dma40: fix DMA API usage for LCLA
[linux-2.6-block.git] / drivers / dma / ste_dma40.c
1 /*
2  * Copyright (C) Ericsson AB 2007-2008
3  * Copyright (C) ST-Ericsson SA 2008-2010
4  * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
5  * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
6  * License terms: GNU General Public License (GPL) version 2
7  */
8
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/dmaengine.h>
12 #include <linux/platform_device.h>
13 #include <linux/clk.h>
14 #include <linux/delay.h>
15 #include <linux/err.h>
16
17 #include <plat/ste_dma40.h>
18
19 #include "ste_dma40_ll.h"
20
21 #define D40_NAME "dma40"
22
23 #define D40_PHY_CHAN -1
24
25 /* For masking out/in 2 bit channel positions */
26 #define D40_CHAN_POS(chan)  (2 * (chan / 2))
27 #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
28
29 /* Maximum iterations taken before giving up suspending a channel */
30 #define D40_SUSPEND_MAX_IT 500
31
32 /* Hardware requirement on LCLA alignment */
33 #define LCLA_ALIGNMENT 0x40000
34
35 /* Max number of links per event group */
36 #define D40_LCLA_LINK_PER_EVENT_GRP 128
37 #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
38
39 /* Attempts before giving up to trying to get pages that are aligned */
40 #define MAX_LCLA_ALLOC_ATTEMPTS 256
41
42 /* Bit markings for allocation map */
43 #define D40_ALLOC_FREE          (1 << 31)
44 #define D40_ALLOC_PHY           (1 << 30)
45 #define D40_ALLOC_LOG_FREE      0
46
47 /* Hardware designer of the block */
48 #define D40_HW_DESIGNER 0x8
49
50 /**
51  * enum 40_command - The different commands and/or statuses.
52  *
53  * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
54  * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
55  * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
56  * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
57  */
58 enum d40_command {
59         D40_DMA_STOP            = 0,
60         D40_DMA_RUN             = 1,
61         D40_DMA_SUSPEND_REQ     = 2,
62         D40_DMA_SUSPENDED       = 3
63 };
64
65 /**
66  * struct d40_lli_pool - Structure for keeping LLIs in memory
67  *
68  * @base: Pointer to memory area when the pre_alloc_lli's are not large
69  * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
70  * pre_alloc_lli is used.
71  * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
72  * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
73  * one buffer to one buffer.
74  */
75 struct d40_lli_pool {
76         void    *base;
77         int      size;
78         /* Space for dst and src, plus an extra for padding */
79         u8       pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
80 };
81
82 /**
83  * struct d40_desc - A descriptor is one DMA job.
84  *
85  * @lli_phy: LLI settings for physical channel. Both src and dst=
86  * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
87  * lli_len equals one.
88  * @lli_log: Same as above but for logical channels.
89  * @lli_pool: The pool with two entries pre-allocated.
90  * @lli_len: Number of llis of current descriptor.
91  * @lli_current: Number of transfered llis.
92  * @lcla_alloc: Number of LCLA entries allocated.
93  * @txd: DMA engine struct. Used for among other things for communication
94  * during a transfer.
95  * @node: List entry.
96  * @is_in_client_list: true if the client owns this descriptor.
97  * the previous one.
98  *
99  * This descriptor is used for both logical and physical transfers.
100  */
101 struct d40_desc {
102         /* LLI physical */
103         struct d40_phy_lli_bidir         lli_phy;
104         /* LLI logical */
105         struct d40_log_lli_bidir         lli_log;
106
107         struct d40_lli_pool              lli_pool;
108         int                              lli_len;
109         int                              lli_current;
110         int                              lcla_alloc;
111
112         struct dma_async_tx_descriptor   txd;
113         struct list_head                 node;
114
115         bool                             is_in_client_list;
116 };
117
118 /**
119  * struct d40_lcla_pool - LCLA pool settings and data.
120  *
121  * @base: The virtual address of LCLA. 18 bit aligned.
122  * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
123  * This pointer is only there for clean-up on error.
124  * @pages: The number of pages needed for all physical channels.
125  * Only used later for clean-up on error
126  * @lock: Lock to protect the content in this struct.
127  * @alloc_map: big map over which LCLA entry is own by which job.
128  */
129 struct d40_lcla_pool {
130         void            *base;
131         dma_addr_t      dma_addr;
132         void            *base_unaligned;
133         int              pages;
134         spinlock_t       lock;
135         struct d40_desc **alloc_map;
136 };
137
138 /**
139  * struct d40_phy_res - struct for handling eventlines mapped to physical
140  * channels.
141  *
142  * @lock: A lock protection this entity.
143  * @num: The physical channel number of this entity.
144  * @allocated_src: Bit mapped to show which src event line's are mapped to
145  * this physical channel. Can also be free or physically allocated.
146  * @allocated_dst: Same as for src but is dst.
147  * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
148  * event line number.
149  */
150 struct d40_phy_res {
151         spinlock_t lock;
152         int        num;
153         u32        allocated_src;
154         u32        allocated_dst;
155 };
156
157 struct d40_base;
158
159 /**
160  * struct d40_chan - Struct that describes a channel.
161  *
162  * @lock: A spinlock to protect this struct.
163  * @log_num: The logical number, if any of this channel.
164  * @completed: Starts with 1, after first interrupt it is set to dma engine's
165  * current cookie.
166  * @pending_tx: The number of pending transfers. Used between interrupt handler
167  * and tasklet.
168  * @busy: Set to true when transfer is ongoing on this channel.
169  * @phy_chan: Pointer to physical channel which this instance runs on. If this
170  * point is NULL, then the channel is not allocated.
171  * @chan: DMA engine handle.
172  * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
173  * transfer and call client callback.
174  * @client: Cliented owned descriptor list.
175  * @active: Active descriptor.
176  * @queue: Queued jobs.
177  * @dma_cfg: The client configuration of this dma channel.
178  * @configured: whether the dma_cfg configuration is valid
179  * @base: Pointer to the device instance struct.
180  * @src_def_cfg: Default cfg register setting for src.
181  * @dst_def_cfg: Default cfg register setting for dst.
182  * @log_def: Default logical channel settings.
183  * @lcla: Space for one dst src pair for logical channel transfers.
184  * @lcpa: Pointer to dst and src lcpa settings.
185  *
186  * This struct can either "be" a logical or a physical channel.
187  */
188 struct d40_chan {
189         spinlock_t                       lock;
190         int                              log_num;
191         /* ID of the most recent completed transfer */
192         int                              completed;
193         int                              pending_tx;
194         bool                             busy;
195         struct d40_phy_res              *phy_chan;
196         struct dma_chan                  chan;
197         struct tasklet_struct            tasklet;
198         struct list_head                 client;
199         struct list_head                 active;
200         struct list_head                 queue;
201         struct stedma40_chan_cfg         dma_cfg;
202         bool                             configured;
203         struct d40_base                 *base;
204         /* Default register configurations */
205         u32                              src_def_cfg;
206         u32                              dst_def_cfg;
207         struct d40_def_lcsp              log_def;
208         struct d40_log_lli_full         *lcpa;
209         /* Runtime reconfiguration */
210         dma_addr_t                      runtime_addr;
211         enum dma_data_direction         runtime_direction;
212 };
213
214 /**
215  * struct d40_base - The big global struct, one for each probe'd instance.
216  *
217  * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
218  * @execmd_lock: Lock for execute command usage since several channels share
219  * the same physical register.
220  * @dev: The device structure.
221  * @virtbase: The virtual base address of the DMA's register.
222  * @rev: silicon revision detected.
223  * @clk: Pointer to the DMA clock structure.
224  * @phy_start: Physical memory start of the DMA registers.
225  * @phy_size: Size of the DMA register map.
226  * @irq: The IRQ number.
227  * @num_phy_chans: The number of physical channels. Read from HW. This
228  * is the number of available channels for this driver, not counting "Secure
229  * mode" allocated physical channels.
230  * @num_log_chans: The number of logical channels. Calculated from
231  * num_phy_chans.
232  * @dma_both: dma_device channels that can do both memcpy and slave transfers.
233  * @dma_slave: dma_device channels that can do only do slave transfers.
234  * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
235  * @log_chans: Room for all possible logical channels in system.
236  * @lookup_log_chans: Used to map interrupt number to logical channel. Points
237  * to log_chans entries.
238  * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
239  * to phy_chans entries.
240  * @plat_data: Pointer to provided platform_data which is the driver
241  * configuration.
242  * @phy_res: Vector containing all physical channels.
243  * @lcla_pool: lcla pool settings and data.
244  * @lcpa_base: The virtual mapped address of LCPA.
245  * @phy_lcpa: The physical address of the LCPA.
246  * @lcpa_size: The size of the LCPA area.
247  * @desc_slab: cache for descriptors.
248  */
249 struct d40_base {
250         spinlock_t                       interrupt_lock;
251         spinlock_t                       execmd_lock;
252         struct device                    *dev;
253         void __iomem                     *virtbase;
254         u8                                rev:4;
255         struct clk                       *clk;
256         phys_addr_t                       phy_start;
257         resource_size_t                   phy_size;
258         int                               irq;
259         int                               num_phy_chans;
260         int                               num_log_chans;
261         struct dma_device                 dma_both;
262         struct dma_device                 dma_slave;
263         struct dma_device                 dma_memcpy;
264         struct d40_chan                  *phy_chans;
265         struct d40_chan                  *log_chans;
266         struct d40_chan                 **lookup_log_chans;
267         struct d40_chan                 **lookup_phy_chans;
268         struct stedma40_platform_data    *plat_data;
269         /* Physical half channels */
270         struct d40_phy_res               *phy_res;
271         struct d40_lcla_pool              lcla_pool;
272         void                             *lcpa_base;
273         dma_addr_t                        phy_lcpa;
274         resource_size_t                   lcpa_size;
275         struct kmem_cache                *desc_slab;
276 };
277
278 /**
279  * struct d40_interrupt_lookup - lookup table for interrupt handler
280  *
281  * @src: Interrupt mask register.
282  * @clr: Interrupt clear register.
283  * @is_error: true if this is an error interrupt.
284  * @offset: start delta in the lookup_log_chans in d40_base. If equals to
285  * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
286  */
287 struct d40_interrupt_lookup {
288         u32 src;
289         u32 clr;
290         bool is_error;
291         int offset;
292 };
293
294 /**
295  * struct d40_reg_val - simple lookup struct
296  *
297  * @reg: The register.
298  * @val: The value that belongs to the register in reg.
299  */
300 struct d40_reg_val {
301         unsigned int reg;
302         unsigned int val;
303 };
304
305 static struct device *chan2dev(struct d40_chan *d40c)
306 {
307         return &d40c->chan.dev->device;
308 }
309
310 static bool chan_is_physical(struct d40_chan *chan)
311 {
312         return chan->log_num == D40_PHY_CHAN;
313 }
314
315 static bool chan_is_logical(struct d40_chan *chan)
316 {
317         return !chan_is_physical(chan);
318 }
319
320 static void __iomem *chan_base(struct d40_chan *chan)
321 {
322         return chan->base->virtbase + D40_DREG_PCBASE +
323                chan->phy_chan->num * D40_DREG_PCDELTA;
324 }
325
326 #define d40_err(dev, format, arg...)            \
327         dev_err(dev, "[%s] " format, __func__, ## arg)
328
329 #define chan_err(d40c, format, arg...)          \
330         d40_err(chan2dev(d40c), format, ## arg)
331
332 static int d40_pool_lli_alloc(struct d40_desc *d40d,
333                               int lli_len, bool is_log)
334 {
335         u32 align;
336         void *base;
337
338         if (is_log)
339                 align = sizeof(struct d40_log_lli);
340         else
341                 align = sizeof(struct d40_phy_lli);
342
343         if (lli_len == 1) {
344                 base = d40d->lli_pool.pre_alloc_lli;
345                 d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
346                 d40d->lli_pool.base = NULL;
347         } else {
348                 d40d->lli_pool.size = lli_len * 2 * align;
349
350                 base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
351                 d40d->lli_pool.base = base;
352
353                 if (d40d->lli_pool.base == NULL)
354                         return -ENOMEM;
355         }
356
357         if (is_log) {
358                 d40d->lli_log.src = PTR_ALIGN((struct d40_log_lli *) base,
359                                               align);
360                 d40d->lli_log.dst = d40d->lli_log.src + lli_len;
361         } else {
362                 d40d->lli_phy.src = PTR_ALIGN((struct d40_phy_lli *)base,
363                                               align);
364                 d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
365         }
366
367         return 0;
368 }
369
370 static void d40_pool_lli_free(struct d40_desc *d40d)
371 {
372         kfree(d40d->lli_pool.base);
373         d40d->lli_pool.base = NULL;
374         d40d->lli_pool.size = 0;
375         d40d->lli_log.src = NULL;
376         d40d->lli_log.dst = NULL;
377         d40d->lli_phy.src = NULL;
378         d40d->lli_phy.dst = NULL;
379 }
380
381 static int d40_lcla_alloc_one(struct d40_chan *d40c,
382                               struct d40_desc *d40d)
383 {
384         unsigned long flags;
385         int i;
386         int ret = -EINVAL;
387         int p;
388
389         spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
390
391         p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;
392
393         /*
394          * Allocate both src and dst at the same time, therefore the half
395          * start on 1 since 0 can't be used since zero is used as end marker.
