Merge tag 'vfio-v5.17-rc1' of git://github.com/awilliam/linux-vfio
[linux-2.6-block.git] / drivers / edac / edac_mc.c
1 /*
2  * edac_mc kernel module
3  * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4  * This file may be distributed under the terms of the
5  * GNU General Public License.
6  *
7  * Written by Thayne Harbaugh
8  * Based on work by Dan Hollis <goemon at anime dot net> and others.
9  *      http://www.anime.net/~goemon/linux-ecc/
10  *
11  * Modified by Dave Peterson and Doug Thompson
12  *
13  */
14
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <linux/uaccess.h>
32 #include <asm/page.h>
33 #include "edac_mc.h"
34 #include "edac_module.h"
35 #include <ras/ras_event.h>
36
37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB
38 #include <asm/edac.h>
39 #else
40 #define edac_atomic_scrub(va, size) do { } while (0)
41 #endif
42
43 int edac_op_state = EDAC_OPSTATE_INVAL;
44 EXPORT_SYMBOL_GPL(edac_op_state);
45
46 /* lock to memory controller's control array */
47 static DEFINE_MUTEX(mem_ctls_mutex);
48 static LIST_HEAD(mc_devices);
49
50 /*
51  * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
52  *      apei/ghes and i7core_edac to be used at the same time.
53  */
54 static const char *edac_mc_owner;
55
56 static struct mem_ctl_info *error_desc_to_mci(struct edac_raw_error_desc *e)
57 {
58         return container_of(e, struct mem_ctl_info, error_desc);
59 }
60
61 unsigned int edac_dimm_info_location(struct dimm_info *dimm, char *buf,
62                                      unsigned int len)
63 {
64         struct mem_ctl_info *mci = dimm->mci;
65         int i, n, count = 0;
66         char *p = buf;
67
68         for (i = 0; i < mci->n_layers; i++) {
69                 n = scnprintf(p, len, "%s %d ",
70                               edac_layer_name[mci->layers[i].type],
71                               dimm->location[i]);
72                 p += n;
73                 len -= n;
74                 count += n;
75         }
76
77         return count;
78 }
79
80 #ifdef CONFIG_EDAC_DEBUG
81
82 static void edac_mc_dump_channel(struct rank_info *chan)
83 {
84         edac_dbg(4, "  channel->chan_idx = %d\n", chan->chan_idx);
85         edac_dbg(4, "    channel = %p\n", chan);
86         edac_dbg(4, "    channel->csrow = %p\n", chan->csrow);
87         edac_dbg(4, "    channel->dimm = %p\n", chan->dimm);
88 }
89
90 static void edac_mc_dump_dimm(struct dimm_info *dimm)
91 {
92         char location[80];
93
94         if (!dimm->nr_pages)
95                 return;
96
97         edac_dimm_info_location(dimm, location, sizeof(location));
98
99         edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
100                  dimm->mci->csbased ? "rank" : "dimm",
101                  dimm->idx, location, dimm->csrow, dimm->cschannel);
102         edac_dbg(4, "  dimm = %p\n", dimm);
103         edac_dbg(4, "  dimm->label = '%s'\n", dimm->label);
104         edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
105         edac_dbg(4, "  dimm->grain = %d\n", dimm->grain);
106         edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
107 }
108
109 static void edac_mc_dump_csrow(struct csrow_info *csrow)
110 {
111         edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
112         edac_dbg(4, "  csrow = %p\n", csrow);
113         edac_dbg(4, "  csrow->first_page = 0x%lx\n", csrow->first_page);
114         edac_dbg(4, "  csrow->last_page = 0x%lx\n", csrow->last_page);
115         edac_dbg(4, "  csrow->page_mask = 0x%lx\n", csrow->page_mask);
116         edac_dbg(4, "  csrow->nr_channels = %d\n", csrow->nr_channels);
117         edac_dbg(4, "  csrow->channels = %p\n", csrow->channels);
118         edac_dbg(4, "  csrow->mci = %p\n", csrow->mci);
119 }
120
121 static void edac_mc_dump_mci(struct mem_ctl_info *mci)
122 {
123         edac_dbg(3, "\tmci = %p\n", mci);
124         edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
125         edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
126         edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
127         edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
128         edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
129                  mci->nr_csrows, mci->csrows);
130         edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
131                  mci->tot_dimms, mci->dimms);
132         edac_dbg(3, "\tdev = %p\n", mci->pdev);
133         edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
134                  mci->mod_name, mci->ctl_name);
135         edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
136 }
137
138 #endif                          /* CONFIG_EDAC_DEBUG */
139
140 const char * const edac_mem_types[] = {
141         [MEM_EMPTY]     = "Empty",
142         [MEM_RESERVED]  = "Reserved",
143         [MEM_UNKNOWN]   = "Unknown",
144         [MEM_FPM]       = "FPM",
145         [MEM_EDO]       = "EDO",
146         [MEM_BEDO]      = "BEDO",
147         [MEM_SDR]       = "Unbuffered-SDR",
148         [MEM_RDR]       = "Registered-SDR",
149         [MEM_DDR]       = "Unbuffered-DDR",
150         [MEM_RDDR]      = "Registered-DDR",
151         [MEM_RMBS]      = "RMBS",
