2120         int i;
2121
2122         event = reg_read(ohci, OHCI1394_IntEventClear);
2123
2124         if (!event || !~event)
2125                 return IRQ_NONE;
2126
2127         /*
2128          * busReset and postedWriteErr events must not be cleared yet
2129          * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2130          */
2131         reg_write(ohci, OHCI1394_IntEventClear,
2132                   event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2133         log_irqs(ohci, event);
2134         // The flag is masked again at bus_reset_work() scheduled by selfID event.
2135         if (event & OHCI1394_busReset)
2136                 reg_write(ohci, OHCI1394_IntMaskClear, OHCI1394_busReset);
2137
2138         if (event & OHCI1394_selfIDComplete)
2139                 queue_work(selfid_workqueue, &ohci->bus_reset_work);
2140
2141         if (event & OHCI1394_RQPkt)
2142                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2143
2144         if (event & OHCI1394_RSPkt)
2145                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2146
2147         if (event & OHCI1394_reqTxComplete)
2148                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
2149
2150         if (event & OHCI1394_respTxComplete)
2151                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
2152
2153         if (event & OHCI1394_isochRx) {
2154                 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2155                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2156
2157                 while (iso_event) {
2158                         i = ffs(iso_event) - 1;
2159                         tasklet_schedule(
2160                                 &ohci->ir_context_list[i].context.tasklet);
2161                         iso_event &= ~(1 << i);
2162                 }
2163         }
2164
2165         if (event & OHCI1394_isochTx) {
2166                 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2167                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2168
2169                 while (iso_event) {
2170                         i = ffs(iso_event) - 1;
2171                         tasklet_schedule(
2172                                 &ohci->it_context_list[i].context.tasklet);
2173                         iso_event &= ~(1 << i);
2174                 }
2175         }
2176
2177         if (unlikely(event & OHCI1394_regAccessFail))
2178                 ohci_err(ohci, "register access failure\n");
2179
2180         if (unlikely(event & OHCI1394_postedWriteErr)) {
2181                 reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2182                 reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2183                 reg_write(ohci, OHCI1394_IntEventClear,
2184                           OHCI1394_postedWriteErr);
2185                 if (printk_ratelimit())
2186                         ohci_err(ohci, "PCI posted write error\n");
2187         }
2188
2189         if (unlikely(event & OHCI1394_cycleTooLong)) {
2190                 if (printk_ratelimit())
2191                         ohci_notice(ohci, "isochronous cycle too long\n");
2192                 reg_write(ohci, OHCI1394_LinkControlSet,
2193                           OHCI1394_LinkControl_cycleMaster);
2194         }
2195
2196         if (unlikely(event & OHCI1394_cycleInconsistent)) {
2197                 /*
2198                  * We need to clear this event bit in order to make
2199                  * cycleMatch isochronous I/O work.  In theory we should
2200                  * stop active cycleMatch iso contexts now and restart
2201                  * them at least two cycles later.  (FIXME?)
2202                  */
2203                 if (printk_ratelimit())
2204                         ohci_notice(ohci, "isochronous cycle inconsistent\n");
2205         }
2206
2207         if (unlikely(event & OHCI1394_unrecoverableError))
2208                 handle_dead_contexts(ohci);
2209
2210         if (event & OHCI1394_cycle64Seconds) {
2211                 spin_lock(&ohci->lock);
2212                 update_bus_time(ohci);
2213                 spin_unlock(&ohci->lock);
2214         } else
2215                 flush_writes(ohci);
2216
2217         return IRQ_HANDLED;
2218 }
2219
2220 static int software_reset(struct fw_ohci *ohci)
2221 {
2222         u32 val;
2223         int i;
2224
2225         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2226         for (i = 0; i < 500; i++) {
2227                 val = reg_read(ohci, OHCI1394_HCControlSet);
2228                 if (!~val)
2229                         return -ENODEV; /* Card was ejected. */
2230
2231                 if (!(val & OHCI1394_HCControl_softReset))
2232                         return 0;
2233
2234                 msleep(1);
2235         }
2236
2237         return -EBUSY;
2238 }
2239
2240 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2241 {
2242         size_t size = length * 4;
2243
2244         memcpy(dest, src, size);
2245         if (size < CONFIG_ROM_SIZE)
2246                 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2247 }
2248
2249 static int configure_1394a_enhancements(struct fw_ohci *ohci)
2250 {
2251         bool enable_1394a;
2252         int ret, clear, set, offset;
2253
2254         /* Check if the driver should configure link and PHY. */
2255         if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2256               OHCI1394_HCControl_programPhyEnable))
2257                 return 0;
2258
2259         /* Paranoia: check whether the PHY supports 1394a, too. */
2260         enable_1394a = false;
2261         ret = read_phy_reg(ohci, 2);
2262         if (ret < 0)
2263                 return ret;
2264         if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2265                 ret = read_paged_phy_reg(ohci, 1, 8);
2266                 if (ret < 0)
2267                         return ret;
2268                 if (ret >= 1)
2269                         enable_1394a = true;
2270         }
2271
2272         if (ohci->quirks & QUIRK_NO_1394A)
2273                 enable_1394a = false;
2274
2275         /* Configure PHY and link consistently. */
2276         if (enable_1394a) {
2277                 clear = 0;
2278                 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2279         } else {
2280                 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2281                 set = 0;
2282         }
2283         ret = update_phy_reg(ohci, 5, clear, set);
2284         if (ret < 0)
2285                 return ret;
2286
2287         if (enable_1394a)
2288                 offset = OHCI1394_HCControlSet;
2289         else
2290                 offset = OHCI1394_HCControlClear;
2291         reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2292
2293         /* Clean up: configuration has been taken care of. */
2294         reg_write(ohci, OHCI1394_HCControlClear,
2295                   OHCI1394_HCControl_programPhyEnable);
2296
2297         return 0;
2298 }
2299
2300 static int probe_tsb41ba3d(struct fw_ohci *ohci)
2301 {
2302         /* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2303         static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2304         int reg, i;
2305
2306         reg = read_phy_reg(ohci, 2);
2307         if (reg < 0)
2308                 return reg;
2309         if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2310                 return 0;
2311
2312         for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2313                 reg = read_paged_phy_reg(ohci, 1, i + 10);
2314                 if (reg < 0)
2315                         return reg;
2316                 if (reg != id[i])
2317                         return 0;
2318         }
2319         return 1;
2320 }
2321
2322 static int ohci_enable(struct fw_card *card,
2323                        const __be32 *config_rom, size_t length)
2324 {
2325         struct fw_ohci *ohci = fw_ohci(card);
2326         u32 lps, version, irqs;
2327         int i, ret;
2328
2329         ret = software_reset(ohci);
2330         if (ret < 0) {
2331                 ohci_err(ohci, "failed to reset ohci card\n");
2332                 return ret;
2333         }
2334
2335         /*
2336          * Now enable LPS, which we need in order to start accessing
2337          * most of the registers.  In fact, on some cards (ALI M5251),
2338          * accessing registers in the SClk domain without LPS enabled
2339          * will lock up the machine.  Wait 50msec to make sure we have
2340          * full link enabled.  However, with some cards (well, at least
2341          * a JMicron PCIe card), we have to try again sometimes.
2342          *
2343          * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2344          * cannot actually use the phy at that time.  These need tens of
2345          * millisecods pause between LPS write and first phy access too.
