Merge tag 'drm-next-2018-06-11' of git://anongit.freedesktop.org/drm/drm
[linux-2.6-block.git] / drivers / edac / sb_edac.c
1 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
2  *
3  * This driver supports the memory controllers found on the Intel
4  * processor family Sandy Bridge.
5  *
6  * This file may be distributed under the terms of the
7  * GNU General Public License version 2 only.
8  *
9  * Copyright (c) 2011 by:
10  *       Mauro Carvalho Chehab
11  */
12
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/pci_ids.h>
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/edac.h>
20 #include <linux/mmzone.h>
21 #include <linux/smp.h>
22 #include <linux/bitmap.h>
23 #include <linux/math64.h>
24 #include <linux/mod_devicetable.h>
25 #include <asm/cpu_device_id.h>
26 #include <asm/intel-family.h>
27 #include <asm/processor.h>
28 #include <asm/mce.h>
29
30 #include "edac_module.h"
31
32 /* Static vars */
33 static LIST_HEAD(sbridge_edac_list);
34
35 /*
36  * Alter this version for the module when modifications are made
37  */
38 #define SBRIDGE_REVISION    " Ver: 1.1.2 "
39 #define EDAC_MOD_STR        "sb_edac"
40
41 /*
42  * Debug macros
43  */
44 #define sbridge_printk(level, fmt, arg...)                      \
45         edac_printk(level, "sbridge", fmt, ##arg)
46
47 #define sbridge_mc_printk(mci, level, fmt, arg...)              \
48         edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
49
50 /*
51  * Get a bit field at register value <v>, from bit <lo> to bit <hi>
52  */
53 #define GET_BITFIELD(v, lo, hi) \
54         (((v) & GENMASK_ULL(hi, lo)) >> (lo))
55
56 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
57 static const u32 sbridge_dram_rule[] = {
58         0x80, 0x88, 0x90, 0x98, 0xa0,
59         0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
60 };
61
62 static const u32 ibridge_dram_rule[] = {
63         0x60, 0x68, 0x70, 0x78, 0x80,
64         0x88, 0x90, 0x98, 0xa0, 0xa8,
65         0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
66         0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
67 };
68
69 static const u32 knl_dram_rule[] = {
70         0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */
71         0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */
72         0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */
73         0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */
74         0x100, 0x108, 0x110, 0x118,   /* 20-23 */
75 };
76
77 #define DRAM_RULE_ENABLE(reg)   GET_BITFIELD(reg, 0,  0)
78 #define A7MODE(reg)             GET_BITFIELD(reg, 26, 26)
79
80 static char *show_dram_attr(u32 attr)
81 {
82         switch (attr) {
83                 case 0:
84                         return "DRAM";
85                 case 1:
86                         return "MMCFG";
87                 case 2:
88                         return "NXM";
89                 default:
90                         return "unknown";
91         }
92 }
93
94 static const u32 sbridge_interleave_list[] = {
95         0x84, 0x8c, 0x94, 0x9c, 0xa4,
96         0xac, 0xb4, 0xbc, 0xc4, 0xcc,
97 };
98
99 static const u32 ibridge_interleave_list[] = {
100         0x64, 0x6c, 0x74, 0x7c, 0x84,
101         0x8c, 0x94, 0x9c, 0xa4, 0xac,
102         0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
103         0xdc, 0xe4, 0xec, 0xf4, 0xfc,
104 };
105
106 static const u32 knl_interleave_list[] = {
107         0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */
108         0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */
109         0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */
110         0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */
111         0x104, 0x10c, 0x114, 0x11c,   /* 20-23 */
112 };
113 #define MAX_INTERLEAVE                                                  \
114         (max_t(unsigned int, ARRAY_SIZE(sbridge_interleave_list),       \
115                max_t(unsigned int, ARRAY_SIZE(ibridge_interleave_list), \
116                      ARRAY_SIZE(knl_interleave_list))))
117
118 struct interleave_pkg {
119         unsigned char start;
120         unsigned char end;
121 };
122
123 static const struct interleave_pkg sbridge_interleave_pkg[] = {
124         { 0, 2 },
125         { 3, 5 },
126         { 8, 10 },
127         { 11, 13 },
128         { 16, 18 },
129         { 19, 21 },
130         { 24, 26 },
131         { 27, 29 },
132 };
133
134 static const struct interleave_pkg ibridge_interleave_pkg[] = {
135         { 0, 3 },
136         { 4, 7 },
137         { 8, 11 },
138         { 12, 15 },
139         { 16, 19 },
140         { 20, 23 },
141         { 24, 27 },
142         { 28, 31 },
143 };
144
145 static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
146                           int interleave)
147 {
148         return GET_BITFIELD(reg, table[interleave].start,
149                             table[interleave].end);
150 }
151
152 /* Devices 12 Function 7 */
153
154 #define TOLM            0x80
155 #define TOHM            0x84
156 #define HASWELL_TOLM    0xd0
157 #define HASWELL_TOHM_0  0xd4
158 #define HASWELL_TOHM_1  0xd8
159 #define KNL_TOLM        0xd0
160 #define KNL_TOHM_0      0xd4
161 #define KNL_TOHM_1      0xd8
162
163 #define GET_TOLM(reg)           ((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
164 #define GET_TOHM(reg)           ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
165
166 /* Device 13 Function 6 */
167
168 #define SAD_TARGET      0xf0
169
170 #define SOURCE_ID(reg)          GET_BITFIELD(reg, 9, 11)
171
172 #define SOURCE_ID_KNL(reg)      GET_BITFIELD(reg, 12, 14)
173
174 #define SAD_CONTROL     0xf4
175
176 /* Device 14 function 0 */
177
178 static const u32 tad_dram_rule[] = {
179         0x40, 0x44, 0x48, 0x4c,
180         0x50, 0x54, 0x58, 0x5c,
181         0x60, 0x64, 0x68, 0x6c,
182 };
183 #define MAX_TAD ARRAY_SIZE(tad_dram_rule)
184
185 #define TAD_LIMIT(reg)          ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
186 #define TAD_SOCK(reg)           GET_BITFIELD(reg, 10, 11)
187 #define TAD_CH(reg)             GET_BITFIELD(reg,  8,  9)
188 #define TAD_TGT3(reg)           GET_BITFIELD(reg,  6,  7)
189 #define TAD_TGT2(reg)           GET_BITFIELD(reg,  4,  5)
190 #define TAD_TGT1(reg)           GET_BITFIELD(reg,  2,  3)
191 #define TAD_TGT0(reg)           GET_BITFIELD(reg,  0,  1)
192
193 /* Device 15, function 0 */
194
195 #define MCMTR                   0x7c
196 #define KNL_MCMTR               0x624
197
198 #define IS_ECC_ENABLED(mcmtr)           GET_BITFIELD(mcmtr, 2, 2)
199 #define IS_LOCKSTEP_ENABLED(mcmtr)      GET_BITFIELD(mcmtr, 1, 1)
200 #define IS_CLOSE_PG(mcmtr)              GET_BITFIELD(mcmtr, 0, 0)
201
202 /* Device 15, function 1 */
203
204 #define RASENABLES              0xac
205 #define IS_MIRROR_ENABLED(reg)          GET_BITFIELD(reg, 0, 0)
206
207 /* Device 15, functions 2-5 */
208
209 static const int mtr_regs[] = {
210         0x80, 0x84, 0x88,
211 };
212
213 static const int knl_mtr_reg = 0xb60;
214
215 #define RANK_DISABLE(mtr)               GET_BITFIELD(mtr, 16, 19)
216 #define IS_DIMM_PRESENT(mtr)            GET_BITFIELD(mtr, 14, 14)
217 #define RANK_CNT_BITS(mtr)              GET_BITFIELD(mtr, 12, 13)
218 #define RANK_WIDTH_BITS(mtr)            GET_BITFIELD(mtr, 2, 4)
219 #define COL_WIDTH_BITS(mtr)             GET_BITFIELD(mtr, 0, 1)
220
221 static const u32 tad_ch_nilv_offset[] = {
222         0x90, 0x94, 0x98, 0x9c,
223         0xa0, 0xa4, 0xa8, 0xac,
224         0xb0, 0xb4, 0xb8, 0xbc,
225 };
226 #define CHN_IDX_OFFSET(reg)             GET_BITFIELD(reg, 28, 29)
227 #define TAD_OFFSET(reg)                 (GET_BITFIELD(reg,  6, 25) << 26)
228
229 static const u32 rir_way_limit[] = {
230         0x108, 0x10c, 0x110, 0x114, 0x118,
231 };
232 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
233
234 #define IS_RIR_VALID(reg)       GET_BITFIELD(reg, 31, 31)
235 #define RIR_WAY(reg)            GET_BITFIELD(reg, 28, 29)
236
237 #define MAX_RIR_WAY     8
238
239 static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
240         { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
241         { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
242         { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
243         { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
244         { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
245 };
246
247 #define RIR_RNK_TGT(type, reg) (((type) == BROADWELL) ? \
248         GET_BITFIELD(reg, 20, 23) : GET_BITFIELD(reg, 16, 19))
249
250 #define RIR_OFFSET(type, reg) (((type) == HASWELL || (type) == BROADWELL) ? \
251         GET_BITFIELD(reg,  2, 15) : GET_BITFIELD(reg,  2, 14))
252
253 /* Device 16, functions 2-7 */
254
255 /*
256  * FIXME: Implement the error count reads directly
257  */
258
259 static const u32 correrrcnt[] = {
260         0x104, 0x108, 0x10c, 0x110,
261 };
262
263 #define RANK_ODD_OV(reg)                GET_BITFIELD(reg, 31, 31)
264 #define RANK_ODD_ERR_CNT(reg)           GET_BITFIELD(reg, 16, 30)
265 #define RANK_EVEN_OV(reg)               GET_BITFIELD(reg, 15, 15)
266 #define RANK_EVEN_ERR_CNT(reg)          GET_BITFIELD(reg,  0, 14)
267
268 static const u32 correrrthrsld[] = {
269         0x11c, 0x120, 0x124, 0x128,
270 };
271
272 #define RANK_ODD_ERR_THRSLD(reg)        GET_BITFIELD(reg, 16, 30)
273 #define RANK_EVEN_ERR_THRSLD(reg)       GET_BITFIELD(reg,  0, 14)
274
275
276 /* Device 17, function 0 */
277
278 #define SB_RANK_CFG_A           0x0328
279
280 #define IB_RANK_CFG_A           0x0320
281
282 /*
283  * sbridge structs
284  */
285
286 #define NUM_CHANNELS            6       /* Max channels per MC */
287 #define MAX_DIMMS               3       /* Max DIMMS per channel */
288 #define KNL_MAX_CHAS            38      /* KNL max num. of Cache Home Agents */
289 #define KNL_MAX_CHANNELS        6       /* KNL max num. of PCI channels */
290 #define KNL_MAX_EDCS            8       /* Embedded DRAM controllers */
291 #define CHANNEL_UNSPECIFIED     0xf     /* Intel IA32 SDM 15-14 */
292
293 enum type {
294         SANDY_BRIDGE,
295         IVY_BRIDGE,
296         HASWELL,
297         BROADWELL,
298         KNIGHTS_LANDING,
299 };
300
301 enum domain {
302         IMC0 = 0,
303         IMC1,
304         SOCK,
305 };
306
307 enum mirroring_mode {
308         NON_MIRRORING,
309         ADDR_RANGE_MIRRORING,
310         FULL_MIRRORING,
311 };
312
313 struct sbridge_pvt;
314 struct sbridge_info {
315         enum type       type;
316         u32             mcmtr;
317         u32             rankcfgr;
318         u64             (*get_tolm)(struct sbridge_pvt *pvt);
319         u64             (*get_tohm)(struct sbridge_pvt *pvt);
320         u64             (*rir_limit)(u32 reg);
321         u64             (*sad_limit)(u32 reg);
322         u32             (*interleave_mode)(u32 reg);
323         u32             (*dram_attr)(u32 reg);
324         const u32       *dram_rule;
325         const u32       *interleave_list;
326         const struct interleave_pkg *interleave_pkg;
327         u8              max_sad;
328         u8              (*get_node_id)(struct sbridge_pvt *pvt);
329         enum mem_type   (*get_memory_type)(struct sbridge_pvt *pvt);
330         enum dev_type   (*get_width)(struct sbridge_pvt *pvt, u32 mtr);
331         struct pci_dev  *pci_vtd;
332 };
333
334 struct sbridge_channel {
335         u32             ranks;
336         u32             dimms;
337 };
338
339 struct pci_id_descr {
340         int                     dev_id;
341         int                     optional;
342         enum domain             dom;
343 };
344
345 struct pci_id_table {
346         const struct pci_id_descr       *descr;
347         int                             n_devs_per_imc;
348         int                             n_devs_per_sock;
349         int                             n_imcs_per_sock;
350         enum type                       type;
351 };
352
353 struct sbridge_dev {
354         struct list_head        list;
355         u8                      bus, mc;
356         u8                      node_id, source_id;
357         struct pci_dev          **pdev;
358         enum domain             dom;
359         int                     n_devs;
360         int                     i_devs;
361         struct mem_ctl_info     *mci;
362 };
363
364 struct knl_pvt {
365         struct pci_dev          *pci_cha[KNL_MAX_CHAS];
366         struct pci_dev          *pci_channel[KNL_MAX_CHANNELS];
367         struct pci_dev          *pci_mc0;
368         struct pci_dev          *pci_mc1;
369         struct pci_dev          *pci_mc0_misc;
370         struct pci_dev          *pci_mc1_misc;
371         struct pci_dev          *pci_mc_info; /* tolm, tohm */
372 };
373
374 struct sbridge_pvt {
375         /* Devices per socket */
376         struct pci_dev          *pci_ddrio;
377         struct pci_dev          *pci_sad0, *pci_sad1;
378         struct pci_dev          *pci_br0, *pci_br1;
379         /* Devices per memory controller */
380         struct pci_dev          *pci_ha, *pci_ta, *pci_ras;
381         struct pci_dev          *pci_tad[NUM_CHANNELS];
382
383         struct sbridge_dev      *sbridge_dev;
384
385         struct sbridge_info     info;
386         struct sbridge_channel  channel[NUM_CHANNELS];
387
388         /* Memory type detection */
389         bool                    is_cur_addr_mirrored, is_lockstep, is_close_pg;
390         bool                    is_chan_hash;
391         enum mirroring_mode     mirror_mode;
392
393         /* Memory description */
394         u64                     tolm, tohm;
395         struct knl_pvt knl;
396 };
397
398 #define PCI_DESCR(device_id, opt, domain)       \
399         .dev_id = (device_id),          \
400         .optional = opt,        \
401         .dom = domain
402
403 static const struct pci_id_descr pci_dev_descr_sbridge[] = {
404                 /* Processor Home Agent */
405         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0,   0, IMC0) },
406
407                 /* Memory controller */
408         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA,    0, IMC0) },
409         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS,   0, IMC0) },
410         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0,  0, IMC0) },
411         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1,  0, IMC0) },
412         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2,  0, IMC0) },
413         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3,  0, IMC0) },
414         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1, SOCK) },
415
416                 /* System Address Decoder */
417         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0,      0, SOCK) },
418         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1,      0, SOCK) },
419
420                 /* Broadcast Registers */
421         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR,        0, SOCK) },
422 };
423
424 #define PCI_ID_TABLE_ENTRY(A, N, M, T) {        \
425         .descr = A,                     \
426         .n_devs_per_imc = N,    \
427         .n_devs_per_sock = ARRAY_SIZE(A),       \
428         .n_imcs_per_sock = M,   \
429         .type = T                       \
430 }
431
432 static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
433         PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge, ARRAY_SIZE(pci_dev_descr_sbridge), 1, SANDY_BRIDGE),
434         {0,}                    /* 0 terminated list. */
435 };
436
437 /* This changes depending if 1HA or 2HA:
438  * 1HA:
439  *      0x0eb8 (17.0) is DDRIO0
440  * 2HA:
441  *      0x0ebc (17.4) is DDRIO0
442  */
443 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0      0x0eb8
444 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0      0x0ebc
445
446 /* pci ids */
447 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0             0x0ea0
448 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA          0x0ea8
449 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS         0x0e71
