powerpc/mm: Drop the unnecessary region check
[linux-2.6-block.git] / drivers / dma / nbpfaxi.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2013-2014 Renesas Electronics Europe Ltd.
4  * Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
5  */
6
7 #include <linux/bitmap.h>
8 #include <linux/bitops.h>
9 #include <linux/clk.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/dmaengine.h>
12 #include <linux/err.h>
13 #include <linux/interrupt.h>
14 #include <linux/io.h>
15 #include <linux/log2.h>
16 #include <linux/module.h>
17 #include <linux/of.h>
18 #include <linux/of_device.h>
19 #include <linux/of_dma.h>
20 #include <linux/platform_device.h>
21 #include <linux/slab.h>
22
23 #include <dt-bindings/dma/nbpfaxi.h>
24
25 #include "dmaengine.h"
26
27 #define NBPF_REG_CHAN_OFFSET    0
28 #define NBPF_REG_CHAN_SIZE      0x40
29
30 /* Channel Current Transaction Byte register */
31 #define NBPF_CHAN_CUR_TR_BYTE   0x20
32
33 /* Channel Status register */
34 #define NBPF_CHAN_STAT  0x24
35 #define NBPF_CHAN_STAT_EN       1
36 #define NBPF_CHAN_STAT_TACT     4
37 #define NBPF_CHAN_STAT_ERR      0x10
38 #define NBPF_CHAN_STAT_END      0x20
39 #define NBPF_CHAN_STAT_TC       0x40
40 #define NBPF_CHAN_STAT_DER      0x400
41
42 /* Channel Control register */
43 #define NBPF_CHAN_CTRL  0x28
44 #define NBPF_CHAN_CTRL_SETEN    1
45 #define NBPF_CHAN_CTRL_CLREN    2
46 #define NBPF_CHAN_CTRL_STG      4
47 #define NBPF_CHAN_CTRL_SWRST    8
48 #define NBPF_CHAN_CTRL_CLRRQ    0x10
49 #define NBPF_CHAN_CTRL_CLREND   0x20
50 #define NBPF_CHAN_CTRL_CLRTC    0x40
51 #define NBPF_CHAN_CTRL_SETSUS   0x100
52 #define NBPF_CHAN_CTRL_CLRSUS   0x200
53
54 /* Channel Configuration register */
55 #define NBPF_CHAN_CFG   0x2c
56 #define NBPF_CHAN_CFG_SEL       7               /* terminal SELect: 0..7 */
57 #define NBPF_CHAN_CFG_REQD      8               /* REQuest Direction: DMAREQ is 0: input, 1: output */
58 #define NBPF_CHAN_CFG_LOEN      0x10            /* LOw ENable: low DMA request line is: 0: inactive, 1: active */
59 #define NBPF_CHAN_CFG_HIEN      0x20            /* HIgh ENable: high DMA request line is: 0: inactive, 1: active */
60 #define NBPF_CHAN_CFG_LVL       0x40            /* LeVeL: DMA request line is sensed as 0: edge, 1: level */
61 #define NBPF_CHAN_CFG_AM        0x700           /* ACK Mode: 0: Pulse mode, 1: Level mode, b'1x: Bus Cycle */
62 #define NBPF_CHAN_CFG_SDS       0xf000          /* Source Data Size: 0: 8 bits,... , 7: 1024 bits */
63 #define NBPF_CHAN_CFG_DDS       0xf0000         /* Destination Data Size: as above */
64 #define NBPF_CHAN_CFG_SAD       0x100000        /* Source ADdress counting: 0: increment, 1: fixed */
65 #define NBPF_CHAN_CFG_DAD       0x200000        /* Destination ADdress counting: 0: increment, 1: fixed */
66 #define NBPF_CHAN_CFG_TM        0x400000        /* Transfer Mode: 0: single, 1: block TM */
67 #define NBPF_CHAN_CFG_DEM       0x1000000       /* DMAEND interrupt Mask */
68 #define NBPF_CHAN_CFG_TCM       0x2000000       /* DMATCO interrupt Mask */
69 #define NBPF_CHAN_CFG_SBE       0x8000000       /* Sweep Buffer Enable */
70 #define NBPF_CHAN_CFG_RSEL      0x10000000      /* RM: Register Set sELect */
71 #define NBPF_CHAN_CFG_RSW       0x20000000      /* RM: Register Select sWitch */
72 #define NBPF_CHAN_CFG_REN       0x40000000      /* RM: Register Set Enable */
73 #define NBPF_CHAN_CFG_DMS       0x80000000      /* 0: register mode (RM), 1: link mode (LM) */
74
75 #define NBPF_CHAN_NXLA  0x38
76 #define NBPF_CHAN_CRLA  0x3c
77
78 /* Link Header field */
79 #define NBPF_HEADER_LV  1
80 #define NBPF_HEADER_LE  2
81 #define NBPF_HEADER_WBD 4
82 #define NBPF_HEADER_DIM 8
83
84 #define NBPF_CTRL       0x300
85 #define NBPF_CTRL_PR    1               /* 0: fixed priority, 1: round robin */
86 #define NBPF_CTRL_LVINT 2               /* DMAEND and DMAERR signalling: 0: pulse, 1: level */
87
88 #define NBPF_DSTAT_ER   0x314
89 #define NBPF_DSTAT_END  0x318
90
91 #define NBPF_DMA_BUSWIDTHS \
92         (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
93          BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
94          BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
95          BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
96          BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
97
98 struct nbpf_config {
99         int num_channels;
100         int buffer_size;
101 };
102
103 /*
104  * We've got 3 types of objects, used to describe DMA transfers:
105  * 1. high-level descriptor, containing a struct dma_async_tx_descriptor object
106  *      in it, used to communicate with the user
107  * 2. hardware DMA link descriptors, that we pass to DMAC for DMA transfer
108  *      queuing, these must be DMAable, using either the streaming DMA API or
109  *      allocated from coherent memory - one per SG segment
110  * 3. one per SG segment descriptors, used to manage HW link descriptors from
111  *      (2). They do not have to be DMAable. They can either be (a) allocated
112  *      together with link descriptors as mixed (DMA / CPU) objects, or (b)
113  *      separately. Even if allocated separately it would be best to link them
114  *      to link descriptors once during channel resource allocation and always
115  *      use them as a single object.
116  * Therefore for both cases (a) and (b) at run-time objects (2) and (3) shall be
117  * treated as a single SG segment descriptor.