396          */
397         for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
398                 if (!d40c->base->lcla_pool.alloc_map[p + i]) {
399                         d40c->base->lcla_pool.alloc_map[p + i] = d40d;
400                         d40d->lcla_alloc++;
401                         ret = i;
402                         break;
403                 }
404         }
405
406         spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
407
408         return ret;
409 }
410
411 static int d40_lcla_free_all(struct d40_chan *d40c,
412                              struct d40_desc *d40d)
413 {
414         unsigned long flags;
415         int i;
416         int ret = -EINVAL;
417
418         if (chan_is_physical(d40c))
419                 return 0;
420
421         spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
422
423         for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
424                 if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
425                                                     D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
426                         d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
427                                                         D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
428                         d40d->lcla_alloc--;
429                         if (d40d->lcla_alloc == 0) {
430                                 ret = 0;
431                                 break;
432                         }
433                 }
434         }
435
436         spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
437
438         return ret;
439
440 }
441
442 static void d40_desc_remove(struct d40_desc *d40d)
443 {
444         list_del(&d40d->node);
445 }
446
447 static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
448 {
449         struct d40_desc *desc = NULL;
450
451         if (!list_empty(&d40c->client)) {
452                 struct d40_desc *d;
453                 struct d40_desc *_d;
454
455                 list_for_each_entry_safe(d, _d, &d40c->client, node)
456                         if (async_tx_test_ack(&d->txd)) {
457                                 d40_pool_lli_free(d);
458                                 d40_desc_remove(d);
459                                 desc = d;
460                                 memset(desc, 0, sizeof(*desc));
461                                 break;
462                         }
463         }
464
465         if (!desc)
466                 desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
467
468         if (desc)
469                 INIT_LIST_HEAD(&desc->node);
470
471         return desc;
472 }
473
474 static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
475 {
476
477         d40_lcla_free_all(d40c, d40d);
478         kmem_cache_free(d40c->base->desc_slab, d40d);
479 }
480
481 static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
482 {
483         list_add_tail(&desc->node, &d40c->active);
484 }
485
486 static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
487 {
488         int curr_lcla = -EINVAL, next_lcla;
489
490         if (chan_is_physical(d40c)) {
491                 d40_phy_lli_write(d40c->base->virtbase,
492                                   d40c->phy_chan->num,
493                                   d40d->lli_phy.dst,
494                                   d40d->lli_phy.src);
495                 d40d->lli_current = d40d->lli_len;
496         } else {
497
498                 if ((d40d->lli_len - d40d->lli_current) > 1)
499                         curr_lcla = d40_lcla_alloc_one(d40c, d40d);
500
501                 d40_log_lli_lcpa_write(d40c->lcpa,
502                                        &d40d->lli_log.dst[d40d->lli_current],
503                                        &d40d->lli_log.src[d40d->lli_current],
504                                        curr_lcla);
505
506                 d40d->lli_current++;
507                 for (; d40d->lli_current < d40d->lli_len; d40d->lli_current++) {
508                         unsigned int lcla_offset = d40c->phy_chan->num * 1024 +
509                                                    8 * curr_lcla * 2;
510                         struct d40_lcla_pool *pool = &d40c->base->lcla_pool;
511                         struct d40_log_lli *lcla = pool->base + lcla_offset;
512
513                         if (d40d->lli_current + 1 < d40d->lli_len)
514                                 next_lcla = d40_lcla_alloc_one(d40c, d40d);
515                         else
516                                 next_lcla = -EINVAL;
517
518                         d40_log_lli_lcla_write(lcla,
519                                                &d40d->lli_log.dst[d40d->lli_current],
520                                                &d40d->lli_log.src[d40d->lli_current],
521                                                next_lcla);
522
523                         dma_sync_single_range_for_device(d40c->base->dev,
524                                                 pool->dma_addr, lcla_offset,
525                                                 2 * sizeof(struct d40_log_lli),
526                                                 DMA_TO_DEVICE);
527
528                         curr_lcla = next_lcla;
529
530                         if (curr_lcla == -EINVAL) {
531                                 d40d->lli_current++;
532                                 break;
533                         }
534
535                 }
536         }
537 }
538
539 static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
540 {
541         struct d40_desc *d;
542
543         if (list_empty(&d40c->active))
544                 return NULL;
545
546         d = list_first_entry(&d40c->active,
547                              struct d40_desc,
548                              node);
549         return d;
550 }
551
552 static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
553 {
554         list_add_tail(&desc->node, &d40c->queue);
555 }
556
557 static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
558 {
559         struct d40_desc *d;
560
561         if (list_empty(&d40c->queue))
562                 return NULL;
563
564         d = list_first_entry(&d40c->queue,
565                              struct d40_desc,
566                              node);
567         return d;
568 }
569
570 static int d40_psize_2_burst_size(bool is_log, int psize)
571 {
572         if (is_log) {
573                 if (psize == STEDMA40_PSIZE_LOG_1)
574                         return 1;
575         } else {
576                 if (psize == STEDMA40_PSIZE_PHY_1)
577                         return 1;
578         }
579
580         return 2 << psize;
581 }
582
583 /*
584  * The dma only supports transmitting packages up to
585  * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
586  * dma elements required to send the entire sg list
587  */
588 static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
589 {
590         int dmalen;
591         u32 max_w = max(data_width1, data_width2);
592         u32 min_w = min(data_width1, data_width2);
593         u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);
594
595         if (seg_max > STEDMA40_MAX_SEG_SIZE)
596                 seg_max -= (1 << max_w);
597
598         if (!IS_ALIGNED(size, 1 << max_w))
599                 return -EINVAL;
600
601         if (size <= seg_max)
602                 dmalen = 1;
603         else {
604                 dmalen = size / seg_max;
605                 if (dmalen * seg_max < size)
606                         dmalen++;
607         }
608         return dmalen;
609 }
610
611 static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
612                            u32 data_width1, u32 data_width2)
613 {
614         struct scatterlist *sg;
615         int i;
616         int len = 0;
617         int ret;
618
619         for_each_sg(sgl, sg, sg_len, i) {
620                 ret = d40_size_2_dmalen(sg_dma_len(sg),
621                                         data_width1, data_width2);
622                 if (ret < 0)
623                         return ret;
624                 len += ret;
625         }
626         return len;
627 }
628
629 /* Support functions for logical channels */
630
631 static int d40_channel_execute_command(struct d40_chan *d40c,
632                                        enum d40_command command)
633 {
634         u32 status;
635         int i;
636         void __iomem *active_reg;
637         int ret = 0;
638         unsigned long flags;
639         u32 wmask;
640
641         spin_lock_irqsave(&d40c->base->execmd_lock, flags);
642
643         if (d40c->phy_chan->num % 2 == 0)
644                 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
645         else
646                 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
647
648         if (command == D40_DMA_SUSPEND_REQ) {
649                 status = (readl(active_reg) &
650                           D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
651                         D40_CHAN_POS(d40c->phy_chan->num);
652
653                 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
654                         goto done;
655         }
656
657         wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
658         writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
659                active_reg);
660
661         if (command == D40_DMA_SUSPEND_REQ) {
662
663                 for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
664                         status = (readl(active_reg) &
665                                   D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
666                                 D40_CHAN_POS(d40c->phy_chan->num);
667
668                         cpu_relax();
669                         /*
670                          * Reduce the number of bus accesses while
671                          * waiting for the DMA to suspend.
672                          */
673                         udelay(3);
674
675                         if (status == D40_DMA_STOP ||
676                             status == D40_DMA_SUSPENDED)
677                                 break;
678                 }
679
680                 if (i == D40_SUSPEND_MAX_IT) {
681                         chan_err(d40c,
682                                 "unable to suspend the chl %d (log: %d) status %x\n",
683                                 d40c->phy_chan->num, d40c->log_num,
684                                 status);
685                         dump_stack();
686                         ret = -EBUSY;
687                 }
688
689         }
690 done:
691         spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
692         return ret;
693 }
694
695 static void d40_term_all(struct d40_chan *d40c)
696 {
697         struct d40_desc *d40d;
698
699         /* Release active descriptors */
700         while ((d40d = d40_first_active_get(d40c))) {
701                 d40_desc_remove(d40d);
702                 d40_desc_free(d40c, d40d);
703         }
704
705         /* Release queued descriptors waiting for transfer */
706         while ((d40d = d40_first_queued(d40c))) {
707                 d40_desc_remove(d40d);
708                 d40_desc_free(d40c, d40d);
709         }
710
711
712         d40c->pending_tx = 0;
713         d40c->busy = false;
714 }
715
716 static void __d40_config_set_event(struct d40_chan *d40c, bool enable,
717                                    u32 event, int reg)
718 {
719         void __iomem *addr = chan_base(d40c) + reg;
720         int tries;
721
722         if (!enable) {
723                 writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
724                        | ~D40_EVENTLINE_MASK(event), addr);
725                 return;
726         }
727
728         /*
729          * The hardware sometimes doesn't register the enable when src and dst
730          * event lines are active on the same logical channel.  Retry to ensure
731          * it does.  Usually only one retry is sufficient.