450 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0        0x0eaa
451 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1        0x0eab
452 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2        0x0eac
453 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3        0x0ead
454 #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD                 0x0ec8
455 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0                 0x0ec9
456 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1                 0x0eca
457 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1             0x0e60
458 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA          0x0e68
459 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS         0x0e79
460 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0        0x0e6a
461 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1        0x0e6b
462 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2        0x0e6c
463 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3        0x0e6d
464
465 static const struct pci_id_descr pci_dev_descr_ibridge[] = {
466                 /* Processor Home Agent */
467         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0,        0, IMC0) },
468         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1,        1, IMC1) },
469
470                 /* Memory controller */
471         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA,     0, IMC0) },
472         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS,    0, IMC0) },
473         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0,   0, IMC0) },
474         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1,   0, IMC0) },
475         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2,   0, IMC0) },
476         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3,   0, IMC0) },
477
478                 /* Optional, mode 2HA */
479         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA,     1, IMC1) },
480         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS,    1, IMC1) },
481         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0,   1, IMC1) },
482         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1,   1, IMC1) },
483         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2,   1, IMC1) },
484         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3,   1, IMC1) },
485
486         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1, SOCK) },
487         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1, SOCK) },
488
489                 /* System Address Decoder */
490         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD,            0, SOCK) },
491
492                 /* Broadcast Registers */
493         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0,            1, SOCK) },
494         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1,            0, SOCK) },
495
496 };
497
498 static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
499         PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge, 12, 2, IVY_BRIDGE),
500         {0,}                    /* 0 terminated list. */
501 };
502
503 /* Haswell support */
504 /* EN processor:
505  *      - 1 IMC
506  *      - 3 DDR3 channels, 2 DPC per channel
507  * EP processor:
508  *      - 1 or 2 IMC
509  *      - 4 DDR4 channels, 3 DPC per channel
510  * EP 4S processor:
511  *      - 2 IMC
512  *      - 4 DDR4 channels, 3 DPC per channel
513  * EX processor:
514  *      - 2 IMC
515  *      - each IMC interfaces with a SMI 2 channel
516  *      - each SMI channel interfaces with a scalable memory buffer
517  *      - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
518  */
519 #define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
520 #define HASWELL_HASYSDEFEATURE2 0x84
521 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
522 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0     0x2fa0
523 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1     0x2f60
524 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA  0x2fa8
525 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM  0x2f71
526 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA  0x2f68
527 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM  0x2f79
528 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
529 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
530 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
531 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
532 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
533 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
534 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
535 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
536 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
537 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
538 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
539 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
540 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
541 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
542 static const struct pci_id_descr pci_dev_descr_haswell[] = {
543         /* first item must be the HA */
544         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0,      0, IMC0) },
545         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1,      1, IMC1) },
546
547         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA,   0, IMC0) },
548         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM,   0, IMC0) },
549         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0, IMC0) },
550         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0, IMC0) },
551         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1, IMC0) },
552         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1, IMC0) },
553
554         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA,   1, IMC1) },
555         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM,   1, IMC1) },
556         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1, IMC1) },
557         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1, IMC1) },
558         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1, IMC1) },
559         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1, IMC1) },
560
561         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0, SOCK) },
562         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0, SOCK) },
563         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0,   1, SOCK) },
564         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1,   1, SOCK) },
565         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2,   1, SOCK) },
566         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3,   1, SOCK) },
567 };
568
569 static const struct pci_id_table pci_dev_descr_haswell_table[] = {
570         PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell, 13, 2, HASWELL),
571         {0,}                    /* 0 terminated list. */
572 };
573
574 /* Knight's Landing Support */
575 /*
576  * KNL's memory channels are swizzled between memory controllers.
577  * MC0 is mapped to CH3,4,5 and MC1 is mapped to CH0,1,2
578  */
579 #define knl_channel_remap(mc, chan) ((mc) ? (chan) : (chan) + 3)
580
581 /* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */
582 #define PCI_DEVICE_ID_INTEL_KNL_IMC_MC       0x7840
583 /* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */
584 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN     0x7843
585 /* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */
586 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TA       0x7844
587 /* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */
588 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0     0x782a
589 /* SAD target - 1-29-1 (1 of these) */
590 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1     0x782b
591 /* Caching / Home Agent */
592 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA      0x782c
593 /* Device with TOLM and TOHM, 0-5-0 (1 of these) */
594 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM    0x7810
595
596 /*
597  * KNL differs from SB, IB, and Haswell in that it has multiple
598  * instances of the same device with the same device ID, so we handle that
599  * by creating as many copies in the table as we expect to find.
600  * (Like device ID must be grouped together.)
601  */
602
603 static const struct pci_id_descr pci_dev_descr_knl[] = {
604         [0 ... 1]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC,    0, IMC0)},
605         [2 ... 7]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN,  0, IMC0) },
606         [8]         = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA,    0, IMC0) },
607         [9]         = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM, 0, IMC0) },
608         [10]        = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0,  0, SOCK) },
609         [11]        = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1,  0, SOCK) },
610         [12 ... 49] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA,   0, SOCK) },
611 };
612
613 static const struct pci_id_table pci_dev_descr_knl_table[] = {
614         PCI_ID_TABLE_ENTRY(pci_dev_descr_knl, ARRAY_SIZE(pci_dev_descr_knl), 1, KNIGHTS_LANDING),
615         {0,}
616 };
617
618 /*
619  * Broadwell support
620  *
621  * DE processor:
622  *      - 1 IMC
623  *      - 2 DDR3 channels, 2 DPC per channel
624  * EP processor:
625  *      - 1 or 2 IMC
626  *      - 4 DDR4 channels, 3 DPC per channel
627  * EP 4S processor:
628  *      - 2 IMC
629  *      - 4 DDR4 channels, 3 DPC per channel
630  * EX processor:
631  *      - 2 IMC
632  *      - each IMC interfaces with a SMI 2 channel
633  *      - each SMI channel interfaces with a scalable memory buffer
634  *      - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
635  */
636 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
637 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0   0x6fa0
638 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1   0x6f60
639 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA        0x6fa8
640 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM        0x6f71
641 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA        0x6f68
642 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM        0x6f79
643 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
644 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
645 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
646 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
647 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
648 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
649 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
650 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
651 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
652 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
653 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
654
655 static const struct pci_id_descr pci_dev_descr_broadwell[] = {
656         /* first item must be the HA */
657         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0,      0, IMC0) },
658         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1,      1, IMC1) },
659
660         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA,   0, IMC0) },
661         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM,   0, IMC0) },
662         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0, IMC0) },
663         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0, IMC0) },
664         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 1, IMC0) },
665         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 1, IMC0) },
666
667         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA,   1, IMC1) },
668         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM,   1, IMC1) },
669         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0, 1, IMC1) },
670         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1, 1, IMC1) },
671         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2, 1, IMC1) },
672         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3, 1, IMC1) },
673
674         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0, SOCK) },
675         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0, SOCK) },
676         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0,   1, SOCK) },
677 };
678
679 static const struct pci_id_table pci_dev_descr_broadwell_table[] = {
680         PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell, 10, 2, BROADWELL),
681         {0,}                    /* 0 terminated list. */
682 };
683
684
685 /****************************************************************************
686                         Ancillary status routines
687  ****************************************************************************/
688
689 static inline int numrank(enum type type, u32 mtr)
690 {
691         int ranks = (1 << RANK_CNT_BITS(mtr));
692         int max = 4;
693
694         if (type == HASWELL || type == BROADWELL || type == KNIGHTS_LANDING)
695                 max = 8;
696
697         if (ranks > max) {
698                 edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
699                          ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
700                 return -EINVAL;
701         }
702
703         return ranks;
704 }
705
706 static inline int numrow(u32 mtr)
707 {
708         int rows = (RANK_WIDTH_BITS(mtr) + 12);
709
710         if (rows < 13 || rows > 18) {
711                 edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
712                          rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
713                 return -EINVAL;
714         }
715
716         return 1 << rows;
717 }
718
719 static inline int numcol(u32 mtr)
720 {
721         int cols = (COL_WIDTH_BITS(mtr) + 10);
722
723         if (cols > 12) {
724                 edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
725                          cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
726                 return -EINVAL;
727         }
728
729         return 1 << cols;
730 }
731
732 static struct sbridge_dev *get_sbridge_dev(u8 bus, enum domain dom, int multi_bus,
733                                            struct sbridge_dev *prev)
734 {
735         struct sbridge_dev *sbridge_dev;
736
737         /*
738          * If we have devices scattered across several busses that pertain
739          * to the same memory controller, we'll lump them all together.
740          */
741         if (multi_bus) {
742                 return list_first_entry_or_null(&sbridge_edac_list,
743                                 struct sbridge_dev, list);
744         }
745
746         sbridge_dev = list_entry(prev ? prev->list.next
747                                       : sbridge_edac_list.next, struct sbridge_dev, list);
748
749         list_for_each_entry_from(sbridge_dev, &sbridge_edac_list, list) {
750                 if (sbridge_dev->bus == bus && (dom == SOCK || dom == sbridge_dev->dom))
751                         return sbridge_dev;
752         }
753
754         return NULL;
755 }
756
757 static struct sbridge_dev *alloc_sbridge_dev(u8 bus, enum domain dom,
758                                              const struct pci_id_table *table)
759 {
760         struct sbridge_dev *sbridge_dev;
761
762         sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
763         if (!sbridge_dev)
764                 return NULL;
765
766         sbridge_dev->pdev = kcalloc(table->n_devs_per_imc,
767                                     sizeof(*sbridge_dev->pdev),
768                                     GFP_KERNEL);
769         if (!sbridge_dev->pdev) {
770                 kfree(sbridge_dev);
771                 return NULL;
772         }
773
774         sbridge_dev->bus = bus;
775         sbridge_dev->dom = dom;