152         [MEM_DDR2]      = "Unbuffered-DDR2",
153         [MEM_FB_DDR2]   = "FullyBuffered-DDR2",
154         [MEM_RDDR2]     = "Registered-DDR2",
155         [MEM_XDR]       = "XDR",
156         [MEM_DDR3]      = "Unbuffered-DDR3",
157         [MEM_RDDR3]     = "Registered-DDR3",
158         [MEM_LRDDR3]    = "Load-Reduced-DDR3-RAM",
159         [MEM_LPDDR3]    = "Low-Power-DDR3-RAM",
160         [MEM_DDR4]      = "Unbuffered-DDR4",
161         [MEM_RDDR4]     = "Registered-DDR4",
162         [MEM_LPDDR4]    = "Low-Power-DDR4-RAM",
163         [MEM_LRDDR4]    = "Load-Reduced-DDR4-RAM",
164         [MEM_DDR5]      = "Unbuffered-DDR5",
165         [MEM_RDDR5]     = "Registered-DDR5",
166         [MEM_LRDDR5]    = "Load-Reduced-DDR5-RAM",
167         [MEM_NVDIMM]    = "Non-volatile-RAM",
168         [MEM_WIO2]      = "Wide-IO-2",
169         [MEM_HBM2]      = "High-bandwidth-memory-Gen2",
170 };
171 EXPORT_SYMBOL_GPL(edac_mem_types);
172
173 /**
174  * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
175  * @p:          pointer to a pointer with the memory offset to be used. At
176  *              return, this will be incremented to point to the next offset
177  * @size:       Size of the data structure to be reserved
178  * @n_elems:    Number of elements that should be reserved
179  *
180  * If 'size' is a constant, the compiler will optimize this whole function
181  * down to either a no-op or the addition of a constant to the value of '*p'.
182  *
183  * The 'p' pointer is absolutely needed to keep the proper advancing
184  * further in memory to the proper offsets when allocating the struct along
185  * with its embedded structs, as edac_device_alloc_ctl_info() does it
186  * above, for example.
187  *
188  * At return, the pointer 'p' will be incremented to be used on a next call
189  * to this function.
190  */
191 void *edac_align_ptr(void **p, unsigned int size, int n_elems)
192 {
193         unsigned int align, r;
194         void *ptr = *p;
195
196         *p += size * n_elems;
197
198         /*
199          * 'p' can possibly be an unaligned item X such that sizeof(X) is
200          * 'size'.  Adjust 'p' so that its alignment is at least as
201          * stringent as what the compiler would provide for X and return
202          * the aligned result.
203          * Here we assume that the alignment of a "long long" is the most
204          * stringent alignment that the compiler will ever provide by default.
205          * As far as I know, this is a reasonable assumption.
206          */
207         if (size > sizeof(long))
208                 align = sizeof(long long);
209         else if (size > sizeof(int))
210                 align = sizeof(long);
211         else if (size > sizeof(short))
212                 align = sizeof(int);
213         else if (size > sizeof(char))
214                 align = sizeof(short);
215         else
216                 return (char *)ptr;
217
218         r = (unsigned long)p % align;
219
220         if (r == 0)
221                 return (char *)ptr;
222
223         *p += align - r;
224
225         return (void *)(((unsigned long)ptr) + align - r);
226 }
227
228 static void _edac_mc_free(struct mem_ctl_info *mci)
229 {
230         put_device(&mci->dev);
231 }
232
233 static void mci_release(struct device *dev)
234 {
235         struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
236         struct csrow_info *csr;
237         int i, chn, row;
238
239         if (mci->dimms) {
240                 for (i = 0; i < mci->tot_dimms; i++)
241                         kfree(mci->dimms[i]);
242                 kfree(mci->dimms);
243         }
244
245         if (mci->csrows) {
246                 for (row = 0; row < mci->nr_csrows; row++) {
247                         csr = mci->csrows[row];
248                         if (!csr)
249                                 continue;
250
251                         if (csr->channels) {
252                                 for (chn = 0; chn < mci->num_cschannel; chn++)
253                                         kfree(csr->channels[chn]);
254                                 kfree(csr->channels);
255                         }
256                         kfree(csr);
257                 }
258                 kfree(mci->csrows);
259         }
260         kfree(mci);
261 }
262
263 static int edac_mc_alloc_csrows(struct mem_ctl_info *mci)
264 {
265         unsigned int tot_channels = mci->num_cschannel;
266         unsigned int tot_csrows = mci->nr_csrows;
267         unsigned int row, chn;
268
269         /*
270          * Alocate and fill the csrow/channels structs
271          */
272         mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
273         if (!mci->csrows)
274                 return -ENOMEM;
275
276         for (row = 0; row < tot_csrows; row++) {
277                 struct csrow_info *csr;
278
279                 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
280                 if (!csr)
281                         return -ENOMEM;
282
283                 mci->csrows[row] = csr;
284                 csr->csrow_idx = row;
285                 csr->mci = mci;
286                 csr->nr_channels = tot_channels;