732          */
733         tries = 100;
734         while (--tries) {
735                 writel((D40_ACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
736                        | ~D40_EVENTLINE_MASK(event), addr);
737
738                 if (readl(addr) & D40_EVENTLINE_MASK(event))
739                         break;
740         }
741
742         if (tries != 99)
743                 dev_dbg(chan2dev(d40c),
744                         "[%s] workaround enable S%cLNK (%d tries)\n",
745                         __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
746                         100 - tries);
747
748         WARN_ON(!tries);
749 }
750
751 static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
752 {
753         unsigned long flags;
754
755         spin_lock_irqsave(&d40c->phy_chan->lock, flags);
756
757         /* Enable event line connected to device (or memcpy) */
758         if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
759             (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
760                 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
761
762                 __d40_config_set_event(d40c, do_enable, event,
763                                        D40_CHAN_REG_SSLNK);
764         }
765
766         if (d40c->dma_cfg.dir !=  STEDMA40_PERIPH_TO_MEM) {
767                 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
768
769                 __d40_config_set_event(d40c, do_enable, event,
770                                        D40_CHAN_REG_SDLNK);
771         }
772
773         spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
774 }
775
776 static u32 d40_chan_has_events(struct d40_chan *d40c)
777 {
778         void __iomem *chanbase = chan_base(d40c);
779         u32 val;
780
781         val = readl(chanbase + D40_CHAN_REG_SSLNK);
782         val |= readl(chanbase + D40_CHAN_REG_SDLNK);
783
784         return val;
785 }
786
787 static u32 d40_get_prmo(struct d40_chan *d40c)
788 {
789         static const unsigned int phy_map[] = {
790                 [STEDMA40_PCHAN_BASIC_MODE]
791                         = D40_DREG_PRMO_PCHAN_BASIC,
792                 [STEDMA40_PCHAN_MODULO_MODE]
793                         = D40_DREG_PRMO_PCHAN_MODULO,
794                 [STEDMA40_PCHAN_DOUBLE_DST_MODE]
795                         = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
796         };
797         static const unsigned int log_map[] = {
798                 [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
799                         = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
800                 [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
801                         = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
802                 [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
803                         = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
804         };
805
806         if (chan_is_physical(d40c))
807                 return phy_map[d40c->dma_cfg.mode_opt];
808         else
809                 return log_map[d40c->dma_cfg.mode_opt];
810 }
811
812 static void d40_config_write(struct d40_chan *d40c)
813 {
814         u32 addr_base;
815         u32 var;
816
817         /* Odd addresses are even addresses + 4 */
818         addr_base = (d40c->phy_chan->num % 2) * 4;
819         /* Setup channel mode to logical or physical */
820         var = ((u32)(chan_is_logical(d40c)) + 1) <<
821                 D40_CHAN_POS(d40c->phy_chan->num);
822         writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
823
824         /* Setup operational mode option register */
825         var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
826
827         writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
828
829         if (chan_is_logical(d40c)) {
830                 int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
831                            & D40_SREG_ELEM_LOG_LIDX_MASK;
832                 void __iomem *chanbase = chan_base(d40c);
833
834                 /* Set default config for CFG reg */
835                 writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
836                 writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
837
838                 /* Set LIDX for lcla */
839                 writel(lidx, chanbase + D40_CHAN_REG_SSELT);
840                 writel(lidx, chanbase + D40_CHAN_REG_SDELT);
841         }
842 }
843
844 static u32 d40_residue(struct d40_chan *d40c)
845 {
846         u32 num_elt;
847
848         if (chan_is_logical(d40c))
849                 num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
850                         >> D40_MEM_LCSP2_ECNT_POS;
851         else {
852                 u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
853                 num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
854                           >> D40_SREG_ELEM_PHY_ECNT_POS;
855         }
856
857         return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
858 }
859
860 static bool d40_tx_is_linked(struct d40_chan *d40c)
861 {
862         bool is_link;
863
864         if (chan_is_logical(d40c))
865                 is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
866         else
867                 is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
868                           & D40_SREG_LNK_PHYS_LNK_MASK;
869
870         return is_link;
871 }
872
873 static int d40_pause(struct dma_chan *chan)
874 {
875         struct d40_chan *d40c =
876                 container_of(chan, struct d40_chan, chan);
877         int res = 0;
878         unsigned long flags;
879
880         if (!d40c->busy)
881                 return 0;
882
883         spin_lock_irqsave(&d40c->lock, flags);
884
885         res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
886         if (res == 0) {
887                 if (chan_is_logical(d40c)) {
888                         d40_config_set_event(d40c, false);
889                         /* Resume the other logical channels if any */
890                         if (d40_chan_has_events(d40c))
891                                 res = d40_channel_execute_command(d40c,
892                                                                   D40_DMA_RUN);
893                 }
894         }
895
896         spin_unlock_irqrestore(&d40c->lock, flags);
897         return res;
898 }
899
900 static int d40_resume(struct dma_chan *chan)
901 {
902         struct d40_chan *d40c =
903                 container_of(chan, struct d40_chan, chan);
904         int res = 0;
905         unsigned long flags;
906
907         if (!d40c->busy)
908                 return 0;
909
910         spin_lock_irqsave(&d40c->lock, flags);
911
912         if (d40c->base->rev == 0)
913                 if (chan_is_logical(d40c)) {
914                         res = d40_channel_execute_command(d40c,
915                                                           D40_DMA_SUSPEND_REQ);
916                         goto no_suspend;
917                 }
918
919         /* If bytes left to transfer or linked tx resume job */
920         if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
921
922                 if (chan_is_logical(d40c))
923                         d40_config_set_event(d40c, true);
924
925                 res = d40_channel_execute_command(d40c, D40_DMA_RUN);
926         }
927
928 no_suspend:
929         spin_unlock_irqrestore(&d40c->lock, flags);
930         return res;
931 }
932
933 static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
934 {
935         struct d40_chan *d40c = container_of(tx->chan,
936                                              struct d40_chan,
937                                              chan);
938         struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
939         unsigned long flags;
940
941         spin_lock_irqsave(&d40c->lock, flags);
942
943         d40c->chan.cookie++;
944
945         if (d40c->chan.cookie < 0)
946                 d40c->chan.cookie = 1;
947
948         d40d->txd.cookie = d40c->chan.cookie;
949
950         d40_desc_queue(d40c, d40d);
951
952         spin_unlock_irqrestore(&d40c->lock, flags);
953
954         return tx->cookie;
955 }
956
957 static int d40_start(struct d40_chan *d40c)
958 {
959         if (d40c->base->rev == 0) {
960                 int err;
961
962                 if (chan_is_logical(d40c)) {
963                         err = d40_channel_execute_command(d40c,
964                                                           D40_DMA_SUSPEND_REQ);
965                         if (err)
966                                 return err;
967                 }
968         }
969
970         if (chan_is_logical(d40c))
971                 d40_config_set_event(d40c, true);
972
973         return d40_channel_execute_command(d40c, D40_DMA_RUN);
974 }
975
976 static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
977 {
978         struct d40_desc *d40d;
979         int err;
980
981         /* Start queued jobs, if any */
982         d40d = d40_first_queued(d40c);
983
984         if (d40d != NULL) {
985                 d40c->busy = true;
986
987                 /* Remove from queue */
988                 d40_desc_remove(d40d);
989
990                 /* Add to active queue */
991                 d40_desc_submit(d40c, d40d);
992
993                 /* Initiate DMA job */
994                 d40_desc_load(d40c, d40d);
995
996                 /* Start dma job */
997                 err = d40_start(d40c);
998
999                 if (err)
1000                         return NULL;
1001         }
1002
1003         return d40d;
1004 }
1005
1006 /* called from interrupt context */
1007 static void dma_tc_handle(struct d40_chan *d40c)
1008 {
1009         struct d40_desc *d40d;
1010
1011         /* Get first active entry from list */
1012         d40d = d40_first_active_get(d40c);
1013
1014         if (d40d == NULL)
1015                 return;
1016
1017         d40_lcla_free_all(d40c, d40d);
1018
1019         if (d40d->lli_current < d40d->lli_len) {
1020                 d40_desc_load(d40c, d40d);
1021                 /* Start dma job */
1022                 (void) d40_start(d40c);
1023                 return;
1024         }
1025
1026         if (d40_queue_start(d40c) == NULL)
1027                 d40c->busy = false;
1028
1029         d40c->pending_tx++;
1030         tasklet_schedule(&d40c->tasklet);
1031
1032 }
1033
1034 static void dma_tasklet(unsigned long data)
1035 {
1036         struct d40_chan *d40c = (struct d40_chan *) data;
1037         struct d40_desc *d40d;
1038         unsigned long flags;
1039         dma_async_tx_callback callback;
1040         void *callback_param;
1041
1042         spin_lock_irqsave(&d40c->lock, flags);
1043
1044         /* Get first active entry from list */
1045         d40d = d40_first_active_get(d40c);
1046
1047         if (d40d == NULL)
1048                 goto err;
1049
1050         d40c->completed = d40d->txd.cookie;
1051
1052         /*
1053          * If terminating a channel pending_tx is set to zero.
1054          * This prevents any finished active jobs to return to the client.
1055          */
1056         if (d40c->pending_tx == 0) {
1057                 spin_unlock_irqrestore(&d40c->lock, flags);
1058                 return;
1059         }
1060
1061         /* Callback to client */
1062         callback = d40d->txd.callback;
1063         callback_param = d40d->txd.callback_param;
1064
1065         if (async_tx_test_ack(&d40d->txd)) {
1066                 d40_pool_lli_free(d40d);
1067                 d40_desc_remove(d40d);
1068                 d40_desc_free(d40c, d40d);
1069         } else {
1070                 if (!d40d->is_in_client_list) {
1071                         d40_desc_remove(d40d);
1072                         d40_lcla_free_all(d40c, d40d);
1073                         list_add_tail(&d40d->node, &d40c->client);
1074                         d40d->is_in_client_list = true;
1075                 }
1076         }
1077
1078         d40c->pending_tx--;
1079
1080         if (d40c->pending_tx)
1081                 tasklet_schedule(&d40c->tasklet);
1082
1083         spin_unlock_irqrestore(&d40c->lock, flags);
1084
1085         if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
1086                 callback(callback_param);
1087
1088         return;
1089
1090  err:
1091         /* Rescue manouver if receiving double interrupts */
1092         if (d40c->pending_tx > 0)
1093                 d40c->pending_tx--;
1094         spin_unlock_irqrestore(&d40c->lock, flags);
1095 }
1096
1097 static irqreturn_t d40_handle_interrupt(int irq, void *data)
1098 {
1099         static const struct d40_interrupt_lookup il[] = {
1100                 {D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
1101                 {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
1102                 {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
1103                 {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
1104                 {D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
1105                 {D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
1106                 {D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
1107                 {D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
1108                 {D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
1109                 {D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
1110         };
1111
1112         int i;
1113         u32 regs[ARRAY_SIZE(il)];
1114         u32 idx;
1115         u32 row;
1116         long chan = -1;
1117         struct d40_chan *d40c;
1118         unsigned long flags;
1119         struct d40_base *base = data;
1120
1121         spin_lock_irqsave(&base->interrupt_lock, flags);
1122
1123         /* Read interrupt status of both logical and physical channels */
1124         for (i = 0; i < ARRAY_SIZE(il); i++)
1125                 regs[i] = readl(base->virtbase + il[i].src);
1126
1127         for (;;) {
1128
1129                 chan = find_next_bit((unsigned long *)regs,
1130                                      BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
1131
1132                 /* No more set bits found? */
1133                 if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
1134                         break;
1135
1136                 row = chan / BITS_PER_LONG;
1137                 idx = chan & (BITS_PER_LONG - 1);
1138
1139                 /* ACK interrupt */
1140                 writel(1 << idx, base->virtbase + il[row].clr);
1141
1142                 if (il[row].offset == D40_PHY_CHAN)
1143                         d40c = base->lookup_phy_chans[idx];
1144                 else
1145                         d40c = base->lookup_log_chans[il[row].offset + idx];
1146                 spin_lock(&d40c->lock);
1147
1148                 if (!il[row].is_error)
1149                         dma_tc_handle(d40c);
1150                 else
1151                         d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
1152                                 chan, il[row].offset, idx);
1153
1154                 spin_unlock(&d40c->lock);
1155         }
1156
1157         spin_unlock_irqrestore(&base->interrupt_lock, flags);
1158
1159         return IRQ_HANDLED;
1160 }
1161
1162 static int d40_validate_conf(struct d40_chan *d40c,
1163                              struct stedma40_chan_cfg *conf)
1164 {
1165         int res = 0;
1166         u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
1167         u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
1168         bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1169
1170         if (!conf->dir) {
1171                 chan_err(d40c, "Invalid direction.\n");
1172                 res = -EINVAL;
1173         }
1174
1175         if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
1176             d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
1177             d40c->runtime_addr == 0) {
1178
1179                 chan_err(d40c, "Invalid TX channel address (%d)\n",
1180                          conf->dst_dev_type);
1181                 res = -EINVAL;
1182         }
1183
1184         if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
1185             d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
1186             d40c->runtime_addr == 0) {
1187                 chan_err(d40c, "Invalid RX channel address (%d)\n",
1188                         conf->src_dev_type);
1189                 res = -EINVAL;
1190         }
1191
1192         if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
1193             dst_event_group == STEDMA40_DEV_DST_MEMORY) {
1194                 chan_err(d40c, "Invalid dst\n");
1195                 res = -EINVAL;
1196         }
1197
1198         if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
1199             src_event_group == STEDMA40_DEV_SRC_MEMORY) {
1200                 chan_err(d40c, "Invalid src\n");
1201                 res = -EINVAL;
1202         }
1203
1204         if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
1205             dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
1206                 chan_err(d40c, "No event line\n");
1207                 res = -EINVAL;
1208         }
1209
1210         if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
1211             (src_event_group != dst_event_group)) {
1212                 chan_err(d40c, "Invalid event group\n");
1213                 res = -EINVAL;
1214         }
1215
1216         if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
1217                 /*
1218                  * DMAC HW supports it. Will be added to this driver,
1219                  * in case any dma client requires it.