776         sbridge_dev->n_devs = table->n_devs_per_imc;
777         list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
778
779         return sbridge_dev;
780 }
781
782 static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
783 {
784         list_del(&sbridge_dev->list);
785         kfree(sbridge_dev->pdev);
786         kfree(sbridge_dev);
787 }
788
789 static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
790 {
791         u32 reg;
792
793         /* Address range is 32:28 */
794         pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
795         return GET_TOLM(reg);
796 }
797
798 static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
799 {
800         u32 reg;
801
802         pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
803         return GET_TOHM(reg);
804 }
805
806 static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
807 {
808         u32 reg;
809
810         pci_read_config_dword(pvt->pci_br1, TOLM, &reg);
811
812         return GET_TOLM(reg);
813 }
814
815 static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
816 {
817         u32 reg;
818
819         pci_read_config_dword(pvt->pci_br1, TOHM, &reg);
820
821         return GET_TOHM(reg);
822 }
823
824 static u64 rir_limit(u32 reg)
825 {
826         return ((u64)GET_BITFIELD(reg,  1, 10) << 29) | 0x1fffffff;
827 }
828
829 static u64 sad_limit(u32 reg)
830 {
831         return (GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff;
832 }
833
834 static u32 interleave_mode(u32 reg)
835 {
836         return GET_BITFIELD(reg, 1, 1);
837 }
838
839 static u32 dram_attr(u32 reg)
840 {
841         return GET_BITFIELD(reg, 2, 3);
842 }
843
844 static u64 knl_sad_limit(u32 reg)
845 {
846         return (GET_BITFIELD(reg, 7, 26) << 26) | 0x3ffffff;
847 }
848
849 static u32 knl_interleave_mode(u32 reg)
850 {
851         return GET_BITFIELD(reg, 1, 2);
852 }
853
854 static const char * const knl_intlv_mode[] = {
855         "[8:6]", "[10:8]", "[14:12]", "[32:30]"
856 };
857
858 static const char *get_intlv_mode_str(u32 reg, enum type t)
859 {
860         if (t == KNIGHTS_LANDING)
861                 return knl_intlv_mode[knl_interleave_mode(reg)];
862         else
863                 return interleave_mode(reg) ? "[8:6]" : "[8:6]XOR[18:16]";
864 }
865
866 static u32 dram_attr_knl(u32 reg)
867 {
868         return GET_BITFIELD(reg, 3, 4);
869 }
870
871
872 static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
873 {
874         u32 reg;
875         enum mem_type mtype;
876
877         if (pvt->pci_ddrio) {
878                 pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
879                                       &reg);
880                 if (GET_BITFIELD(reg, 11, 11))
881                         /* FIXME: Can also be LRDIMM */
882                         mtype = MEM_RDDR3;
883                 else
884                         mtype = MEM_DDR3;
885         } else
886                 mtype = MEM_UNKNOWN;
887
888         return mtype;
889 }
890
891 static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
892 {
893         u32 reg;
894         bool registered = false;
895         enum mem_type mtype = MEM_UNKNOWN;
896
897         if (!pvt->pci_ddrio)
898                 goto out;
899
900         pci_read_config_dword(pvt->pci_ddrio,
901                               HASWELL_DDRCRCLKCONTROLS, &reg);
902         /* Is_Rdimm */
903         if (GET_BITFIELD(reg, 16, 16))
904                 registered = true;
905
906         pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
907         if (GET_BITFIELD(reg, 14, 14)) {
908                 if (registered)
909                         mtype = MEM_RDDR4;
910                 else
911                         mtype = MEM_DDR4;
912         } else {
913                 if (registered)
914                         mtype = MEM_RDDR3;
915                 else
916                         mtype = MEM_DDR3;
917         }
918
919 out:
920         return mtype;
921 }
922
923 static enum dev_type knl_get_width(struct sbridge_pvt *pvt, u32 mtr)
924 {
925         /* for KNL value is fixed */
926         return DEV_X16;
927 }
928
929 static enum dev_type sbridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
930 {
931         /* there's no way to figure out */
932         return DEV_UNKNOWN;
933 }
934
935 static enum dev_type __ibridge_get_width(u32 mtr)
936 {
937         enum dev_type type;
938
939         switch (mtr) {
940         case 3:
941                 type = DEV_UNKNOWN;
942                 break;
943         case 2:
944                 type = DEV_X16;
945                 break;
946         case 1:
947                 type = DEV_X8;
948                 break;
949         case 0:
950                 type = DEV_X4;
951                 break;
952         }
953
954         return type;
955 }
956
957 static enum dev_type ibridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
958 {
959         /*
960          * ddr3_width on the documentation but also valid for DDR4 on
961          * Haswell
962          */
963         return __ibridge_get_width(GET_BITFIELD(mtr, 7, 8));
964 }
965
966 static enum dev_type broadwell_get_width(struct sbridge_pvt *pvt, u32 mtr)
967 {
968         /* ddr3_width on the documentation but also valid for DDR4 */
969         return __ibridge_get_width(GET_BITFIELD(mtr, 8, 9));
970 }
971
972 static enum mem_type knl_get_memory_type(struct sbridge_pvt *pvt)
973 {
974         /* DDR4 RDIMMS and LRDIMMS are supported */
975         return MEM_RDDR4;
976 }
977
978 static u8 get_node_id(struct sbridge_pvt *pvt)
979 {
980         u32 reg;
981         pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
982         return GET_BITFIELD(reg, 0, 2);
983 }
984
985 static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
986 {
987         u32 reg;
988
989         pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
990         return GET_BITFIELD(reg, 0, 3);
991 }
992
993 static u8 knl_get_node_id(struct sbridge_pvt *pvt)
994 {
995         u32 reg;
996
997         pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
998         return GET_BITFIELD(reg, 0, 2);
999 }
1000
1001
1002 static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
1003 {
1004         u32 reg;
1005
1006         pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, &reg);
1007         return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1008 }
1009
1010 static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
1011 {
1012         u64 rc;
1013         u32 reg;
1014
1015         pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
1016         rc = GET_BITFIELD(reg, 26, 31);
1017         pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
1018         rc = ((reg << 6) | rc) << 26;
1019
1020         return rc | 0x1ffffff;
1021 }
1022
1023 static u64 knl_get_tolm(struct sbridge_pvt *pvt)
1024 {
1025         u32 reg;
1026
1027         pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOLM, &reg);
1028         return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1029 }
1030
1031 static u64 knl_get_tohm(struct sbridge_pvt *pvt)
1032 {
1033         u64 rc;
1034         u32 reg_lo, reg_hi;
1035
1036         pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_0, &reg_lo);
1037         pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_1, &reg_hi);
1038         rc = ((u64)reg_hi << 32) | reg_lo;
1039         return rc | 0x3ffffff;
1040 }
1041
1042
1043 static u64 haswell_rir_limit(u32 reg)
1044 {
1045         return (((u64)GET_BITFIELD(reg,  1, 11) + 1) << 29) - 1;
1046 }
1047
1048 static inline u8 sad_pkg_socket(u8 pkg)
1049 {
1050         /* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
1051         return ((pkg >> 3) << 2) | (pkg & 0x3);
1052 }
1053
1054 static inline u8 sad_pkg_ha(u8 pkg)
1055 {
1056         return (pkg >> 2) & 0x1;
1057 }
1058
1059 static int haswell_chan_hash(int idx, u64 addr)
1060 {
1061         int i;
1062
1063         /*
1064          * XOR even bits from 12:26 to bit0 of idx,
1065          *     odd bits from 13:27 to bit1
1066          */
1067         for (i = 12; i < 28; i += 2)
1068                 idx ^= (addr >> i) & 3;
1069
1070         return idx;
1071 }
1072
1073 /* Low bits of TAD limit, and some metadata. */
1074 static const u32 knl_tad_dram_limit_lo[] = {
1075         0x400, 0x500, 0x600, 0x700,
1076         0x800, 0x900, 0xa00, 0xb00,
1077 };
1078
1079 /* Low bits of TAD offset. */
1080 static const u32 knl_tad_dram_offset_lo[] = {
1081         0x404, 0x504, 0x604, 0x704,
1082         0x804, 0x904, 0xa04, 0xb04,
1083 };
1084
1085 /* High 16 bits of TAD limit and offset. */
1086 static const u32 knl_tad_dram_hi[] = {
1087         0x408, 0x508, 0x608, 0x708,
1088         0x808, 0x908, 0xa08, 0xb08,
1089 };
1090
1091 /* Number of ways a tad entry is interleaved. */
1092 static const u32 knl_tad_ways[] = {
1093         8, 6, 4, 3, 2, 1,
1094 };
1095
1096 /*
1097  * Retrieve the n'th Target Address Decode table entry
1098  * from the memory controller's TAD table.
1099  *
1100  * @pvt:        driver private data
1101  * @entry:      which entry you want to retrieve
1102  * @mc:         which memory controller (0 or 1)
1103  * @offset:     output tad range offset
1104  * @limit:      output address of first byte above tad range
1105  * @ways:       output number of interleave ways
1106  *
1107  * The offset value has curious semantics.  It's a sort of running total
1108  * of the sizes of all the memory regions that aren't mapped in this
1109  * tad table.
1110  */
1111 static int knl_get_tad(const struct sbridge_pvt *pvt,
1112                 const int entry,
1113                 const int mc,
1114                 u64 *offset,
1115                 u64 *limit,
1116                 int *ways)
1117 {
1118         u32 reg_limit_lo, reg_offset_lo, reg_hi;
1119         struct pci_dev *pci_mc;
1120         int way_id;
1121
1122         switch (mc) {
1123         case 0:
1124                 pci_mc = pvt->knl.pci_mc0;
1125                 break;
1126         case 1:
1127                 pci_mc = pvt->knl.pci_mc1;
1128                 break;
1129         default:
1130                 WARN_ON(1);
1131                 return -EINVAL;
1132         }
1133
1134         pci_read_config_dword(pci_mc,
1135                         knl_tad_dram_limit_lo[entry], &reg_limit_lo);
1136         pci_read_config_dword(pci_mc,
1137                         knl_tad_dram_offset_lo[entry], &reg_offset_lo);
1138         pci_read_config_dword(pci_mc,
1139                         knl_tad_dram_hi[entry], &reg_hi);
1140
1141         /* Is this TAD entry enabled? */
1142         if (!GET_BITFIELD(reg_limit_lo, 0, 0))
1143                 return -ENODEV;
1144
1145         way_id = GET_BITFIELD(reg_limit_lo, 3, 5);
1146
1147         if (way_id < ARRAY_SIZE(knl_tad_ways)) {
1148                 *ways = knl_tad_ways[way_id];
1149         } else {
1150                 *ways = 0;
1151                 sbridge_printk(KERN_ERR,
1152                                 "Unexpected value %d in mc_tad_limit_lo wayness field\n",
1153                                 way_id);
1154                 return -ENODEV;
1155         }
1156
1157         /*
1158          * The least significant 6 bits of base and limit are truncated.
1159          * For limit, we fill the missing bits with 1s.
1160          */
1161         *offset = ((u64) GET_BITFIELD(reg_offset_lo, 6, 31) << 6) |
1162                                 ((u64) GET_BITFIELD(reg_hi, 0,  15) << 32);
1163         *limit = ((u64) GET_BITFIELD(reg_limit_lo,  6, 31) << 6) | 63 |
1164                                 ((u64) GET_BITFIELD(reg_hi, 16, 31) << 32);
1165
1166         return 0;
1167 }
1168
1169 /* Determine which memory controller is responsible for a given channel. */
1170 static int knl_channel_mc(int channel)
1171 {
1172         WARN_ON(channel < 0 || channel >= 6);
1173
1174         return channel < 3 ? 1 : 0;
1175 }
1176
1177 /*
1178  * Get the Nth entry from EDC_ROUTE_TABLE register.
1179  * (This is the per-tile mapping of logical interleave targets to
1180  *  physical EDC modules.)
1181  *
1182  * entry 0: 0:2
1183  *       1: 3:5
1184  *       2: 6:8
1185  *       3: 9:11
1186  *       4: 12:14
1187  *       5: 15:17
1188  *       6: 18:20
1189  *       7: 21:23
1190  * reserved: 24:31
1191  */
1192 static u32 knl_get_edc_route(int entry, u32 reg)
1193 {
1194         WARN_ON(entry >= KNL_MAX_EDCS);
1195         return GET_BITFIELD(reg, entry*3, (entry*3)+2);
1196 }
1197
1198 /*
1199  * Get the Nth entry from MC_ROUTE_TABLE register.
1200  * (This is the per-tile mapping of logical interleave targets to
1201  *  physical DRAM channels modules.)
1202  *
1203  * entry 0: mc 0:2   channel 18:19
1204  *       1: mc 3:5   channel 20:21
1205  *       2: mc 6:8   channel 22:23
1206  *       3: mc 9:11  channel 24:25
1207  *       4: mc 12:14 channel 26:27
1208  *       5: mc 15:17 channel 28:29
1209  * reserved: 30:31
1210  *
1211  * Though we have 3 bits to identify the MC, we should only see
1212  * the values 0 or 1.
1213  */
1214
1215 static u32 knl_get_mc_route(int entry, u32 reg)
1216 {
1217         int mc, chan;
1218
1219         WARN_ON(entry >= KNL_MAX_CHANNELS);
1220
1221         mc = GET_BITFIELD(reg, entry*3, (entry*3)+2);
1222         chan = GET_BITFIELD(reg, (entry*2) + 18, (entry*2) + 18 + 1);
1223
1224         return knl_channel_remap(mc, chan);
1225 }
1226
1227 /*
1228  * Render the EDC_ROUTE register in human-readable form.
1229  * Output string s should be at least KNL_MAX_EDCS*2 bytes.
1230  */
1231 static void knl_show_edc_route(u32 reg, char *s)
1232 {
1233         int i;
1234
1235         for (i = 0; i < KNL_MAX_EDCS; i++) {
1236                 s[i*2] = knl_get_edc_route(i, reg) + '0';
1237                 s[i*2+1] = '-';
1238         }
1239
1240         s[KNL_MAX_EDCS*2 - 1] = '\0';
1241 }
1242
1243 /*
1244  * Render the MC_ROUTE register in human-readable form.
1245  * Output string s should be at least KNL_MAX_CHANNELS*2 bytes.
1246  */
1247 static void knl_show_mc_route(u32 reg, char *s)
1248 {
1249         int i;
1250
1251         for (i = 0; i < KNL_MAX_CHANNELS; i++) {
1252                 s[i*2] = knl_get_mc_route(i, reg) + '0';
1253                 s[i*2+1] = '-';
1254         }
1255
1256         s[KNL_MAX_CHANNELS*2 - 1] = '\0';
1257 }
1258
1259 #define KNL_EDC_ROUTE 0xb8
1260 #define KNL_MC_ROUTE 0xb4
1261
1262 /* Is this dram rule backed by regular DRAM in flat mode? */
1263 #define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29)
1264
1265 /* Is this dram rule cached? */
1266 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1267
1268 /* Is this rule backed by edc ? */
1269 #define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29)
1270
1271 /* Is this rule backed by DRAM, cacheable in EDRAM? */
1272 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1273
1274 /* Is this rule mod3? */
1275 #define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27)
1276
1277 /*
1278  * Figure out how big our RAM modules are.
1279  *
1280  * The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we
1281  * have to figure this out from the SAD rules, interleave lists, route tables,
1282  * and TAD rules.
1283  *
1284  * SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to
1285  * inspect the TAD rules to figure out how large the SAD regions really are.
1286  *
1287  * When we know the real size of a SAD region and how many ways it's
1288  * interleaved, we know the individual contribution of each channel to
1289  * TAD is size/ways.
1290  *
1291  * Finally, we have to check whether each channel participates in each SAD
1292  * region.
1293  *
1294  * Fortunately, KNL only supports one DIMM per channel, so once we know how
1295  * much memory the channel uses, we know the DIMM is at least that large.
1296  * (The BIOS might possibly choose not to map all available memory, in which
1297  * case we will underreport the size of the DIMM.)
1298  *
1299  * In theory, we could try to determine the EDC sizes as well, but that would
1300  * only work in flat mode, not in cache mode.