118  */
119
120 struct nbpf_link_reg {
121         u32     header;
122         u32     src_addr;
123         u32     dst_addr;
124         u32     transaction_size;
125         u32     config;
126         u32     interval;
127         u32     extension;
128         u32     next;
129 } __packed;
130
131 struct nbpf_device;
132 struct nbpf_channel;
133 struct nbpf_desc;
134
135 struct nbpf_link_desc {
136         struct nbpf_link_reg *hwdesc;
137         dma_addr_t hwdesc_dma_addr;
138         struct nbpf_desc *desc;
139         struct list_head node;
140 };
141
142 /**
143  * struct nbpf_desc - DMA transfer descriptor
144  * @async_tx:   dmaengine object
145  * @user_wait:  waiting for a user ack
146  * @length:     total transfer length
147  * @sg:         list of hardware descriptors, represented by struct nbpf_link_desc
148  * @node:       member in channel descriptor lists
149  */
150 struct nbpf_desc {
151         struct dma_async_tx_descriptor async_tx;
152         bool user_wait;
153         size_t length;
154         struct nbpf_channel *chan;
155         struct list_head sg;
156         struct list_head node;
157 };
158
159 /* Take a wild guess: allocate 4 segments per descriptor */
160 #define NBPF_SEGMENTS_PER_DESC 4
161 #define NBPF_DESCS_PER_PAGE ((PAGE_SIZE - sizeof(struct list_head)) /   \
162         (sizeof(struct nbpf_desc) +                                     \
163          NBPF_SEGMENTS_PER_DESC *                                       \
164          (sizeof(struct nbpf_link_desc) + sizeof(struct nbpf_link_reg))))
165 #define NBPF_SEGMENTS_PER_PAGE (NBPF_SEGMENTS_PER_DESC * NBPF_DESCS_PER_PAGE)
166
167 struct nbpf_desc_page {
168         struct list_head node;
169         struct nbpf_desc desc[NBPF_DESCS_PER_PAGE];
170         struct nbpf_link_desc ldesc[NBPF_SEGMENTS_PER_PAGE];
171         struct nbpf_link_reg hwdesc[NBPF_SEGMENTS_PER_PAGE];
172 };
173
174 /**
175  * struct nbpf_channel - one DMAC channel
176  * @dma_chan:   standard dmaengine channel object
177  * @base:       register address base
178  * @nbpf:       DMAC
179  * @name:       IRQ name
180  * @irq:        IRQ number
181  * @slave_addr: address for slave DMA
182  * @slave_width:slave data size in bytes
183  * @slave_burst:maximum slave burst size in bytes
184  * @terminal:   DMA terminal, assigned to this channel
185  * @dmarq_cfg:  DMA request line configuration - high / low, edge / level for NBPF_CHAN_CFG
186  * @flags:      configuration flags from DT
187  * @lock:       protect descriptor lists
188  * @free_links: list of free link descriptors
189  * @free:       list of free descriptors
190  * @queued:     list of queued descriptors
191  * @active:     list of descriptors, scheduled for processing
192  * @done:       list of completed descriptors, waiting post-processing
193  * @desc_page:  list of additionally allocated descriptor pages - if any
194  */
195 struct nbpf_channel {
196         struct dma_chan dma_chan;
197         struct tasklet_struct tasklet;
198         void __iomem *base;
199         struct nbpf_device *nbpf;
200         char name[16];
201         int irq;
202         dma_addr_t slave_src_addr;
203         size_t slave_src_width;
204         size_t slave_src_burst;
205         dma_addr_t slave_dst_addr;
206         size_t slave_dst_width;
207         size_t slave_dst_burst;
208         unsigned int terminal;
209         u32 dmarq_cfg;
210         unsigned long flags;
211         spinlock_t lock;
212         struct list_head free_links;
213         struct list_head free;
214         struct list_head queued;
215         struct list_head active;
216         struct list_head done;
217         struct list_head desc_page;
218         struct nbpf_desc *running;
219         bool paused;
220 };
221
222 struct nbpf_device {
223         struct dma_device dma_dev;
224         void __iomem *base;
225         u32 max_burst_mem_read;
226         u32 max_burst_mem_write;
227         struct clk *clk;
228         const struct nbpf_config *config;
229         unsigned int eirq;
230         struct nbpf_channel chan[];
231 };
232
233 enum nbpf_model {
234         NBPF1B4,
235         NBPF1B8,
236         NBPF1B16,
237         NBPF4B4,
238         NBPF4B8,
239         NBPF4B16,
240         NBPF8B4,
241         NBPF8B8,
242         NBPF8B16,
243 };
244
245 static struct nbpf_config nbpf_cfg[] = {
246         [NBPF1B4] = {
247                 .num_channels = 1,
248                 .buffer_size = 4,
249         },
250         [NBPF1B8] = {
251                 .num_channels = 1,
252                 .buffer_size = 8,
253         },
254         [NBPF1B16] = {
255                 .num_channels = 1,
256                 .buffer_size = 16,
257         },
258         [NBPF4B4] = {
259                 .num_channels = 4,
260                 .buffer_size = 4,
261         },
262         [NBPF4B8] = {
263                 .num_channels = 4,
264                 .buffer_size = 8,
265         },
266         [NBPF4B16] = {
267                 .num_channels = 4,
268                 .buffer_size = 16,
269         },
270         [NBPF8B4] = {
271                 .num_channels = 8,
272                 .buffer_size = 4,
273         },
274         [NBPF8B8] = {
275                 .num_channels = 8,
276                 .buffer_size = 8,
277         },
278         [NBPF8B16] = {
279                 .num_channels = 8,
280                 .buffer_size = 16,
281         },
282 };
283
284 #define nbpf_to_chan(d) container_of(d, struct nbpf_channel, dma_chan)
285
286 /*
287  * dmaengine drivers seem to have a lot in common and instead of sharing more
288  * code, they reimplement those common algorithms independently. In this driver
289  * we try to separate the hardware-specific part from the (largely) generic
290  * part. This improves code readability and makes it possible in the future to
291  * reuse the generic code in form of a helper library. That generic code should
292  * be suitable for various DMA controllers, using transfer descriptors in RAM
293  * and pushing one SG list at a time to the DMA controller.
294  */
295
296 /*              Hardware-specific part          */
297
298 static inline u32 nbpf_chan_read(struct nbpf_channel *chan,
299                                  unsigned int offset)
300 {
301         u32 data = ioread32(chan->base + offset);
302         dev_dbg(chan->dma_chan.device->dev, "%s(0x%p + 0x%x) = 0x%x\n",
303                 __func__, chan->base, offset, data);
304         return data;
305 }
306
307 static inline void nbpf_chan_write(struct nbpf_channel *chan,
308                                    unsigned int offset, u32 data)
309 {
310         iowrite32(data, chan->base + offset);
311         dev_dbg(chan->dma_chan.device->dev, "%s(0x%p + 0x%x) = 0x%x\n",
312                 __func__, chan->base, offset, data);
313 }
314
315 static inline u32 nbpf_read(struct nbpf_device *nbpf,
316                             unsigned int offset)
317 {
318         u32 data = ioread32(nbpf->base + offset);
319         dev_dbg(nbpf->dma_dev.dev, "%s(0x%p + 0x%x) = 0x%x\n",
320                 __func__, nbpf->base, offset, data);
321         return data;
322 }
323
324 static inline void nbpf_write(struct nbpf_device *nbpf,
325                               unsigned int offset, u32 data)
326 {
327         iowrite32(data, nbpf->base + offset);
328         dev_dbg(nbpf->dma_dev.dev, "%s(0x%p + 0x%x) = 0x%x\n",
329                 __func__, nbpf->base, offset, data);
330 }
331
332 static void nbpf_chan_halt(struct nbpf_channel *chan)
333 {
334         nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREN);
335 }
336
337 static bool nbpf_status_get(struct nbpf_channel *chan)
338 {
339         u32 status = nbpf_read(chan->nbpf, NBPF_DSTAT_END);
340
341         return status & BIT(chan - chan->nbpf->chan);
342 }
343
344 static void nbpf_status_ack(struct nbpf_channel *chan)
345 {
346         nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREND);
347 }
348
349 static u32 nbpf_error_get(struct nbpf_device *nbpf)
350 {
351         return nbpf_read(nbpf, NBPF_DSTAT_ER);
352 }
353
354 static struct nbpf_channel *nbpf_error_get_channel(struct nbpf_device *nbpf, u32 error)
355 {
356         return nbpf->chan + __ffs(error);
357 }
358
359 static void nbpf_error_clear(struct nbpf_channel *chan)
360 {
361         u32 status;
362         int i;
363
364         /* Stop the channel, make sure DMA has been aborted */
365         nbpf_chan_halt(chan);
366
367         for (i = 1000; i; i--) {
368                 status = nbpf_chan_read(chan, NBPF_CHAN_STAT);
369                 if (!(status & NBPF_CHAN_STAT_TACT))
370                         break;
371                 cpu_relax();
372         }
373
374         if (!i)
375                 dev_err(chan->dma_chan.device->dev,
376                         "%s(): abort timeout, channel status 0x%x\n", __func__, status);
377
378         nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SWRST);
379 }
380
381 static int nbpf_start(struct nbpf_desc *desc)
382 {
383         struct nbpf_channel *chan = desc->chan;
384         struct nbpf_link_desc *ldesc = list_first_entry(&desc->sg, struct nbpf_link_desc, node);
385
386         nbpf_chan_write(chan, NBPF_CHAN_NXLA, (u32)ldesc->hwdesc_dma_addr);
387         nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SETEN | NBPF_CHAN_CTRL_CLRSUS);
388         chan->paused = false;
389
390         /* Software trigger MEMCPY - only MEMCPY uses the block mode */
391         if (ldesc->hwdesc->config & NBPF_CHAN_CFG_TM)
392                 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_STG);
393
394         dev_dbg(chan->nbpf->dma_dev.dev, "%s(): next 0x%x, cur 0x%x\n", __func__,
395                 nbpf_chan_read(chan, NBPF_CHAN_NXLA), nbpf_chan_read(chan, NBPF_CHAN_CRLA));
396
397         return 0;
398 }
399
400 static void nbpf_chan_prepare(struct nbpf_channel *chan)
401 {
402         chan->dmarq_cfg = (chan->flags & NBPF_SLAVE_RQ_HIGH ? NBPF_CHAN_CFG_HIEN : 0) |
403                 (chan->flags & NBPF_SLAVE_RQ_LOW ? NBPF_CHAN_CFG_LOEN : 0) |
404                 (chan->flags & NBPF_SLAVE_RQ_LEVEL ?