287                 csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
288                                         GFP_KERNEL);
289                 if (!csr->channels)
290                         return -ENOMEM;
291
292                 for (chn = 0; chn < tot_channels; chn++) {
293                         struct rank_info *chan;
294
295                         chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
296                         if (!chan)
297                                 return -ENOMEM;
298
299                         csr->channels[chn] = chan;
300                         chan->chan_idx = chn;
301                         chan->csrow = csr;
302                 }
303         }
304
305         return 0;
306 }
307
308 static int edac_mc_alloc_dimms(struct mem_ctl_info *mci)
309 {
310         unsigned int pos[EDAC_MAX_LAYERS];
311         unsigned int row, chn, idx;
312         int layer;
313         void *p;
314
315         /*
316          * Allocate and fill the dimm structs
317          */
318         mci->dimms  = kcalloc(mci->tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
319         if (!mci->dimms)
320                 return -ENOMEM;
321
322         memset(&pos, 0, sizeof(pos));
323         row = 0;
324         chn = 0;
325         for (idx = 0; idx < mci->tot_dimms; idx++) {
326                 struct dimm_info *dimm;
327                 struct rank_info *chan;
328                 int n, len;
329
330                 chan = mci->csrows[row]->channels[chn];
331
332                 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
333                 if (!dimm)
334                         return -ENOMEM;
335                 mci->dimms[idx] = dimm;
336                 dimm->mci = mci;
337                 dimm->idx = idx;
338
339                 /*
340                  * Copy DIMM location and initialize it.
341                  */
342                 len = sizeof(dimm->label);
343                 p = dimm->label;
344                 n = scnprintf(p, len, "mc#%u", mci->mc_idx);
345                 p += n;
346                 len -= n;
347                 for (layer = 0; layer < mci->n_layers; layer++) {
348                         n = scnprintf(p, len, "%s#%u",
349                                       edac_layer_name[mci->layers[layer].type],
350                                       pos[layer]);
351                         p += n;
352                         len -= n;
353                         dimm->location[layer] = pos[layer];
354                 }
355
356                 /* Link it to the csrows old API data */
357                 chan->dimm = dimm;
358                 dimm->csrow = row;
359                 dimm->cschannel = chn;
360
361                 /* Increment csrow location */
362                 if (mci->layers[0].is_virt_csrow) {
363                         chn++;
364                         if (chn == mci->num_cschannel) {
365                                 chn = 0;
366                                 row++;
367                         }
368                 } else {
369                         row++;
370                         if (row == mci->nr_csrows) {
371                                 row = 0;
372                                 chn++;
373                         }
374                 }
375
376                 /* Increment dimm location */
377                 for (layer = mci->n_layers - 1; layer >= 0; layer--) {
378                         pos[layer]++;
379                         if (pos[layer] < mci->layers[layer].size)
380                                 break;
381                         pos[layer] = 0;
382                 }
383         }
384
385         return 0;
386 }
387
388 struct mem_ctl_info *edac_mc_alloc(unsigned int mc_num,
389                                    unsigned int n_layers,
390                                    struct edac_mc_layer *layers,
391                                    unsigned int sz_pvt)
392 {
393         struct mem_ctl_info *mci;
394         struct edac_mc_layer *layer;
395         unsigned int idx, size, tot_dimms = 1;
396         unsigned int tot_csrows = 1, tot_channels = 1;
397         void *pvt, *ptr = NULL;
398         bool per_rank = false;
399
400         if (WARN_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0))
401                 return NULL;
402
403         /*
404          * Calculate the total amount of dimms and csrows/cschannels while
405          * in the old API emulation mode
406          */
407         for (idx = 0; idx < n_layers; idx++) {
408                 tot_dimms *= layers[idx].size;
409
410                 if (layers[idx].is_virt_csrow)
411                         tot_csrows *= layers[idx].size;
412                 else
413                         tot_channels *= layers[idx].size;
414
415                 if (layers[idx].type == EDAC_MC_LAYER_CHIP_SELECT)
416                         per_rank = true;
417         }
418
419         /* Figure out the offsets of the various items from the start of an mc
420          * structure.  We want the alignment of each item to be at least as
421          * stringent as what the compiler would provide if we could simply
422          * hardcode everything into a single struct.