1301  *
1302  * @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS
1303  *            elements)
1304  */
1305 static int knl_get_dimm_capacity(struct sbridge_pvt *pvt, u64 *mc_sizes)
1306 {
1307         u64 sad_base, sad_size, sad_limit = 0;
1308         u64 tad_base, tad_size, tad_limit, tad_deadspace, tad_livespace;
1309         int sad_rule = 0;
1310         int tad_rule = 0;
1311         int intrlv_ways, tad_ways;
1312         u32 first_pkg, pkg;
1313         int i;
1314         u64 sad_actual_size[2]; /* sad size accounting for holes, per mc */
1315         u32 dram_rule, interleave_reg;
1316         u32 mc_route_reg[KNL_MAX_CHAS];
1317         u32 edc_route_reg[KNL_MAX_CHAS];
1318         int edram_only;
1319         char edc_route_string[KNL_MAX_EDCS*2];
1320         char mc_route_string[KNL_MAX_CHANNELS*2];
1321         int cur_reg_start;
1322         int mc;
1323         int channel;
1324         int participants[KNL_MAX_CHANNELS];
1325
1326         for (i = 0; i < KNL_MAX_CHANNELS; i++)
1327                 mc_sizes[i] = 0;
1328
1329         /* Read the EDC route table in each CHA. */
1330         cur_reg_start = 0;
1331         for (i = 0; i < KNL_MAX_CHAS; i++) {
1332                 pci_read_config_dword(pvt->knl.pci_cha[i],
1333                                 KNL_EDC_ROUTE, &edc_route_reg[i]);
1334
1335                 if (i > 0 && edc_route_reg[i] != edc_route_reg[i-1]) {
1336                         knl_show_edc_route(edc_route_reg[i-1],
1337                                         edc_route_string);
1338                         if (cur_reg_start == i-1)
1339                                 edac_dbg(0, "edc route table for CHA %d: %s\n",
1340                                         cur_reg_start, edc_route_string);
1341                         else
1342                                 edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1343                                         cur_reg_start, i-1, edc_route_string);
1344                         cur_reg_start = i;
1345                 }
1346         }
1347         knl_show_edc_route(edc_route_reg[i-1], edc_route_string);
1348         if (cur_reg_start == i-1)
1349                 edac_dbg(0, "edc route table for CHA %d: %s\n",
1350                         cur_reg_start, edc_route_string);
1351         else
1352                 edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1353                         cur_reg_start, i-1, edc_route_string);
1354
1355         /* Read the MC route table in each CHA. */
1356         cur_reg_start = 0;
1357         for (i = 0; i < KNL_MAX_CHAS; i++) {
1358                 pci_read_config_dword(pvt->knl.pci_cha[i],
1359                         KNL_MC_ROUTE, &mc_route_reg[i]);
1360
1361                 if (i > 0 && mc_route_reg[i] != mc_route_reg[i-1]) {
1362                         knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1363                         if (cur_reg_start == i-1)
1364                                 edac_dbg(0, "mc route table for CHA %d: %s\n",
1365                                         cur_reg_start, mc_route_string);
1366                         else
1367                                 edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1368                                         cur_reg_start, i-1, mc_route_string);
1369                         cur_reg_start = i;
1370                 }
1371         }
1372         knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1373         if (cur_reg_start == i-1)
1374                 edac_dbg(0, "mc route table for CHA %d: %s\n",
1375                         cur_reg_start, mc_route_string);
1376         else
1377                 edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1378                         cur_reg_start, i-1, mc_route_string);
1379
1380         /* Process DRAM rules */
1381         for (sad_rule = 0; sad_rule < pvt->info.max_sad; sad_rule++) {
1382                 /* previous limit becomes the new base */
1383                 sad_base = sad_limit;
1384
1385                 pci_read_config_dword(pvt->pci_sad0,
1386                         pvt->info.dram_rule[sad_rule], &dram_rule);
1387
1388                 if (!DRAM_RULE_ENABLE(dram_rule))
1389                         break;
1390
1391                 edram_only = KNL_EDRAM_ONLY(dram_rule);
1392
1393                 sad_limit = pvt->info.sad_limit(dram_rule)+1;
1394                 sad_size = sad_limit - sad_base;
1395
1396                 pci_read_config_dword(pvt->pci_sad0,
1397                         pvt->info.interleave_list[sad_rule], &interleave_reg);
1398
1399                 /*
1400                  * Find out how many ways this dram rule is interleaved.
1401                  * We stop when we see the first channel again.
1402                  */
1403                 first_pkg = sad_pkg(pvt->info.interleave_pkg,
1404                                                 interleave_reg, 0);
1405                 for (intrlv_ways = 1; intrlv_ways < 8; intrlv_ways++) {
1406                         pkg = sad_pkg(pvt->info.interleave_pkg,
1407                                                 interleave_reg, intrlv_ways);
1408
1409                         if ((pkg & 0x8) == 0) {
1410                                 /*
1411                                  * 0 bit means memory is non-local,
1412                                  * which KNL doesn't support
1413                                  */
1414                                 edac_dbg(0, "Unexpected interleave target %d\n",
1415                                         pkg);
1416                                 return -1;
1417                         }
1418
1419                         if (pkg == first_pkg)
1420                                 break;
1421                 }
1422                 if (KNL_MOD3(dram_rule))
1423                         intrlv_ways *= 3;
1424
1425                 edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n",
1426                         sad_rule,
1427                         sad_base,
1428                         sad_limit,
1429                         intrlv_ways,
1430                         edram_only ? ", EDRAM" : "");
1431
1432                 /*
1433                  * Find out how big the SAD region really is by iterating
1434                  * over TAD tables (SAD regions may contain holes).
1435                  * Each memory controller might have a different TAD table, so
1436                  * we have to look at both.
1437                  *
1438                  * Livespace is the memory that's mapped in this TAD table,
1439                  * deadspace is the holes (this could be the MMIO hole, or it
1440                  * could be memory that's mapped by the other TAD table but
1441                  * not this one).
1442                  */
1443                 for (mc = 0; mc < 2; mc++) {
1444                         sad_actual_size[mc] = 0;
1445                         tad_livespace = 0;
1446                         for (tad_rule = 0;
1447                                         tad_rule < ARRAY_SIZE(
1448                                                 knl_tad_dram_limit_lo);
1449                                         tad_rule++) {
1450                                 if (knl_get_tad(pvt,
1451                                                 tad_rule,
1452                                                 mc,
1453                                                 &tad_deadspace,
1454                                                 &tad_limit,
1455                                                 &tad_ways))
1456                                         break;
1457
1458                                 tad_size = (tad_limit+1) -
1459                                         (tad_livespace + tad_deadspace);
1460                                 tad_livespace += tad_size;
1461                                 tad_base = (tad_limit+1) - tad_size;
1462
1463                                 if (tad_base < sad_base) {
1464                                         if (tad_limit > sad_base)
1465                                                 edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n");
1466                                 } else if (tad_base < sad_limit) {
1467                                         if (tad_limit+1 > sad_limit) {
1468                                                 edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n");
1469                                         } else {
1470                                                 /* TAD region is completely inside SAD region */
1471                                                 edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n",
1472                                                         tad_rule, tad_base,
1473                                                         tad_limit, tad_size,
1474                                                         mc);
1475                                                 sad_actual_size[mc] += tad_size;
1476                                         }
1477                                 }
1478                                 tad_base = tad_limit+1;
1479                         }
1480                 }
1481
1482                 for (mc = 0; mc < 2; mc++) {
1483                         edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n",
1484                                 mc, sad_actual_size[mc], sad_actual_size[mc]);
1485                 }
1486
1487                 /* Ignore EDRAM rule */
1488                 if (edram_only)
1489                         continue;
1490
1491                 /* Figure out which channels participate in interleave. */
1492                 for (channel = 0; channel < KNL_MAX_CHANNELS; channel++)
1493                         participants[channel] = 0;
1494
1495                 /* For each channel, does at least one CHA have
1496                  * this channel mapped to the given target?
1497                  */
1498                 for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1499                         int target;
1500                         int cha;
1501
1502                         for (target = 0; target < KNL_MAX_CHANNELS; target++) {
1503                                 for (cha = 0; cha < KNL_MAX_CHAS; cha++) {
1504                                         if (knl_get_mc_route(target,
1505                                                 mc_route_reg[cha]) == channel
1506                                                 && !participants[channel]) {
1507                                                 participants[channel] = 1;
1508                                                 break;
1509                                         }
1510                                 }
1511                         }
1512                 }
1513
1514                 for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1515                         mc = knl_channel_mc(channel);
1516                         if (participants[channel]) {
1517                                 edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n",
1518                                         channel,
1519                                         sad_actual_size[mc]/intrlv_ways,
1520                                         sad_rule);
1521                                 mc_sizes[channel] +=
1522                                         sad_actual_size[mc]/intrlv_ways;
1523                         }
1524                 }
1525         }
1526
1527         return 0;
1528 }
1529
1530 static void get_source_id(struct mem_ctl_info *mci)
1531 {
1532         struct sbridge_pvt *pvt = mci->pvt_info;
1533         u32 reg;
1534
1535         if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL ||
1536             pvt->info.type == KNIGHTS_LANDING)
1537                 pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
1538         else
1539                 pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);
1540
1541         if (pvt->info.type == KNIGHTS_LANDING)
1542                 pvt->sbridge_dev->source_id = SOURCE_ID_KNL(reg);
1543         else
1544                 pvt->sbridge_dev->source_id = SOURCE_ID(reg);
1545 }
1546
1547 static int __populate_dimms(struct mem_ctl_info *mci,
1548                             u64 knl_mc_sizes[KNL_MAX_CHANNELS],
1549                             enum edac_type mode)
1550 {
1551         struct sbridge_pvt *pvt = mci->pvt_info;
1552         int channels = pvt->info.type == KNIGHTS_LANDING ? KNL_MAX_CHANNELS
1553                                                          : NUM_CHANNELS;
1554         unsigned int i, j, banks, ranks, rows, cols, npages;
1555         struct dimm_info *dimm;
1556         enum mem_type mtype;
1557         u64 size;
1558
1559         mtype = pvt->info.get_memory_type(pvt);
1560         if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
1561                 edac_dbg(0, "Memory is registered\n");
1562         else if (mtype == MEM_UNKNOWN)
1563                 edac_dbg(0, "Cannot determine memory type\n");
1564         else
1565                 edac_dbg(0, "Memory is unregistered\n");
1566
1567         if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
1568                 banks = 16;
1569         else
1570                 banks = 8;
1571
1572         for (i = 0; i < channels; i++) {
1573                 u32 mtr;
1574
1575                 int max_dimms_per_channel;
1576
1577                 if (pvt->info.type == KNIGHTS_LANDING) {
1578                         max_dimms_per_channel = 1;
1579                         if (!pvt->knl.pci_channel[i])
1580                                 continue;
1581                 } else {
1582                         max_dimms_per_channel = ARRAY_SIZE(mtr_regs);
1583                         if (!pvt->pci_tad[i])
1584                                 continue;
1585                 }
1586
1587                 for (j = 0; j < max_dimms_per_channel; j++) {
1588                         dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, i, j, 0);
1589                         if (pvt->info.type == KNIGHTS_LANDING) {
1590                                 pci_read_config_dword(pvt->knl.pci_channel[i],
1591                                         knl_mtr_reg, &mtr);
1592                         } else {
1593                                 pci_read_config_dword(pvt->pci_tad[i],
1594                                         mtr_regs[j], &mtr);
1595                         }
1596                         edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr);
1597                         if (IS_DIMM_PRESENT(mtr)) {
1598                                 if (!IS_ECC_ENABLED(pvt->info.mcmtr)) {
1599                                         sbridge_printk(KERN_ERR, "CPU SrcID #%d, Ha #%d, Channel #%d has DIMMs, but ECC is disabled\n",
1600                                                        pvt->sbridge_dev->source_id,
1601                                                        pvt->sbridge_dev->dom, i);
1602                                         return -ENODEV;
1603                                 }
1604                                 pvt->channel[i].dimms++;
1605
1606                                 ranks = numrank(pvt->info.type, mtr);
1607
1608                                 if (pvt->info.type == KNIGHTS_LANDING) {
1609                                         /* For DDR4, this is fixed. */
1610                                         cols = 1 << 10;
1611                                         rows = knl_mc_sizes[i] /
1612                                                 ((u64) cols * ranks * banks * 8);
1613                                 } else {
1614                                         rows = numrow(mtr);
1615                                         cols = numcol(mtr);
1616                                 }
1617
1618                                 size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
1619                                 npages = MiB_TO_PAGES(size);
1620
1621                                 edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
1622                                          pvt->sbridge_dev->mc, pvt->sbridge_dev->dom, i, j,
1623                                          size, npages,
1624                                          banks, ranks, rows, cols);
1625
1626                                 dimm->nr_pages = npages;
1627                                 dimm->grain = 32;
1628                                 dimm->dtype = pvt->info.get_width(pvt, mtr);
1629                                 dimm->mtype = mtype;
1630                                 dimm->edac_mode = mode;
1631                                 snprintf(dimm->label, sizeof(dimm->label),
1632                                                  "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
1633                                                  pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom, i, j);
1634                         }
1635                 }
1636         }
1637
1638         return 0;
1639 }
1640
1641 static int get_dimm_config(struct mem_ctl_info *mci)
1642 {
1643         struct sbridge_pvt *pvt = mci->pvt_info;
1644         u64 knl_mc_sizes[KNL_MAX_CHANNELS];
1645         enum edac_type mode;
1646         u32 reg;
1647
1648         pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
1649         edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
1650                  pvt->sbridge_dev->mc,
1651                  pvt->sbridge_dev->node_id,
1652                  pvt->sbridge_dev->source_id);
1653
1654         /* KNL doesn't support mirroring or lockstep,
1655          * and is always closed page
1656          */
1657         if (pvt->info.type == KNIGHTS_LANDING) {
1658                 mode = EDAC_S4ECD4ED;
1659                 pvt->mirror_mode = NON_MIRRORING;
1660                 pvt->is_cur_addr_mirrored = false;
1661
1662                 if (knl_get_dimm_capacity(pvt, knl_mc_sizes) != 0)
1663                         return -1;
1664                 if (pci_read_config_dword(pvt->pci_ta, KNL_MCMTR, &pvt->info.mcmtr)) {
1665                         edac_dbg(0, "Failed to read KNL_MCMTR register\n");
1666                         return -ENODEV;
1667                 }
1668         } else {
1669                 if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
1670                         if (pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg)) {
1671                                 edac_dbg(0, "Failed to read HASWELL_HASYSDEFEATURE2 register\n");
1672                                 return -ENODEV;
1673                         }
1674                         pvt->is_chan_hash = GET_BITFIELD(reg, 21, 21);
1675                         if (GET_BITFIELD(reg, 28, 28)) {
1676                                 pvt->mirror_mode = ADDR_RANGE_MIRRORING;
1677                                 edac_dbg(0, "Address range partial memory mirroring is enabled\n");
1678                                 goto next;
1679                         }
1680                 }
1681                 if (pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg)) {
1682                         edac_dbg(0, "Failed to read RASENABLES register\n");
1683                         return -ENODEV;
1684                 }
1685                 if (IS_MIRROR_ENABLED(reg)) {
1686                         pvt->mirror_mode = FULL_MIRRORING;
1687                         edac_dbg(0, "Full memory mirroring is enabled\n");
1688                 } else {
1689                         pvt->mirror_mode = NON_MIRRORING;
1690                         edac_dbg(0, "Memory mirroring is disabled\n");
1691                 }
1692
1693 next:
1694                 if (pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr)) {
1695                         edac_dbg(0, "Failed to read MCMTR register\n");
1696                         return -ENODEV;
1697                 }
1698                 if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
1699                         edac_dbg(0, "Lockstep is enabled\n");
1700                         mode = EDAC_S8ECD8ED;
1701                         pvt->is_lockstep = true;
1702                 } else {
1703                         edac_dbg(0, "Lockstep is disabled\n");
1704                         mode = EDAC_S4ECD4ED;
1705                         pvt->is_lockstep = false;
1706                 }
1707                 if (IS_CLOSE_PG(pvt->info.mcmtr)) {
1708                         edac_dbg(0, "address map is on closed page mode\n");
1709                         pvt->is_close_pg = true;
1710                 } else {
1711                         edac_dbg(0, "address map is on open page mode\n");
1712                         pvt->is_close_pg = false;
1713                 }
1714         }
1715
1716         return __populate_dimms(mci, knl_mc_sizes, mode);
1717 }
1718
1719 static void get_memory_layout(const struct mem_ctl_info *mci)
1720 {
1721         struct sbridge_pvt *pvt = mci->pvt_info;
1722         int i, j, k, n_sads, n_tads, sad_interl;
1723         u32 reg;
1724         u64 limit, prv = 0;
1725         u64 tmp_mb;
1726         u32 gb, mb;
1727         u32 rir_way;
1728
1729         /*
1730          * Step 1) Get TOLM/TOHM ranges
1731          */
1732
1733         pvt->tolm = pvt->info.get_tolm(pvt);
1734         tmp_mb = (1 + pvt->tolm) >> 20;
1735
1736         gb = div_u64_rem(tmp_mb, 1024, &mb);
1737         edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
1738                 gb, (mb*1000)/1024, (u64)pvt->tolm);
1739
1740         /* Address range is already 45:25 */
1741         pvt->tohm = pvt->info.get_tohm(pvt);
1742         tmp_mb = (1 + pvt->tohm) >> 20;
1743
1744         gb = div_u64_rem(tmp_mb, 1024, &mb);
1745         edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
1746                 gb, (mb*1000)/1024, (u64)pvt->tohm);
1747
1748         /*
1749          * Step 2) Get SAD range and SAD Interleave list
1750          * TAD registers contain the interleave wayness. However, it
1751          * seems simpler to just discover it indirectly, with the
1752          * algorithm bellow.