405                  NBPF_CHAN_CFG_LVL | (NBPF_CHAN_CFG_AM & 0x200) : 0) |
406                 chan->terminal;
407 }
408
409 static void nbpf_chan_prepare_default(struct nbpf_channel *chan)
410 {
411         /* Don't output DMAACK */
412         chan->dmarq_cfg = NBPF_CHAN_CFG_AM & 0x400;
413         chan->terminal = 0;
414         chan->flags = 0;
415 }
416
417 static void nbpf_chan_configure(struct nbpf_channel *chan)
418 {
419         /*
420          * We assume, that only the link mode and DMA request line configuration
421          * have to be set in the configuration register manually. Dynamic
422          * per-transfer configuration will be loaded from transfer descriptors.
423          */
424         nbpf_chan_write(chan, NBPF_CHAN_CFG, NBPF_CHAN_CFG_DMS | chan->dmarq_cfg);
425 }
426
427 static u32 nbpf_xfer_ds(struct nbpf_device *nbpf, size_t size,
428                         enum dma_transfer_direction direction)
429 {
430         int max_burst = nbpf->config->buffer_size * 8;
431
432         if (nbpf->max_burst_mem_read || nbpf->max_burst_mem_write) {
433                 switch (direction) {
434                 case DMA_MEM_TO_MEM:
435                         max_burst = min_not_zero(nbpf->max_burst_mem_read,
436                                                  nbpf->max_burst_mem_write);
437                         break;
438                 case DMA_MEM_TO_DEV:
439                         if (nbpf->max_burst_mem_read)
440                                 max_burst = nbpf->max_burst_mem_read;
441                         break;
442                 case DMA_DEV_TO_MEM:
443                         if (nbpf->max_burst_mem_write)
444                                 max_burst = nbpf->max_burst_mem_write;
445                         break;
446                 case DMA_DEV_TO_DEV:
447                 default:
448                         break;
449                 }
450         }
451
452         /* Maximum supported bursts depend on the buffer size */
453         return min_t(int, __ffs(size), ilog2(max_burst));
454 }
455
456 static size_t nbpf_xfer_size(struct nbpf_device *nbpf,
457                              enum dma_slave_buswidth width, u32 burst)
458 {
459         size_t size;
460
461         if (!burst)
462                 burst = 1;
463
464         switch (width) {
465         case DMA_SLAVE_BUSWIDTH_8_BYTES:
466                 size = 8 * burst;
467                 break;
468
469         case DMA_SLAVE_BUSWIDTH_4_BYTES:
470                 size = 4 * burst;
471                 break;
472
473         case DMA_SLAVE_BUSWIDTH_2_BYTES:
474                 size = 2 * burst;
475                 break;
476
477         default:
478                 pr_warn("%s(): invalid bus width %u\n", __func__, width);
479                 /* fall through */
480         case DMA_SLAVE_BUSWIDTH_1_BYTE:
481                 size = burst;
482         }
483
484         return nbpf_xfer_ds(nbpf, size, DMA_TRANS_NONE);
485 }
486
487 /*
488  * We need a way to recognise slaves, whose data is sent "raw" over the bus,
489  * i.e. it isn't known in advance how many bytes will be received. Therefore
490  * the slave driver has to provide a "large enough" buffer and either read the
491  * buffer, when it is full, or detect, that some data has arrived, then wait for
492  * a timeout, if no more data arrives - receive what's already there. We want to
493  * handle such slaves in a special way to allow an optimised mode for other
494  * users, for whom the amount of data is known in advance. So far there's no way
495  * to recognise such slaves. We use a data-width check to distinguish between
496  * the SD host and the PL011 UART.
497  */
498
499 static int nbpf_prep_one(struct nbpf_link_desc *ldesc,
500                          enum dma_transfer_direction direction,
501                          dma_addr_t src, dma_addr_t dst, size_t size, bool last)
502 {
503         struct nbpf_link_reg *hwdesc = ldesc->hwdesc;
504         struct nbpf_desc *desc = ldesc->desc;
505         struct nbpf_channel *chan = desc->chan;
506         struct device *dev = chan->dma_chan.device->dev;
507         size_t mem_xfer, slave_xfer;
508         bool can_burst;
509
510         hwdesc->header = NBPF_HEADER_WBD | NBPF_HEADER_LV |
511                 (last ? NBPF_HEADER_LE : 0);
512
513         hwdesc->src_addr = src;
514         hwdesc->dst_addr = dst;
515         hwdesc->transaction_size = size;
516
517         /*
518          * set config: SAD, DAD, DDS, SDS, etc.
519          * Note on transfer sizes: the DMAC can perform unaligned DMA transfers,
520          * but it is important to have transaction size a multiple of both
521          * receiver and transmitter transfer sizes. It is also possible to use
522          * different RAM and device transfer sizes, and it does work well with
523          * some devices, e.g. with V08R07S01E SD host controllers, which can use
524          * 128 byte transfers. But this doesn't work with other devices,
525          * especially when the transaction size is unknown. This is the case,
526          * e.g. with serial drivers like amba-pl011.c. For reception it sets up
527          * the transaction size of 4K and if fewer bytes are received, it
528          * pauses DMA and reads out data received via DMA as well as those left
529          * in the Rx FIFO. For this to work with the RAM side using burst
530          * transfers we enable the SBE bit and terminate the transfer in our
531          * .device_pause handler.
532          */
533         mem_xfer = nbpf_xfer_ds(chan->nbpf, size, direction);
534
535         switch (direction) {
536         case DMA_DEV_TO_MEM:
537                 can_burst = chan->slave_src_width >= 3;
538                 slave_xfer = min(mem_xfer, can_burst ?
539                                  chan->slave_src_burst : chan->slave_src_width);
540                 /*
541                  * Is the slave narrower than 64 bits, i.e. isn't using the full
542                  * bus width and cannot use bursts?