2346          */
2347
2348         reg_write(ohci, OHCI1394_HCControlSet,
2349                   OHCI1394_HCControl_LPS |
2350                   OHCI1394_HCControl_postedWriteEnable);
2351         flush_writes(ohci);
2352
2353         for (lps = 0, i = 0; !lps && i < 3; i++) {
2354                 msleep(50);
2355                 lps = reg_read(ohci, OHCI1394_HCControlSet) &
2356                       OHCI1394_HCControl_LPS;
2357         }
2358
2359         if (!lps) {
2360                 ohci_err(ohci, "failed to set Link Power Status\n");
2361                 return -EIO;
2362         }
2363
2364         if (ohci->quirks & QUIRK_TI_SLLZ059) {
2365                 ret = probe_tsb41ba3d(ohci);
2366                 if (ret < 0)
2367                         return ret;
2368                 if (ret)
2369                         ohci_notice(ohci, "local TSB41BA3D phy\n");
2370                 else
2371                         ohci->quirks &= ~QUIRK_TI_SLLZ059;
2372         }
2373
2374         reg_write(ohci, OHCI1394_HCControlClear,
2375                   OHCI1394_HCControl_noByteSwapData);
2376
2377         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2378         reg_write(ohci, OHCI1394_LinkControlSet,
2379                   OHCI1394_LinkControl_cycleTimerEnable |
2380                   OHCI1394_LinkControl_cycleMaster);
2381
2382         reg_write(ohci, OHCI1394_ATRetries,
2383                   OHCI1394_MAX_AT_REQ_RETRIES |
2384                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2385                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2386                   (200 << 16));
2387
2388         ohci->bus_time_running = false;
2389
2390         for (i = 0; i < 32; i++)
2391                 if (ohci->ir_context_support & (1 << i))
2392                         reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
2393                                   IR_CONTEXT_MULTI_CHANNEL_MODE);
2394
2395         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2396         if (version >= OHCI_VERSION_1_1) {
2397                 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2398                           0xfffffffe);
2399                 card->broadcast_channel_auto_allocated = true;
2400         }
2401
2402         /* Get implemented bits of the priority arbitration request counter. */
2403         reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2404         ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2405         reg_write(ohci, OHCI1394_FairnessControl, 0);
2406         card->priority_budget_implemented = ohci->pri_req_max != 0;
2407
2408         reg_write(ohci, OHCI1394_PhyUpperBound, FW_MAX_PHYSICAL_RANGE >> 16);
2409         reg_write(ohci, OHCI1394_IntEventClear, ~0);
2410         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2411
2412         ret = configure_1394a_enhancements(ohci);
2413         if (ret < 0)
2414                 return ret;
2415
2416         /* Activate link_on bit and contender bit in our self ID packets.*/
2417         ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2418         if (ret < 0)
2419                 return ret;
2420
2421         /*
2422          * When the link is not yet enabled, the atomic config rom
2423          * update mechanism described below in ohci_set_config_rom()
2424          * is not active.  We have to update ConfigRomHeader and
2425          * BusOptions manually, and the write to ConfigROMmap takes
2426          * effect immediately.  We tie this to the enabling of the
2427          * link, so we have a valid config rom before enabling - the
2428          * OHCI requires that ConfigROMhdr and BusOptions have valid
2429          * values before enabling.
2430          *
2431          * However, when the ConfigROMmap is written, some controllers
2432          * always read back quadlets 0 and 2 from the config rom to
2433          * the ConfigRomHeader and BusOptions registers on bus reset.
2434          * They shouldn't do that in this initial case where the link
2435          * isn't enabled.  This means we have to use the same
2436          * workaround here, setting the bus header to 0 and then write
2437          * the right values in the bus reset tasklet.
2438          */
2439
2440         if (config_rom) {
2441                 ohci->next_config_rom = dmam_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2442                                                             &ohci->next_config_rom_bus, GFP_KERNEL);
2443                 if (ohci->next_config_rom == NULL)
2444                         return -ENOMEM;
2445
2446                 copy_config_rom(ohci->next_config_rom, config_rom, length);
2447         } else {
2448                 /*
2449                  * In the suspend case, config_rom is NULL, which
2450                  * means that we just reuse the old config rom.
2451                  */
2452                 ohci->next_config_rom = ohci->config_rom;
2453                 ohci->next_config_rom_bus = ohci->config_rom_bus;
2454         }
2455
2456         ohci->next_header = ohci->next_config_rom[0];
2457         ohci->next_config_rom[0] = 0;
2458         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2459         reg_write(ohci, OHCI1394_BusOptions,
2460                   be32_to_cpu(ohci->next_config_rom[2]));
2461         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2462
2463         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2464
2465         irqs =  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2466                 OHCI1394_RQPkt | OHCI1394_RSPkt |
2467                 OHCI1394_isochTx | OHCI1394_isochRx |
2468                 OHCI1394_postedWriteErr |
2469                 OHCI1394_selfIDComplete |
2470                 OHCI1394_regAccessFail |
2471                 OHCI1394_cycleInconsistent |
2472                 OHCI1394_unrecoverableError |
2473                 OHCI1394_cycleTooLong |
2474                 OHCI1394_masterIntEnable |
2475                 OHCI1394_busReset;
2476         reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2477
2478         reg_write(ohci, OHCI1394_HCControlSet,
2479                   OHCI1394_HCControl_linkEnable |
2480                   OHCI1394_HCControl_BIBimageValid);
2481
2482         reg_write(ohci, OHCI1394_LinkControlSet,
2483                   OHCI1394_LinkControl_rcvSelfID |
2484                   OHCI1394_LinkControl_rcvPhyPkt);
2485
2486         ar_context_run(&ohci->ar_request_ctx);
2487         ar_context_run(&ohci->ar_response_ctx);
2488
2489         flush_writes(ohci);
2490
2491         /* We are ready to go, reset bus to finish initialization. */
2492         fw_schedule_bus_reset(&ohci->card, false, true);
2493
2494         return 0;
2495 }
2496
2497 static int ohci_set_config_rom(struct fw_card *card,
2498                                const __be32 *config_rom, size_t length)
2499 {
2500         struct fw_ohci *ohci;
2501         __be32 *next_config_rom;
2502         dma_addr_t next_config_rom_bus;
2503
2504         ohci = fw_ohci(card);
2505
2506         /*
2507          * When the OHCI controller is enabled, the config rom update
2508          * mechanism is a bit tricky, but easy enough to use.  See
2509          * section 5.5.6 in the OHCI specification.
2510          *
2511          * The OHCI controller caches the new config rom address in a
2512          * shadow register (ConfigROMmapNext) and needs a bus reset
2513          * for the changes to take place.  When the bus reset is
2514          * detected, the controller loads the new values for the
2515          * ConfigRomHeader and BusOptions registers from the specified
2516          * config rom and loads ConfigROMmap from the ConfigROMmapNext
2517          * shadow register. All automatically and atomically.
2518          *
2519          * Now, there's a twist to this story.  The automatic load of
2520          * ConfigRomHeader and BusOptions doesn't honor the
2521          * noByteSwapData bit, so with a be32 config rom, the
2522          * controller will load be32 values in to these registers
2523          * during the atomic update, even on litte endian
2524          * architectures.  The workaround we use is to put a 0 in the
2525          * header quadlet; 0 is endian agnostic and means that the
2526          * config rom isn't ready yet.  In the bus reset tasklet we
2527          * then set up the real values for the two registers.
2528          *
2529          * We use ohci->lock to avoid racing with the code that sets
2530          * ohci->next_config_rom to NULL (see bus_reset_work).
2531          */
2532
2533         next_config_rom = dmam_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2534                                               &next_config_rom_bus, GFP_KERNEL);
2535         if (next_config_rom == NULL)
2536                 return -ENOMEM;
2537
2538         spin_lock_irq(&ohci->lock);
2539
2540         /*
2541          * If there is not an already pending config_rom update,
2542          * push our new allocation into the ohci->next_config_rom
2543          * and then mark the local variable as null so that we
2544          * won't deallocate the new buffer.