1220                  */
1221                 chan_err(d40c, "periph to periph not supported\n");
1222                 res = -EINVAL;
1223         }
1224
1225         if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1226             (1 << conf->src_info.data_width) !=
1227             d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1228             (1 << conf->dst_info.data_width)) {
1229                 /*
1230                  * The DMAC hardware only supports
1231                  * src (burst x width) == dst (burst x width)
1232                  */
1233
1234                 chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1235                 res = -EINVAL;
1236         }
1237
1238         return res;
1239 }
1240
1241 static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src,
1242                                int log_event_line, bool is_log)
1243 {
1244         unsigned long flags;
1245         spin_lock_irqsave(&phy->lock, flags);
1246         if (!is_log) {
1247                 /* Physical interrupts are masked per physical full channel */
1248                 if (phy->allocated_src == D40_ALLOC_FREE &&
1249                     phy->allocated_dst == D40_ALLOC_FREE) {
1250                         phy->allocated_dst = D40_ALLOC_PHY;
1251                         phy->allocated_src = D40_ALLOC_PHY;
1252                         goto found;
1253                 } else
1254                         goto not_found;
1255         }
1256
1257         /* Logical channel */
1258         if (is_src) {
1259                 if (phy->allocated_src == D40_ALLOC_PHY)
1260                         goto not_found;
1261
1262                 if (phy->allocated_src == D40_ALLOC_FREE)
1263                         phy->allocated_src = D40_ALLOC_LOG_FREE;
1264
1265                 if (!(phy->allocated_src & (1 << log_event_line))) {
1266                         phy->allocated_src |= 1 << log_event_line;
1267                         goto found;
1268                 } else
1269                         goto not_found;
1270         } else {
1271                 if (phy->allocated_dst == D40_ALLOC_PHY)
1272                         goto not_found;
1273
1274                 if (phy->allocated_dst == D40_ALLOC_FREE)
1275                         phy->allocated_dst = D40_ALLOC_LOG_FREE;
1276
1277                 if (!(phy->allocated_dst & (1 << log_event_line))) {
1278                         phy->allocated_dst |= 1 << log_event_line;
1279                         goto found;
1280                 } else
1281                         goto not_found;
1282         }
1283
1284 not_found:
1285         spin_unlock_irqrestore(&phy->lock, flags);
1286         return false;
1287 found:
1288         spin_unlock_irqrestore(&phy->lock, flags);
1289         return true;
1290 }
1291
1292 static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1293                                int log_event_line)
1294 {
1295         unsigned long flags;
1296         bool is_free = false;
1297
1298         spin_lock_irqsave(&phy->lock, flags);
1299         if (!log_event_line) {
1300                 phy->allocated_dst = D40_ALLOC_FREE;
1301                 phy->allocated_src = D40_ALLOC_FREE;
1302                 is_free = true;
1303                 goto out;
1304         }
1305
1306         /* Logical channel */
1307         if (is_src) {
1308                 phy->allocated_src &= ~(1 << log_event_line);
1309                 if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1310                         phy->allocated_src = D40_ALLOC_FREE;
1311         } else {
1312                 phy->allocated_dst &= ~(1 << log_event_line);
1313                 if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1314                         phy->allocated_dst = D40_ALLOC_FREE;
1315         }
1316
1317         is_free = ((phy->allocated_src | phy->allocated_dst) ==
1318                    D40_ALLOC_FREE);
1319
1320 out:
1321         spin_unlock_irqrestore(&phy->lock, flags);
1322
1323         return is_free;
1324 }
1325
1326 static int d40_allocate_channel(struct d40_chan *d40c)
1327 {
1328         int dev_type;
1329         int event_group;
1330         int event_line;
1331         struct d40_phy_res *phys;
1332         int i;
1333         int j;
1334         int log_num;
1335         bool is_src;
1336         bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1337
1338         phys = d40c->base->phy_res;
1339
1340         if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1341                 dev_type = d40c->dma_cfg.src_dev_type;
1342                 log_num = 2 * dev_type;
1343                 is_src = true;
1344         } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1345                    d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1346                 /* dst event lines are used for logical memcpy */
1347                 dev_type = d40c->dma_cfg.dst_dev_type;
1348                 log_num = 2 * dev_type + 1;
1349                 is_src = false;
1350         } else
1351                 return -EINVAL;
1352
1353         event_group = D40_TYPE_TO_GROUP(dev_type);
1354         event_line = D40_TYPE_TO_EVENT(dev_type);
1355
1356         if (!is_log) {
1357                 if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1358                         /* Find physical half channel */
1359                         for (i = 0; i < d40c->base->num_phy_chans; i++) {
1360
1361                                 if (d40_alloc_mask_set(&phys[i], is_src,
1362                                                        0, is_log))
1363                                         goto found_phy;
1364                         }
1365                 } else
1366                         for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1367                                 int phy_num = j  + event_group * 2;
1368                                 for (i = phy_num; i < phy_num + 2; i++) {
1369                                         if (d40_alloc_mask_set(&phys[i],
1370                                                                is_src,
1371                                                                0,
1372                                                                is_log))
1373                                                 goto found_phy;
1374                                 }
1375                         }
1376                 return -EINVAL;
1377 found_phy:
1378                 d40c->phy_chan = &phys[i];
1379                 d40c->log_num = D40_PHY_CHAN;
1380                 goto out;
1381         }
1382         if (dev_type == -1)
1383                 return -EINVAL;
1384
1385         /* Find logical channel */
1386         for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1387                 int phy_num = j + event_group * 2;
1388                 /*
1389                  * Spread logical channels across all available physical rather
1390                  * than pack every logical channel at the first available phy
1391                  * channels.
1392                  */
1393                 if (is_src) {
1394                         for (i = phy_num; i < phy_num + 2; i++) {
1395                                 if (d40_alloc_mask_set(&phys[i], is_src,
1396                                                        event_line, is_log))
1397                                         goto found_log;
1398                         }
1399                 } else {
1400                         for (i = phy_num + 1; i >= phy_num; i--) {
1401                                 if (d40_alloc_mask_set(&phys[i], is_src,
1402                                                        event_line, is_log))
1403                                         goto found_log;
1404                         }
1405                 }
1406         }
1407         return -EINVAL;
1408
1409 found_log:
1410         d40c->phy_chan = &phys[i];
1411         d40c->log_num = log_num;
1412 out:
1413
1414         if (is_log)
1415                 d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1416         else
1417                 d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1418
1419         return 0;
1420
1421 }
1422
1423 static int d40_config_memcpy(struct d40_chan *d40c)
1424 {
1425         dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1426
1427         if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1428                 d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
1429                 d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
1430                 d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
1431                         memcpy[d40c->chan.chan_id];
1432
1433         } else if (dma_has_cap(DMA_MEMCPY, cap) &&
1434                    dma_has_cap(DMA_SLAVE, cap)) {
1435                 d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
1436         } else {
1437                 chan_err(d40c, "No memcpy\n");
1438                 return -EINVAL;
1439         }
1440
1441         return 0;
1442 }
1443
1444
1445 static int d40_free_dma(struct d40_chan *d40c)
1446 {
1447
1448         int res = 0;
1449         u32 event;
1450         struct d40_phy_res *phy = d40c->phy_chan;
1451         bool is_src;
1452         struct d40_desc *d;
1453         struct d40_desc *_d;
1454
1455
1456         /* Terminate all queued and active transfers */
1457         d40_term_all(d40c);
1458
1459         /* Release client owned descriptors */
1460         if (!list_empty(&d40c->client))
1461                 list_for_each_entry_safe(d, _d, &d40c->client, node) {
1462                         d40_pool_lli_free(d);
1463                         d40_desc_remove(d);
1464                         d40_desc_free(d40c, d);
1465                 }
1466
1467         if (phy == NULL) {
1468                 chan_err(d40c, "phy == null\n");
1469                 return -EINVAL;
1470         }
1471
1472         if (phy->allocated_src == D40_ALLOC_FREE &&
1473             phy->allocated_dst == D40_ALLOC_FREE) {
1474                 chan_err(d40c, "channel already free\n");
1475                 return -EINVAL;
1476         }
1477
1478         if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1479             d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1480                 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1481                 is_src = false;
1482         } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1483                 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1484                 is_src = true;
1485         } else {
1486                 chan_err(d40c, "Unknown direction\n");
1487                 return -EINVAL;
1488         }
1489
1490         res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1491         if (res) {
1492                 chan_err(d40c, "suspend failed\n");
1493                 return res;
1494         }
1495
1496         if (chan_is_logical(d40c)) {
1497                 /* Release logical channel, deactivate the event line */
1498
1499                 d40_config_set_event(d40c, false);
1500                 d40c->base->lookup_log_chans[d40c->log_num] = NULL;
1501
1502                 /*
1503                  * Check if there are more logical allocation
1504                  * on this phy channel.
1505                  */
1506                 if (!d40_alloc_mask_free(phy, is_src, event)) {
1507                         /* Resume the other logical channels if any */
1508                         if (d40_chan_has_events(d40c)) {
1509                                 res = d40_channel_execute_command(d40c,
1510                                                                   D40_DMA_RUN);
1511                                 if (res) {
1512                                         chan_err(d40c,
1513                                                 "Executing RUN command\n");
1514                                         return res;
1515                                 }
1516                         }
1517                         return 0;
1518                 }
1519         } else {
1520                 (void) d40_alloc_mask_free(phy, is_src, 0);
1521         }
1522
1523         /* Release physical channel */
1524         res = d40_channel_execute_command(d40c, D40_DMA_STOP);
1525         if (res) {
1526                 chan_err(d40c, "Failed to stop channel\n");
1527                 return res;
1528         }
1529         d40c->phy_chan = NULL;
1530         d40c->configured = false;
1531         d40c->base->lookup_phy_chans[phy->num] = NULL;
1532
1533         return 0;
1534 }
1535
1536 static bool d40_is_paused(struct d40_chan *d40c)
1537 {
1538         void __iomem *chanbase = chan_base(d40c);
1539         bool is_paused = false;
1540         unsigned long flags;
1541         void __iomem *active_reg;
1542         u32 status;
1543         u32 event;
1544
1545         spin_lock_irqsave(&d40c->lock, flags);
1546
1547         if (chan_is_physical(d40c)) {
1548                 if (d40c->phy_chan->num % 2 == 0)
1549                         active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1550                 else
1551                         active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1552
1553                 status = (readl(active_reg) &
1554                           D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1555                         D40_CHAN_POS(d40c->phy_chan->num);
1556                 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1557                         is_paused = true;
1558
1559                 goto _exit;
1560         }
1561
1562         if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1563             d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1564                 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1565                 status = readl(chanbase + D40_CHAN_REG_SDLNK);
1566         } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1567                 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1568                 status = readl(chanbase + D40_CHAN_REG_SSLNK);
1569         } else {
1570                 chan_err(d40c, "Unknown direction\n");
1571                 goto _exit;
1572         }
1573
1574         status = (status & D40_EVENTLINE_MASK(event)) >>
1575                 D40_EVENTLINE_POS(event);
1576
1577         if (status != D40_DMA_RUN)
1578                 is_paused = true;
1579 _exit:
1580         spin_unlock_irqrestore(&d40c->lock, flags);