423          */
424         mci     = edac_align_ptr(&ptr, sizeof(*mci), 1);
425         layer   = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
426         pvt     = edac_align_ptr(&ptr, sz_pvt, 1);
427         size    = ((unsigned long)pvt) + sz_pvt;
428
429         edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
430                  size,
431                  tot_dimms,
432                  per_rank ? "ranks" : "dimms",
433                  tot_csrows * tot_channels);
434
435         mci = kzalloc(size, GFP_KERNEL);
436         if (mci == NULL)
437                 return NULL;
438
439         mci->dev.release = mci_release;
440         device_initialize(&mci->dev);
441
442         /* Adjust pointers so they point within the memory we just allocated
443          * rather than an imaginary chunk of memory located at address 0.
444          */
445         layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
446         pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
447
448         /* setup index and various internal pointers */
449         mci->mc_idx = mc_num;
450         mci->tot_dimms = tot_dimms;
451         mci->pvt_info = pvt;
452         mci->n_layers = n_layers;
453         mci->layers = layer;
454         memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
455         mci->nr_csrows = tot_csrows;
456         mci->num_cschannel = tot_channels;
457         mci->csbased = per_rank;
458
459         if (edac_mc_alloc_csrows(mci))
460                 goto error;
461
462         if (edac_mc_alloc_dimms(mci))
463                 goto error;
464
465         mci->op_state = OP_ALLOC;
466
467         return mci;
468
469 error:
470         _edac_mc_free(mci);
471
472         return NULL;
473 }
474 EXPORT_SYMBOL_GPL(edac_mc_alloc);
475
476 void edac_mc_free(struct mem_ctl_info *mci)
477 {
478         edac_dbg(1, "\n");
479
480         _edac_mc_free(mci);
481 }
482 EXPORT_SYMBOL_GPL(edac_mc_free);
483
484 bool edac_has_mcs(void)
485 {
486         bool ret;
487
488         mutex_lock(&mem_ctls_mutex);
489
490         ret = list_empty(&mc_devices);
491
492         mutex_unlock(&mem_ctls_mutex);
493
494         return !ret;
495 }
496 EXPORT_SYMBOL_GPL(edac_has_mcs);
497
498 /* Caller must hold mem_ctls_mutex */
499 static struct mem_ctl_info *__find_mci_by_dev(struct device *dev)
500 {
501         struct mem_ctl_info *mci;
502         struct list_head *item;
503
504         edac_dbg(3, "\n");
505
506         list_for_each(item, &mc_devices) {
507                 mci = list_entry(item, struct mem_ctl_info, link);
508
509                 if (mci->pdev == dev)
510                         return mci;
511         }
512
513         return NULL;
514 }
515
516 /**
517  * find_mci_by_dev
518  *
519  *      scan list of controllers looking for the one that manages
520  *      the 'dev' device
521  * @dev: pointer to a struct device related with the MCI
522  */
523 struct mem_ctl_info *find_mci_by_dev(struct device *dev)
524 {
525         struct mem_ctl_info *ret;
526
527         mutex_lock(&mem_ctls_mutex);
528         ret = __find_mci_by_dev(dev);
529         mutex_unlock(&mem_ctls_mutex);
530
531         return ret;
532 }
533 EXPORT_SYMBOL_GPL(find_mci_by_dev);
534
535 /*
536  * edac_mc_workq_function
537  *      performs the operation scheduled by a workq request
538  */
539 static void edac_mc_workq_function(struct work_struct *work_req)
540 {
541         struct delayed_work *d_work = to_delayed_work(work_req);
542         struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
543
544         mutex_lock(&mem_ctls_mutex);
545
546         if (mci->op_state != OP_RUNNING_POLL) {
547                 mutex_unlock(&mem_ctls_mutex);
548                 return;
549         }
550
551         if (edac_op_state == EDAC_OPSTATE_POLL)
552                 mci->edac_check(mci);
553
554         mutex_unlock(&mem_ctls_mutex);
555
556         /* Queue ourselves again. */
557         edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
558 }
559
560 /*
561  * edac_mc_reset_delay_period(unsigned long value)
562  *
563  *      user space has updated our poll period value, need to
564  *      reset our workq delays
565  */
566 void edac_mc_reset_delay_period(unsigned long value)
567 {
568         struct mem_ctl_info *mci;
569         struct list_head *item;
570
571         mutex_lock(&mem_ctls_mutex);
572
573         list_for_each(item, &mc_devices) {
574                 mci = list_entry(item, struct mem_ctl_info, link);
575
576                 if (mci->op_state == OP_RUNNING_POLL)
577                         edac_mod_work(&mci->work, value);
578         }
579         mutex_unlock(&mem_ctls_mutex);
580 }
581
582
583
584 /* Return 0 on success, 1 on failure.