2545          *
2546          * OTOH, if there is a pending config_rom update, just
2547          * use that buffer with the new config_rom data, and
2548          * let this routine free the unused DMA allocation.
2549          */
2550
2551         if (ohci->next_config_rom == NULL) {
2552                 ohci->next_config_rom = next_config_rom;
2553                 ohci->next_config_rom_bus = next_config_rom_bus;
2554                 next_config_rom = NULL;
2555         }
2556
2557         copy_config_rom(ohci->next_config_rom, config_rom, length);
2558
2559         ohci->next_header = config_rom[0];
2560         ohci->next_config_rom[0] = 0;
2561
2562         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2563
2564         spin_unlock_irq(&ohci->lock);
2565
2566         /* If we didn't use the DMA allocation, delete it. */
2567         if (next_config_rom != NULL) {
2568                 dmam_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, next_config_rom,
2569                                    next_config_rom_bus);
2570         }
2571
2572         /*
2573          * Now initiate a bus reset to have the changes take
2574          * effect. We clean up the old config rom memory and DMA
2575          * mappings in the bus reset tasklet, since the OHCI
2576          * controller could need to access it before the bus reset
2577          * takes effect.
2578          */
2579
2580         fw_schedule_bus_reset(&ohci->card, true, true);
2581
2582         return 0;
2583 }
2584
2585 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2586 {
2587         struct fw_ohci *ohci = fw_ohci(card);
2588
2589         at_context_transmit(&ohci->at_request_ctx, packet);
2590 }
2591
2592 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2593 {
2594         struct fw_ohci *ohci = fw_ohci(card);
2595
2596         at_context_transmit(&ohci->at_response_ctx, packet);
2597 }
2598
2599 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2600 {
2601         struct fw_ohci *ohci = fw_ohci(card);
2602         struct context *ctx = &ohci->at_request_ctx;
2603         struct driver_data *driver_data = packet->driver_data;
2604         int ret = -ENOENT;
2605
2606         tasklet_disable_in_atomic(&ctx->tasklet);
2607
2608         if (packet->ack != 0)
2609                 goto out;
2610
2611         if (packet->payload_mapped)
2612                 dma_unmap_single(ohci->card.device, packet->payload_bus,
2613                                  packet->payload_length, DMA_TO_DEVICE);
2614
2615         log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2616         driver_data->packet = NULL;
2617         packet->ack = RCODE_CANCELLED;
2618
2619         // Timestamping on behalf of the hardware.
2620         packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
2621
2622         packet->callback(packet, &ohci->card, packet->ack);
2623         ret = 0;
2624  out:
2625         tasklet_enable(&ctx->tasklet);
2626
2627         return ret;
2628 }
2629
2630 static int ohci_enable_phys_dma(struct fw_card *card,
2631                                 int node_id, int generation)
2632 {
2633         struct fw_ohci *ohci = fw_ohci(card);
2634         unsigned long flags;
2635         int n, ret = 0;
2636
2637         if (param_remote_dma)
2638                 return 0;
2639
2640         /*
2641          * FIXME:  Make sure this bitmask is cleared when we clear the busReset
2642          * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
2643          */
2644
2645         spin_lock_irqsave(&ohci->lock, flags);
2646
2647         if (ohci->generation != generation) {
2648                 ret = -ESTALE;
2649                 goto out;
2650         }
2651
2652         /*
2653          * Note, if the node ID contains a non-local bus ID, physical DMA is
2654          * enabled for _all_ nodes on remote buses.
2655          */
2656
2657         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2658         if (n < 32)
2659                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2660         else
2661                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2662
2663         flush_writes(ohci);
2664  out:
2665         spin_unlock_irqrestore(&ohci->lock, flags);
2666
2667         return ret;
2668 }
2669
2670 static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2671 {
2672         struct fw_ohci *ohci = fw_ohci(card);
2673         unsigned long flags;
2674         u32 value;
2675
2676         switch (csr_offset) {
2677         case CSR_STATE_CLEAR:
2678         case CSR_STATE_SET:
2679                 if (ohci->is_root &&
2680                     (reg_read(ohci, OHCI1394_LinkControlSet) &
2681                      OHCI1394_LinkControl_cycleMaster))
2682                         value = CSR_STATE_BIT_CMSTR;
2683                 else
2684                         value = 0;
2685                 if (ohci->csr_state_setclear_abdicate)
2686                         value |= CSR_STATE_BIT_ABDICATE;
2687
2688                 return value;
2689
2690         case CSR_NODE_IDS:
2691                 return reg_read(ohci, OHCI1394_NodeID) << 16;
2692
2693         case CSR_CYCLE_TIME:
2694                 return get_cycle_time(ohci);
2695
2696         case CSR_BUS_TIME:
2697                 /*
2698                  * We might be called just after the cycle timer has wrapped
2699                  * around but just before the cycle64Seconds handler, so we
2700                  * better check here, too, if the bus time needs to be updated.
2701                  */
2702                 spin_lock_irqsave(&ohci->lock, flags);
2703                 value = update_bus_time(ohci);
2704                 spin_unlock_irqrestore(&ohci->lock, flags);
2705                 return value;
2706
2707         case CSR_BUSY_TIMEOUT:
2708                 value = reg_read(ohci, OHCI1394_ATRetries);
2709                 return (value >> 4) & 0x0ffff00f;
2710
2711         case CSR_PRIORITY_BUDGET:
2712                 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2713                         (ohci->pri_req_max << 8);
2714
2715         default:
2716                 WARN_ON(1);
2717                 return 0;
2718         }
2719 }
2720
2721 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2722 {
2723         struct fw_ohci *ohci = fw_ohci(card);
2724         unsigned long flags;
2725
2726         switch (csr_offset) {
2727         case CSR_STATE_CLEAR:
2728                 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2729                         reg_write(ohci, OHCI1394_LinkControlClear,
2730                                   OHCI1394_LinkControl_cycleMaster);
2731                         flush_writes(ohci);
2732                 }
2733                 if (value & CSR_STATE_BIT_ABDICATE)
2734                         ohci->csr_state_setclear_abdicate = false;
2735                 break;
2736
2737         case CSR_STATE_SET:
2738                 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2739                         reg_write(ohci, OHCI1394_LinkControlSet,
2740                                   OHCI1394_LinkControl_cycleMaster);
2741                         flush_writes(ohci);
2742                 }
2743                 if (value & CSR_STATE_BIT_ABDICATE)
2744                         ohci->csr_state_setclear_abdicate = true;
2745                 break;
2746
2747         case CSR_NODE_IDS:
2748                 reg_write(ohci, OHCI1394_NodeID, value >> 16);
2749                 flush_writes(ohci);
2750                 break;
2751
2752         case CSR_CYCLE_TIME:
2753                 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2754                 reg_write(ohci, OHCI1394_IntEventSet,
2755                           OHCI1394_cycleInconsistent);
2756                 flush_writes(ohci);
2757                 break;
2758
2759         case CSR_BUS_TIME:
2760                 spin_lock_irqsave(&ohci->lock, flags);
2761                 ohci->bus_time = (update_bus_time(ohci) & 0x40) |
2762                                  (value & ~0x7f);
2763                 spin_unlock_irqrestore(&ohci->lock, flags);
2764                 break;
2765
2766         case CSR_BUSY_TIMEOUT:
2767                 value = (value & 0xf) | ((value & 0xf) << 4) |
2768                         ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2769                 reg_write(ohci, OHCI1394_ATRetries, value);
2770                 flush_writes(ohci);
2771                 break;
2772
2773         case CSR_PRIORITY_BUDGET:
2774                 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2775                 flush_writes(ohci);
2776                 break;
2777
2778         default:
2779                 WARN_ON(1);
2780                 break;
2781         }
2782 }
2783
2784 static void flush_iso_completions(struct iso_context *ctx)
2785 {
2786         ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2787                               ctx->header_length, ctx->header,
2788                               ctx->base.callback_data);
2789         ctx->header_length = 0;
2790 }
2791
2792 static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2793 {
2794         u32 *ctx_hdr;
2795
2796         if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) {
2797                 if (ctx->base.drop_overflow_headers)
2798                         return;
2799                 flush_iso_completions(ctx);
2800         }
2801
2802         ctx_hdr = ctx->header + ctx->header_length;
2803         ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2804
2805         /*
2806          * The two iso header quadlets are byteswapped to little
2807          * endian by the controller, but we want to present them
2808          * as big endian for consistency with the bus endianness.