543                  */
544                 if (mem_xfer > chan->slave_src_burst && !can_burst)
545                         mem_xfer = chan->slave_src_burst;
546                 /* Device-to-RAM DMA is unreliable without REQD set */
547                 hwdesc->config = NBPF_CHAN_CFG_SAD | (NBPF_CHAN_CFG_DDS & (mem_xfer << 16)) |
548                         (NBPF_CHAN_CFG_SDS & (slave_xfer << 12)) | NBPF_CHAN_CFG_REQD |
549                         NBPF_CHAN_CFG_SBE;
550                 break;
551
552         case DMA_MEM_TO_DEV:
553                 slave_xfer = min(mem_xfer, chan->slave_dst_width >= 3 ?
554                                  chan->slave_dst_burst : chan->slave_dst_width);
555                 hwdesc->config = NBPF_CHAN_CFG_DAD | (NBPF_CHAN_CFG_SDS & (mem_xfer << 12)) |
556                         (NBPF_CHAN_CFG_DDS & (slave_xfer << 16)) | NBPF_CHAN_CFG_REQD;
557                 break;
558
559         case DMA_MEM_TO_MEM:
560                 hwdesc->config = NBPF_CHAN_CFG_TCM | NBPF_CHAN_CFG_TM |
561                         (NBPF_CHAN_CFG_SDS & (mem_xfer << 12)) |
562                         (NBPF_CHAN_CFG_DDS & (mem_xfer << 16));
563                 break;
564
565         default:
566                 return -EINVAL;
567         }
568
569         hwdesc->config |= chan->dmarq_cfg | (last ? 0 : NBPF_CHAN_CFG_DEM) |
570                 NBPF_CHAN_CFG_DMS;
571
572         dev_dbg(dev, "%s(): desc @ %pad: hdr 0x%x, cfg 0x%x, %zu @ %pad -> %pad\n",
573                 __func__, &ldesc->hwdesc_dma_addr, hwdesc->header,
574                 hwdesc->config, size, &src, &dst);
575
576         dma_sync_single_for_device(dev, ldesc->hwdesc_dma_addr, sizeof(*hwdesc),
577                                    DMA_TO_DEVICE);
578
579         return 0;
580 }
581
582 static size_t nbpf_bytes_left(struct nbpf_channel *chan)
583 {
584         return nbpf_chan_read(chan, NBPF_CHAN_CUR_TR_BYTE);
585 }
586
587 static void nbpf_configure(struct nbpf_device *nbpf)
588 {
589         nbpf_write(nbpf, NBPF_CTRL, NBPF_CTRL_LVINT);
590 }
591
592 /*              Generic part                    */
593
594 /* DMA ENGINE functions */
595 static void nbpf_issue_pending(struct dma_chan *dchan)
596 {
597         struct nbpf_channel *chan = nbpf_to_chan(dchan);
598         unsigned long flags;
599
600         dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
601
602         spin_lock_irqsave(&chan->lock, flags);
603         if (list_empty(&chan->queued))
604                 goto unlock;
605
606         list_splice_tail_init(&chan->queued, &chan->active);
607
608         if (!chan->running) {
609                 struct nbpf_desc *desc = list_first_entry(&chan->active,
610                                                 struct nbpf_desc, node);
611                 if (!nbpf_start(desc))
612                         chan->running = desc;
613         }
614
615 unlock:
616         spin_unlock_irqrestore(&chan->lock, flags);
617 }
618
619 static enum dma_status nbpf_tx_status(struct dma_chan *dchan,
620                 dma_cookie_t cookie, struct dma_tx_state *state)
621 {
622         struct nbpf_channel *chan = nbpf_to_chan(dchan);
623         enum dma_status status = dma_cookie_status(dchan, cookie, state);
624
625         if (state) {
626                 dma_cookie_t running;
627                 unsigned long flags;
628
629                 spin_lock_irqsave(&chan->lock, flags);
630                 running = chan->running ? chan->running->async_tx.cookie : -EINVAL;
631
632                 if (cookie == running) {
633                         state->residue = nbpf_bytes_left(chan);
634                         dev_dbg(dchan->device->dev, "%s(): residue %u\n", __func__,
635                                 state->residue);
636                 } else if (status == DMA_IN_PROGRESS) {
637                         struct nbpf_desc *desc;
638                         bool found = false;
639
640                         list_for_each_entry(desc, &chan->active, node)
641                                 if (desc->async_tx.cookie == cookie) {
642                                         found = true;
643                                         break;
644                                 }
645
646                         if (!found)
647                                 list_for_each_entry(desc, &chan->queued, node)
648                                         if (desc->async_tx.cookie == cookie) {
649                                                 found = true;
650                                                 break;
651
652                                         }
653
654                         state->residue = found ? desc->length : 0;
655                 }
656
657                 spin_unlock_irqrestore(&chan->lock, flags);
658         }
659
660         if (chan->paused)
661                 status = DMA_PAUSED;
662
663         return status;
664 }
665
666 static dma_cookie_t nbpf_tx_submit(struct dma_async_tx_descriptor *tx)
667 {
668         struct nbpf_desc *desc = container_of(tx, struct nbpf_desc, async_tx);
669         struct nbpf_channel *chan = desc->chan;
670         unsigned long flags;
671         dma_cookie_t cookie;
672
673         spin_lock_irqsave(&chan->lock, flags);
674         cookie = dma_cookie_assign(tx);
675         list_add_tail(&desc->node, &chan->queued);
676         spin_unlock_irqrestore(&chan->lock, flags);
677
678         dev_dbg(chan->dma_chan.device->dev, "Entry %s(%d)\n", __func__, cookie);
679
680         return cookie;
681 }
682
683 static int nbpf_desc_page_alloc(struct nbpf_channel *chan)
684 {
685         struct dma_chan *dchan = &chan->dma_chan;
686         struct nbpf_desc_page *dpage = (void *)get_zeroed_page(GFP_KERNEL | GFP_DMA);
687         struct nbpf_link_desc *ldesc;
688         struct nbpf_link_reg *hwdesc;
689         struct nbpf_desc *desc;
690         LIST_HEAD(head);
691         LIST_HEAD(lhead);
692         int i;
693         struct device *dev = dchan->device->dev;
694
695         if (!dpage)
696                 return -ENOMEM;
697
698         dev_dbg(dev, "%s(): alloc %lu descriptors, %lu segments, total alloc %zu\n",
699                 __func__, NBPF_DESCS_PER_PAGE, NBPF_SEGMENTS_PER_PAGE, sizeof(*dpage));
700
701         for (i = 0, ldesc = dpage->ldesc, hwdesc = dpage->hwdesc;
702              i < ARRAY_SIZE(dpage->ldesc);
703              i++, ldesc++, hwdesc++) {
704                 ldesc->hwdesc = hwdesc;
705                 list_add_tail(&ldesc->node, &lhead);
706                 ldesc->hwdesc_dma_addr = dma_map_single(dchan->device->dev,
707                                         hwdesc, sizeof(*hwdesc), DMA_TO_DEVICE);
708
709                 dev_dbg(dev, "%s(): mapped 0x%p to %pad\n", __func__,
710                         hwdesc, &ldesc->hwdesc_dma_addr);
711         }
712
713         for (i = 0, desc = dpage->desc;
714              i < ARRAY_SIZE(dpage->desc);
715              i++, desc++) {
716                 dma_async_tx_descriptor_init(&desc->async_tx, dchan);
717                 desc->async_tx.tx_submit = nbpf_tx_submit;
718                 desc->chan = chan;
719                 INIT_LIST_HEAD(&desc->sg);
720                 list_add_tail(&desc->node, &head);
721         }
722
723         /*
724          * This function cannot be called from interrupt context, so, no need to
725          * save flags
726          */
727         spin_lock_irq(&chan->lock);
728         list_splice_tail(&lhead, &chan->free_links);
729         list_splice_tail(&head, &chan->free);
730         list_add(&dpage->node, &chan->desc_page);
731         spin_unlock_irq(&chan->lock);
732
733         return ARRAY_SIZE(dpage->desc);
734 }
735
736 static void nbpf_desc_put(struct nbpf_desc *desc)
737 {
738         struct nbpf_channel *chan = desc->chan;
739         struct nbpf_link_desc *ldesc, *tmp;
740         unsigned long flags;
741
742         spin_lock_irqsave(&chan->lock, flags);
743         list_for_each_entry_safe(ldesc, tmp, &desc->sg, node)
744                 list_move(&ldesc->node, &chan->free_links);
745
746         list_add(&desc->node, &chan->free);
747         spin_unlock_irqrestore(&chan->lock, flags);
748 }
749
750 static void nbpf_scan_acked(struct nbpf_channel *chan)
751 {
752         struct nbpf_desc *desc, *tmp;
753         unsigned long flags;
754         LIST_HEAD(head);
755
756         spin_lock_irqsave(&chan->lock, flags);
757         list_for_each_entry_safe(desc, tmp, &chan->done, node)
758                 if (async_tx_test_ack(&desc->async_tx) && desc->user_wait) {
759                         list_move(&desc->node, &head);
760                         desc->user_wait = false;
761                 }
762         spin_unlock_irqrestore(&chan->lock, flags);
763
764         list_for_each_entry_safe(desc, tmp, &head, node) {
765                 list_del(&desc->node);
766                 nbpf_desc_put(desc);
767         }
768 }
769
770 /*
771  * We have to allocate descriptors with the channel lock dropped. This means,
772  * before we re-acquire the lock buffers can be taken already, so we have to
773  * re-check after re-acquiring the lock and possibly retry, if buffers are gone
774  * again.