1753          */
1754         prv = 0;
1755         for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1756                 /* SAD_LIMIT Address range is 45:26 */
1757                 pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1758                                       &reg);
1759                 limit = pvt->info.sad_limit(reg);
1760
1761                 if (!DRAM_RULE_ENABLE(reg))
1762                         continue;
1763
1764                 if (limit <= prv)
1765                         break;
1766
1767                 tmp_mb = (limit + 1) >> 20;
1768                 gb = div_u64_rem(tmp_mb, 1024, &mb);
1769                 edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
1770                          n_sads,
1771                          show_dram_attr(pvt->info.dram_attr(reg)),
1772                          gb, (mb*1000)/1024,
1773                          ((u64)tmp_mb) << 20L,
1774                          get_intlv_mode_str(reg, pvt->info.type),
1775                          reg);
1776                 prv = limit;
1777
1778                 pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1779                                       &reg);
1780                 sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1781                 for (j = 0; j < 8; j++) {
1782                         u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
1783                         if (j > 0 && sad_interl == pkg)
1784                                 break;
1785
1786                         edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
1787                                  n_sads, j, pkg);
1788                 }
1789         }
1790
1791         if (pvt->info.type == KNIGHTS_LANDING)
1792                 return;
1793
1794         /*
1795          * Step 3) Get TAD range
1796          */
1797         prv = 0;
1798         for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1799                 pci_read_config_dword(pvt->pci_ha, tad_dram_rule[n_tads], &reg);
1800                 limit = TAD_LIMIT(reg);
1801                 if (limit <= prv)
1802                         break;
1803                 tmp_mb = (limit + 1) >> 20;
1804
1805                 gb = div_u64_rem(tmp_mb, 1024, &mb);
1806                 edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
1807                          n_tads, gb, (mb*1000)/1024,
1808                          ((u64)tmp_mb) << 20L,
1809                          (u32)(1 << TAD_SOCK(reg)),
1810                          (u32)TAD_CH(reg) + 1,
1811                          (u32)TAD_TGT0(reg),
1812                          (u32)TAD_TGT1(reg),
1813                          (u32)TAD_TGT2(reg),
1814                          (u32)TAD_TGT3(reg),
1815                          reg);
1816                 prv = limit;
1817         }
1818
1819         /*
1820          * Step 4) Get TAD offsets, per each channel
1821          */
1822         for (i = 0; i < NUM_CHANNELS; i++) {
1823                 if (!pvt->channel[i].dimms)
1824                         continue;
1825                 for (j = 0; j < n_tads; j++) {
1826                         pci_read_config_dword(pvt->pci_tad[i],
1827                                               tad_ch_nilv_offset[j],
1828                                               &reg);
1829                         tmp_mb = TAD_OFFSET(reg) >> 20;
1830                         gb = div_u64_rem(tmp_mb, 1024, &mb);
1831                         edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
1832                                  i, j,
1833                                  gb, (mb*1000)/1024,
1834                                  ((u64)tmp_mb) << 20L,
1835                                  reg);
1836                 }
1837         }
1838
1839         /*
1840          * Step 6) Get RIR Wayness/Limit, per each channel
1841          */
1842         for (i = 0; i < NUM_CHANNELS; i++) {
1843                 if (!pvt->channel[i].dimms)
1844                         continue;
1845                 for (j = 0; j < MAX_RIR_RANGES; j++) {
1846                         pci_read_config_dword(pvt->pci_tad[i],
1847                                               rir_way_limit[j],
1848                                               &reg);
1849
1850                         if (!IS_RIR_VALID(reg))
1851                                 continue;
1852
1853                         tmp_mb = pvt->info.rir_limit(reg) >> 20;
1854                         rir_way = 1 << RIR_WAY(reg);
1855                         gb = div_u64_rem(tmp_mb, 1024, &mb);
1856                         edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
1857                                  i, j,
1858                                  gb, (mb*1000)/1024,
1859                                  ((u64)tmp_mb) << 20L,
1860                                  rir_way,
1861                                  reg);
1862
1863                         for (k = 0; k < rir_way; k++) {
1864                                 pci_read_config_dword(pvt->pci_tad[i],
1865                                                       rir_offset[j][k],
1866                                                       &reg);
1867                                 tmp_mb = RIR_OFFSET(pvt->info.type, reg) << 6;
1868
1869                                 gb = div_u64_rem(tmp_mb, 1024, &mb);
1870                                 edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
1871                                          i, j, k,
1872                                          gb, (mb*1000)/1024,
1873                                          ((u64)tmp_mb) << 20L,
1874                                          (u32)RIR_RNK_TGT(pvt->info.type, reg),
1875                                          reg);
1876                         }
1877                 }
1878         }
1879 }
1880
1881 static struct mem_ctl_info *get_mci_for_node_id(u8 node_id, u8 ha)
1882 {
1883         struct sbridge_dev *sbridge_dev;
1884
1885         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1886                 if (sbridge_dev->node_id == node_id && sbridge_dev->dom == ha)
1887                         return sbridge_dev->mci;
1888         }
1889         return NULL;
1890 }
1891
1892 static int get_memory_error_data(struct mem_ctl_info *mci,
1893                                  u64 addr,
1894                                  u8 *socket, u8 *ha,
1895                                  long *channel_mask,
1896                                  u8 *rank,
1897                                  char **area_type, char *msg)
1898 {
1899         struct mem_ctl_info     *new_mci;
1900         struct sbridge_pvt *pvt = mci->pvt_info;
1901         struct pci_dev          *pci_ha;
1902         int                     n_rir, n_sads, n_tads, sad_way, sck_xch;
1903         int                     sad_interl, idx, base_ch;
1904         int                     interleave_mode, shiftup = 0;
1905         unsigned int            sad_interleave[MAX_INTERLEAVE];
1906         u32                     reg, dram_rule;
1907         u8                      ch_way, sck_way, pkg, sad_ha = 0;
1908         u32                     tad_offset;
1909         u32                     rir_way;
1910         u32                     mb, gb;
1911         u64                     ch_addr, offset, limit = 0, prv = 0;
1912
1913
1914         /*
1915          * Step 0) Check if the address is at special memory ranges
1916          * The check bellow is probably enough to fill all cases where
1917          * the error is not inside a memory, except for the legacy
1918          * range (e. g. VGA addresses). It is unlikely, however, that the
1919          * memory controller would generate an error on that range.
1920          */
1921         if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
1922                 sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
1923                 return -EINVAL;
1924         }
1925         if (addr >= (u64)pvt->tohm) {
1926                 sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
1927                 return -EINVAL;
1928         }
1929
1930         /*
1931          * Step 1) Get socket
1932          */
1933         for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1934                 pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1935                                       &reg);
1936
1937                 if (!DRAM_RULE_ENABLE(reg))
1938                         continue;
1939
1940                 limit = pvt->info.sad_limit(reg);
1941                 if (limit <= prv) {
1942                         sprintf(msg, "Can't discover the memory socket");
1943                         return -EINVAL;
1944                 }
1945                 if  (addr <= limit)
1946                         break;
1947                 prv = limit;
1948         }
1949         if (n_sads == pvt->info.max_sad) {
1950                 sprintf(msg, "Can't discover the memory socket");
1951                 return -EINVAL;
1952         }
1953         dram_rule = reg;
1954         *area_type = show_dram_attr(pvt->info.dram_attr(dram_rule));
1955         interleave_mode = pvt->info.interleave_mode(dram_rule);
1956
1957         pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1958                               &reg);
1959
1960         if (pvt->info.type == SANDY_BRIDGE) {
1961                 sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1962                 for (sad_way = 0; sad_way < 8; sad_way++) {
1963                         u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
1964                         if (sad_way > 0 && sad_interl == pkg)
1965                                 break;
1966                         sad_interleave[sad_way] = pkg;
1967                         edac_dbg(0, "SAD interleave #%d: %d\n",
1968                                  sad_way, sad_interleave[sad_way]);
1969                 }
1970                 edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
1971                          pvt->sbridge_dev->mc,
1972                          n_sads,
1973                          addr,
1974                          limit,
1975                          sad_way + 7,
1976                          !interleave_mode ? "" : "XOR[18:16]");
1977                 if (interleave_mode)
1978                         idx = ((addr >> 6) ^ (addr >> 16)) & 7;
1979                 else
1980                         idx = (addr >> 6) & 7;
1981                 switch (sad_way) {
1982                 case 1:
1983                         idx = 0;
1984                         break;
1985                 case 2:
1986                         idx = idx & 1;
1987                         break;
1988                 case 4:
1989                         idx = idx & 3;
1990                         break;
1991                 case 8:
1992                         break;
1993                 default:
1994                         sprintf(msg, "Can't discover socket interleave");
1995                         return -EINVAL;
1996                 }
1997                 *socket = sad_interleave[idx];
1998                 edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
1999                          idx, sad_way, *socket);
2000         } else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
2001                 int bits, a7mode = A7MODE(dram_rule);
2002
2003                 if (a7mode) {
2004                         /* A7 mode swaps P9 with P6 */
2005                         bits = GET_BITFIELD(addr, 7, 8) << 1;
2006                         bits |= GET_BITFIELD(addr, 9, 9);
2007                 } else
2008                         bits = GET_BITFIELD(addr, 6, 8);
2009
2010                 if (interleave_mode == 0) {
2011                         /* interleave mode will XOR {8,7,6} with {18,17,16} */
2012                         idx = GET_BITFIELD(addr, 16, 18);
2013                         idx ^= bits;
2014                 } else
2015                         idx = bits;
2016
2017                 pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2018                 *socket = sad_pkg_socket(pkg);
2019                 sad_ha = sad_pkg_ha(pkg);
2020
2021                 if (a7mode) {
2022                         /* MCChanShiftUpEnable */
2023                         pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg);
2024                         shiftup = GET_BITFIELD(reg, 22, 22);
2025                 }
2026
2027                 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
2028                          idx, *socket, sad_ha, shiftup);
2029         } else {
2030                 /* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
2031                 idx = (addr >> 6) & 7;
2032                 pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2033                 *socket = sad_pkg_socket(pkg);
2034                 sad_ha = sad_pkg_ha(pkg);
2035                 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
2036                          idx, *socket, sad_ha);
2037         }
2038
2039         *ha = sad_ha;
2040
2041         /*
2042          * Move to the proper node structure, in order to access the
2043          * right PCI registers
2044          */
2045         new_mci = get_mci_for_node_id(*socket, sad_ha);
2046         if (!new_mci) {
2047                 sprintf(msg, "Struct for socket #%u wasn't initialized",
2048                         *socket);
2049                 return -EINVAL;
2050         }
2051         mci = new_mci;
2052         pvt = mci->pvt_info;
2053
2054         /*
2055          * Step 2) Get memory channel
2056          */
2057         prv = 0;
2058         pci_ha = pvt->pci_ha;
2059         for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
2060                 pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
2061                 limit = TAD_LIMIT(reg);
2062                 if (limit <= prv) {
2063                         sprintf(msg, "Can't discover the memory channel");
2064                         return -EINVAL;
2065                 }
2066                 if  (addr <= limit)
2067                         break;
2068                 prv = limit;
2069         }
2070         if (n_tads == MAX_TAD) {
2071                 sprintf(msg, "Can't discover the memory channel");
2072                 return -EINVAL;
2073         }
2074
2075         ch_way = TAD_CH(reg) + 1;
2076         sck_way = TAD_SOCK(reg);
2077
2078         if (ch_way == 3)
2079                 idx = addr >> 6;
2080         else {
2081                 idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
2082                 if (pvt->is_chan_hash)
2083                         idx = haswell_chan_hash(idx, addr);
2084         }
2085         idx = idx % ch_way;
2086
2087         /*
2088          * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
2089          */
2090         switch (idx) {
2091         case 0:
2092                 base_ch = TAD_TGT0(reg);
2093                 break;
2094         case 1:
2095                 base_ch = TAD_TGT1(reg);
2096                 break;
2097         case 2:
2098                 base_ch = TAD_TGT2(reg);
2099                 break;
2100         case 3:
2101                 base_ch = TAD_TGT3(reg);
2102                 break;
2103         default:
2104                 sprintf(msg, "Can't discover the TAD target");
2105                 return -EINVAL;
2106         }
2107         *channel_mask = 1 << base_ch;
2108
2109         pci_read_config_dword(pvt->pci_tad[base_ch], tad_ch_nilv_offset[n_tads], &tad_offset);
2110
2111         if (pvt->mirror_mode == FULL_MIRRORING ||
2112             (pvt->mirror_mode == ADDR_RANGE_MIRRORING && n_tads == 0)) {
2113                 *channel_mask |= 1 << ((base_ch + 2) % 4);
2114                 switch(ch_way) {
2115                 case 2:
2116                 case 4:
2117                         sck_xch = (1 << sck_way) * (ch_way >> 1);
2118                         break;
2119                 default:
2120                         sprintf(msg, "Invalid mirror set. Can't decode addr");
2121                         return -EINVAL;
2122                 }
2123
2124                 pvt->is_cur_addr_mirrored = true;
2125         } else {
2126                 sck_xch = (1 << sck_way) * ch_way;
2127                 pvt->is_cur_addr_mirrored = false;
2128         }
2129
2130         if (pvt->is_lockstep)
2131                 *channel_mask |= 1 << ((base_ch + 1) % 4);
2132
2133         offset = TAD_OFFSET(tad_offset);
2134
2135         edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
2136                  n_tads,
2137                  addr,
2138                  limit,
2139                  sck_way,
2140                  ch_way,
2141                  offset,
2142                  idx,
2143                  base_ch,
2144                  *channel_mask);
2145
2146         /* Calculate channel address */
2147         /* Remove the TAD offset */
2148
2149         if (offset > addr) {
2150                 sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
2151                         offset, addr);
2152                 return -EINVAL;
2153         }
2154
2155         ch_addr = addr - offset;
2156         ch_addr >>= (6 + shiftup);
2157         ch_addr /= sck_xch;
2158         ch_addr <<= (6 + shiftup);
2159         ch_addr |= addr & ((1 << (6 + shiftup)) - 1);
2160
2161         /*
2162          * Step 3) Decode rank
2163          */
2164         for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
2165                 pci_read_config_dword(pvt->pci_tad[base_ch], rir_way_limit[n_rir], &reg);
2166
2167                 if (!IS_RIR_VALID(reg))
2168                         continue;
2169
2170                 limit = pvt->info.rir_limit(reg);
2171                 gb = div_u64_rem(limit >> 20, 1024, &mb);
2172                 edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
2173                          n_rir,
2174                          gb, (mb*1000)/1024,
2175                          limit,
2176                          1 << RIR_WAY(reg));
2177                 if  (ch_addr <= limit)
2178                         break;
2179         }
2180         if (n_rir == MAX_RIR_RANGES) {
2181                 sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
2182                         ch_addr);
2183                 return -EINVAL;
2184         }
2185         rir_way = RIR_WAY(reg);
2186
2187         if (pvt->is_close_pg)
2188                 idx = (ch_addr >> 6);
2189         else
2190                 idx = (ch_addr >> 13);  /* FIXME: Datasheet says to shift by 15 */
2191         idx %= 1 << rir_way;
2192
2193         pci_read_config_dword(pvt->pci_tad[base_ch], rir_offset[n_rir][idx], &reg);
2194         *rank = RIR_RNK_TGT(pvt->info.type, reg);
2195
2196         edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
2197                  n_rir,
2198                  ch_addr,
2199                  limit,
2200                  rir_way,
2201                  idx);
2202
2203         return 0;
2204 }
2205
2206 /****************************************************************************
2207         Device initialization routines: put/get, init/exit
2208  ****************************************************************************/
2209
2210 /*
2211  *      sbridge_put_all_devices 'put' all the devices that we have
2212  *                              reserved via 'get'
2213  */
2214 static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
2215 {
2216         int i;
2217
2218         edac_dbg(0, "\n");
2219         for (i = 0; i < sbridge_dev->n_devs; i++) {
2220                 struct pci_dev *pdev = sbridge_dev->pdev[i];
2221                 if (!pdev)
2222                         continue;
2223                 edac_dbg(0, "Removing dev %02x:%02x.%d\n",
2224                          pdev->bus->number,
2225                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2226                 pci_dev_put(pdev);
2227         }
2228 }
2229
2230 static void sbridge_put_all_devices(void)
2231 {
2232         struct sbridge_dev *sbridge_dev, *tmp;
2233
2234         list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
2235                 sbridge_put_devices(sbridge_dev);
2236                 free_sbridge_dev(sbridge_dev);
2237         }
2238 }
2239
2240 static int sbridge_get_onedevice(struct pci_dev **prev,
2241                                  u8 *num_mc,
2242                                  const struct pci_id_table *table,
2243                                  const unsigned devno,
2244                                  const int multi_bus)
2245 {
2246         struct sbridge_dev *sbridge_dev = NULL;
2247         const struct pci_id_descr *dev_descr = &table->descr[devno];
2248         struct pci_dev *pdev = NULL;
2249         u8 bus = 0;
2250         int i = 0;
2251
2252         sbridge_printk(KERN_DEBUG,
2253                 "Seeking for: PCI ID %04x:%04x\n",
2254                 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2255
2256         pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
2257                               dev_descr->dev_id, *prev);
2258
2259         if (!pdev) {
2260                 if (*prev) {
2261                         *prev = pdev;
2262                         return 0;
2263                 }
2264
2265                 if (dev_descr->optional)
2266                         return 0;
2267
2268                 /* if the HA wasn't found */
2269                 if (devno == 0)
2270                         return -ENODEV;
2271
2272                 sbridge_printk(KERN_INFO,
2273                         "Device not found: %04x:%04x\n",
2274                         PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2275
2276                 /* End of list, leave */
2277                 return -ENODEV;