2809          */
2810         if (ctx->base.header_size > 0)
2811                 ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2812         if (ctx->base.header_size > 4)
2813                 ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2814         if (ctx->base.header_size > 8)
2815                 memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2816         ctx->header_length += ctx->base.header_size;
2817 }
2818
2819 static int handle_ir_packet_per_buffer(struct context *context,
2820                                        struct descriptor *d,
2821                                        struct descriptor *last)
2822 {
2823         struct iso_context *ctx =
2824                 container_of(context, struct iso_context, context);
2825         struct descriptor *pd;
2826         u32 buffer_dma;
2827
2828         for (pd = d; pd <= last; pd++)
2829                 if (pd->transfer_status)
2830                         break;
2831         if (pd > last)
2832                 /* Descriptor(s) not done yet, stop iteration */
2833                 return 0;
2834
2835         while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2836                 d++;
2837                 buffer_dma = le32_to_cpu(d->data_address);
2838                 dma_sync_single_range_for_cpu(context->ohci->card.device,
2839                                               buffer_dma & PAGE_MASK,
2840                                               buffer_dma & ~PAGE_MASK,
2841                                               le16_to_cpu(d->req_count),
2842                                               DMA_FROM_DEVICE);
2843         }
2844
2845         copy_iso_headers(ctx, (u32 *) (last + 1));
2846
2847         if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2848                 flush_iso_completions(ctx);
2849
2850         return 1;
2851 }
2852
2853 /* d == last because each descriptor block is only a single descriptor. */
2854 static int handle_ir_buffer_fill(struct context *context,
2855                                  struct descriptor *d,
2856                                  struct descriptor *last)
2857 {
2858         struct iso_context *ctx =
2859                 container_of(context, struct iso_context, context);
2860         unsigned int req_count, res_count, completed;
2861         u32 buffer_dma;
2862
2863         req_count = le16_to_cpu(last->req_count);
2864         res_count = le16_to_cpu(READ_ONCE(last->res_count));
2865         completed = req_count - res_count;
2866         buffer_dma = le32_to_cpu(last->data_address);
2867
2868         if (completed > 0) {
2869                 ctx->mc_buffer_bus = buffer_dma;
2870                 ctx->mc_completed = completed;
2871         }
2872
2873         if (res_count != 0)
2874                 /* Descriptor(s) not done yet, stop iteration */
2875                 return 0;
2876
2877         dma_sync_single_range_for_cpu(context->ohci->card.device,
2878                                       buffer_dma & PAGE_MASK,
2879                                       buffer_dma & ~PAGE_MASK,
2880                                       completed, DMA_FROM_DEVICE);
2881
2882         if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2883                 ctx->base.callback.mc(&ctx->base,
2884                                       buffer_dma + completed,
2885                                       ctx->base.callback_data);
2886                 ctx->mc_completed = 0;
2887         }
2888
2889         return 1;
2890 }
2891
2892 static void flush_ir_buffer_fill(struct iso_context *ctx)
2893 {
2894         dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2895                                       ctx->mc_buffer_bus & PAGE_MASK,
2896                                       ctx->mc_buffer_bus & ~PAGE_MASK,
2897                                       ctx->mc_completed, DMA_FROM_DEVICE);
2898
2899         ctx->base.callback.mc(&ctx->base,
2900                               ctx->mc_buffer_bus + ctx->mc_completed,
2901                               ctx->base.callback_data);
2902         ctx->mc_completed = 0;
2903 }
2904
2905 static inline void sync_it_packet_for_cpu(struct context *context,
2906                                           struct descriptor *pd)
2907 {
2908         __le16 control;
2909         u32 buffer_dma;
2910
2911         /* only packets beginning with OUTPUT_MORE* have data buffers */
2912         if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2913                 return;
2914
2915         /* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2916         pd += 2;
2917
2918         /*
2919          * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2920          * data buffer is in the context program's coherent page and must not
2921          * be synced.
2922          */
2923         if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
2924             (context->current_bus          & PAGE_MASK)) {
2925                 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2926                         return;
2927                 pd++;
2928         }
2929
2930         do {
2931                 buffer_dma = le32_to_cpu(pd->data_address);
2932                 dma_sync_single_range_for_cpu(context->ohci->card.device,
2933                                               buffer_dma & PAGE_MASK,
2934                                               buffer_dma & ~PAGE_MASK,
2935                                               le16_to_cpu(pd->req_count),
2936                                               DMA_TO_DEVICE);
2937                 control = pd->control;
2938                 pd++;
2939         } while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
2940 }
2941
2942 static int handle_it_packet(struct context *context,
2943                             struct descriptor *d,
2944                             struct descriptor *last)
2945 {
2946         struct iso_context *ctx =
2947                 container_of(context, struct iso_context, context);
2948         struct descriptor *pd;
2949         __be32 *ctx_hdr;
2950
2951         for (pd = d; pd <= last; pd++)
2952                 if (pd->transfer_status)
2953                         break;
2954         if (pd > last)
2955                 /* Descriptor(s) not done yet, stop iteration */
2956                 return 0;
2957
2958         sync_it_packet_for_cpu(context, d);
2959
2960         if (ctx->header_length + 4 > PAGE_SIZE) {
2961                 if (ctx->base.drop_overflow_headers)
2962                         return 1;
2963                 flush_iso_completions(ctx);
2964         }
2965
2966         ctx_hdr = ctx->header + ctx->header_length;
2967         ctx->last_timestamp = le16_to_cpu(last->res_count);
2968         /* Present this value as big-endian to match the receive code */
2969         *ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
2970                                le16_to_cpu(pd->res_count));
2971         ctx->header_length += 4;
2972
2973         if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2974                 flush_iso_completions(ctx);
2975
2976         return 1;
2977 }
2978
2979 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2980 {
2981         u32 hi = channels >> 32, lo = channels;
2982
2983         reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2984         reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2985         reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2986         reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2987         ohci->mc_channels = channels;
2988 }
2989
2990 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2991                                 int type, int channel, size_t header_size)
2992 {
2993         struct fw_ohci *ohci = fw_ohci(card);
2994         struct iso_context *ctx;
2995         descriptor_callback_t callback;
2996         u64 *channels;
2997         u32 *mask, regs;
2998         int index, ret = -EBUSY;
2999
3000         spin_lock_irq(&ohci->lock);
3001
3002         switch (type) {
3003         case FW_ISO_CONTEXT_TRANSMIT:
3004                 mask     = &ohci->it_context_mask;
3005                 callback = handle_it_packet;
3006                 index    = ffs(*mask) - 1;
3007                 if (index >= 0) {
3008                         *mask &= ~(1 << index);
3009                         regs = OHCI1394_IsoXmitContextBase(index);
3010                         ctx  = &ohci->it_context_list[index];
3011                 }
3012                 break;
3013
3014         case FW_ISO_CONTEXT_RECEIVE:
3015                 channels = &ohci->ir_context_channels;
3016                 mask     = &ohci->ir_context_mask;
3017                 callback = handle_ir_packet_per_buffer;
3018                 index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
3019                 if (index >= 0) {
3020                         *channels &= ~(1ULL << channel);
3021                         *mask     &= ~(1 << index);
3022                         regs = OHCI1394_IsoRcvContextBase(index);
3023                         ctx  = &ohci->ir_context_list[index];
3024                 }
3025                 break;
3026
3027         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3028                 mask     = &ohci->ir_context_mask;
3029                 callback = handle_ir_buffer_fill;
3030                 index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
3031                 if (index >= 0) {
3032                         ohci->mc_allocated = true;
3033                         *mask &= ~(1 << index);
3034                         regs = OHCI1394_IsoRcvContextBase(index);