775  */
776 static struct nbpf_desc *nbpf_desc_get(struct nbpf_channel *chan, size_t len)
777 {
778         struct nbpf_desc *desc = NULL;
779         struct nbpf_link_desc *ldesc, *prev = NULL;
780
781         nbpf_scan_acked(chan);
782
783         spin_lock_irq(&chan->lock);
784
785         do {
786                 int i = 0, ret;
787
788                 if (list_empty(&chan->free)) {
789                         /* No more free descriptors */
790                         spin_unlock_irq(&chan->lock);
791                         ret = nbpf_desc_page_alloc(chan);
792                         if (ret < 0)
793                                 return NULL;
794                         spin_lock_irq(&chan->lock);
795                         continue;
796                 }
797                 desc = list_first_entry(&chan->free, struct nbpf_desc, node);
798                 list_del(&desc->node);
799
800                 do {
801                         if (list_empty(&chan->free_links)) {
802                                 /* No more free link descriptors */
803                                 spin_unlock_irq(&chan->lock);
804                                 ret = nbpf_desc_page_alloc(chan);
805                                 if (ret < 0) {
806                                         nbpf_desc_put(desc);
807                                         return NULL;
808                                 }
809                                 spin_lock_irq(&chan->lock);
810                                 continue;
811                         }
812
813                         ldesc = list_first_entry(&chan->free_links,
814                                                  struct nbpf_link_desc, node);
815                         ldesc->desc = desc;
816                         if (prev)
817                                 prev->hwdesc->next = (u32)ldesc->hwdesc_dma_addr;
818
819                         prev = ldesc;
820                         list_move_tail(&ldesc->node, &desc->sg);
821
822                         i++;
823                 } while (i < len);
824         } while (!desc);
825
826         prev->hwdesc->next = 0;
827
828         spin_unlock_irq(&chan->lock);
829
830         return desc;
831 }
832
833 static void nbpf_chan_idle(struct nbpf_channel *chan)
834 {
835         struct nbpf_desc *desc, *tmp;
836         unsigned long flags;
837         LIST_HEAD(head);
838
839         spin_lock_irqsave(&chan->lock, flags);
840
841         list_splice_init(&chan->done, &head);
842         list_splice_init(&chan->active, &head);
843         list_splice_init(&chan->queued, &head);
844
845         chan->running = NULL;
846
847         spin_unlock_irqrestore(&chan->lock, flags);
848
849         list_for_each_entry_safe(desc, tmp, &head, node) {
850                 dev_dbg(chan->nbpf->dma_dev.dev, "%s(): force-free desc %p cookie %d\n",
851                         __func__, desc, desc->async_tx.cookie);
852                 list_del(&desc->node);
853                 nbpf_desc_put(desc);
854         }
855 }
856
857 static int nbpf_pause(struct dma_chan *dchan)
858 {
859         struct nbpf_channel *chan = nbpf_to_chan(dchan);
860
861         dev_dbg(dchan->device->dev, "Entry %s\n", __func__);
862
863         chan->paused = true;
864         nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SETSUS);
865         /* See comment in nbpf_prep_one() */
866         nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREN);
867
868         return 0;
869 }
870
871 static int nbpf_terminate_all(struct dma_chan *dchan)
872 {
873         struct nbpf_channel *chan = nbpf_to_chan(dchan);
874
875         dev_dbg(dchan->device->dev, "Entry %s\n", __func__);
876         dev_dbg(dchan->device->dev, "Terminating\n");
877
878         nbpf_chan_halt(chan);
879         nbpf_chan_idle(chan);
880
881         return 0;
882 }
883
884 static int nbpf_config(struct dma_chan *dchan,
885                        struct dma_slave_config *config)
886 {
887         struct nbpf_channel *chan = nbpf_to_chan(dchan);
888
889         dev_dbg(dchan->device->dev, "Entry %s\n", __func__);
890
891         /*
892          * We could check config->slave_id to match chan->terminal here,
893          * but with DT they would be coming from the same source, so
894          * such a check would be superflous
895          */
896
897         chan->slave_dst_addr = config->dst_addr;
898         chan->slave_dst_width = nbpf_xfer_size(chan->nbpf,
899                                                config->dst_addr_width, 1);
900         chan->slave_dst_burst = nbpf_xfer_size(chan->nbpf,
901                                                config->dst_addr_width,
902                                                config->dst_maxburst);
903         chan->slave_src_addr = config->src_addr;
904         chan->slave_src_width = nbpf_xfer_size(chan->nbpf,
905                                                config->src_addr_width, 1);
906         chan->slave_src_burst = nbpf_xfer_size(chan->nbpf,
907                                                config->src_addr_width,
908                                                config->src_maxburst);
909
910         return 0;
911 }
912
913 static struct dma_async_tx_descriptor *nbpf_prep_sg(struct nbpf_channel *chan,
914                 struct scatterlist *src_sg, struct scatterlist *dst_sg,
915                 size_t len, enum dma_transfer_direction direction,
916                 unsigned long flags)
917 {
918         struct nbpf_link_desc *ldesc;
919         struct scatterlist *mem_sg;
920         struct nbpf_desc *desc;
921         bool inc_src, inc_dst;
922         size_t data_len = 0;
923         int i = 0;
924
925         switch (direction) {
926         case DMA_DEV_TO_MEM:
927                 mem_sg = dst_sg;
928                 inc_src = false;
929                 inc_dst = true;
930                 break;
931
932         case DMA_MEM_TO_DEV:
933                 mem_sg = src_sg;
934                 inc_src = true;
935                 inc_dst = false;
936                 break;
937
938         default:
939         case DMA_MEM_TO_MEM:
940                 mem_sg = src_sg;
941                 inc_src = true;
942                 inc_dst = true;
943         }
944
945         desc = nbpf_desc_get(chan, len);
946         if (!desc)
947                 return NULL;
948
949         desc->async_tx.flags = flags;
950         desc->async_tx.cookie = -EBUSY;
951         desc->user_wait = false;
952
953         /*
954          * This is a private descriptor list, and we own the descriptor. No need
955          * to lock.