1581         return is_paused;
1582
1583 }
1584
1585
1586 static u32 stedma40_residue(struct dma_chan *chan)
1587 {
1588         struct d40_chan *d40c =
1589                 container_of(chan, struct d40_chan, chan);
1590         u32 bytes_left;
1591         unsigned long flags;
1592
1593         spin_lock_irqsave(&d40c->lock, flags);
1594         bytes_left = d40_residue(d40c);
1595         spin_unlock_irqrestore(&d40c->lock, flags);
1596
1597         return bytes_left;
1598 }
1599
1600 struct dma_async_tx_descriptor *stedma40_memcpy_sg(struct dma_chan *chan,
1601                                                    struct scatterlist *sgl_dst,
1602                                                    struct scatterlist *sgl_src,
1603                                                    unsigned int sgl_len,
1604                                                    unsigned long dma_flags)
1605 {
1606         int res;
1607         struct d40_desc *d40d;
1608         struct d40_chan *d40c = container_of(chan, struct d40_chan,
1609                                              chan);
1610         unsigned long flags;
1611
1612         if (d40c->phy_chan == NULL) {
1613                 chan_err(d40c, "Unallocated channel.\n");
1614                 return ERR_PTR(-EINVAL);
1615         }
1616
1617         spin_lock_irqsave(&d40c->lock, flags);
1618         d40d = d40_desc_get(d40c);
1619
1620         if (d40d == NULL)
1621                 goto err;
1622
1623         d40d->lli_len = d40_sg_2_dmalen(sgl_dst, sgl_len,
1624                                         d40c->dma_cfg.src_info.data_width,
1625                                         d40c->dma_cfg.dst_info.data_width);
1626         if (d40d->lli_len < 0) {
1627                 chan_err(d40c, "Unaligned size\n");
1628                 goto err;
1629         }
1630
1631         d40d->lli_current = 0;
1632         d40d->txd.flags = dma_flags;
1633
1634         if (chan_is_logical(d40c)) {
1635
1636                 if (d40_pool_lli_alloc(d40d, d40d->lli_len, true) < 0) {
1637                         chan_err(d40c, "Out of memory\n");
1638                         goto err;
1639                 }
1640
1641                 (void) d40_log_sg_to_lli(sgl_src,
1642                                          sgl_len,
1643                                          d40d->lli_log.src,
1644                                          d40c->log_def.lcsp1,
1645                                          d40c->dma_cfg.src_info.data_width,
1646                                          d40c->dma_cfg.dst_info.data_width);
1647
1648                 (void) d40_log_sg_to_lli(sgl_dst,
1649                                          sgl_len,
1650                                          d40d->lli_log.dst,
1651                                          d40c->log_def.lcsp3,
1652                                          d40c->dma_cfg.dst_info.data_width,
1653                                          d40c->dma_cfg.src_info.data_width);
1654         } else {
1655                 if (d40_pool_lli_alloc(d40d, d40d->lli_len, false) < 0) {
1656                         chan_err(d40c, "Out of memory\n");
1657                         goto err;
1658                 }
1659
1660                 res = d40_phy_sg_to_lli(sgl_src,
1661                                         sgl_len,
1662                                         0,
1663                                         d40d->lli_phy.src,
1664                                         virt_to_phys(d40d->lli_phy.src),
1665                                         d40c->src_def_cfg,
1666                                         d40c->dma_cfg.src_info.data_width,
1667                                         d40c->dma_cfg.dst_info.data_width,
1668                                         d40c->dma_cfg.src_info.psize);
1669
1670                 if (res < 0)
1671                         goto err;
1672
1673                 res = d40_phy_sg_to_lli(sgl_dst,
1674                                         sgl_len,
1675                                         0,
1676                                         d40d->lli_phy.dst,
1677                                         virt_to_phys(d40d->lli_phy.dst),
1678                                         d40c->dst_def_cfg,
1679                                         d40c->dma_cfg.dst_info.data_width,
1680                                         d40c->dma_cfg.src_info.data_width,
1681                                         d40c->dma_cfg.dst_info.psize);
1682
1683                 if (res < 0)
1684                         goto err;
1685
1686                 (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
1687                                       d40d->lli_pool.size, DMA_TO_DEVICE);
1688         }
1689
1690         dma_async_tx_descriptor_init(&d40d->txd, chan);
1691
1692         d40d->txd.tx_submit = d40_tx_submit;
1693
1694         spin_unlock_irqrestore(&d40c->lock, flags);
1695
1696         return &d40d->txd;
1697 err:
1698         if (d40d)
1699                 d40_desc_free(d40c, d40d);
1700         spin_unlock_irqrestore(&d40c->lock, flags);
1701         return NULL;
1702 }
1703 EXPORT_SYMBOL(stedma40_memcpy_sg);
1704
1705 bool stedma40_filter(struct dma_chan *chan, void *data)
1706 {
1707         struct stedma40_chan_cfg *info = data;
1708         struct d40_chan *d40c =
1709                 container_of(chan, struct d40_chan, chan);
1710         int err;
1711
1712         if (data) {
1713                 err = d40_validate_conf(d40c, info);
1714                 if (!err)
1715                         d40c->dma_cfg = *info;
1716         } else
1717                 err = d40_config_memcpy(d40c);
1718
1719         if (!err)
1720                 d40c->configured = true;
1721
1722         return err == 0;
1723 }
1724 EXPORT_SYMBOL(stedma40_filter);
1725
1726 static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
1727 {
1728         bool realtime = d40c->dma_cfg.realtime;
1729         bool highprio = d40c->dma_cfg.high_priority;
1730         u32 prioreg = highprio ? D40_DREG_PSEG1 : D40_DREG_PCEG1;
1731         u32 rtreg = realtime ? D40_DREG_RSEG1 : D40_DREG_RCEG1;
1732         u32 event = D40_TYPE_TO_EVENT(dev_type);
1733         u32 group = D40_TYPE_TO_GROUP(dev_type);
1734         u32 bit = 1 << event;
1735
1736         /* Destination event lines are stored in the upper halfword */
1737         if (!src)
1738                 bit <<= 16;
1739
1740         writel(bit, d40c->base->virtbase + prioreg + group * 4);
1741         writel(bit, d40c->base->virtbase + rtreg + group * 4);
1742 }
1743
1744 static void d40_set_prio_realtime(struct d40_chan *d40c)
1745 {
1746         if (d40c->base->rev < 3)
1747                 return;
1748
1749         if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
1750             (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
1751                 __d40_set_prio_rt(d40c, d40c->dma_cfg.src_dev_type, true);
1752
1753         if ((d40c->dma_cfg.dir ==  STEDMA40_MEM_TO_PERIPH) ||
1754             (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
1755                 __d40_set_prio_rt(d40c, d40c->dma_cfg.dst_dev_type, false);
1756 }
1757
1758 /* DMA ENGINE functions */
1759 static int d40_alloc_chan_resources(struct dma_chan *chan)
1760 {
1761         int err;
1762         unsigned long flags;
1763         struct d40_chan *d40c =
1764                 container_of(chan, struct d40_chan, chan);
1765         bool is_free_phy;
1766         spin_lock_irqsave(&d40c->lock, flags);
1767
1768         d40c->completed = chan->cookie = 1;
1769
1770         /* If no dma configuration is set use default configuration (memcpy) */
1771         if (!d40c->configured) {
1772                 err = d40_config_memcpy(d40c);
1773                 if (err) {
1774                         chan_err(d40c, "Failed to configure memcpy channel\n");
1775                         goto fail;
1776                 }
1777         }
1778         is_free_phy = (d40c->phy_chan == NULL);
1779
1780         err = d40_allocate_channel(d40c);
1781         if (err) {
1782                 chan_err(d40c, "Failed to allocate channel\n");
1783                 goto fail;
1784         }
1785
1786         /* Fill in basic CFG register values */
1787         d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
1788                     &d40c->dst_def_cfg, chan_is_logical(d40c));
1789
1790         d40_set_prio_realtime(d40c);
1791
1792         if (chan_is_logical(d40c)) {
1793                 d40_log_cfg(&d40c->dma_cfg,
1794                             &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
1795
1796                 if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
1797                         d40c->lcpa = d40c->base->lcpa_base +
1798                           d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
1799                 else
1800                         d40c->lcpa = d40c->base->lcpa_base +
1801                           d40c->dma_cfg.dst_dev_type *
1802                           D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
1803         }
1804
1805         /*
1806          * Only write channel configuration to the DMA if the physical
1807          * resource is free. In case of multiple logical channels
1808          * on the same physical resource, only the first write is necessary.
1809          */
1810         if (is_free_phy)
1811                 d40_config_write(d40c);
1812 fail:
1813         spin_unlock_irqrestore(&d40c->lock, flags);
1814         return err;
1815 }
1816
1817 static void d40_free_chan_resources(struct dma_chan *chan)
1818 {
1819         struct d40_chan *d40c =
1820                 container_of(chan, struct d40_chan, chan);
1821         int err;
1822         unsigned long flags;
1823
1824         if (d40c->phy_chan == NULL) {
1825                 chan_err(d40c, "Cannot free unallocated channel\n");
1826                 return;
1827         }
1828
1829
1830         spin_lock_irqsave(&d40c->lock, flags);
1831
1832         err = d40_free_dma(d40c);
1833
1834         if (err)
1835                 chan_err(d40c, "Failed to free channel\n");
1836         spin_unlock_irqrestore(&d40c->lock, flags);
1837 }
1838
1839 static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
1840                                                        dma_addr_t dst,
1841                                                        dma_addr_t src,
1842                                                        size_t size,
1843                                                        unsigned long dma_flags)
1844 {
1845         struct d40_desc *d40d;
1846         struct d40_chan *d40c = container_of(chan, struct d40_chan,
1847                                              chan);
1848         unsigned long flags;
1849
1850         if (d40c->phy_chan == NULL) {
1851                 chan_err(d40c, "Channel is not allocated.\n");
1852                 return ERR_PTR(-EINVAL);
1853         }
1854
1855         spin_lock_irqsave(&d40c->lock, flags);
1856         d40d = d40_desc_get(d40c);
1857
1858         if (d40d == NULL) {
1859                 chan_err(d40c, "Descriptor is NULL\n");
1860                 goto err;
1861         }
1862
1863         d40d->txd.flags = dma_flags;
1864         d40d->lli_len = d40_size_2_dmalen(size,
1865                                           d40c->dma_cfg.src_info.data_width,
1866                                           d40c->dma_cfg.dst_info.data_width);
1867         if (d40d->lli_len < 0) {
1868                 chan_err(d40c, "Unaligned size\n");
1869                 goto err;
1870         }
1871
1872
1873         dma_async_tx_descriptor_init(&d40d->txd, chan);
1874
1875         d40d->txd.tx_submit = d40_tx_submit;
1876
1877         if (chan_is_logical(d40c)) {
1878
1879                 if (d40_pool_lli_alloc(d40d, d40d->lli_len, true) < 0) {
1880                         chan_err(d40c, "Out of memory\n");
1881                         goto err;
1882                 }
1883                 d40d->lli_current = 0;
1884
1885                 if (d40_log_buf_to_lli(d40d->lli_log.src,
1886                                        src,
1887                                        size,
1888                                        d40c->log_def.lcsp1,
1889                                        d40c->dma_cfg.src_info.data_width,
1890                                        d40c->dma_cfg.dst_info.data_width,
1891                                        true) == NULL)
1892                         goto err;
1893
1894                 if (d40_log_buf_to_lli(d40d->lli_log.dst,
1895                                        dst,
1896                                        size,
1897                                        d40c->log_def.lcsp3,
1898                                        d40c->dma_cfg.dst_info.data_width,
1899                                        d40c->dma_cfg.src_info.data_width,
1900                                        true) == NULL)
1901                         goto err;
1902
1903         } else {
1904
1905                 if (d40_pool_lli_alloc(d40d, d40d->lli_len, false) < 0) {
1906                         chan_err(d40c, "Out of memory\n");
1907                         goto err;
1908                 }
1909
1910                 if (d40_phy_buf_to_lli(d40d->lli_phy.src,
1911                                        src,
1912                                        size,
1913                                        d40c->dma_cfg.src_info.psize,
1914                                        0,
1915                                        d40c->src_def_cfg,
1916                                        true,
1917                                        d40c->dma_cfg.src_info.data_width,
1918                                        d40c->dma_cfg.dst_info.data_width,
1919                                        false) == NULL)
1920                         goto err;
1921
1922                 if (d40_phy_buf_to_lli(d40d->lli_phy.dst,
1923                                        dst,
1924                                        size,
1925                                        d40c->dma_cfg.dst_info.psize,
1926                                        0,
1927                                        d40c->dst_def_cfg,
1928                                        true,
1929                                        d40c->dma_cfg.dst_info.data_width,
1930                                        d40c->dma_cfg.src_info.data_width,
1931                                        false) == NULL)