585  * Before calling this function, caller must
586  * assign a unique value to mci->mc_idx.
587  *
588  *      locking model:
589  *
590  *              called with the mem_ctls_mutex lock held
591  */
592 static int add_mc_to_global_list(struct mem_ctl_info *mci)
593 {
594         struct list_head *item, *insert_before;
595         struct mem_ctl_info *p;
596
597         insert_before = &mc_devices;
598
599         p = __find_mci_by_dev(mci->pdev);
600         if (unlikely(p != NULL))
601                 goto fail0;
602
603         list_for_each(item, &mc_devices) {
604                 p = list_entry(item, struct mem_ctl_info, link);
605
606                 if (p->mc_idx >= mci->mc_idx) {
607                         if (unlikely(p->mc_idx == mci->mc_idx))
608                                 goto fail1;
609
610                         insert_before = item;
611                         break;
612                 }
613         }
614
615         list_add_tail_rcu(&mci->link, insert_before);
616         return 0;
617
618 fail0:
619         edac_printk(KERN_WARNING, EDAC_MC,
620                 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
621                 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
622         return 1;
623
624 fail1:
625         edac_printk(KERN_WARNING, EDAC_MC,
626                 "bug in low-level driver: attempt to assign\n"
627                 "    duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
628         return 1;
629 }
630
631 static int del_mc_from_global_list(struct mem_ctl_info *mci)
632 {
633         list_del_rcu(&mci->link);
634
635         /* these are for safe removal of devices from global list while
636          * NMI handlers may be traversing list
637          */
638         synchronize_rcu();
639         INIT_LIST_HEAD(&mci->link);
640
641         return list_empty(&mc_devices);
642 }
643
644 struct mem_ctl_info *edac_mc_find(int idx)
645 {
646         struct mem_ctl_info *mci;
647         struct list_head *item;
648
649         mutex_lock(&mem_ctls_mutex);
650
651         list_for_each(item, &mc_devices) {
652                 mci = list_entry(item, struct mem_ctl_info, link);
653                 if (mci->mc_idx == idx)
654                         goto unlock;
655         }
656
657         mci = NULL;
658 unlock:
659         mutex_unlock(&mem_ctls_mutex);
660         return mci;
661 }
662 EXPORT_SYMBOL(edac_mc_find);
663
664 const char *edac_get_owner(void)
665 {
666         return edac_mc_owner;
667 }
668 EXPORT_SYMBOL_GPL(edac_get_owner);
669
670 /* FIXME - should a warning be printed if no error detection? correction? */
671 int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
672                                const struct attribute_group **groups)
673 {
674         int ret = -EINVAL;
675         edac_dbg(0, "\n");
676
677 #ifdef CONFIG_EDAC_DEBUG
678         if (edac_debug_level >= 3)
679                 edac_mc_dump_mci(mci);
680
681         if (edac_debug_level >= 4) {
682                 struct dimm_info *dimm;
683                 int i;
684
685                 for (i = 0; i < mci->nr_csrows; i++) {
686                         struct csrow_info *csrow = mci->csrows[i];
687                         u32 nr_pages = 0;
688                         int j;
689
690                         for (j = 0; j < csrow->nr_channels; j++)
691                                 nr_pages += csrow->channels[j]->dimm->nr_pages;
692                         if (!nr_pages)
693                                 continue;
694                         edac_mc_dump_csrow(csrow);
695                         for (j = 0; j < csrow->nr_channels; j++)
696                                 if (csrow->channels[j]->dimm->nr_pages)
697                                         edac_mc_dump_channel(csrow->channels[j]);
698                 }
699
700                 mci_for_each_dimm(mci, dimm)
701                         edac_mc_dump_dimm(dimm);
702         }
703 #endif
704         mutex_lock(&mem_ctls_mutex);
705
706         if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
707                 ret = -EPERM;
708                 goto fail0;
709         }
710
711         if (add_mc_to_global_list(mci))
712                 goto fail0;
713
714         /* set load time so that error rate can be tracked */
715         mci->start_time = jiffies;
716
717         mci->bus = edac_get_sysfs_subsys();
718
719         if (edac_create_sysfs_mci_device(mci, groups)) {
720                 edac_mc_printk(mci, KERN_WARNING,
721                         "failed to create sysfs device\n");
722                 goto fail1;
723         }
724
725         if (mci->edac_check) {
726                 mci->op_state = OP_RUNNING_POLL;
727
728                 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
729                 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
730
731         } else {
732                 mci->op_state = OP_RUNNING_INTERRUPT;
733         }
734
735         /* Report action taken */
736         edac_mc_printk(mci, KERN_INFO,
737                 "Giving out device to module %s controller %s: DEV %s (%s)\n",
738                 mci->mod_name, mci->ctl_name, mci->dev_name,
739                 edac_op_state_to_string(mci->op_state));
740
741         edac_mc_owner = mci->mod_name;
742
743         mutex_unlock(&mem_ctls_mutex);
744         return 0;
745
746 fail1:
747         del_mc_from_global_list(mci);
748
749 fail0:
750         mutex_unlock(&mem_ctls_mutex);
751         return ret;
752 }
753 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
754
755 struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
756 {
757         struct mem_ctl_info *mci;
758
759         edac_dbg(0, "\n");
760
761         mutex_lock(&mem_ctls_mutex);
762