956          */
957         list_for_each_entry(ldesc, &desc->sg, node) {
958                 int ret = nbpf_prep_one(ldesc, direction,
959                                         sg_dma_address(src_sg),
960                                         sg_dma_address(dst_sg),
961                                         sg_dma_len(mem_sg),
962                                         i == len - 1);
963                 if (ret < 0) {
964                         nbpf_desc_put(desc);
965                         return NULL;
966                 }
967                 data_len += sg_dma_len(mem_sg);
968                 if (inc_src)
969                         src_sg = sg_next(src_sg);
970                 if (inc_dst)
971                         dst_sg = sg_next(dst_sg);
972                 mem_sg = direction == DMA_DEV_TO_MEM ? dst_sg : src_sg;
973                 i++;
974         }
975
976         desc->length = data_len;
977
978         /* The user has to return the descriptor to us ASAP via .tx_submit() */
979         return &desc->async_tx;
980 }
981
982 static struct dma_async_tx_descriptor *nbpf_prep_memcpy(
983         struct dma_chan *dchan, dma_addr_t dst, dma_addr_t src,
984         size_t len, unsigned long flags)
985 {
986         struct nbpf_channel *chan = nbpf_to_chan(dchan);
987         struct scatterlist dst_sg;
988         struct scatterlist src_sg;
989
990         sg_init_table(&dst_sg, 1);
991         sg_init_table(&src_sg, 1);
992
993         sg_dma_address(&dst_sg) = dst;
994         sg_dma_address(&src_sg) = src;
995
996         sg_dma_len(&dst_sg) = len;
997         sg_dma_len(&src_sg) = len;
998
999         dev_dbg(dchan->device->dev, "%s(): %zu @ %pad -> %pad\n",
1000                 __func__, len, &src, &dst);
1001
1002         return nbpf_prep_sg(chan, &src_sg, &dst_sg, 1,
1003                             DMA_MEM_TO_MEM, flags);
1004 }
1005
1006 static struct dma_async_tx_descriptor *nbpf_prep_slave_sg(
1007         struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
1008         enum dma_transfer_direction direction, unsigned long flags, void *context)
1009 {
1010         struct nbpf_channel *chan = nbpf_to_chan(dchan);
1011         struct scatterlist slave_sg;
1012
1013         dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
1014
1015         sg_init_table(&slave_sg, 1);
1016
1017         switch (direction) {
1018         case DMA_MEM_TO_DEV:
1019                 sg_dma_address(&slave_sg) = chan->slave_dst_addr;
1020                 return nbpf_prep_sg(chan, sgl, &slave_sg, sg_len,
1021                                     direction, flags);
1022
1023         case DMA_DEV_TO_MEM:
1024                 sg_dma_address(&slave_sg) = chan->slave_src_addr;
1025                 return nbpf_prep_sg(chan, &slave_sg, sgl, sg_len,
1026                                     direction, flags);
1027
1028         default:
1029                 return NULL;
1030         }
1031 }
1032
1033 static int nbpf_alloc_chan_resources(struct dma_chan *dchan)
1034 {
1035         struct nbpf_channel *chan = nbpf_to_chan(dchan);
1036         int ret;
1037
1038         INIT_LIST_HEAD(&chan->free);
1039         INIT_LIST_HEAD(&chan->free_links);
1040         INIT_LIST_HEAD(&chan->queued);
1041         INIT_LIST_HEAD(&chan->active);
1042         INIT_LIST_HEAD(&chan->done);
1043
1044         ret = nbpf_desc_page_alloc(chan);
1045         if (ret < 0)
1046                 return ret;
1047
1048         dev_dbg(dchan->device->dev, "Entry %s(): terminal %u\n", __func__,
1049                 chan->terminal);
1050
1051         nbpf_chan_configure(chan);
1052
1053         return ret;
1054 }
1055
1056 static void nbpf_free_chan_resources(struct dma_chan *dchan)
1057 {
1058         struct nbpf_channel *chan = nbpf_to_chan(dchan);
1059         struct nbpf_desc_page *dpage, *tmp;
1060
1061         dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
1062
1063         nbpf_chan_halt(chan);
1064         nbpf_chan_idle(chan);
1065         /* Clean up for if a channel is re-used for MEMCPY after slave DMA */
1066         nbpf_chan_prepare_default(chan);
1067
1068         list_for_each_entry_safe(dpage, tmp, &chan->desc_page, node) {
1069                 struct nbpf_link_desc *ldesc;
1070                 int i;
1071                 list_del(&dpage->node);
1072                 for (i = 0, ldesc = dpage->ldesc;
1073                      i < ARRAY_SIZE(dpage->ldesc);
1074                      i++, ldesc++)
1075                         dma_unmap_single(dchan->device->dev, ldesc->hwdesc_dma_addr,
1076                                          sizeof(*ldesc->hwdesc), DMA_TO_DEVICE);
1077                 free_page((unsigned long)dpage);
1078         }
1079 }
1080
1081 static struct dma_chan *nbpf_of_xlate(struct of_phandle_args *dma_spec,
1082                                       struct of_dma *ofdma)
1083 {
1084         struct nbpf_device *nbpf = ofdma->of_dma_data;
1085         struct dma_chan *dchan;
1086         struct nbpf_channel *chan;
1087
1088         if (dma_spec->args_count != 2)
1089                 return NULL;
1090
1091         dchan = dma_get_any_slave_channel(&nbpf->dma_dev);
1092         if (!dchan)
1093                 return NULL;
1094
1095         dev_dbg(dchan->device->dev, "Entry %s(%pOFn)\n", __func__,
1096                 dma_spec->np);
1097
1098         chan = nbpf_to_chan(dchan);
1099
1100         chan->terminal = dma_spec->args[0];
1101         chan->flags = dma_spec->args[1];
1102
1103         nbpf_chan_prepare(chan);
1104         nbpf_chan_configure(chan);
1105
1106         return dchan;
1107 }
1108
1109 static void nbpf_chan_tasklet(unsigned long data)
1110 {
1111         struct nbpf_channel *chan = (struct nbpf_channel *)data;
1112         struct nbpf_desc *desc, *tmp;
1113         struct dmaengine_desc_callback cb;
1114
1115         while (!list_empty(&chan->done)) {
1116                 bool found = false, must_put, recycling = false;
1117
1118                 spin_lock_irq(&chan->lock);
1119
1120                 list_for_each_entry_safe(desc, tmp, &chan->done, node) {
1121                         if (!desc->user_wait) {
1122                                 /* Newly completed descriptor, have to process */
1123                                 found = true;
1124                                 break;
1125                         } else if (async_tx_test_ack(&desc->async_tx)) {
1126                                 /*
1127                                  * This descriptor was waiting for a user ACK,
1128                                  * it can be recycled now.