1932                         goto err;
1933
1934                 (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
1935                                       d40d->lli_pool.size, DMA_TO_DEVICE);
1936         }
1937
1938         spin_unlock_irqrestore(&d40c->lock, flags);
1939         return &d40d->txd;
1940
1941 err:
1942         if (d40d)
1943                 d40_desc_free(d40c, d40d);
1944         spin_unlock_irqrestore(&d40c->lock, flags);
1945         return NULL;
1946 }
1947
1948 static struct dma_async_tx_descriptor *
1949 d40_prep_sg(struct dma_chan *chan,
1950             struct scatterlist *dst_sg, unsigned int dst_nents,
1951             struct scatterlist *src_sg, unsigned int src_nents,
1952             unsigned long dma_flags)
1953 {
1954         if (dst_nents != src_nents)
1955                 return NULL;
1956
1957         return stedma40_memcpy_sg(chan, dst_sg, src_sg, dst_nents, dma_flags);
1958 }
1959
1960 static int d40_prep_slave_sg_log(struct d40_desc *d40d,
1961                                  struct d40_chan *d40c,
1962                                  struct scatterlist *sgl,
1963                                  unsigned int sg_len,
1964                                  enum dma_data_direction direction,
1965                                  unsigned long dma_flags)
1966 {
1967         dma_addr_t dev_addr = 0;
1968         int total_size;
1969
1970         d40d->lli_len = d40_sg_2_dmalen(sgl, sg_len,
1971                                         d40c->dma_cfg.src_info.data_width,
1972                                         d40c->dma_cfg.dst_info.data_width);
1973         if (d40d->lli_len < 0) {
1974                 chan_err(d40c, "Unaligned size\n");
1975                 return -EINVAL;
1976         }
1977
1978         if (d40_pool_lli_alloc(d40d, d40d->lli_len, true) < 0) {
1979                 chan_err(d40c, "Out of memory\n");
1980                 return -ENOMEM;
1981         }
1982
1983         d40d->lli_current = 0;
1984
1985         if (direction == DMA_FROM_DEVICE)
1986                 if (d40c->runtime_addr)
1987                         dev_addr = d40c->runtime_addr;
1988                 else
1989                         dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
1990         else if (direction == DMA_TO_DEVICE)
1991                 if (d40c->runtime_addr)
1992                         dev_addr = d40c->runtime_addr;
1993                 else
1994                         dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
1995
1996         else
1997                 return -EINVAL;
1998
1999         total_size = d40_log_sg_to_dev(sgl, sg_len,
2000                                        &d40d->lli_log,
2001                                        &d40c->log_def,
2002                                        d40c->dma_cfg.src_info.data_width,
2003                                        d40c->dma_cfg.dst_info.data_width,
2004                                        direction,
2005                                        dev_addr);
2006
2007         if (total_size < 0)
2008                 return -EINVAL;
2009
2010         return 0;
2011 }
2012
2013 static int d40_prep_slave_sg_phy(struct d40_desc *d40d,
2014                                  struct d40_chan *d40c,
2015                                  struct scatterlist *sgl,
2016                                  unsigned int sgl_len,
2017                                  enum dma_data_direction direction,
2018                                  unsigned long dma_flags)
2019 {
2020         dma_addr_t src_dev_addr;
2021         dma_addr_t dst_dev_addr;
2022         int res;
2023
2024         d40d->lli_len = d40_sg_2_dmalen(sgl, sgl_len,
2025                                         d40c->dma_cfg.src_info.data_width,
2026                                         d40c->dma_cfg.dst_info.data_width);
2027         if (d40d->lli_len < 0) {
2028                 chan_err(d40c, "Unaligned size\n");
2029                 return -EINVAL;
2030         }
2031
2032         if (d40_pool_lli_alloc(d40d, d40d->lli_len, false) < 0) {
2033                 chan_err(d40c, "Out of memory\n");
2034                 return -ENOMEM;
2035         }
2036
2037         d40d->lli_current = 0;
2038
2039         if (direction == DMA_FROM_DEVICE) {
2040                 dst_dev_addr = 0;
2041                 if (d40c->runtime_addr)
2042                         src_dev_addr = d40c->runtime_addr;
2043                 else
2044                         src_dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
2045         } else if (direction == DMA_TO_DEVICE) {
2046                 if (d40c->runtime_addr)
2047                         dst_dev_addr = d40c->runtime_addr;
2048                 else
2049                         dst_dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
2050                 src_dev_addr = 0;
2051         } else
2052                 return -EINVAL;
2053
2054         res = d40_phy_sg_to_lli(sgl,
2055                                 sgl_len,
2056                                 src_dev_addr,
2057                                 d40d->lli_phy.src,
2058                                 virt_to_phys(d40d->lli_phy.src),
2059                                 d40c->src_def_cfg,
2060                                 d40c->dma_cfg.src_info.data_width,
2061                                 d40c->dma_cfg.dst_info.data_width,
2062                                 d40c->dma_cfg.src_info.psize);
2063         if (res < 0)
2064                 return res;
2065
2066         res = d40_phy_sg_to_lli(sgl,
2067                                 sgl_len,
2068                                 dst_dev_addr,
2069                                 d40d->lli_phy.dst,
2070                                 virt_to_phys(d40d->lli_phy.dst),
2071                                 d40c->dst_def_cfg,
2072                                 d40c->dma_cfg.dst_info.data_width,
2073                                 d40c->dma_cfg.src_info.data_width,
2074                                 d40c->dma_cfg.dst_info.psize);
2075         if (res < 0)
2076                 return res;
2077
2078         (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
2079                               d40d->lli_pool.size, DMA_TO_DEVICE);
2080         return 0;
2081 }
2082
2083 static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
2084                                                          struct scatterlist *sgl,
2085                                                          unsigned int sg_len,
2086                                                          enum dma_data_direction direction,
2087                                                          unsigned long dma_flags)
2088 {
2089         struct d40_desc *d40d;
2090         struct d40_chan *d40c = container_of(chan, struct d40_chan,
2091                                              chan);
2092         unsigned long flags;
2093         int err;
2094
2095         if (d40c->phy_chan == NULL) {
2096                 chan_err(d40c, "Cannot prepare unallocated channel\n");
2097                 return ERR_PTR(-EINVAL);
2098         }
2099
2100         spin_lock_irqsave(&d40c->lock, flags);
2101         d40d = d40_desc_get(d40c);
2102
2103         if (d40d == NULL)
2104                 goto err;
2105
2106         if (chan_is_logical(d40c))
2107                 err = d40_prep_slave_sg_log(d40d, d40c, sgl, sg_len,
2108                                             direction, dma_flags);
2109         else
2110                 err = d40_prep_slave_sg_phy(d40d, d40c, sgl, sg_len,
2111                                             direction, dma_flags);
2112         if (err) {
2113                 chan_err(d40c, "Failed to prepare %s slave sg job: %d\n",
2114                         chan_is_logical(d40c) ? "log" : "phy", err);
2115                 goto err;
2116         }
2117
2118         d40d->txd.flags = dma_flags;
2119
2120         dma_async_tx_descriptor_init(&d40d->txd, chan);
2121
2122         d40d->txd.tx_submit = d40_tx_submit;
2123
2124         spin_unlock_irqrestore(&d40c->lock, flags);
2125         return &d40d->txd;
2126
2127 err:
2128         if (d40d)
2129                 d40_desc_free(d40c, d40d);
2130         spin_unlock_irqrestore(&d40c->lock, flags);
2131         return NULL;
2132 }
2133
2134 static enum dma_status d40_tx_status(struct dma_chan *chan,
2135                                      dma_cookie_t cookie,
2136                                      struct dma_tx_state *txstate)
2137 {
2138         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2139         dma_cookie_t last_used;
2140         dma_cookie_t last_complete;
2141         int ret;
2142
2143         if (d40c->phy_chan == NULL) {
2144                 chan_err(d40c, "Cannot read status of unallocated channel\n");
2145                 return -EINVAL;
2146         }
2147
2148         last_complete = d40c->completed;
2149         last_used = chan->cookie;
2150
2151         if (d40_is_paused(d40c))
2152                 ret = DMA_PAUSED;
2153         else
2154                 ret = dma_async_is_complete(cookie, last_complete, last_used);
2155
2156         dma_set_tx_state(txstate, last_complete, last_used,
2157                          stedma40_residue(chan));
2158
2159         return ret;
2160 }
2161
2162 static void d40_issue_pending(struct dma_chan *chan)
2163 {
2164         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2165         unsigned long flags;
2166
2167         if (d40c->phy_chan == NULL) {
2168                 chan_err(d40c, "Channel is not allocated!\n");
2169                 return;
2170         }
2171
2172         spin_lock_irqsave(&d40c->lock, flags);
2173
2174         /* Busy means that pending jobs are already being processed */
2175         if (!d40c->busy)
2176                 (void) d40_queue_start(d40c);
2177
2178         spin_unlock_irqrestore(&d40c->lock, flags);
2179 }
2180
2181 /* Runtime reconfiguration extension */
2182 static void d40_set_runtime_config(struct dma_chan *chan,
2183                                struct dma_slave_config *config)
2184 {
2185         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2186         struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2187         enum dma_slave_buswidth config_addr_width;
2188         dma_addr_t config_addr;
2189         u32 config_maxburst;
2190         enum stedma40_periph_data_width addr_width;
2191         int psize;
2192
2193         if (config->direction == DMA_FROM_DEVICE) {
2194                 dma_addr_t dev_addr_rx =
2195                         d40c->base->plat_data->dev_rx[cfg->src_dev_type];
2196
2197                 config_addr = config->src_addr;
2198                 if (dev_addr_rx)
2199                         dev_dbg(d40c->base->dev,
2200                                 "channel has a pre-wired RX address %08x "
2201                                 "overriding with %08x\n",
2202                                 dev_addr_rx, config_addr);
2203                 if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
2204                         dev_dbg(d40c->base->dev,
2205                                 "channel was not configured for peripheral "
2206                                 "to memory transfer (%d) overriding\n",
2207                                 cfg->dir);
2208                 cfg->dir = STEDMA40_PERIPH_TO_MEM;
2209
2210                 config_addr_width = config->src_addr_width;
2211                 config_maxburst = config->src_maxburst;
2212
2213         } else if (config->direction == DMA_TO_DEVICE) {
2214                 dma_addr_t dev_addr_tx =
2215                         d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
2216
2217                 config_addr = config->dst_addr;
2218                 if (dev_addr_tx)
2219                         dev_dbg(d40c->base->dev,
2220                                 "channel has a pre-wired TX address %08x "
2221                                 "overriding with %08x\n",
2222                                 dev_addr_tx, config_addr);
2223                 if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
2224                         dev_dbg(d40c->base->dev,
2225                                 "channel was not configured for memory "
2226                                 "to peripheral transfer (%d) overriding\n",
2227                                 cfg->dir);
2228                 cfg->dir = STEDMA40_MEM_TO_PERIPH;
2229
2230                 config_addr_width = config->dst_addr_width;
2231                 config_maxburst = config->dst_maxburst;
2232
2233         } else {
2234                 dev_err(d40c->base->dev,
2235                         "unrecognized channel direction %d\n",
2236                         config->direction);
2237                 return;
2238         }
2239
2240         switch (config_addr_width) {
2241         case DMA_SLAVE_BUSWIDTH_1_BYTE:
2242                 addr_width = STEDMA40_BYTE_WIDTH;
2243                 break;
2244         case DMA_SLAVE_BUSWIDTH_2_BYTES:
2245                 addr_width = STEDMA40_HALFWORD_WIDTH;
2246                 break;
2247         case DMA_SLAVE_BUSWIDTH_4_BYTES:
2248                 addr_width = STEDMA40_WORD_WIDTH;
2249                 break;
2250         case DMA_SLAVE_BUSWIDTH_8_BYTES:
2251                 addr_width = STEDMA40_DOUBLEWORD_WIDTH;
2252                 break;
2253         default:
2254                 dev_err(d40c->base->dev,
2255                         "illegal peripheral address width "
2256                         "requested (%d)\n",
2257                         config->src_addr_width);
2258                 return;
2259         }
2260
2261         if (chan_is_logical(d40c)) {
2262                 if (config_maxburst >= 16)
2263                         psize = STEDMA40_PSIZE_LOG_16;
2264                 else if (config_maxburst >= 8)
2265                         psize = STEDMA40_PSIZE_LOG_8;
2266                 else if (config_maxburst >= 4)
2267                         psize = STEDMA40_PSIZE_LOG_4;
2268                 else
2269                         psize = STEDMA40_PSIZE_LOG_1;
2270         } else {
2271                 if (config_maxburst >= 16)
2272                         psize = STEDMA40_PSIZE_PHY_16;
2273                 else if (config_maxburst >= 8)
2274                         psize = STEDMA40_PSIZE_PHY_8;
2275                 else if (config_maxburst >= 4)
2276                         psize = STEDMA40_PSIZE_PHY_4;
2277                 else if (config_maxburst >= 2)