3035                         ctx  = &ohci->ir_context_list[index];
3036                 }
3037                 break;
3038
3039         default:
3040                 index = -1;
3041                 ret = -ENOSYS;
3042         }
3043
3044         spin_unlock_irq(&ohci->lock);
3045
3046         if (index < 0)
3047                 return ERR_PTR(ret);
3048
3049         memset(ctx, 0, sizeof(*ctx));
3050         ctx->header_length = 0;
3051         ctx->header = (void *) __get_free_page(GFP_KERNEL);
3052         if (ctx->header == NULL) {
3053                 ret = -ENOMEM;
3054                 goto out;
3055         }
3056         ret = context_init(&ctx->context, ohci, regs, callback);
3057         if (ret < 0)
3058                 goto out_with_header;
3059
3060         if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
3061                 set_multichannel_mask(ohci, 0);
3062                 ctx->mc_completed = 0;
3063         }
3064
3065         return &ctx->base;
3066
3067  out_with_header:
3068         free_page((unsigned long)ctx->header);
3069  out:
3070         spin_lock_irq(&ohci->lock);
3071
3072         switch (type) {
3073         case FW_ISO_CONTEXT_RECEIVE:
3074                 *channels |= 1ULL << channel;
3075                 break;
3076
3077         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3078                 ohci->mc_allocated = false;
3079                 break;
3080         }
3081         *mask |= 1 << index;
3082
3083         spin_unlock_irq(&ohci->lock);
3084
3085         return ERR_PTR(ret);
3086 }
3087
3088 static int ohci_start_iso(struct fw_iso_context *base,
3089                           s32 cycle, u32 sync, u32 tags)
3090 {
3091         struct iso_context *ctx = container_of(base, struct iso_context, base);
3092         struct fw_ohci *ohci = ctx->context.ohci;
3093         u32 control = IR_CONTEXT_ISOCH_HEADER, match;
3094         int index;
3095
3096         /* the controller cannot start without any queued packets */
3097         if (ctx->context.last->branch_address == 0)
3098                 return -ENODATA;
3099
3100         switch (ctx->base.type) {
3101         case FW_ISO_CONTEXT_TRANSMIT:
3102                 index = ctx - ohci->it_context_list;
3103                 match = 0;
3104                 if (cycle >= 0)
3105                         match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3106                                 (cycle & 0x7fff) << 16;
3107
3108                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3109                 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3110                 context_run(&ctx->context, match);
3111                 break;
3112
3113         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3114                 control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3115                 fallthrough;
3116         case FW_ISO_CONTEXT_RECEIVE:
3117                 index = ctx - ohci->ir_context_list;
3118                 match = (tags << 28) | (sync << 8) | ctx->base.channel;
3119                 if (cycle >= 0) {
3120                         match |= (cycle & 0x07fff) << 12;
3121                         control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3122                 }
3123
3124                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3125                 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3126                 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3127                 context_run(&ctx->context, control);
3128
3129                 ctx->sync = sync;
3130                 ctx->tags = tags;
3131
3132                 break;
3133         }
3134
3135         return 0;
3136 }
3137
3138 static int ohci_stop_iso(struct fw_iso_context *base)
3139 {
3140         struct fw_ohci *ohci = fw_ohci(base->card);
3141         struct iso_context *ctx = container_of(base, struct iso_context, base);
3142         int index;
3143
3144         switch (ctx->base.type) {
3145         case FW_ISO_CONTEXT_TRANSMIT:
3146                 index = ctx - ohci->it_context_list;
3147                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3148                 break;
3149
3150         case FW_ISO_CONTEXT_RECEIVE:
3151         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3152                 index = ctx - ohci->ir_context_list;
3153                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3154                 break;
3155         }
3156         flush_writes(ohci);
3157         context_stop(&ctx->context);
3158         tasklet_kill(&ctx->context.tasklet);
3159
3160         return 0;
3161 }
3162
3163 static void ohci_free_iso_context(struct fw_iso_context *base)
3164 {
3165         struct fw_ohci *ohci = fw_ohci(base->card);
3166         struct iso_context *ctx = container_of(base, struct iso_context, base);
3167         unsigned long flags;
3168         int index;
3169
3170         ohci_stop_iso(base);
3171         context_release(&ctx->context);
3172         free_page((unsigned long)ctx->header);
3173
3174         spin_lock_irqsave(&ohci->lock, flags);
3175
3176         switch (base->type) {
3177         case FW_ISO_CONTEXT_TRANSMIT:
3178                 index = ctx - ohci->it_context_list;
3179                 ohci->it_context_mask |= 1 << index;
3180                 break;
3181
3182         case FW_ISO_CONTEXT_RECEIVE:
3183                 index = ctx - ohci->ir_context_list;
3184                 ohci->ir_context_mask |= 1 << index;
3185                 ohci->ir_context_channels |= 1ULL << base->channel;
3186                 break;
3187
3188         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3189                 index = ctx - ohci->ir_context_list;
3190                 ohci->ir_context_mask |= 1 << index;
3191                 ohci->ir_context_channels |= ohci->mc_channels;
3192                 ohci->mc_channels = 0;
3193                 ohci->mc_allocated = false;
3194                 break;
3195         }
3196
3197         spin_unlock_irqrestore(&ohci->lock, flags);
3198 }
3199
3200 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3201 {
3202         struct fw_ohci *ohci = fw_ohci(base->card);
3203         unsigned long flags;
3204         int ret;
3205
3206         switch (base->type) {
3207         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3208
3209                 spin_lock_irqsave(&ohci->lock, flags);
3210
3211                 /* Don't allow multichannel to grab other contexts' channels. */
3212                 if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3213                         *channels = ohci->ir_context_channels;
3214                         ret = -EBUSY;
3215                 } else {
3216                         set_multichannel_mask(ohci, *channels);
3217                         ret = 0;
3218                 }
3219
3220                 spin_unlock_irqrestore(&ohci->lock, flags);
3221
3222                 break;
3223         default:
3224                 ret = -EINVAL;
3225         }
3226
3227         return ret;
3228 }
3229
3230 #ifdef CONFIG_PM
3231 static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3232 {
3233         int i;
3234         struct iso_context *ctx;
3235
3236         for (i = 0 ; i < ohci->n_ir ; i++) {
3237                 ctx = &ohci->ir_context_list[i];
3238                 if (ctx->context.running)
3239                         ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3240         }
3241
3242         for (i = 0 ; i < ohci->n_it ; i++) {
3243                 ctx = &ohci->it_context_list[i];
3244                 if (ctx->context.running)
3245                         ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3246         }
3247 }
3248 #endif
3249
3250 static int queue_iso_transmit(struct iso_context *ctx,
3251                               struct fw_iso_packet *packet,
3252                               struct fw_iso_buffer *buffer,
3253                               unsigned long payload)
3254 {
3255         struct descriptor *d, *last, *pd;
3256         struct fw_iso_packet *p;
3257         __le32 *header;
3258         dma_addr_t d_bus, page_bus;
3259         u32 z, header_z, payload_z, irq;
3260         u32 payload_index, payload_end_index, next_page_index;
3261         int page, end_page, i, length, offset;
3262
3263         p = packet;
3264         payload_index = payload;
3265
3266         if (p->skip)
3267                 z = 1;
3268         else
3269                 z = 2;
3270         if (p->header_length > 0)
3271                 z++;
3272
3273         /* Determine the first page the payload isn't contained in. */
3274         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3275         if (p->payload_length > 0)
3276                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
3277         else
3278                 payload_z = 0;
3279
3280         z += payload_z;
3281
3282         /* Get header size in number of descriptors. */
3283         header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3284
3285         d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3286         if (d == NULL)
3287                 return -ENOMEM;
3288
3289         if (!p->skip) {
3290                 d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3291                 d[0].req_count = cpu_to_le16(8);
3292                 /*
3293                  * Link the skip address to this descriptor itself.  This causes
3294                  * a context to skip a cycle whenever lost cycles or FIFO
3295                  * overruns occur, without dropping the data.  The application
3296                  * should then decide whether this is an error condition or not.