2278         }
2279         bus = pdev->bus->number;
2280
2281 next_imc:
2282         sbridge_dev = get_sbridge_dev(bus, dev_descr->dom, multi_bus, sbridge_dev);
2283         if (!sbridge_dev) {
2284                 /* If the HA1 wasn't found, don't create EDAC second memory controller */
2285                 if (dev_descr->dom == IMC1 && devno != 1) {
2286                         edac_dbg(0, "Skip IMC1: %04x:%04x (since HA1 was absent)\n",
2287                                  PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2288                         pci_dev_put(pdev);
2289                         return 0;
2290                 }
2291
2292                 if (dev_descr->dom == SOCK)
2293                         goto out_imc;
2294
2295                 sbridge_dev = alloc_sbridge_dev(bus, dev_descr->dom, table);
2296                 if (!sbridge_dev) {
2297                         pci_dev_put(pdev);
2298                         return -ENOMEM;
2299                 }
2300                 (*num_mc)++;
2301         }
2302
2303         if (sbridge_dev->pdev[sbridge_dev->i_devs]) {
2304                 sbridge_printk(KERN_ERR,
2305                         "Duplicated device for %04x:%04x\n",
2306                         PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2307                 pci_dev_put(pdev);
2308                 return -ENODEV;
2309         }
2310
2311         sbridge_dev->pdev[sbridge_dev->i_devs++] = pdev;
2312
2313         /* pdev belongs to more than one IMC, do extra gets */
2314         if (++i > 1)
2315                 pci_dev_get(pdev);
2316
2317         if (dev_descr->dom == SOCK && i < table->n_imcs_per_sock)
2318                 goto next_imc;
2319
2320 out_imc:
2321         /* Be sure that the device is enabled */
2322         if (unlikely(pci_enable_device(pdev) < 0)) {
2323                 sbridge_printk(KERN_ERR,
2324                         "Couldn't enable %04x:%04x\n",
2325                         PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2326                 return -ENODEV;
2327         }
2328
2329         edac_dbg(0, "Detected %04x:%04x\n",
2330                  PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2331
2332         /*
2333          * As stated on drivers/pci/search.c, the reference count for
2334          * @from is always decremented if it is not %NULL. So, as we need
2335          * to get all devices up to null, we need to do a get for the device
2336          */
2337         pci_dev_get(pdev);
2338
2339         *prev = pdev;
2340
2341         return 0;
2342 }
2343
2344 /*
2345  * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
2346  *                           devices we want to reference for this driver.
2347  * @num_mc: pointer to the memory controllers count, to be incremented in case
2348  *          of success.
2349  * @table: model specific table
2350  *
2351  * returns 0 in case of success or error code
2352  */
2353 static int sbridge_get_all_devices(u8 *num_mc,
2354                                         const struct pci_id_table *table)
2355 {
2356         int i, rc;
2357         struct pci_dev *pdev = NULL;
2358         int allow_dups = 0;
2359         int multi_bus = 0;
2360
2361         if (table->type == KNIGHTS_LANDING)
2362                 allow_dups = multi_bus = 1;
2363         while (table && table->descr) {
2364                 for (i = 0; i < table->n_devs_per_sock; i++) {
2365                         if (!allow_dups || i == 0 ||
2366                                         table->descr[i].dev_id !=
2367                                                 table->descr[i-1].dev_id) {
2368                                 pdev = NULL;
2369                         }
2370                         do {
2371                                 rc = sbridge_get_onedevice(&pdev, num_mc,
2372                                                            table, i, multi_bus);
2373                                 if (rc < 0) {
2374                                         if (i == 0) {
2375                                                 i = table->n_devs_per_sock;
2376                                                 break;
2377                                         }
2378                                         sbridge_put_all_devices();
2379                                         return -ENODEV;
2380                                 }
2381                         } while (pdev && !allow_dups);
2382                 }
2383                 table++;
2384         }
2385
2386         return 0;
2387 }
2388
2389 /*
2390  * Device IDs for {SBRIDGE,IBRIDGE,HASWELL,BROADWELL}_IMC_HA0_TAD0 are in
2391  * the format: XXXa. So we can convert from a device to the corresponding
2392  * channel like this
2393  */
2394 #define TAD_DEV_TO_CHAN(dev) (((dev) & 0xf) - 0xa)
2395
2396 static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
2397                                  struct sbridge_dev *sbridge_dev)
2398 {
2399         struct sbridge_pvt *pvt = mci->pvt_info;
2400         struct pci_dev *pdev;
2401         u8 saw_chan_mask = 0;
2402         int i;
2403
2404         for (i = 0; i < sbridge_dev->n_devs; i++) {
2405                 pdev = sbridge_dev->pdev[i];
2406                 if (!pdev)
2407                         continue;
2408
2409                 switch (pdev->device) {
2410                 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
2411                         pvt->pci_sad0 = pdev;
2412                         break;
2413                 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
2414                         pvt->pci_sad1 = pdev;
2415                         break;
2416                 case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
2417                         pvt->pci_br0 = pdev;
2418                         break;
2419                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
2420                         pvt->pci_ha = pdev;
2421                         break;
2422                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
2423                         pvt->pci_ta = pdev;
2424                         break;
2425                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
2426                         pvt->pci_ras = pdev;
2427                         break;
2428                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
2429                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
2430                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
2431                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
2432                 {
2433                         int id = TAD_DEV_TO_CHAN(pdev->device);
2434                         pvt->pci_tad[id] = pdev;
2435                         saw_chan_mask |= 1 << id;
2436                 }
2437                         break;
2438                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
2439                         pvt->pci_ddrio = pdev;
2440                         break;
2441                 default:
2442                         goto error;
2443                 }
2444
2445                 edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
2446                          pdev->vendor, pdev->device,
2447                          sbridge_dev->bus,
2448                          pdev);
2449         }
2450
2451         /* Check if everything were registered */
2452         if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha ||
2453             !pvt->pci_ras || !pvt->pci_ta)
2454                 goto enodev;
2455
2456         if (saw_chan_mask != 0x0f)
2457                 goto enodev;
2458         return 0;
2459
2460 enodev:
2461         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2462         return -ENODEV;
2463
2464 error:
2465         sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
2466                        PCI_VENDOR_ID_INTEL, pdev->device);
2467         return -EINVAL;
2468 }
2469
2470 static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
2471                                  struct sbridge_dev *sbridge_dev)
2472 {
2473         struct sbridge_pvt *pvt = mci->pvt_info;
2474         struct pci_dev *pdev;
2475         u8 saw_chan_mask = 0;
2476         int i;
2477
2478         for (i = 0; i < sbridge_dev->n_devs; i++) {
2479                 pdev = sbridge_dev->pdev[i];
2480                 if (!pdev)
2481                         continue;
2482
2483                 switch (pdev->device) {
2484                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
2485                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
2486                         pvt->pci_ha = pdev;
2487                         break;
2488                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
2489                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA:
2490                         pvt->pci_ta = pdev;
2491                         break;
2492                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
2493                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS:
2494                         pvt->pci_ras = pdev;
2495                         break;
2496                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
2497                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
2498                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
2499                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
2500                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
2501                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
2502                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2:
2503                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3:
2504                 {
2505                         int id = TAD_DEV_TO_CHAN(pdev->device);
2506                         pvt->pci_tad[id] = pdev;
2507                         saw_chan_mask |= 1 << id;
2508                 }
2509                         break;
2510                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
2511                         pvt->pci_ddrio = pdev;
2512                         break;
2513                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
2514                         pvt->pci_ddrio = pdev;
2515                         break;
2516                 case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
2517                         pvt->pci_sad0 = pdev;
2518                         break;
2519                 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
2520                         pvt->pci_br0 = pdev;
2521                         break;
2522                 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
2523                         pvt->pci_br1 = pdev;
2524                         break;
2525                 default:
2526                         goto error;
2527                 }
2528
2529                 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2530                          sbridge_dev->bus,
2531                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2532                          pdev);
2533         }
2534
2535         /* Check if everything were registered */
2536         if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_br0 ||
2537             !pvt->pci_br1 || !pvt->pci_ras || !pvt->pci_ta)
2538                 goto enodev;
2539
2540         if (saw_chan_mask != 0x0f && /* -EN/-EX */
2541             saw_chan_mask != 0x03)   /* -EP */
2542                 goto enodev;
2543         return 0;
2544
2545 enodev:
2546         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2547         return -ENODEV;
2548
2549 error:
2550         sbridge_printk(KERN_ERR,
2551                        "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
2552                         pdev->device);
2553         return -EINVAL;
2554 }
2555
2556 static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
2557                                  struct sbridge_dev *sbridge_dev)
2558 {
2559         struct sbridge_pvt *pvt = mci->pvt_info;
2560         struct pci_dev *pdev;
2561         u8 saw_chan_mask = 0;
2562         int i;
2563
2564         /* there's only one device per system; not tied to any bus */
2565         if (pvt->info.pci_vtd == NULL)
2566                 /* result will be checked later */
2567                 pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2568                                                    PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
2569                                                    NULL);
2570
2571         for (i = 0; i < sbridge_dev->n_devs; i++) {
2572                 pdev = sbridge_dev->pdev[i];
2573                 if (!pdev)
2574                         continue;
2575
2576                 switch (pdev->device) {
2577                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
2578                         pvt->pci_sad0 = pdev;
2579                         break;
2580                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
2581                         pvt->pci_sad1 = pdev;
2582                         break;
2583                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
2584                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
2585                         pvt->pci_ha = pdev;
2586                         break;
2587                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
2588                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
2589                         pvt->pci_ta = pdev;
2590                         break;
2591                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM:
2592                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM:
2593                         pvt->pci_ras = pdev;
2594                         break;
2595                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
2596                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
2597                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
2598                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
2599                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
2600                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
2601                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2:
2602                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3:
2603                 {
2604                         int id = TAD_DEV_TO_CHAN(pdev->device);
2605                         pvt->pci_tad[id] = pdev;
2606                         saw_chan_mask |= 1 << id;
2607                 }
2608                         break;
2609                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
2610                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1:
2611                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2:
2612                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3:
2613                         if (!pvt->pci_ddrio)
2614                                 pvt->pci_ddrio = pdev;
2615                         break;
2616                 default:
2617                         break;
2618                 }
2619
2620                 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2621                          sbridge_dev->bus,
2622                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2623                          pdev);
2624         }
2625
2626         /* Check if everything were registered */
2627         if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
2628             !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2629                 goto enodev;
2630
2631         if (saw_chan_mask != 0x0f && /* -EN/-EX */
2632             saw_chan_mask != 0x03)   /* -EP */
2633                 goto enodev;
2634         return 0;
2635
2636 enodev:
2637         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2638         return -ENODEV;
2639 }
2640
2641 static int broadwell_mci_bind_devs(struct mem_ctl_info *mci,
2642                                  struct sbridge_dev *sbridge_dev)
2643 {
2644         struct sbridge_pvt *pvt = mci->pvt_info;
2645         struct pci_dev *pdev;
2646         u8 saw_chan_mask = 0;
2647         int i;
2648
2649         /* there's only one device per system; not tied to any bus */
2650         if (pvt->info.pci_vtd == NULL)
2651                 /* result will be checked later */
2652                 pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2653                                                    PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC,
2654                                                    NULL);
2655
2656         for (i = 0; i < sbridge_dev->n_devs; i++) {
2657                 pdev = sbridge_dev->pdev[i];
2658                 if (!pdev)
2659                         continue;
2660
2661                 switch (pdev->device) {
2662                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0:
2663                         pvt->pci_sad0 = pdev;
2664                         break;
2665                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1:
2666                         pvt->pci_sad1 = pdev;
2667                         break;
2668                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
2669                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1:
2670                         pvt->pci_ha = pdev;
2671                         break;
2672                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA:
2673                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA:
2674                         pvt->pci_ta = pdev;
2675                         break;
2676                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM:
2677                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM:
2678                         pvt->pci_ras = pdev;
2679                         break;
2680                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0:
2681                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1:
2682                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2:
2683                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3:
2684                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0:
2685                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1:
2686                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2:
2687                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3:
2688                 {
2689                         int id = TAD_DEV_TO_CHAN(pdev->device);
2690                         pvt->pci_tad[id] = pdev;
2691                         saw_chan_mask |= 1 << id;
2692                 }
2693                         break;
2694                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0:
2695                         pvt->pci_ddrio = pdev;
2696                         break;
2697                 default:
2698                         break;
2699                 }
2700
2701                 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2702                          sbridge_dev->bus,
2703                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2704                          pdev);
2705         }
2706
2707         /* Check if everything were registered */
2708         if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
2709             !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2710                 goto enodev;
2711
2712         if (saw_chan_mask != 0x0f && /* -EN/-EX */
2713             saw_chan_mask != 0x03)   /* -EP */
2714                 goto enodev;
2715         return 0;
2716
2717 enodev:
2718         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2719         return -ENODEV;
2720 }
2721
2722 static int knl_mci_bind_devs(struct mem_ctl_info *mci,
2723                         struct sbridge_dev *sbridge_dev)
2724 {
2725         struct sbridge_pvt *pvt = mci->pvt_info;
2726         struct pci_dev *pdev;
2727         int dev, func;
2728
2729         int i;
2730         int devidx;
2731
2732         for (i = 0; i < sbridge_dev->n_devs; i++) {
2733                 pdev = sbridge_dev->pdev[i];
2734                 if (!pdev)
2735                         continue;
2736
2737                 /* Extract PCI device and function. */
2738                 dev = (pdev->devfn >> 3) & 0x1f;
2739                 func = pdev->devfn & 0x7;
2740
2741                 switch (pdev->device) {
2742                 case PCI_DEVICE_ID_INTEL_KNL_IMC_MC:
2743                         if (dev == 8)
2744                                 pvt->knl.pci_mc0 = pdev;
2745                         else if (dev == 9)
2746                                 pvt->knl.pci_mc1 = pdev;
2747                         else {
2748                                 sbridge_printk(KERN_ERR,
2749                                         "Memory controller in unexpected place! (dev %d, fn %d)\n",
2750                                         dev, func);
2751                                 continue;
2752                         }
2753                         break;
2754
2755                 case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0:
2756                         pvt->pci_sad0 = pdev;
2757                         break;
2758
2759                 case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1:
2760                         pvt->pci_sad1 = pdev;
2761                         break;
2762
2763                 case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA:
2764                         /* There are one of these per tile, and range from
2765                          * 1.14.0 to 1.18.5.