1129                                  */
1130                                 list_del(&desc->node);
1131                                 spin_unlock_irq(&chan->lock);
1132                                 nbpf_desc_put(desc);
1133                                 recycling = true;
1134                                 break;
1135                         }
1136                 }
1137
1138                 if (recycling)
1139                         continue;
1140
1141                 if (!found) {
1142                         /* This can happen if TERMINATE_ALL has been called */
1143                         spin_unlock_irq(&chan->lock);
1144                         break;
1145                 }
1146
1147                 dma_cookie_complete(&desc->async_tx);
1148
1149                 /*
1150                  * With released lock we cannot dereference desc, maybe it's
1151                  * still on the "done" list
1152                  */
1153                 if (async_tx_test_ack(&desc->async_tx)) {
1154                         list_del(&desc->node);
1155                         must_put = true;
1156                 } else {
1157                         desc->user_wait = true;
1158                         must_put = false;
1159                 }
1160
1161                 dmaengine_desc_get_callback(&desc->async_tx, &cb);
1162
1163                 /* ack and callback completed descriptor */
1164                 spin_unlock_irq(&chan->lock);
1165
1166                 dmaengine_desc_callback_invoke(&cb, NULL);
1167
1168                 if (must_put)
1169                         nbpf_desc_put(desc);
1170         }
1171 }
1172
1173 static irqreturn_t nbpf_chan_irq(int irq, void *dev)
1174 {
1175         struct nbpf_channel *chan = dev;
1176         bool done = nbpf_status_get(chan);
1177         struct nbpf_desc *desc;
1178         irqreturn_t ret;
1179         bool bh = false;
1180
1181         if (!done)
1182                 return IRQ_NONE;
1183
1184         nbpf_status_ack(chan);
1185
1186         dev_dbg(&chan->dma_chan.dev->device, "%s()\n", __func__);
1187
1188         spin_lock(&chan->lock);
1189         desc = chan->running;
1190         if (WARN_ON(!desc)) {
1191                 ret = IRQ_NONE;
1192                 goto unlock;
1193         } else {
1194                 ret = IRQ_HANDLED;
1195                 bh = true;
1196         }
1197
1198         list_move_tail(&desc->node, &chan->done);
1199         chan->running = NULL;
1200
1201         if (!list_empty(&chan->active)) {
1202                 desc = list_first_entry(&chan->active,
1203                                         struct nbpf_desc, node);
1204                 if (!nbpf_start(desc))
1205                         chan->running = desc;
1206         }
1207
1208 unlock:
1209         spin_unlock(&chan->lock);
1210
1211         if (bh)
1212                 tasklet_schedule(&chan->tasklet);
1213
1214         return ret;
1215 }
1216
1217 static irqreturn_t nbpf_err_irq(int irq, void *dev)
1218 {
1219         struct nbpf_device *nbpf = dev;
1220         u32 error = nbpf_error_get(nbpf);
1221
1222         dev_warn(nbpf->dma_dev.dev, "DMA error IRQ %u\n", irq);
1223
1224         if (!error)
1225                 return IRQ_NONE;
1226
1227         do {
1228                 struct nbpf_channel *chan = nbpf_error_get_channel(nbpf, error);
1229                 /* On error: abort all queued transfers, no callback */
1230                 nbpf_error_clear(chan);
1231                 nbpf_chan_idle(chan);
1232                 error = nbpf_error_get(nbpf);
1233         } while (error);
1234
1235         return IRQ_HANDLED;
1236 }
1237
1238 static int nbpf_chan_probe(struct nbpf_device *nbpf, int n)
1239 {
1240         struct dma_device *dma_dev = &nbpf->dma_dev;
1241         struct nbpf_channel *chan = nbpf->chan + n;
1242         int ret;
1243
1244         chan->nbpf = nbpf;
1245         chan->base = nbpf->base + NBPF_REG_CHAN_OFFSET + NBPF_REG_CHAN_SIZE * n;
1246         INIT_LIST_HEAD(&chan->desc_page);
1247         spin_lock_init(&chan->lock);
1248         chan->dma_chan.device = dma_dev;
1249         dma_cookie_init(&chan->dma_chan);
1250         nbpf_chan_prepare_default(chan);
1251
1252         dev_dbg(dma_dev->dev, "%s(): channel %d: -> %p\n", __func__, n, chan->base);
1253
1254         snprintf(chan->name, sizeof(chan->name), "nbpf %d", n);
1255
1256         tasklet_init(&chan->tasklet, nbpf_chan_tasklet, (unsigned long)chan);
1257         ret = devm_request_irq(dma_dev->dev, chan->irq,
1258                         nbpf_chan_irq, IRQF_SHARED,
1259                         chan->name, chan);
1260         if (ret < 0)
1261                 return ret;
1262
1263         /* Add the channel to DMA device channel list */
1264         list_add_tail(&chan->dma_chan.device_node,
1265                       &dma_dev->channels);
1266
1267         return 0;
1268 }
1269
1270 static const struct of_device_id nbpf_match[] = {
1271         {.compatible = "renesas,nbpfaxi64dmac1b4",      .data = &nbpf_cfg[NBPF1B4]},
1272         {.compatible = "renesas,nbpfaxi64dmac1b8",      .data = &nbpf_cfg[NBPF1B8]},
1273         {.compatible = "renesas,nbpfaxi64dmac1b16",     .data = &nbpf_cfg[NBPF1B16]},
1274         {.compatible = "renesas,nbpfaxi64dmac4b4",      .data = &nbpf_cfg[NBPF4B4]},
1275         {.compatible = "renesas,nbpfaxi64dmac4b8",      .data = &nbpf_cfg[NBPF4B8]},
1276         {.compatible = "renesas,nbpfaxi64dmac4b16",     .data = &nbpf_cfg[NBPF4B16]},
1277         {.compatible = "renesas,nbpfaxi64dmac8b4",      .data = &nbpf_cfg[NBPF8B4]},
1278         {.compatible = "renesas,nbpfaxi64dmac8b8",      .data = &nbpf_cfg[NBPF8B8]},
1279         {.compatible = "renesas,nbpfaxi64dmac8b16",     .data = &nbpf_cfg[NBPF8B16]},
1280         {}
1281 };
1282 MODULE_DEVICE_TABLE(of, nbpf_match);
1283
1284 static int nbpf_probe(struct platform_device *pdev)
1285 {
1286         struct device *dev = &pdev->dev;
1287         struct device_node *np = dev->of_node;
1288         struct nbpf_device *nbpf;
1289         struct dma_device *dma_dev;
1290         struct resource *iomem, *irq_res;
1291         const struct nbpf_config *cfg;
1292         int num_channels;
1293         int ret, irq, eirq, i;
1294         int irqbuf[9] /* maximum 8 channels + error IRQ */;
1295         unsigned int irqs = 0;
1296
1297         BUILD_BUG_ON(sizeof(struct nbpf_desc_page) > PAGE_SIZE);
1298
1299         /* DT only */
1300         if (!np)
1301                 return -ENODEV;
1302
1303         cfg = of_device_get_match_data(dev);
1304         num_channels = cfg->num_channels;
1305
1306         nbpf = devm_kzalloc(dev, struct_size(nbpf, chan, num_channels),
1307                             GFP_KERNEL);
1308         if (!nbpf)
1309                 return -ENOMEM;
1310
1311         dma_dev = &nbpf->dma_dev;
1312         dma_dev->dev = dev;
1313
1314         iomem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1315         nbpf->base = devm_ioremap_resource(dev, iomem);
1316         if (IS_ERR(nbpf->base))
1317                 return PTR_ERR(nbpf->base);
1318
1319         nbpf->clk = devm_clk_get(dev, NULL);
1320         if (IS_ERR(nbpf->clk))
1321                 return PTR_ERR(nbpf->clk);
1322
1323         of_property_read_u32(np, "max-burst-mem-read",
1324                              &nbpf->max_burst_mem_read);
1325         of_property_read_u32(np, "max-burst-mem-write",
1326                              &nbpf->max_burst_mem_write);
1327
1328         nbpf->config = cfg;
1329