3297                  * FIXME:  Make the context's cycle-lost behaviour configurable?
3298                  */
3299                 d[0].branch_address = cpu_to_le32(d_bus | z);
3300
3301                 header = (__le32 *) &d[1];
3302                 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
3303                                         IT_HEADER_TAG(p->tag) |
3304                                         IT_HEADER_TCODE(TCODE_STREAM_DATA) |
3305                                         IT_HEADER_CHANNEL(ctx->base.channel) |
3306                                         IT_HEADER_SPEED(ctx->base.speed));
3307                 header[1] =
3308                         cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3309                                                           p->payload_length));
3310         }
3311
3312         if (p->header_length > 0) {
3313                 d[2].req_count    = cpu_to_le16(p->header_length);
3314                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3315                 memcpy(&d[z], p->header, p->header_length);
3316         }
3317
3318         pd = d + z - payload_z;
3319         payload_end_index = payload_index + p->payload_length;
3320         for (i = 0; i < payload_z; i++) {
3321                 page               = payload_index >> PAGE_SHIFT;
3322                 offset             = payload_index & ~PAGE_MASK;
3323                 next_page_index    = (page + 1) << PAGE_SHIFT;
3324                 length             =
3325                         min(next_page_index, payload_end_index) - payload_index;
3326                 pd[i].req_count    = cpu_to_le16(length);
3327
3328                 page_bus = page_private(buffer->pages[page]);
3329                 pd[i].data_address = cpu_to_le32(page_bus + offset);
3330
3331                 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3332                                                  page_bus, offset, length,
3333                                                  DMA_TO_DEVICE);
3334
3335                 payload_index += length;
3336         }
3337
3338         if (p->interrupt)
3339                 irq = DESCRIPTOR_IRQ_ALWAYS;
3340         else
3341                 irq = DESCRIPTOR_NO_IRQ;
3342
3343         last = z == 2 ? d : d + z - 1;
3344         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3345                                      DESCRIPTOR_STATUS |
3346                                      DESCRIPTOR_BRANCH_ALWAYS |
3347                                      irq);
3348
3349         context_append(&ctx->context, d, z, header_z);
3350
3351         return 0;
3352 }
3353
3354 static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3355                                        struct fw_iso_packet *packet,
3356                                        struct fw_iso_buffer *buffer,
3357                                        unsigned long payload)
3358 {
3359         struct device *device = ctx->context.ohci->card.device;
3360         struct descriptor *d, *pd;
3361         dma_addr_t d_bus, page_bus;
3362         u32 z, header_z, rest;
3363         int i, j, length;
3364         int page, offset, packet_count, header_size, payload_per_buffer;
3365
3366         /*
3367          * The OHCI controller puts the isochronous header and trailer in the
3368          * buffer, so we need at least 8 bytes.
3369          */
3370         packet_count = packet->header_length / ctx->base.header_size;
3371         header_size  = max(ctx->base.header_size, (size_t)8);
3372
3373         /* Get header size in number of descriptors. */
3374         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3375         page     = payload >> PAGE_SHIFT;
3376         offset   = payload & ~PAGE_MASK;
3377         payload_per_buffer = packet->payload_length / packet_count;
3378
3379         for (i = 0; i < packet_count; i++) {
3380                 /* d points to the header descriptor */
3381                 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3382                 d = context_get_descriptors(&ctx->context,
3383                                 z + header_z, &d_bus);
3384                 if (d == NULL)
3385                         return -ENOMEM;
3386
3387                 d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
3388                                               DESCRIPTOR_INPUT_MORE);
3389                 if (packet->skip && i == 0)
3390                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3391                 d->req_count    = cpu_to_le16(header_size);
3392                 d->res_count    = d->req_count;
3393                 d->transfer_status = 0;
3394                 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3395
3396                 rest = payload_per_buffer;
3397                 pd = d;
3398                 for (j = 1; j < z; j++) {
3399                         pd++;
3400                         pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3401                                                   DESCRIPTOR_INPUT_MORE);
3402
3403                         if (offset + rest < PAGE_SIZE)
3404                                 length = rest;
3405                         else
3406                                 length = PAGE_SIZE - offset;
3407                         pd->req_count = cpu_to_le16(length);
3408                         pd->res_count = pd->req_count;
3409                         pd->transfer_status = 0;
3410
3411                         page_bus = page_private(buffer->pages[page]);
3412                         pd->data_address = cpu_to_le32(page_bus + offset);
3413
3414                         dma_sync_single_range_for_device(device, page_bus,
3415                                                          offset, length,
3416                                                          DMA_FROM_DEVICE);
3417
3418                         offset = (offset + length) & ~PAGE_MASK;
3419                         rest -= length;
3420                         if (offset == 0)
3421                                 page++;
3422                 }
3423                 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3424                                           DESCRIPTOR_INPUT_LAST |
3425                                           DESCRIPTOR_BRANCH_ALWAYS);
3426                 if (packet->interrupt && i == packet_count - 1)
3427                         pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3428
3429                 context_append(&ctx->context, d, z, header_z);
3430         }
3431
3432         return 0;
3433 }
3434
3435 static int queue_iso_buffer_fill(struct iso_context *ctx,
3436                                  struct fw_iso_packet *packet,
3437                                  struct fw_iso_buffer *buffer,
3438                                  unsigned long payload)
3439 {
3440         struct descriptor *d;
3441         dma_addr_t d_bus, page_bus;
3442         int page, offset, rest, z, i, length;
3443
3444         page   = payload >> PAGE_SHIFT;
3445         offset = payload & ~PAGE_MASK;
3446         rest   = packet->payload_length;
3447
3448         /* We need one descriptor for each page in the buffer. */
3449         z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3450
3451         if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3452                 return -EFAULT;
3453
3454         for (i = 0; i < z; i++) {
3455                 d = context_get_descriptors(&ctx->context, 1, &d_bus);
3456                 if (d == NULL)
3457                         return -ENOMEM;
3458
3459                 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3460                                          DESCRIPTOR_BRANCH_ALWAYS);
3461                 if (packet->skip && i == 0)
3462                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3463                 if (packet->interrupt && i == z - 1)
3464                         d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3465
3466                 if (offset + rest < PAGE_SIZE)
3467                         length = rest;
3468                 else
3469                         length = PAGE_SIZE - offset;
3470                 d->req_count = cpu_to_le16(length);
3471                 d->res_count = d->req_count;
3472                 d->transfer_status = 0;
3473
3474                 page_bus = page_private(buffer->pages[page]);
3475                 d->data_address = cpu_to_le32(page_bus + offset);
3476