2766                          */
2767                         devidx = ((dev-14)*8)+func;
2768
2769                         if (devidx < 0 || devidx >= KNL_MAX_CHAS) {
2770                                 sbridge_printk(KERN_ERR,
2771                                         "Caching and Home Agent in unexpected place! (dev %d, fn %d)\n",
2772                                         dev, func);
2773                                 continue;
2774                         }
2775
2776                         WARN_ON(pvt->knl.pci_cha[devidx] != NULL);
2777
2778                         pvt->knl.pci_cha[devidx] = pdev;
2779                         break;
2780
2781                 case PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN:
2782                         devidx = -1;
2783
2784                         /*
2785                          *  MC0 channels 0-2 are device 9 function 2-4,
2786                          *  MC1 channels 3-5 are device 8 function 2-4.
2787                          */
2788
2789                         if (dev == 9)
2790                                 devidx = func-2;
2791                         else if (dev == 8)
2792                                 devidx = 3 + (func-2);
2793
2794                         if (devidx < 0 || devidx >= KNL_MAX_CHANNELS) {
2795                                 sbridge_printk(KERN_ERR,
2796                                         "DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n",
2797                                         dev, func);
2798                                 continue;
2799                         }
2800
2801                         WARN_ON(pvt->knl.pci_channel[devidx] != NULL);
2802                         pvt->knl.pci_channel[devidx] = pdev;
2803                         break;
2804
2805                 case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM:
2806                         pvt->knl.pci_mc_info = pdev;
2807                         break;
2808
2809                 case PCI_DEVICE_ID_INTEL_KNL_IMC_TA:
2810                         pvt->pci_ta = pdev;
2811                         break;
2812
2813                 default:
2814                         sbridge_printk(KERN_ERR, "Unexpected device %d\n",
2815                                 pdev->device);
2816                         break;
2817                 }
2818         }
2819
2820         if (!pvt->knl.pci_mc0  || !pvt->knl.pci_mc1 ||
2821             !pvt->pci_sad0     || !pvt->pci_sad1    ||
2822             !pvt->pci_ta) {
2823                 goto enodev;
2824         }
2825
2826         for (i = 0; i < KNL_MAX_CHANNELS; i++) {
2827                 if (!pvt->knl.pci_channel[i]) {
2828                         sbridge_printk(KERN_ERR, "Missing channel %d\n", i);
2829                         goto enodev;
2830                 }
2831         }
2832
2833         for (i = 0; i < KNL_MAX_CHAS; i++) {
2834                 if (!pvt->knl.pci_cha[i]) {
2835                         sbridge_printk(KERN_ERR, "Missing CHA %d\n", i);
2836                         goto enodev;
2837                 }
2838         }
2839
2840         return 0;
2841
2842 enodev:
2843         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2844         return -ENODEV;
2845 }
2846
2847 /****************************************************************************
2848                         Error check routines
2849  ****************************************************************************/
2850
2851 /*
2852  * While Sandy Bridge has error count registers, SMI BIOS read values from
2853  * and resets the counters. So, they are not reliable for the OS to read
2854  * from them. So, we have no option but to just trust on whatever MCE is
2855  * telling us about the errors.
2856  */
2857 static void sbridge_mce_output_error(struct mem_ctl_info *mci,
2858                                     const struct mce *m)
2859 {
2860         struct mem_ctl_info *new_mci;
2861         struct sbridge_pvt *pvt = mci->pvt_info;
2862         enum hw_event_mc_err_type tp_event;
2863         char *type, *optype, msg[256];
2864         bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
2865         bool overflow = GET_BITFIELD(m->status, 62, 62);
2866         bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
2867         bool recoverable;
2868         u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
2869         u32 mscod = GET_BITFIELD(m->status, 16, 31);
2870         u32 errcode = GET_BITFIELD(m->status, 0, 15);
2871         u32 channel = GET_BITFIELD(m->status, 0, 3);
2872         u32 optypenum = GET_BITFIELD(m->status, 4, 6);
2873         long channel_mask, first_channel;
2874         u8  rank, socket, ha;
2875         int rc, dimm;
2876         char *area_type = NULL;
2877
2878         if (pvt->info.type != SANDY_BRIDGE)
2879                 recoverable = true;
2880         else
2881                 recoverable = GET_BITFIELD(m->status, 56, 56);
2882
2883         if (uncorrected_error) {
2884                 if (ripv) {
2885                         type = "FATAL";
2886                         tp_event = HW_EVENT_ERR_FATAL;
2887                 } else {
2888                         type = "NON_FATAL";
2889                         tp_event = HW_EVENT_ERR_UNCORRECTED;
2890                 }
2891         } else {
2892                 type = "CORRECTED";
2893                 tp_event = HW_EVENT_ERR_CORRECTED;
2894         }
2895
2896         /*
2897          * According with Table 15-9 of the Intel Architecture spec vol 3A,
2898          * memory errors should fit in this mask:
2899          *      000f 0000 1mmm cccc (binary)
2900          * where:
2901          *      f = Correction Report Filtering Bit. If 1, subsequent errors
2902          *          won't be shown
2903          *      mmm = error type
2904          *      cccc = channel
2905          * If the mask doesn't match, report an error to the parsing logic
2906          */
2907         if (! ((errcode & 0xef80) == 0x80)) {
2908                 optype = "Can't parse: it is not a mem";
2909         } else {
2910                 switch (optypenum) {
2911                 case 0:
2912                         optype = "generic undef request error";
2913                         break;
2914                 case 1:
2915                         optype = "memory read error";
2916                         break;
2917                 case 2:
2918                         optype = "memory write error";
2919                         break;
2920                 case 3:
2921                         optype = "addr/cmd error";
2922                         break;
2923                 case 4:
2924                         optype = "memory scrubbing error";
2925                         break;
2926                 default:
2927                         optype = "reserved";
2928                         break;
2929                 }
2930         }
2931
2932         /* Only decode errors with an valid address (ADDRV) */
2933         if (!GET_BITFIELD(m->status, 58, 58))
2934                 return;
2935
2936         if (pvt->info.type == KNIGHTS_LANDING) {
2937                 if (channel == 14) {
2938                         edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n",
2939                                 overflow ? " OVERFLOW" : "",
2940                                 (uncorrected_error && recoverable)
2941                                 ? " recoverable" : "",
2942                                 mscod, errcode,
2943                                 m->bank);
2944                 } else {
2945                         char A = *("A");
2946
2947                         /*
2948                          * Reported channel is in range 0-2, so we can't map it
2949                          * back to mc. To figure out mc we check machine check
2950                          * bank register that reported this error.
2951                          * bank15 means mc0 and bank16 means mc1.
2952                          */
2953                         channel = knl_channel_remap(m->bank == 16, channel);
2954                         channel_mask = 1 << channel;
2955
2956                         snprintf(msg, sizeof(msg),
2957                                 "%s%s err_code:%04x:%04x channel:%d (DIMM_%c)",
2958                                 overflow ? " OVERFLOW" : "",
2959                                 (uncorrected_error && recoverable)
2960                                 ? " recoverable" : " ",
2961                                 mscod, errcode, channel, A + channel);
2962                         edac_mc_handle_error(tp_event, mci, core_err_cnt,
2963                                 m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
2964                                 channel, 0, -1,
2965                                 optype, msg);
2966                 }
2967                 return;
2968         } else {
2969                 rc = get_memory_error_data(mci, m->addr, &socket, &ha,
2970                                 &channel_mask, &rank, &area_type, msg);
2971         }
2972
2973         if (rc < 0)
2974                 goto err_parsing;
2975         new_mci = get_mci_for_node_id(socket, ha);
2976         if (!new_mci) {
2977                 strcpy(msg, "Error: socket got corrupted!");
2978                 goto err_parsing;
2979         }
2980         mci = new_mci;
2981         pvt = mci->pvt_info;
2982
2983         first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
2984
2985         if (rank < 4)
2986                 dimm = 0;
2987         else if (rank < 8)
2988                 dimm = 1;
2989         else
2990                 dimm = 2;
2991
2992
2993         /*
2994          * FIXME: On some memory configurations (mirror, lockstep), the
2995          * Memory Controller can't point the error to a single DIMM. The
2996          * EDAC core should be handling the channel mask, in order to point
2997          * to the group of dimm's where the error may be happening.
2998          */
2999         if (!pvt->is_lockstep && !pvt->is_cur_addr_mirrored && !pvt->is_close_pg)
3000                 channel = first_channel;
3001
3002         snprintf(msg, sizeof(msg),
3003                  "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d",
3004                  overflow ? " OVERFLOW" : "",
3005                  (uncorrected_error && recoverable) ? " recoverable" : "",
3006                  area_type,
3007                  mscod, errcode,
3008                  socket, ha,
3009                  channel_mask,
3010                  rank);
3011
3012         edac_dbg(0, "%s\n", msg);
3013
3014         /* FIXME: need support for channel mask */
3015
3016         if (channel == CHANNEL_UNSPECIFIED)
3017                 channel = -1;
3018
3019         /* Call the helper to output message */
3020         edac_mc_handle_error(tp_event, mci, core_err_cnt,
3021                              m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3022                              channel, dimm, -1,
3023                              optype, msg);
3024         return;
3025 err_parsing:
3026         edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
3027                              -1, -1, -1,
3028                              msg, "");
3029
3030 }
3031
3032 /*
3033  * Check that logging is enabled and that this is the right type
3034  * of error for us to handle.
3035  */
3036 static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
3037                                    void *data)
3038 {
3039         struct mce *mce = (struct mce *)data;
3040         struct mem_ctl_info *mci;
3041         struct sbridge_pvt *pvt;
3042         char *type;
3043
3044         if (edac_get_report_status() == EDAC_REPORTING_DISABLED)
3045                 return NOTIFY_DONE;
3046
3047         mci = get_mci_for_node_id(mce->socketid, IMC0);
3048         if (!mci)
3049                 return NOTIFY_DONE;
3050         pvt = mci->pvt_info;
3051
3052         /*
3053          * Just let mcelog handle it if the error is
3054          * outside the memory controller. A memory error
3055          * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
3056          * bit 12 has an special meaning.