763         /* find the requested mci struct in the global list */
764         mci = __find_mci_by_dev(dev);
765         if (mci == NULL) {
766                 mutex_unlock(&mem_ctls_mutex);
767                 return NULL;
768         }
769
770         /* mark MCI offline: */
771         mci->op_state = OP_OFFLINE;
772
773         if (del_mc_from_global_list(mci))
774                 edac_mc_owner = NULL;
775
776         mutex_unlock(&mem_ctls_mutex);
777
778         if (mci->edac_check)
779                 edac_stop_work(&mci->work);
780
781         /* remove from sysfs */
782         edac_remove_sysfs_mci_device(mci);
783
784         edac_printk(KERN_INFO, EDAC_MC,
785                 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
786                 mci->mod_name, mci->ctl_name, edac_dev_name(mci));
787
788         return mci;
789 }
790 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
791
792 static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
793                                 u32 size)
794 {
795         struct page *pg;
796         void *virt_addr;
797         unsigned long flags = 0;
798
799         edac_dbg(3, "\n");
800
801         /* ECC error page was not in our memory. Ignore it. */
802         if (!pfn_valid(page))
803                 return;
804
805         /* Find the actual page structure then map it and fix */
806         pg = pfn_to_page(page);
807
808         if (PageHighMem(pg))
809                 local_irq_save(flags);
810
811         virt_addr = kmap_atomic(pg);
812
813         /* Perform architecture specific atomic scrub operation */
814         edac_atomic_scrub(virt_addr + offset, size);
815
816         /* Unmap and complete */
817         kunmap_atomic(virt_addr);
818
819         if (PageHighMem(pg))
820                 local_irq_restore(flags);
821 }
822
823 /* FIXME - should return -1 */
824 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
825 {
826         struct csrow_info **csrows = mci->csrows;
827         int row, i, j, n;
828
829         edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
830         row = -1;
831
832         for (i = 0; i < mci->nr_csrows; i++) {
833                 struct csrow_info *csrow = csrows[i];
834                 n = 0;
835                 for (j = 0; j < csrow->nr_channels; j++) {
836                         struct dimm_info *dimm = csrow->channels[j]->dimm;
837                         n += dimm->nr_pages;
838                 }
839                 if (n == 0)
840                         continue;
841
842                 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
843                          mci->mc_idx,
844                          csrow->first_page, page, csrow->last_page,
845                          csrow->page_mask);
846
847                 if ((page >= csrow->first_page) &&
848                     (page <= csrow->last_page) &&
849                     ((page & csrow->page_mask) ==
850                      (csrow->first_page & csrow->page_mask))) {
851                         row = i;
852                         break;
853                 }
854         }
855
856         if (row == -1)
857                 edac_mc_printk(mci, KERN_ERR,
858                         "could not look up page error address %lx\n",
859                         (unsigned long)page);
860
861         return row;
862 }
863 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
864
865 const char *edac_layer_name[] = {
866         [EDAC_MC_LAYER_BRANCH] = "branch",
867         [EDAC_MC_LAYER_CHANNEL] = "channel",
868         [EDAC_MC_LAYER_SLOT] = "slot",
869         [EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
870         [EDAC_MC_LAYER_ALL_MEM] = "memory",
871 };
872 EXPORT_SYMBOL_GPL(edac_layer_name);
873
874 static void edac_inc_ce_error(struct edac_raw_error_desc *e)
875 {
876         int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
877         struct mem_ctl_info *mci = error_desc_to_mci(e);
878         struct dimm_info *dimm = edac_get_dimm(mci, pos[0], pos[1], pos[2]);
879
880         mci->ce_mc += e->error_count;
881
882         if (dimm)
883                 dimm->ce_count += e->error_count;
884         else
885                 mci->ce_noinfo_count += e->error_count;
886 }
887
888 static void edac_inc_ue_error(struct edac_raw_error_desc *e)
889 {
890         int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
891         struct mem_ctl_info *mci = error_desc_to_mci(e);
892         struct dimm_info *dimm = edac_get_dimm(mci, pos[0], pos[1], pos[2]);
893
894         mci->ue_mc += e->error_count;
895
896         if (dimm)
897                 dimm->ue_count += e->error_count;
898         else
899                 mci->ue_noinfo_count += e->error_count;
900 }
901
902 static void edac_ce_error(struct edac_raw_error_desc *e)
903 {
904         struct mem_ctl_info *mci = error_desc_to_mci(e);
905         unsigned long remapped_page;
906
907         if (edac_mc_get_log_ce()) {
908                 edac_mc_printk(mci, KERN_WARNING,
909                         "%d CE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx%s%s)\n",
910                         e->error_count, e->msg,
911                         *e->msg ? " " : "",
912                         e->label, e->location, e->page_frame_number, e->offset_in_page,
913                         e->grain, e->syndrome,
914                         *e->other_detail ? " - " : "",
915                         e->other_detail);
916         }
917
918         edac_inc_ce_error(e);
919
920         if (mci->scrub_mode == SCRUB_SW_SRC) {
921                 /*
922                         * Some memory controllers (called MCs below) can remap
923                         * memory so that it is still available at a different
924                         * address when PCI devices map into memory.