3477                 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3478                                                  page_bus, offset, length,
3479                                                  DMA_FROM_DEVICE);
3480
3481                 rest -= length;
3482                 offset = 0;
3483                 page++;
3484
3485                 context_append(&ctx->context, d, 1, 0);
3486         }
3487
3488         return 0;
3489 }
3490
3491 static int ohci_queue_iso(struct fw_iso_context *base,
3492                           struct fw_iso_packet *packet,
3493                           struct fw_iso_buffer *buffer,
3494                           unsigned long payload)
3495 {
3496         struct iso_context *ctx = container_of(base, struct iso_context, base);
3497         unsigned long flags;
3498         int ret = -ENOSYS;
3499
3500         spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3501         switch (base->type) {
3502         case FW_ISO_CONTEXT_TRANSMIT:
3503                 ret = queue_iso_transmit(ctx, packet, buffer, payload);
3504                 break;
3505         case FW_ISO_CONTEXT_RECEIVE:
3506                 ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3507                 break;
3508         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3509                 ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3510                 break;
3511         }
3512         spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3513
3514         return ret;
3515 }
3516
3517 static void ohci_flush_queue_iso(struct fw_iso_context *base)
3518 {
3519         struct context *ctx =
3520                         &container_of(base, struct iso_context, base)->context;
3521
3522         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3523 }
3524
3525 static int ohci_flush_iso_completions(struct fw_iso_context *base)
3526 {
3527         struct iso_context *ctx = container_of(base, struct iso_context, base);
3528         int ret = 0;
3529
3530         tasklet_disable_in_atomic(&ctx->context.tasklet);
3531
3532         if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3533                 context_tasklet((unsigned long)&ctx->context);
3534
3535                 switch (base->type) {
3536                 case FW_ISO_CONTEXT_TRANSMIT:
3537                 case FW_ISO_CONTEXT_RECEIVE:
3538                         if (ctx->header_length != 0)
3539                                 flush_iso_completions(ctx);
3540                         break;
3541                 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3542                         if (ctx->mc_completed != 0)
3543                                 flush_ir_buffer_fill(ctx);
3544                         break;
3545                 default:
3546                         ret = -ENOSYS;
3547                 }
3548
3549                 clear_bit_unlock(0, &ctx->flushing_completions);
3550                 smp_mb__after_atomic();
3551         }
3552
3553         tasklet_enable(&ctx->context.tasklet);
3554
3555         return ret;
3556 }
3557
3558 static const struct fw_card_driver ohci_driver = {
3559         .enable                 = ohci_enable,
3560         .read_phy_reg           = ohci_read_phy_reg,
3561         .update_phy_reg         = ohci_update_phy_reg,
3562         .set_config_rom         = ohci_set_config_rom,
3563         .send_request           = ohci_send_request,
3564         .send_response          = ohci_send_response,
3565         .cancel_packet          = ohci_cancel_packet,
3566         .enable_phys_dma        = ohci_enable_phys_dma,
3567         .read_csr               = ohci_read_csr,
3568         .write_csr              = ohci_write_csr,
3569
3570         .allocate_iso_context   = ohci_allocate_iso_context,
3571         .free_iso_context       = ohci_free_iso_context,
3572         .set_iso_channels       = ohci_set_iso_channels,
3573         .queue_iso              = ohci_queue_iso,
3574         .flush_queue_iso        = ohci_flush_queue_iso,
3575         .flush_iso_completions  = ohci_flush_iso_completions,
3576         .start_iso              = ohci_start_iso,
3577         .stop_iso               = ohci_stop_iso,
3578 };
3579
3580 #ifdef CONFIG_PPC_PMAC
3581 static void pmac_ohci_on(struct pci_dev *dev)
3582 {
3583         if (machine_is(powermac)) {
3584                 struct device_node *ofn = pci_device_to_OF_node(dev);
3585
3586                 if (ofn) {
3587                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3588                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3589                 }
3590         }
3591 }
3592
3593 static void pmac_ohci_off(struct pci_dev *dev)
3594 {
3595         if (machine_is(powermac)) {
3596                 struct device_node *ofn = pci_device_to_OF_node(dev);
3597
3598                 if (ofn) {
3599                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3600                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3601                 }
3602         }
3603 }
3604 #else
3605 static inline void pmac_ohci_on(struct pci_dev *dev) {}
3606 static inline void pmac_ohci_off(struct pci_dev *dev) {}
3607 #endif /* CONFIG_PPC_PMAC */
3608
3609 static void release_ohci(struct device *dev, void *data)
3610 {
3611         struct pci_dev *pdev = to_pci_dev(dev);
3612         struct fw_ohci *ohci = pci_get_drvdata(pdev);
3613
3614         pmac_ohci_off(pdev);
3615
3616         ar_context_release(&ohci->ar_response_ctx);
3617         ar_context_release(&ohci->ar_request_ctx);
3618
3619         dev_notice(dev, "removed fw-ohci device\n");
3620 }
3621
3622 static int pci_probe(struct pci_dev *dev,
3623                                const struct pci_device_id *ent)
3624 {
3625         struct fw_ohci *ohci;
3626         u32 bus_options, max_receive, link_speed, version;
3627         u64 guid;
3628         int i, flags, irq, err;
3629         size_t size;
3630
3631         if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3632                 dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3633                 return -ENOSYS;
3634         }
3635
3636         ohci = devres_alloc(release_ohci, sizeof(*ohci), GFP_KERNEL);
3637         if (ohci == NULL)
3638                 return -ENOMEM;
3639         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3640         pci_set_drvdata(dev, ohci);
3641         pmac_ohci_on(dev);
3642         devres_add(&dev->dev, ohci);
3643
3644         err = pcim_enable_device(dev);
3645         if (err) {
3646                 dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3647                 return err;
3648         }
3649
3650         pci_set_master(dev);
3651         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3652
3653         spin_lock_init(&ohci->lock);
3654         mutex_init(&ohci->phy_reg_mutex);
3655
3656         INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3657
3658         if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
3659             pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
3660                 ohci_err(ohci, "invalid MMIO resource\n");
3661                 return -ENXIO;
3662         }
3663
3664         err = pcim_iomap_regions(dev, 1 << 0, ohci_driver_name);
3665         if (err) {
3666                 ohci_err(ohci, "request and map MMIO resource unavailable\n");
3667                 return -ENXIO;
3668         }
3669         ohci->registers = pcim_iomap_table(dev)[0];
3670
3671         for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3672                 if ((ohci_quirks[i].vendor == dev->vendor) &&
3673                     (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3674                      ohci_quirks[i].device == dev->device) &&
3675                     (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3676                      ohci_quirks[i].revision >= dev->revision)) {
3677                         ohci->quirks = ohci_quirks[i].flags;
3678                         break;
3679                 }
3680         if (param_quirks)
3681                 ohci->quirks = param_quirks;
3682
3683         if (detect_vt630x_with_asm1083_on_amd_ryzen_machine(dev))
3684                 ohci->quirks |= QUIRK_REBOOT_BY_CYCLE_TIMER_READ;
3685
3686         /*
3687          * Because dma_alloc_coherent() allocates at least one page,
3688          * we save space by using a common buffer for the AR request/
3689          * response descriptors and the self IDs buffer.