3057          */
3058         if ((mce->status & 0xefff) >> 7 != 1)
3059                 return NOTIFY_DONE;
3060
3061         if (mce->mcgstatus & MCG_STATUS_MCIP)
3062                 type = "Exception";
3063         else
3064                 type = "Event";
3065
3066         sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
3067
3068         sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
3069                           "Bank %d: %016Lx\n", mce->extcpu, type,
3070                           mce->mcgstatus, mce->bank, mce->status);
3071         sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
3072         sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
3073         sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
3074
3075         sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
3076                           "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
3077                           mce->time, mce->socketid, mce->apicid);
3078
3079         sbridge_mce_output_error(mci, mce);
3080
3081         /* Advice mcelog that the error were handled */
3082         return NOTIFY_STOP;
3083 }
3084
3085 static struct notifier_block sbridge_mce_dec = {
3086         .notifier_call  = sbridge_mce_check_error,
3087         .priority       = MCE_PRIO_EDAC,
3088 };
3089
3090 /****************************************************************************
3091                         EDAC register/unregister logic
3092  ****************************************************************************/
3093
3094 static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
3095 {
3096         struct mem_ctl_info *mci = sbridge_dev->mci;
3097         struct sbridge_pvt *pvt;
3098
3099         if (unlikely(!mci || !mci->pvt_info)) {
3100                 edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
3101
3102                 sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
3103                 return;
3104         }
3105
3106         pvt = mci->pvt_info;
3107
3108         edac_dbg(0, "MC: mci = %p, dev = %p\n",
3109                  mci, &sbridge_dev->pdev[0]->dev);
3110
3111         /* Remove MC sysfs nodes */
3112         edac_mc_del_mc(mci->pdev);
3113
3114         edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
3115         kfree(mci->ctl_name);
3116         edac_mc_free(mci);
3117         sbridge_dev->mci = NULL;
3118 }
3119
3120 static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
3121 {
3122         struct mem_ctl_info *mci;
3123         struct edac_mc_layer layers[2];
3124         struct sbridge_pvt *pvt;
3125         struct pci_dev *pdev = sbridge_dev->pdev[0];
3126         int rc;
3127
3128         /* allocate a new MC control structure */
3129         layers[0].type = EDAC_MC_LAYER_CHANNEL;
3130         layers[0].size = type == KNIGHTS_LANDING ?
3131                 KNL_MAX_CHANNELS : NUM_CHANNELS;
3132         layers[0].is_virt_csrow = false;
3133         layers[1].type = EDAC_MC_LAYER_SLOT;
3134         layers[1].size = type == KNIGHTS_LANDING ? 1 : MAX_DIMMS;
3135         layers[1].is_virt_csrow = true;
3136         mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
3137                             sizeof(*pvt));
3138
3139         if (unlikely(!mci))
3140                 return -ENOMEM;
3141
3142         edac_dbg(0, "MC: mci = %p, dev = %p\n",
3143                  mci, &pdev->dev);
3144
3145         pvt = mci->pvt_info;
3146         memset(pvt, 0, sizeof(*pvt));
3147
3148         /* Associate sbridge_dev and mci for future usage */
3149         pvt->sbridge_dev = sbridge_dev;
3150         sbridge_dev->mci = mci;
3151
3152         mci->mtype_cap = type == KNIGHTS_LANDING ?
3153                 MEM_FLAG_DDR4 : MEM_FLAG_DDR3;
3154         mci->edac_ctl_cap = EDAC_FLAG_NONE;
3155         mci->edac_cap = EDAC_FLAG_NONE;
3156         mci->mod_name = EDAC_MOD_STR;
3157         mci->dev_name = pci_name(pdev);
3158         mci->ctl_page_to_phys = NULL;
3159
3160         pvt->info.type = type;
3161         switch (type) {
3162         case IVY_BRIDGE:
3163                 pvt->info.rankcfgr = IB_RANK_CFG_A;
3164                 pvt->info.get_tolm = ibridge_get_tolm;
3165                 pvt->info.get_tohm = ibridge_get_tohm;
3166                 pvt->info.dram_rule = ibridge_dram_rule;
3167                 pvt->info.get_memory_type = get_memory_type;
3168                 pvt->info.get_node_id = get_node_id;
3169                 pvt->info.rir_limit = rir_limit;
3170                 pvt->info.sad_limit = sad_limit;
3171                 pvt->info.interleave_mode = interleave_mode;
3172                 pvt->info.dram_attr = dram_attr;
3173                 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3174                 pvt->info.interleave_list = ibridge_interleave_list;
3175                 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3176                 pvt->info.get_width = ibridge_get_width;
3177
3178                 /* Store pci devices at mci for faster access */
3179                 rc = ibridge_mci_bind_devs(mci, sbridge_dev);
3180                 if (unlikely(rc < 0))
3181                         goto fail0;
3182                 get_source_id(mci);
3183                 mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge SrcID#%d_Ha#%d",
3184                         pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3185                 break;
3186         case SANDY_BRIDGE:
3187                 pvt->info.rankcfgr = SB_RANK_CFG_A;
3188                 pvt->info.get_tolm = sbridge_get_tolm;
3189                 pvt->info.get_tohm = sbridge_get_tohm;
3190                 pvt->info.dram_rule = sbridge_dram_rule;
3191                 pvt->info.get_memory_type = get_memory_type;
3192                 pvt->info.get_node_id = get_node_id;
3193                 pvt->info.rir_limit = rir_limit;
3194                 pvt->info.sad_limit = sad_limit;
3195                 pvt->info.interleave_mode = interleave_mode;
3196                 pvt->info.dram_attr = dram_attr;
3197                 pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
3198                 pvt->info.interleave_list = sbridge_interleave_list;
3199                 pvt->info.interleave_pkg = sbridge_interleave_pkg;
3200                 pvt->info.get_width = sbridge_get_width;
3201
3202                 /* Store pci devices at mci for faster access */
3203                 rc = sbridge_mci_bind_devs(mci, sbridge_dev);
3204                 if (unlikely(rc < 0))
3205                         goto fail0;
3206                 get_source_id(mci);
3207                 mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge SrcID#%d_Ha#%d",
3208                         pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3209                 break;
3210         case HASWELL:
3211                 /* rankcfgr isn't used */
3212                 pvt->info.get_tolm = haswell_get_tolm;
3213                 pvt->info.get_tohm = haswell_get_tohm;
3214                 pvt->info.dram_rule = ibridge_dram_rule;
3215                 pvt->info.get_memory_type = haswell_get_memory_type;
3216                 pvt->info.get_node_id = haswell_get_node_id;
3217                 pvt->info.rir_limit = haswell_rir_limit;
3218                 pvt->info.sad_limit = sad_limit;
3219                 pvt->info.interleave_mode = interleave_mode;
3220                 pvt->info.dram_attr = dram_attr;
3221                 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3222                 pvt->info.interleave_list = ibridge_interleave_list;
3223                 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3224                 pvt->info.get_width = ibridge_get_width;
3225
3226                 /* Store pci devices at mci for faster access */
3227                 rc = haswell_mci_bind_devs(mci, sbridge_dev);
3228                 if (unlikely(rc < 0))
3229                         goto fail0;
3230                 get_source_id(mci);
3231                 mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell SrcID#%d_Ha#%d",
3232                         pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3233                 break;
3234         case BROADWELL:
3235                 /* rankcfgr isn't used */
3236                 pvt->info.get_tolm = haswell_get_tolm;
3237                 pvt->info.get_tohm = haswell_get_tohm;
3238                 pvt->info.dram_rule = ibridge_dram_rule;
3239                 pvt->info.get_memory_type = haswell_get_memory_type;
3240                 pvt->info.get_node_id = haswell_get_node_id;
3241                 pvt->info.rir_limit = haswell_rir_limit;
3242                 pvt->info.sad_limit = sad_limit;
3243                 pvt->info.interleave_mode = interleave_mode;
3244                 pvt->info.dram_attr = dram_attr;
3245                 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3246                 pvt->info.interleave_list = ibridge_interleave_list;
3247                 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3248                 pvt->info.get_width = broadwell_get_width;
3249
3250                 /* Store pci devices at mci for faster access */
3251                 rc = broadwell_mci_bind_devs(mci, sbridge_dev);
3252                 if (unlikely(rc < 0))
3253                         goto fail0;
3254                 get_source_id(mci);
3255                 mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell SrcID#%d_Ha#%d",
3256                         pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3257                 break;
3258         case KNIGHTS_LANDING:
3259                 /* pvt->info.rankcfgr == ??? */
3260                 pvt->info.get_tolm = knl_get_tolm;
3261                 pvt->info.get_tohm = knl_get_tohm;
3262                 pvt->info.dram_rule = knl_dram_rule;
3263                 pvt->info.get_memory_type = knl_get_memory_type;
3264                 pvt->info.get_node_id = knl_get_node_id;
3265                 pvt->info.rir_limit = NULL;
3266                 pvt->info.sad_limit = knl_sad_limit;
3267                 pvt->info.interleave_mode = knl_interleave_mode;
3268                 pvt->info.dram_attr = dram_attr_knl;
3269                 pvt->info.max_sad = ARRAY_SIZE(knl_dram_rule);
3270                 pvt->info.interleave_list = knl_interleave_list;
3271                 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3272                 pvt->info.get_width = knl_get_width;
3273
3274                 rc = knl_mci_bind_devs(mci, sbridge_dev);
3275                 if (unlikely(rc < 0))
3276                         goto fail0;
3277                 get_source_id(mci);
3278                 mci->ctl_name = kasprintf(GFP_KERNEL, "Knights Landing SrcID#%d_Ha#%d",
3279                         pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3280                 break;
3281         }
3282
3283         if (!mci->ctl_name) {
3284                 rc = -ENOMEM;
3285                 goto fail0;
3286         }
3287
3288         /* Get dimm basic config and the memory layout */
3289         rc = get_dimm_config(mci);
3290         if (rc < 0) {
3291                 edac_dbg(0, "MC: failed to get_dimm_config()\n");
3292                 goto fail;
3293         }
3294         get_memory_layout(mci);
3295
3296         /* record ptr to the generic device */
3297         mci->pdev = &pdev->dev;
3298
3299         /* add this new MC control structure to EDAC's list of MCs */
3300         if (unlikely(edac_mc_add_mc(mci))) {
3301                 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
3302                 rc = -EINVAL;
3303                 goto fail;
3304         }
3305
3306         return 0;
3307
3308 fail:
3309         kfree(mci->ctl_name);
3310 fail0:
3311         edac_mc_free(mci);
3312         sbridge_dev->mci = NULL;
3313         return rc;
3314 }
3315
3316 #define ICPU(model, table) \
3317         { X86_VENDOR_INTEL, 6, model, 0, (unsigned long)&table }
3318
3319 static const struct x86_cpu_id sbridge_cpuids[] = {
3320         ICPU(INTEL_FAM6_SANDYBRIDGE_X,    pci_dev_descr_sbridge_table),
3321         ICPU(INTEL_FAM6_IVYBRIDGE_X,      pci_dev_descr_ibridge_table),
3322         ICPU(INTEL_FAM6_HASWELL_X,        pci_dev_descr_haswell_table),
3323         ICPU(INTEL_FAM6_BROADWELL_X,      pci_dev_descr_broadwell_table),
3324         ICPU(INTEL_FAM6_BROADWELL_XEON_D, pci_dev_descr_broadwell_table),
3325         ICPU(INTEL_FAM6_XEON_PHI_KNL,     pci_dev_descr_knl_table),
3326         ICPU(INTEL_FAM6_XEON_PHI_KNM,     pci_dev_descr_knl_table),
3327         { }
3328 };
3329 MODULE_DEVICE_TABLE(x86cpu, sbridge_cpuids);
3330
3331 /*
3332  *      sbridge_probe   Get all devices and register memory controllers
3333  *                      present.
3334  *      return:
3335  *              0 for FOUND a device
3336  *              < 0 for error code
3337  */
3338
3339 static int sbridge_probe(const struct x86_cpu_id *id)
3340 {
3341         int rc = -ENODEV;
3342         u8 mc, num_mc = 0;
3343         struct sbridge_dev *sbridge_dev;
3344         struct pci_id_table *ptable = (struct pci_id_table *)id->driver_data;
3345
3346         /* get the pci devices we want to reserve for our use */
3347         rc = sbridge_get_all_devices(&num_mc, ptable);
3348
3349         if (unlikely(rc < 0)) {
3350                 edac_dbg(0, "couldn't get all devices\n");
3351                 goto fail0;
3352         }
3353
3354         mc = 0;
3355
3356         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
3357                 edac_dbg(0, "Registering MC#%d (%d of %d)\n",
3358                          mc, mc + 1, num_mc);
3359
3360                 sbridge_dev->mc = mc++;
3361                 rc = sbridge_register_mci(sbridge_dev, ptable->type);
3362                 if (unlikely(rc < 0))
3363                         goto fail1;
3364         }
3365
3366         sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION);
3367
3368         return 0;
3369
3370 fail1:
3371         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3372                 sbridge_unregister_mci(sbridge_dev);
3373
3374         sbridge_put_all_devices();
3375 fail0:
3376         return rc;
3377 }
3378
3379 /*
3380  *      sbridge_remove  cleanup
3381  *
3382  */
3383 static void sbridge_remove(void)
3384 {
3385         struct sbridge_dev *sbridge_dev;
3386
3387         edac_dbg(0, "\n");
3388
3389         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3390                 sbridge_unregister_mci(sbridge_dev);
3391
3392         /* Release PCI resources */
3393         sbridge_put_all_devices();
3394 }
3395
3396 /*
3397  *      sbridge_init            Module entry function
3398  *                      Try to initialize this module for its devices
3399  */
3400 static int __init sbridge_init(void)
3401 {
3402         const struct x86_cpu_id *id;
3403         const char *owner;
3404         int rc;
3405
3406         edac_dbg(2, "\n");
3407
3408         owner = edac_get_owner();
3409         if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
3410                 return -EBUSY;
3411
3412         id = x86_match_cpu(sbridge_cpuids);
3413         if (!id)
3414                 return -ENODEV;
3415
3416         /* Ensure that the OPSTATE is set correctly for POLL or NMI */
3417         opstate_init();
3418
3419         rc = sbridge_probe(id);
3420
3421         if (rc >= 0) {
3422                 mce_register_decode_chain(&sbridge_mce_dec);
3423                 if (edac_get_report_status() == EDAC_REPORTING_DISABLED)
3424                         sbridge_printk(KERN_WARNING, "Loading driver, error reporting disabled.\n");
3425                 return 0;
3426         }
3427
3428         sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
3429                       rc);
3430
3431         return rc;
3432 }
3433
3434 /*
3435  *      sbridge_exit()  Module exit function
3436  *                      Unregister the driver
3437  */
3438 static void __exit sbridge_exit(void)
3439 {
3440         edac_dbg(2, "\n");
3441         sbridge_remove();
3442         mce_unregister_decode_chain(&sbridge_mce_dec);
3443 }
3444
3445 module_init(sbridge_init);
3446 module_exit(sbridge_exit);
3447
3448 module_param(edac_op_state, int, 0444);
3449 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
3450
3451 MODULE_LICENSE("GPL");
3452 MODULE_AUTHOR("Mauro Carvalho Chehab");
3453 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
3454 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
3455                    SBRIDGE_REVISION);