1330         for (i = 0; irqs < ARRAY_SIZE(irqbuf); i++) {
1331                 irq_res = platform_get_resource(pdev, IORESOURCE_IRQ, i);
1332                 if (!irq_res)
1333                         break;
1334
1335                 for (irq = irq_res->start; irq <= irq_res->end;
1336                      irq++, irqs++)
1337                         irqbuf[irqs] = irq;
1338         }
1339
1340         /*
1341          * 3 IRQ resource schemes are supported:
1342          * 1. 1 shared IRQ for error and all channels
1343          * 2. 2 IRQs: one for error and one shared for all channels
1344          * 3. 1 IRQ for error and an own IRQ for each channel
1345          */
1346         if (irqs != 1 && irqs != 2 && irqs != num_channels + 1)
1347                 return -ENXIO;
1348
1349         if (irqs == 1) {
1350                 eirq = irqbuf[0];
1351
1352                 for (i = 0; i <= num_channels; i++)
1353                         nbpf->chan[i].irq = irqbuf[0];
1354         } else {
1355                 eirq = platform_get_irq_byname(pdev, "error");
1356                 if (eirq < 0)
1357                         return eirq;
1358
1359                 if (irqs == num_channels + 1) {
1360                         struct nbpf_channel *chan;
1361
1362                         for (i = 0, chan = nbpf->chan; i <= num_channels;
1363                              i++, chan++) {
1364                                 /* Skip the error IRQ */
1365                                 if (irqbuf[i] == eirq)
1366                                         i++;
1367                                 chan->irq = irqbuf[i];
1368                         }
1369
1370                         if (chan != nbpf->chan + num_channels)
1371                                 return -EINVAL;
1372                 } else {
1373                         /* 2 IRQs and more than one channel */
1374                         if (irqbuf[0] == eirq)
1375                                 irq = irqbuf[1];
1376                         else
1377                                 irq = irqbuf[0];
1378
1379                         for (i = 0; i <= num_channels; i++)
1380                                 nbpf->chan[i].irq = irq;
1381                 }
1382         }
1383
1384         ret = devm_request_irq(dev, eirq, nbpf_err_irq,
1385                                IRQF_SHARED, "dma error", nbpf);
1386         if (ret < 0)
1387                 return ret;
1388         nbpf->eirq = eirq;
1389
1390         INIT_LIST_HEAD(&dma_dev->channels);
1391
1392         /* Create DMA Channel */
1393         for (i = 0; i < num_channels; i++) {
1394                 ret = nbpf_chan_probe(nbpf, i);
1395                 if (ret < 0)
1396                         return ret;
1397         }
1398
1399         dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
1400         dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
1401         dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask);
1402
1403         /* Common and MEMCPY operations */
1404         dma_dev->device_alloc_chan_resources
1405                 = nbpf_alloc_chan_resources;
1406         dma_dev->device_free_chan_resources = nbpf_free_chan_resources;
1407         dma_dev->device_prep_dma_memcpy = nbpf_prep_memcpy;
1408         dma_dev->device_tx_status = nbpf_tx_status;
1409         dma_dev->device_issue_pending = nbpf_issue_pending;
1410
1411         /*
1412          * If we drop support for unaligned MEMCPY buffer addresses and / or
1413          * lengths by setting
1414          * dma_dev->copy_align = 4;
1415          * then we can set transfer length to 4 bytes in nbpf_prep_one() for
1416          * DMA_MEM_TO_MEM
1417          */
1418
1419         /* Compulsory for DMA_SLAVE fields */
1420         dma_dev->device_prep_slave_sg = nbpf_prep_slave_sg;
1421         dma_dev->device_config = nbpf_config;
1422         dma_dev->device_pause = nbpf_pause;
1423         dma_dev->device_terminate_all = nbpf_terminate_all;
1424
1425         dma_dev->src_addr_widths = NBPF_DMA_BUSWIDTHS;
1426         dma_dev->dst_addr_widths = NBPF_DMA_BUSWIDTHS;
1427         dma_dev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1428
1429         platform_set_drvdata(pdev, nbpf);
1430
1431         ret = clk_prepare_enable(nbpf->clk);
1432         if (ret < 0)
1433                 return ret;
1434
1435         nbpf_configure(nbpf);
1436
1437         ret = dma_async_device_register(dma_dev);
1438         if (ret < 0)
1439                 goto e_clk_off;
1440
1441         ret = of_dma_controller_register(np, nbpf_of_xlate, nbpf);
1442         if (ret < 0)
1443                 goto e_dma_dev_unreg;
1444
1445         return 0;
1446
1447 e_dma_dev_unreg:
1448         dma_async_device_unregister(dma_dev);
1449 e_clk_off:
1450         clk_disable_unprepare(nbpf->clk);
1451
1452         return ret;
1453 }
1454
1455 static int nbpf_remove(struct platform_device *pdev)
1456 {
1457         struct nbpf_device *nbpf = platform_get_drvdata(pdev);
1458         int i;
1459
1460         devm_free_irq(&pdev->dev, nbpf->eirq, nbpf);
1461
1462         for (i = 0; i < nbpf->config->num_channels; i++) {
1463                 struct nbpf_channel *chan = nbpf->chan + i;
1464
1465                 devm_free_irq(&pdev->dev, chan->irq, chan);
1466
1467                 tasklet_kill(&chan->tasklet);
1468         }
1469
1470         of_dma_controller_free(pdev->dev.of_node);
1471         dma_async_device_unregister(&nbpf->dma_dev);
1472         clk_disable_unprepare(nbpf->clk);
1473
1474         return 0;
1475 }
1476
1477 static const struct platform_device_id nbpf_ids[] = {
1478         {"nbpfaxi64dmac1b4",    (kernel_ulong_t)&nbpf_cfg[NBPF1B4]},
1479         {"nbpfaxi64dmac1b8",    (kernel_ulong_t)&nbpf_cfg[NBPF1B8]},
1480         {"nbpfaxi64dmac1b16",   (kernel_ulong_t)&nbpf_cfg[NBPF1B16]},
1481         {"nbpfaxi64dmac4b4",    (kernel_ulong_t)&nbpf_cfg[NBPF4B4]},
1482         {"nbpfaxi64dmac4b8",    (kernel_ulong_t)&nbpf_cfg[NBPF4B8]},
1483         {"nbpfaxi64dmac4b16",   (kernel_ulong_t)&nbpf_cfg[NBPF4B16]},
1484         {"nbpfaxi64dmac8b4",    (kernel_ulong_t)&nbpf_cfg[NBPF8B4]},
1485         {"nbpfaxi64dmac8b8",    (kernel_ulong_t)&nbpf_cfg[NBPF8B8]},
1486         {"nbpfaxi64dmac8b16",   (kernel_ulong_t)&nbpf_cfg[NBPF8B16]},
1487         {},
1488 };
1489 MODULE_DEVICE_TABLE(platform, nbpf_ids);
1490
1491 #ifdef CONFIG_PM
1492 static int nbpf_runtime_suspend(struct device *dev)
1493 {
1494         struct nbpf_device *nbpf = platform_get_drvdata(to_platform_device(dev));
1495         clk_disable_unprepare(nbpf->clk);
1496         return 0;
1497 }
1498
1499 static int nbpf_runtime_resume(struct device *dev)
1500 {
1501         struct nbpf_device *nbpf = platform_get_drvdata(to_platform_device(dev));
1502         return clk_prepare_enable(nbpf->clk);
1503 }
1504 #endif
1505
1506 static const struct dev_pm_ops nbpf_pm_ops = {
1507         SET_RUNTIME_PM_OPS(nbpf_runtime_suspend, nbpf_runtime_resume, NULL)
1508 };
1509
1510 static struct platform_driver nbpf_driver = {
1511         .driver = {
1512                 .name = "dma-nbpf",
1513                 .of_match_table = nbpf_match,
1514                 .pm = &nbpf_pm_ops,
1515         },
1516         .id_table = nbpf_ids,
1517         .probe = nbpf_probe,
1518         .remove = nbpf_remove,
1519 };
1520
1521 module_platform_driver(nbpf_driver);
1522
1523 MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>");
1524 MODULE_DESCRIPTION("dmaengine driver for NBPFAXI64* DMACs");
1525 MODULE_LICENSE("GPL v2");