925                         * MC's that can't do this, lose the memory where PCI
926                         * devices are mapped. This mapping is MC-dependent
927                         * and so we call back into the MC driver for it to
928                         * map the MC page to a physical (CPU) page which can
929                         * then be mapped to a virtual page - which can then
930                         * be scrubbed.
931                         */
932                 remapped_page = mci->ctl_page_to_phys ?
933                         mci->ctl_page_to_phys(mci, e->page_frame_number) :
934                         e->page_frame_number;
935
936                 edac_mc_scrub_block(remapped_page, e->offset_in_page, e->grain);
937         }
938 }
939
940 static void edac_ue_error(struct edac_raw_error_desc *e)
941 {
942         struct mem_ctl_info *mci = error_desc_to_mci(e);
943
944         if (edac_mc_get_log_ue()) {
945                 edac_mc_printk(mci, KERN_WARNING,
946                         "%d UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n",
947                         e->error_count, e->msg,
948                         *e->msg ? " " : "",
949                         e->label, e->location, e->page_frame_number, e->offset_in_page,
950                         e->grain,
951                         *e->other_detail ? " - " : "",
952                         e->other_detail);
953         }
954
955         edac_inc_ue_error(e);
956
957         if (edac_mc_get_panic_on_ue()) {
958                 panic("UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n",
959                         e->msg,
960                         *e->msg ? " " : "",
961                         e->label, e->location, e->page_frame_number, e->offset_in_page,
962                         e->grain,
963                         *e->other_detail ? " - " : "",
964                         e->other_detail);
965         }
966 }
967
968 static void edac_inc_csrow(struct edac_raw_error_desc *e, int row, int chan)
969 {
970         struct mem_ctl_info *mci = error_desc_to_mci(e);
971         enum hw_event_mc_err_type type = e->type;
972         u16 count = e->error_count;
973
974         if (row < 0)
975                 return;
976
977         edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
978
979         if (type == HW_EVENT_ERR_CORRECTED) {
980                 mci->csrows[row]->ce_count += count;
981                 if (chan >= 0)
982                         mci->csrows[row]->channels[chan]->ce_count += count;
983         } else {
984                 mci->csrows[row]->ue_count += count;
985         }
986 }
987
988 void edac_raw_mc_handle_error(struct edac_raw_error_desc *e)
989 {
990         struct mem_ctl_info *mci = error_desc_to_mci(e);
991         u8 grain_bits;
992
993         /* Sanity-check driver-supplied grain value. */
994         if (WARN_ON_ONCE(!e->grain))
995                 e->grain = 1;
996
997         grain_bits = fls_long(e->grain - 1);
998
999         /* Report the error via the trace interface */
1000         if (IS_ENABLED(CONFIG_RAS))
1001                 trace_mc_event(e->type, e->msg, e->label, e->error_count,
1002                                mci->mc_idx, e->top_layer, e->mid_layer,
1003                                e->low_layer,
1004                                (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
1005                                grain_bits, e->syndrome, e->other_detail);
1006
1007         if (e->type == HW_EVENT_ERR_CORRECTED)
1008                 edac_ce_error(e);
1009         else
1010                 edac_ue_error(e);
1011 }
1012 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
1013
1014 void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1015                           struct mem_ctl_info *mci,
1016                           const u16 error_count,
1017                           const unsigned long page_frame_number,
1018                           const unsigned long offset_in_page,
1019                           const unsigned long syndrome,
1020                           const int top_layer,
1021                           const int mid_layer,
1022                           const int low_layer,
1023                           const char *msg,
1024                           const char *other_detail)
1025 {
1026         struct dimm_info *dimm;
1027         char *p, *end;
1028         int row = -1, chan = -1;
1029         int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
1030         int i, n_labels = 0;
1031         struct edac_raw_error_desc *e = &mci->error_desc;
1032         bool any_memory = true;
1033         const char *prefix;
1034
1035         edac_dbg(3, "MC%d\n", mci->mc_idx);
1036
1037         /* Fills the error report buffer */
1038         memset(e, 0, sizeof (*e));
1039         e->error_count = error_count;
1040         e->type = type;
1041         e->top_layer = top_layer;
1042         e->mid_layer = mid_layer;
1043         e->low_layer = low_layer;
1044         e->page_frame_number = page_frame_number;
1045         e->offset_in_page = offset_in_page;
1046         e->syndrome = syndrome;
1047         /* need valid strings here for both: */
1048         e->msg = msg ?: "";
1049         e->other_detail = other_detail ?: "";
1050
1051         /*
1052          * Check if the event report is consistent and if the memory location is
1053          * known. If it is, the DIMM(s) label info will be filled and the DIMM's
1054          * error counters will be incremented.