2278                         psize = STEDMA40_PSIZE_PHY_2;
2279                 else
2280                         psize = STEDMA40_PSIZE_PHY_1;
2281         }
2282
2283         /* Set up all the endpoint configs */
2284         cfg->src_info.data_width = addr_width;
2285         cfg->src_info.psize = psize;
2286         cfg->src_info.big_endian = false;
2287         cfg->src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2288         cfg->dst_info.data_width = addr_width;
2289         cfg->dst_info.psize = psize;
2290         cfg->dst_info.big_endian = false;
2291         cfg->dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2292
2293         /* Fill in register values */
2294         if (chan_is_logical(d40c))
2295                 d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2296         else
2297                 d40_phy_cfg(cfg, &d40c->src_def_cfg,
2298                             &d40c->dst_def_cfg, false);
2299
2300         /* These settings will take precedence later */
2301         d40c->runtime_addr = config_addr;
2302         d40c->runtime_direction = config->direction;
2303         dev_dbg(d40c->base->dev,
2304                 "configured channel %s for %s, data width %d, "
2305                 "maxburst %d bytes, LE, no flow control\n",
2306                 dma_chan_name(chan),
2307                 (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
2308                 config_addr_width,
2309                 config_maxburst);
2310 }
2311
2312 static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
2313                        unsigned long arg)
2314 {
2315         unsigned long flags;
2316         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2317
2318         if (d40c->phy_chan == NULL) {
2319                 chan_err(d40c, "Channel is not allocated!\n");
2320                 return -EINVAL;
2321         }
2322
2323         switch (cmd) {
2324         case DMA_TERMINATE_ALL:
2325                 spin_lock_irqsave(&d40c->lock, flags);
2326                 d40_term_all(d40c);
2327                 spin_unlock_irqrestore(&d40c->lock, flags);
2328                 return 0;
2329         case DMA_PAUSE:
2330                 return d40_pause(chan);
2331         case DMA_RESUME:
2332                 return d40_resume(chan);
2333         case DMA_SLAVE_CONFIG:
2334                 d40_set_runtime_config(chan,
2335                         (struct dma_slave_config *) arg);
2336                 return 0;
2337         default:
2338                 break;
2339         }
2340
2341         /* Other commands are unimplemented */
2342         return -ENXIO;
2343 }
2344
2345 /* Initialization functions */
2346
2347 static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2348                                  struct d40_chan *chans, int offset,
2349                                  int num_chans)
2350 {
2351         int i = 0;
2352         struct d40_chan *d40c;
2353
2354         INIT_LIST_HEAD(&dma->channels);
2355
2356         for (i = offset; i < offset + num_chans; i++) {
2357                 d40c = &chans[i];
2358                 d40c->base = base;
2359                 d40c->chan.device = dma;
2360
2361                 spin_lock_init(&d40c->lock);
2362
2363                 d40c->log_num = D40_PHY_CHAN;
2364
2365                 INIT_LIST_HEAD(&d40c->active);
2366                 INIT_LIST_HEAD(&d40c->queue);
2367                 INIT_LIST_HEAD(&d40c->client);
2368
2369                 tasklet_init(&d40c->tasklet, dma_tasklet,
2370                              (unsigned long) d40c);
2371
2372                 list_add_tail(&d40c->chan.device_node,
2373                               &dma->channels);
2374         }
2375 }
2376
2377 static int __init d40_dmaengine_init(struct d40_base *base,
2378                                      int num_reserved_chans)
2379 {
2380         int err ;
2381
2382         d40_chan_init(base, &base->dma_slave, base->log_chans,
2383                       0, base->num_log_chans);
2384
2385         dma_cap_zero(base->dma_slave.cap_mask);
2386         dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2387
2388         base->dma_slave.device_alloc_chan_resources = d40_alloc_chan_resources;
2389         base->dma_slave.device_free_chan_resources = d40_free_chan_resources;
2390         base->dma_slave.device_prep_dma_memcpy = d40_prep_memcpy;
2391         base->dma_slave.device_prep_dma_sg = d40_prep_sg;
2392         base->dma_slave.device_prep_slave_sg = d40_prep_slave_sg;
2393         base->dma_slave.device_tx_status = d40_tx_status;
2394         base->dma_slave.device_issue_pending = d40_issue_pending;
2395         base->dma_slave.device_control = d40_control;
2396         base->dma_slave.dev = base->dev;
2397
2398         err = dma_async_device_register(&base->dma_slave);
2399
2400         if (err) {
2401                 d40_err(base->dev, "Failed to register slave channels\n");
2402                 goto failure1;
2403         }
2404
2405         d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2406                       base->num_log_chans, base->plat_data->memcpy_len);
2407
2408         dma_cap_zero(base->dma_memcpy.cap_mask);
2409         dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2410         dma_cap_set(DMA_SG, base->dma_slave.cap_mask);
2411
2412         base->dma_memcpy.device_alloc_chan_resources = d40_alloc_chan_resources;
2413         base->dma_memcpy.device_free_chan_resources = d40_free_chan_resources;
2414         base->dma_memcpy.device_prep_dma_memcpy = d40_prep_memcpy;
2415         base->dma_slave.device_prep_dma_sg = d40_prep_sg;
2416         base->dma_memcpy.device_prep_slave_sg = d40_prep_slave_sg;
2417         base->dma_memcpy.device_tx_status = d40_tx_status;
2418         base->dma_memcpy.device_issue_pending = d40_issue_pending;
2419         base->dma_memcpy.device_control = d40_control;
2420         base->dma_memcpy.dev = base->dev;
2421         /*
2422          * This controller can only access address at even
2423          * 32bit boundaries, i.e. 2^2
2424          */
2425         base->dma_memcpy.copy_align = 2;
2426
2427         err = dma_async_device_register(&base->dma_memcpy);
2428
2429         if (err) {
2430                 d40_err(base->dev,
2431                         "Failed to regsiter memcpy only channels\n");
2432                 goto failure2;
2433         }
2434
2435         d40_chan_init(base, &base->dma_both, base->phy_chans,
2436                       0, num_reserved_chans);
2437
2438         dma_cap_zero(base->dma_both.cap_mask);
2439         dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2440         dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2441         dma_cap_set(DMA_SG, base->dma_slave.cap_mask);
2442
2443         base->dma_both.device_alloc_chan_resources = d40_alloc_chan_resources;
2444         base->dma_both.device_free_chan_resources = d40_free_chan_resources;
2445         base->dma_both.device_prep_dma_memcpy = d40_prep_memcpy;
2446         base->dma_slave.device_prep_dma_sg = d40_prep_sg;
2447         base->dma_both.device_prep_slave_sg = d40_prep_slave_sg;
2448         base->dma_both.device_tx_status = d40_tx_status;
2449         base->dma_both.device_issue_pending = d40_issue_pending;
2450         base->dma_both.device_control = d40_control;
2451         base->dma_both.dev = base->dev;
2452         base->dma_both.copy_align = 2;
2453         err = dma_async_device_register(&base->dma_both);
2454
2455         if (err) {
2456                 d40_err(base->dev,
2457                         "Failed to register logical and physical capable channels\n");
2458                 goto failure3;
2459         }
2460         return 0;
2461 failure3:
2462         dma_async_device_unregister(&base->dma_memcpy);
2463 failure2:
2464         dma_async_device_unregister(&base->dma_slave);
2465 failure1:
2466         return err;
2467 }
2468
2469 /* Initialization functions. */
2470
2471 static int __init d40_phy_res_init(struct d40_base *base)
2472 {
2473         int i;
2474         int num_phy_chans_avail = 0;
2475         u32 val[2];
2476         int odd_even_bit = -2;
2477
2478         val[0] = readl(base->virtbase + D40_DREG_PRSME);
2479         val[1] = readl(base->virtbase + D40_DREG_PRSMO);
2480
2481         for (i = 0; i < base->num_phy_chans; i++) {
2482                 base->phy_res[i].num = i;
2483                 odd_even_bit += 2 * ((i % 2) == 0);
2484                 if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
2485                         /* Mark security only channels as occupied */
2486                         base->phy_res[i].allocated_src = D40_ALLOC_PHY;
2487                         base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
2488                 } else {
2489                         base->phy_res[i].allocated_src = D40_ALLOC_FREE;
2490                         base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
2491                         num_phy_chans_avail++;
2492                 }
2493                 spin_lock_init(&base->phy_res[i].lock);
2494         }
2495
2496         /* Mark disabled channels as occupied */
2497         for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
2498                 int chan = base->plat_data->disabled_channels[i];
2499
2500                 base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
2501                 base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
2502                 num_phy_chans_avail--;
2503         }
2504
2505         dev_info(base->dev, "%d of %d physical DMA channels available\n",
2506                  num_phy_chans_avail, base->num_phy_chans);
2507
2508         /* Verify settings extended vs standard */
2509         val[0] = readl(base->virtbase + D40_DREG_PRTYP);
2510
2511         for (i = 0; i < base->num_phy_chans; i++) {
2512
2513                 if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
2514                     (val[0] & 0x3) != 1)
2515                         dev_info(base->dev,
2516                                  "[%s] INFO: channel %d is misconfigured (%d)\n",
2517                                  __func__, i, val[0] & 0x3);
2518
2519                 val[0] = val[0] >> 2;
2520         }
2521
2522         return num_phy_chans_avail;
2523 }
2524
2525 static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
2526 {
2527         static const struct d40_reg_val dma_id_regs[] = {
2528                 /* Peripheral Id */
2529                 { .reg = D40_DREG_PERIPHID0, .val = 0x0040},
2530                 { .reg = D40_DREG_PERIPHID1, .val = 0x0000},
2531                 /*
2532                  * D40_DREG_PERIPHID2 Depends on HW revision:
2533                  *  DB8500ed has 0x0008,
2534                  *  ? has 0x0018,
2535                  *  DB8500v1 has 0x0028
2536                  *  DB8500v2 has 0x0038
2537                  */
2538                 { .reg = D40_DREG_PERIPHID3, .val = 0x0000},
2539
2540                 /* PCell Id */
2541                 { .reg = D40_DREG_CELLID0, .val = 0x000d},
2542                 { .reg = D40_DREG_CELLID1, .val = 0x00f0},
2543                 { .reg = D40_DREG_CELLID2, .val = 0x0005},
2544                 { .reg = D40_DREG_CELLID3, .val = 0x00b1}
2545         };
2546         struct stedma40_platform_data *plat_data;
2547         struct clk *clk = NULL;
2548         void __iomem *virtbase = NULL;
2549         struct resource *res = NULL;
2550         struct d40_base *base = NULL;
2551         int num_log_chans = 0;
2552         int num_phy_chans;
2553         int i;
2554         u32 val;
2555         u32 rev;
2556
2557         clk = clk_get(&pdev->dev, NULL);
2558
2559         if (IS_ERR(clk)) {
2560                 d40_err(&pdev->dev, "No matching clock found\n");
2561                 goto failure;
2562         }
2563
2564         clk_enable(clk);
2565
2566         /* Get IO for DMAC base address */
2567         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
2568         if (!res)
2569                 goto failure;
2570
2571         if (request_mem_region(res->start, resource_size(res),
2572                                D40_NAME " I/O base") == NULL)
2573                 goto failure;
2574
2575         virtbase = ioremap(res->start, resource_size(res));
2576         if (!virtbase)
2577                 goto failure;
2578
2579         /* HW version check */
2580         for (i = 0; i < ARRAY_SIZE(dma_id_regs); i++) {
2581                 if (dma_id_regs[i].val !=
2582                     readl(virtbase + dma_id_regs[i].reg)) {
2583                         d40_err(&pdev->dev,
2584                                 "Unknown hardware! Expected 0x%x at 0x%x but got 0x%x\n",
2585                                 dma_id_regs[i].val,
2586                                 dma_id_regs[i].reg,
2587                                 readl(virtbase + dma_id_regs[i].reg));
2588                         goto failure;
2589                 }
2590         }
2591
2592         /* Get silicon revision and designer */
2593         val = readl(virtbase + D40_DREG_PERIPHID2);
2594
2595         if ((val & D40_DREG_PERIPHID2_DESIGNER_MASK) !=
2596             D40_HW_DESIGNER) {
2597                 d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
2598                         val & D40_DREG_PERIPHID2_DESIGNER_MASK,
2599                         D40_HW_DESIGNER);
2600                 goto failure;
2601         }
2602
2603         rev = (val & D40_DREG_PERIPHID2_REV_MASK) >>
2604                 D40_DREG_PERIPHID2_REV_POS;
2605
2606         /* The number of physical channels on this HW */
2607         num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
2608
2609         dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
2610                  rev, res->start);
2611
2612         plat_data = pdev->dev.platform_data;
2613
2614         /* Count the number of logical channels in use */
2615         for (i = 0; i < plat_data->dev_len; i++)
2616                 if (plat_data->dev_rx[i] != 0)
2617                         num_log_chans++;
2618
2619         for (i = 0; i < plat_data->dev_len; i++)
2620                 if (plat_data->dev_tx[i] != 0)
2621                         num_log_chans++;
2622
2623         base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
2624                        (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
2625                        sizeof(struct d40_chan), GFP_KERNEL);
2626
2627         if (base == NULL) {