3690          */
3691         BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3692         BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3693         ohci->misc_buffer = dmam_alloc_coherent(&dev->dev, PAGE_SIZE, &ohci->misc_buffer_bus,
3694                                                 GFP_KERNEL);
3695         if (!ohci->misc_buffer)
3696                 return -ENOMEM;
3697
3698         err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3699                               OHCI1394_AsReqRcvContextControlSet);
3700         if (err < 0)
3701                 return err;
3702
3703         err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3704                               OHCI1394_AsRspRcvContextControlSet);
3705         if (err < 0)
3706                 return err;
3707
3708         err = context_init(&ohci->at_request_ctx, ohci,
3709                            OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3710         if (err < 0)
3711                 return err;
3712
3713         err = context_init(&ohci->at_response_ctx, ohci,
3714                            OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3715         if (err < 0)
3716                 return err;
3717
3718         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3719         ohci->ir_context_channels = ~0ULL;
3720         ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3721         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3722         ohci->ir_context_mask = ohci->ir_context_support;
3723         ohci->n_ir = hweight32(ohci->ir_context_mask);
3724         size = sizeof(struct iso_context) * ohci->n_ir;
3725         ohci->ir_context_list = devm_kzalloc(&dev->dev, size, GFP_KERNEL);
3726         if (!ohci->ir_context_list)
3727                 return -ENOMEM;
3728
3729         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3730         ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3731         /* JMicron JMB38x often shows 0 at first read, just ignore it */
3732         if (!ohci->it_context_support) {
3733                 ohci_notice(ohci, "overriding IsoXmitIntMask\n");
3734                 ohci->it_context_support = 0xf;
3735         }
3736         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3737         ohci->it_context_mask = ohci->it_context_support;
3738         ohci->n_it = hweight32(ohci->it_context_mask);
3739         size = sizeof(struct iso_context) * ohci->n_it;
3740         ohci->it_context_list = devm_kzalloc(&dev->dev, size, GFP_KERNEL);
3741         if (!ohci->it_context_list)
3742                 return -ENOMEM;
3743
3744         ohci->self_id     = ohci->misc_buffer     + PAGE_SIZE/2;
3745         ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3746
3747         bus_options = reg_read(ohci, OHCI1394_BusOptions);
3748         max_receive = (bus_options >> 12) & 0xf;
3749         link_speed = bus_options & 0x7;
3750         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3751                 reg_read(ohci, OHCI1394_GUIDLo);
3752
3753         flags = PCI_IRQ_INTX;
3754         if (!(ohci->quirks & QUIRK_NO_MSI))
3755                 flags |= PCI_IRQ_MSI;
3756         err = pci_alloc_irq_vectors(dev, 1, 1, flags);
3757         if (err < 0)
3758                 return err;
3759         irq = pci_irq_vector(dev, 0);
3760         if (irq < 0) {
3761                 err = irq;
3762                 goto fail_msi;
3763         }
3764
3765         err = request_threaded_irq(irq, irq_handler, NULL,
3766                                    pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED, ohci_driver_name,
3767                                    ohci);
3768         if (err < 0) {
3769                 ohci_err(ohci, "failed to allocate interrupt %d\n", irq);
3770                 goto fail_msi;
3771         }
3772
3773         err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3774         if (err)
3775                 goto fail_irq;
3776
3777         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3778         ohci_notice(ohci,
3779                     "added OHCI v%x.%x device as card %d, "
3780                     "%d IR + %d IT contexts, quirks 0x%x%s\n",
3781                     version >> 16, version & 0xff, ohci->card.index,
3782                     ohci->n_ir, ohci->n_it, ohci->quirks,
3783                     reg_read(ohci, OHCI1394_PhyUpperBound) ?
3784                         ", physUB" : "");
3785
3786         return 0;
3787
3788  fail_irq:
3789         free_irq(irq, ohci);
3790  fail_msi:
3791         pci_free_irq_vectors(dev);
3792
3793         return err;
3794 }
3795
3796 static void pci_remove(struct pci_dev *dev)
3797 {
3798         struct fw_ohci *ohci = pci_get_drvdata(dev);
3799         int irq;
3800
3801         /*
3802          * If the removal is happening from the suspend state, LPS won't be
3803          * enabled and host registers (eg., IntMaskClear) won't be accessible.
3804          */
3805         if (reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS) {
3806                 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3807                 flush_writes(ohci);
3808         }
3809         cancel_work_sync(&ohci->bus_reset_work);
3810         fw_core_remove_card(&ohci->card);
3811
3812         /*
3813          * FIXME: Fail all pending packets here, now that the upper
3814          * layers can't queue any more.
3815          */
3816
3817         software_reset(ohci);
3818
3819         irq = pci_irq_vector(dev, 0);
3820         if (irq >= 0)
3821                 free_irq(irq, ohci);
3822         pci_free_irq_vectors(dev);
3823
3824         dev_notice(&dev->dev, "removing fw-ohci device\n");
3825 }
3826
3827 #ifdef CONFIG_PM
3828 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3829 {
3830         struct fw_ohci *ohci = pci_get_drvdata(dev);
3831         int err;
3832
3833         software_reset(ohci);
3834         err = pci_save_state(dev);
3835         if (err) {
3836                 ohci_err(ohci, "pci_save_state failed\n");
3837                 return err;
3838         }
3839         err = pci_set_power_state(dev, pci_choose_state(dev, state));
3840         if (err)
3841                 ohci_err(ohci, "pci_set_power_state failed with %d\n", err);
3842         pmac_ohci_off(dev);
3843
3844         return 0;
3845 }
3846
3847 static int pci_resume(struct pci_dev *dev)
3848 {
3849         struct fw_ohci *ohci = pci_get_drvdata(dev);
3850         int err;
3851
3852         pmac_ohci_on(dev);
3853         pci_set_power_state(dev, PCI_D0);
3854         pci_restore_state(dev);
3855         err = pci_enable_device(dev);
3856         if (err) {
3857                 ohci_err(ohci, "pci_enable_device failed\n");
3858                 return err;
3859         }
3860
3861         /* Some systems don't setup GUID register on resume from ram  */
3862         if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3863                                         !reg_read(ohci, OHCI1394_GUIDHi)) {
3864                 reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3865                 reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3866         }
3867
3868         err = ohci_enable(&ohci->card, NULL, 0);
3869         if (err)
3870                 return err;
3871
3872         ohci_resume_iso_dma(ohci);
3873
3874         return 0;
3875 }
3876 #endif
3877
3878 static const struct pci_device_id pci_table[] = {
3879         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3880         { }
3881 };
3882
3883 MODULE_DEVICE_TABLE(pci, pci_table);
3884
3885 static struct pci_driver fw_ohci_pci_driver = {
3886         .name           = ohci_driver_name,
3887         .id_table       = pci_table,
3888         .probe          = pci_probe,
3889         .remove         = pci_remove,
3890 #ifdef CONFIG_PM
3891         .resume         = pci_resume,
3892         .suspend        = pci_suspend,
3893 #endif
3894 };
3895
3896 static int __init fw_ohci_init(void)
3897 {
3898         selfid_workqueue = alloc_workqueue(KBUILD_MODNAME, WQ_MEM_RECLAIM, 0);
3899         if (!selfid_workqueue)
3900                 return -ENOMEM;
3901
3902         return pci_register_driver(&fw_ohci_pci_driver);
3903 }
3904
3905 static void __exit fw_ohci_cleanup(void)
3906 {
3907         pci_unregister_driver(&fw_ohci_pci_driver);
3908         destroy_workqueue(selfid_workqueue);
3909 }
3910
3911 module_init(fw_ohci_init);
3912 module_exit(fw_ohci_cleanup);
3913
3914 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3915 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3916 MODULE_LICENSE("GPL");
3917
3918 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3919 MODULE_ALIAS("ohci1394");