1055          */
1056         for (i = 0; i < mci->n_layers; i++) {
1057                 if (pos[i] >= (int)mci->layers[i].size) {
1058
1059                         edac_mc_printk(mci, KERN_ERR,
1060                                        "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1061                                        edac_layer_name[mci->layers[i].type],
1062                                        pos[i], mci->layers[i].size);
1063                         /*
1064                          * Instead of just returning it, let's use what's
1065                          * known about the error. The increment routines and
1066                          * the DIMM filter logic will do the right thing by
1067                          * pointing the likely damaged DIMMs.
1068                          */
1069                         pos[i] = -1;
1070                 }
1071                 if (pos[i] >= 0)
1072                         any_memory = false;
1073         }
1074
1075         /*
1076          * Get the dimm label/grain that applies to the match criteria.
1077          * As the error algorithm may not be able to point to just one memory
1078          * stick, the logic here will get all possible labels that could
1079          * pottentially be affected by the error.
1080          * On FB-DIMM memory controllers, for uncorrected errors, it is common
1081          * to have only the MC channel and the MC dimm (also called "branch")
1082          * but the channel is not known, as the memory is arranged in pairs,
1083          * where each memory belongs to a separate channel within the same
1084          * branch.
1085          */
1086         p = e->label;
1087         *p = '\0';
1088         end = p + sizeof(e->label);
1089         prefix = "";
1090
1091         mci_for_each_dimm(mci, dimm) {
1092                 if (top_layer >= 0 && top_layer != dimm->location[0])
1093                         continue;
1094                 if (mid_layer >= 0 && mid_layer != dimm->location[1])
1095                         continue;
1096                 if (low_layer >= 0 && low_layer != dimm->location[2])
1097                         continue;
1098
1099                 /* get the max grain, over the error match range */
1100                 if (dimm->grain > e->grain)
1101                         e->grain = dimm->grain;
1102
1103                 /*
1104                  * If the error is memory-controller wide, there's no need to
1105                  * seek for the affected DIMMs because the whole channel/memory
1106                  * controller/... may be affected. Also, don't show errors for
1107                  * empty DIMM slots.
1108                  */
1109                 if (!dimm->nr_pages)
1110                         continue;
1111
1112                 n_labels++;
1113                 if (n_labels > EDAC_MAX_LABELS) {
1114                         p = e->label;
1115                         *p = '\0';
1116                 } else {
1117                         p += scnprintf(p, end - p, "%s%s", prefix, dimm->label);
1118                         prefix = OTHER_LABEL;
1119                 }
1120
1121                 /*
1122                  * get csrow/channel of the DIMM, in order to allow
1123                  * incrementing the compat API counters
1124                  */
1125                 edac_dbg(4, "%s csrows map: (%d,%d)\n",
1126                         mci->csbased ? "rank" : "dimm",
1127                         dimm->csrow, dimm->cschannel);
1128                 if (row == -1)
1129                         row = dimm->csrow;
1130                 else if (row >= 0 && row != dimm->csrow)
1131                         row = -2;
1132
1133                 if (chan == -1)
1134                         chan = dimm->cschannel;
1135                 else if (chan >= 0 && chan != dimm->cschannel)
1136                         chan = -2;
1137         }
1138
1139         if (any_memory)
1140                 strscpy(e->label, "any memory", sizeof(e->label));
1141         else if (!*e->label)
1142                 strscpy(e->label, "unknown memory", sizeof(e->label));
1143
1144         edac_inc_csrow(e, row, chan);
1145
1146         /* Fill the RAM location data */
1147         p = e->location;
1148         end = p + sizeof(e->location);
1149         prefix = "";
1150
1151         for (i = 0; i < mci->n_layers; i++) {
1152                 if (pos[i] < 0)
1153                         continue;
1154
1155                 p += scnprintf(p, end - p, "%s%s:%d", prefix,
1156                                edac_layer_name[mci->layers[i].type], pos[i]);
1157                 prefix = " ";
1158         }
1159
1160         edac_raw_mc_handle_error(e);
1161 }
1162 EXPORT_SYMBOL_GPL(edac_mc_handle_error);