2628                 d40_err(&pdev->dev, "Out of memory\n");
2629                 goto failure;
2630         }
2631
2632         base->rev = rev;
2633         base->clk = clk;
2634         base->num_phy_chans = num_phy_chans;
2635         base->num_log_chans = num_log_chans;
2636         base->phy_start = res->start;
2637         base->phy_size = resource_size(res);
2638         base->virtbase = virtbase;
2639         base->plat_data = plat_data;
2640         base->dev = &pdev->dev;
2641         base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
2642         base->log_chans = &base->phy_chans[num_phy_chans];
2643
2644         base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
2645                                 GFP_KERNEL);
2646         if (!base->phy_res)
2647                 goto failure;
2648
2649         base->lookup_phy_chans = kzalloc(num_phy_chans *
2650                                          sizeof(struct d40_chan *),
2651                                          GFP_KERNEL);
2652         if (!base->lookup_phy_chans)
2653                 goto failure;
2654
2655         if (num_log_chans + plat_data->memcpy_len) {
2656                 /*
2657                  * The max number of logical channels are event lines for all
2658                  * src devices and dst devices
2659                  */
2660                 base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
2661                                                  sizeof(struct d40_chan *),
2662                                                  GFP_KERNEL);
2663                 if (!base->lookup_log_chans)
2664                         goto failure;
2665         }
2666
2667         base->lcla_pool.alloc_map = kzalloc(num_phy_chans *
2668                                             sizeof(struct d40_desc *) *
2669                                             D40_LCLA_LINK_PER_EVENT_GRP,
2670                                             GFP_KERNEL);
2671         if (!base->lcla_pool.alloc_map)
2672                 goto failure;
2673
2674         base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
2675                                             0, SLAB_HWCACHE_ALIGN,
2676                                             NULL);
2677         if (base->desc_slab == NULL)
2678                 goto failure;
2679
2680         return base;
2681
2682 failure:
2683         if (!IS_ERR(clk)) {
2684                 clk_disable(clk);
2685                 clk_put(clk);
2686         }
2687         if (virtbase)
2688                 iounmap(virtbase);
2689         if (res)
2690                 release_mem_region(res->start,
2691                                    resource_size(res));
2692         if (virtbase)
2693                 iounmap(virtbase);
2694
2695         if (base) {
2696                 kfree(base->lcla_pool.alloc_map);
2697                 kfree(base->lookup_log_chans);
2698                 kfree(base->lookup_phy_chans);
2699                 kfree(base->phy_res);
2700                 kfree(base);
2701         }
2702
2703         return NULL;
2704 }
2705
2706 static void __init d40_hw_init(struct d40_base *base)
2707 {
2708
2709         static const struct d40_reg_val dma_init_reg[] = {
2710                 /* Clock every part of the DMA block from start */
2711                 { .reg = D40_DREG_GCC,    .val = 0x0000ff01},
2712
2713                 /* Interrupts on all logical channels */
2714                 { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
2715                 { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
2716                 { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
2717                 { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
2718                 { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
2719                 { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
2720                 { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
2721                 { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
2722                 { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
2723                 { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
2724                 { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
2725                 { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
2726         };
2727         int i;
2728         u32 prmseo[2] = {0, 0};
2729         u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
2730         u32 pcmis = 0;
2731         u32 pcicr = 0;
2732
2733         for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
2734                 writel(dma_init_reg[i].val,
2735                        base->virtbase + dma_init_reg[i].reg);
2736
2737         /* Configure all our dma channels to default settings */
2738         for (i = 0; i < base->num_phy_chans; i++) {
2739
2740                 activeo[i % 2] = activeo[i % 2] << 2;
2741
2742                 if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
2743                     == D40_ALLOC_PHY) {
2744                         activeo[i % 2] |= 3;
2745                         continue;
2746                 }
2747
2748                 /* Enable interrupt # */
2749                 pcmis = (pcmis << 1) | 1;
2750
2751                 /* Clear interrupt # */
2752                 pcicr = (pcicr << 1) | 1;
2753
2754                 /* Set channel to physical mode */
2755                 prmseo[i % 2] = prmseo[i % 2] << 2;
2756                 prmseo[i % 2] |= 1;
2757
2758         }
2759
2760         writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
2761         writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
2762         writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
2763         writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
2764
2765         /* Write which interrupt to enable */
2766         writel(pcmis, base->virtbase + D40_DREG_PCMIS);
2767
2768         /* Write which interrupt to clear */
2769         writel(pcicr, base->virtbase + D40_DREG_PCICR);
2770
2771 }
2772
2773 static int __init d40_lcla_allocate(struct d40_base *base)
2774 {
2775         struct d40_lcla_pool *pool = &base->lcla_pool;
2776         unsigned long *page_list;
2777         int i, j;
2778         int ret = 0;
2779
2780         /*
2781          * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
2782          * To full fill this hardware requirement without wasting 256 kb
2783          * we allocate pages until we get an aligned one.
2784          */
2785         page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
2786                             GFP_KERNEL);
2787
2788         if (!page_list) {
2789                 ret = -ENOMEM;
2790                 goto failure;
2791         }
2792
2793         /* Calculating how many pages that are required */
2794         base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
2795
2796         for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
2797                 page_list[i] = __get_free_pages(GFP_KERNEL,
2798                                                 base->lcla_pool.pages);
2799                 if (!page_list[i]) {
2800
2801                         d40_err(base->dev, "Failed to allocate %d pages.\n",
2802                                 base->lcla_pool.pages);
2803
2804                         for (j = 0; j < i; j++)
2805                                 free_pages(page_list[j], base->lcla_pool.pages);
2806                         goto failure;
2807                 }
2808
2809                 if ((virt_to_phys((void *)page_list[i]) &
2810                      (LCLA_ALIGNMENT - 1)) == 0)
2811                         break;
2812         }
2813
2814         for (j = 0; j < i; j++)
2815                 free_pages(page_list[j], base->lcla_pool.pages);
2816
2817         if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
2818                 base->lcla_pool.base = (void *)page_list[i];
2819         } else {
2820                 /*
2821                  * After many attempts and no succees with finding the correct
2822                  * alignment, try with allocating a big buffer.
2823                  */
2824                 dev_warn(base->dev,
2825                          "[%s] Failed to get %d pages @ 18 bit align.\n",
2826                          __func__, base->lcla_pool.pages);
2827                 base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
2828                                                          base->num_phy_chans +
2829                                                          LCLA_ALIGNMENT,
2830                                                          GFP_KERNEL);
2831                 if (!base->lcla_pool.base_unaligned) {
2832                         ret = -ENOMEM;
2833                         goto failure;
2834                 }
2835
2836                 base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
2837                                                  LCLA_ALIGNMENT);
2838         }
2839
2840         pool->dma_addr = dma_map_single(base->dev, pool->base,
2841                                         SZ_1K * base->num_phy_chans,
2842                                         DMA_TO_DEVICE);
2843         if (dma_mapping_error(base->dev, pool->dma_addr)) {
2844                 pool->dma_addr = 0;
2845                 ret = -ENOMEM;
2846                 goto failure;
2847         }
2848
2849         writel(virt_to_phys(base->lcla_pool.base),
2850                base->virtbase + D40_DREG_LCLA);
2851 failure:
2852         kfree(page_list);
2853         return ret;
2854 }
2855
2856 static int __init d40_probe(struct platform_device *pdev)
2857 {
2858         int err;
2859         int ret = -ENOENT;
2860         struct d40_base *base;
2861         struct resource *res = NULL;
2862         int num_reserved_chans;
2863         u32 val;
2864
2865         base = d40_hw_detect_init(pdev);
2866
2867         if (!base)
2868                 goto failure;
2869
2870         num_reserved_chans = d40_phy_res_init(base);
2871
2872         platform_set_drvdata(pdev, base);
2873
2874         spin_lock_init(&base->interrupt_lock);
2875         spin_lock_init(&base->execmd_lock);
2876
2877         /* Get IO for logical channel parameter address */
2878         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
2879         if (!res) {
2880                 ret = -ENOENT;
2881                 d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
2882                 goto failure;
2883         }
2884         base->lcpa_size = resource_size(res);
2885         base->phy_lcpa = res->start;
2886
2887         if (request_mem_region(res->start, resource_size(res),
2888                                D40_NAME " I/O lcpa") == NULL) {
2889                 ret = -EBUSY;
2890                 d40_err(&pdev->dev,
2891                         "Failed to request LCPA region 0x%x-0x%x\n",
2892                         res->start, res->end);
2893                 goto failure;
2894         }
2895
2896         /* We make use of ESRAM memory for this. */
2897         val = readl(base->virtbase + D40_DREG_LCPA);
2898         if (res->start != val && val != 0) {
2899                 dev_warn(&pdev->dev,
2900                          "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
2901                          __func__, val, res->start);
2902         } else
2903                 writel(res->start, base->virtbase + D40_DREG_LCPA);
2904
2905         base->lcpa_base = ioremap(res->start, resource_size(res));
2906         if (!base->lcpa_base) {
2907                 ret = -ENOMEM;
2908                 d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
2909                 goto failure;
2910         }
2911
2912         ret = d40_lcla_allocate(base);
2913         if (ret) {
2914                 d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
2915                 goto failure;
2916         }
2917
2918         spin_lock_init(&base->lcla_pool.lock);
2919
2920         base->irq = platform_get_irq(pdev, 0);
2921
2922         ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
2923         if (ret) {
2924                 d40_err(&pdev->dev, "No IRQ defined\n");
2925                 goto failure;
2926         }
2927
2928         err = d40_dmaengine_init(base, num_reserved_chans);
2929         if (err)
2930                 goto failure;
2931
2932         d40_hw_init(base);
2933
2934         dev_info(base->dev, "initialized\n");
2935         return 0;
2936
2937 failure:
2938         if (base) {
2939                 if (base->desc_slab)
2940                         kmem_cache_destroy(base->desc_slab);
2941                 if (base->virtbase)
2942                         iounmap(base->virtbase);
2943
2944                 if (base->lcla_pool.dma_addr)
2945                         dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
2946                                          SZ_1K * base->num_phy_chans,
2947                                          DMA_TO_DEVICE);
2948
2949                 if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
2950                         free_pages((unsigned long)base->lcla_pool.base,
2951                                    base->lcla_pool.pages);
2952
2953                 kfree(base->lcla_pool.base_unaligned);
2954
2955                 if (base->phy_lcpa)
2956                         release_mem_region(base->phy_lcpa,
2957                                            base->lcpa_size);
2958                 if (base->phy_start)
2959                         release_mem_region(base->phy_start,
2960                                            base->phy_size);
2961                 if (base->clk) {
2962                         clk_disable(base->clk);
2963                         clk_put(base->clk);
2964                 }
2965
2966                 kfree(base->lcla_pool.alloc_map);
2967                 kfree(base->lookup_log_chans);
2968                 kfree(base->lookup_phy_chans);
2969                 kfree(base->phy_res);
2970                 kfree(base);
2971         }
2972
2973         d40_err(&pdev->dev, "probe failed\n");
2974         return ret;
2975 }
2976
2977 static struct platform_driver d40_driver = {
2978         .driver = {
2979                 .owner = THIS_MODULE,
2980                 .name  = D40_NAME,
2981         },
2982 };
2983
2984 static int __init stedma40_init(void)
2985 {
2986         return platform_driver_probe(&d40_driver, d40_probe);
2987 }
2988 arch_initcall(stedma40_init);