atm: switch to proc_create_seq_private
[linux-block.git] / drivers / dma / imx-sdma.c
1 /*
2  * drivers/dma/imx-sdma.c
3  *
4  * This file contains a driver for the Freescale Smart DMA engine
5  *
6  * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
7  *
8  * Based on code from Freescale:
9  *
10  * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
11  *
12  * The code contained herein is licensed under the GNU General Public
13  * License. You may obtain a copy of the GNU General Public License
14  * Version 2 or later at the following locations:
15  *
16  * http://www.opensource.org/licenses/gpl-license.html
17  * http://www.gnu.org/copyleft/gpl.html
18  */
19
20 #include <linux/init.h>
21 #include <linux/iopoll.h>
22 #include <linux/module.h>
23 #include <linux/types.h>
24 #include <linux/bitops.h>
25 #include <linux/mm.h>
26 #include <linux/interrupt.h>
27 #include <linux/clk.h>
28 #include <linux/delay.h>
29 #include <linux/sched.h>
30 #include <linux/semaphore.h>
31 #include <linux/spinlock.h>
32 #include <linux/device.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/firmware.h>
35 #include <linux/slab.h>
36 #include <linux/platform_device.h>
37 #include <linux/dmaengine.h>
38 #include <linux/of.h>
39 #include <linux/of_address.h>
40 #include <linux/of_device.h>
41 #include <linux/of_dma.h>
42
43 #include <asm/irq.h>
44 #include <linux/platform_data/dma-imx-sdma.h>
45 #include <linux/platform_data/dma-imx.h>
46 #include <linux/regmap.h>
47 #include <linux/mfd/syscon.h>
48 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
49
50 #include "dmaengine.h"
51
52 /* SDMA registers */
53 #define SDMA_H_C0PTR            0x000
54 #define SDMA_H_INTR             0x004
55 #define SDMA_H_STATSTOP         0x008
56 #define SDMA_H_START            0x00c
57 #define SDMA_H_EVTOVR           0x010
58 #define SDMA_H_DSPOVR           0x014
59 #define SDMA_H_HOSTOVR          0x018
60 #define SDMA_H_EVTPEND          0x01c
61 #define SDMA_H_DSPENBL          0x020
62 #define SDMA_H_RESET            0x024
63 #define SDMA_H_EVTERR           0x028
64 #define SDMA_H_INTRMSK          0x02c
65 #define SDMA_H_PSW              0x030
66 #define SDMA_H_EVTERRDBG        0x034
67 #define SDMA_H_CONFIG           0x038
68 #define SDMA_ONCE_ENB           0x040
69 #define SDMA_ONCE_DATA          0x044
70 #define SDMA_ONCE_INSTR         0x048
71 #define SDMA_ONCE_STAT          0x04c
72 #define SDMA_ONCE_CMD           0x050
73 #define SDMA_EVT_MIRROR         0x054
74 #define SDMA_ILLINSTADDR        0x058
75 #define SDMA_CHN0ADDR           0x05c
76 #define SDMA_ONCE_RTB           0x060
77 #define SDMA_XTRIG_CONF1        0x070
78 #define SDMA_XTRIG_CONF2        0x074
79 #define SDMA_CHNENBL0_IMX35     0x200
80 #define SDMA_CHNENBL0_IMX31     0x080
81 #define SDMA_CHNPRI_0           0x100
82
83 /*
84  * Buffer descriptor status values.
85  */
86 #define BD_DONE  0x01
87 #define BD_WRAP  0x02
88 #define BD_CONT  0x04
89 #define BD_INTR  0x08
90 #define BD_RROR  0x10
91 #define BD_LAST  0x20
92 #define BD_EXTD  0x80
93
94 /*
95  * Data Node descriptor status values.
96  */
97 #define DND_END_OF_FRAME  0x80
98 #define DND_END_OF_XFER   0x40
99 #define DND_DONE          0x20
100 #define DND_UNUSED        0x01
101
102 /*
103  * IPCV2 descriptor status values.
104  */
105 #define BD_IPCV2_END_OF_FRAME  0x40
106
107 #define IPCV2_MAX_NODES        50
108 /*
109  * Error bit set in the CCB status field by the SDMA,
110  * in setbd routine, in case of a transfer error
111  */
112 #define DATA_ERROR  0x10000000
113
114 /*
115  * Buffer descriptor commands.
116  */
117 #define C0_ADDR             0x01
118 #define C0_LOAD             0x02
119 #define C0_DUMP             0x03
120 #define C0_SETCTX           0x07
121 #define C0_GETCTX           0x03
122 #define C0_SETDM            0x01
123 #define C0_SETPM            0x04
124 #define C0_GETDM            0x02
125 #define C0_GETPM            0x08
126 /*
127  * Change endianness indicator in the BD command field
128  */
129 #define CHANGE_ENDIANNESS   0x80
130
131 /*
132  *  p_2_p watermark_level description
133  *      Bits            Name                    Description
134  *      0-7             Lower WML               Lower watermark level
135  *      8               PS                      1: Pad Swallowing
136  *                                              0: No Pad Swallowing
137  *      9               PA                      1: Pad Adding
138  *                                              0: No Pad Adding
139  *      10              SPDIF                   If this bit is set both source
140  *                                              and destination are on SPBA
141  *      11              Source Bit(SP)          1: Source on SPBA
142  *                                              0: Source on AIPS
143  *      12              Destination Bit(DP)     1: Destination on SPBA
144  *                                              0: Destination on AIPS
145  *      13-15           ---------               MUST BE 0
146  *      16-23           Higher WML              HWML
147  *      24-27           N                       Total number of samples after
148  *                                              which Pad adding/Swallowing
149  *                                              must be done. It must be odd.
150  *      28              Lower WML Event(LWE)    SDMA events reg to check for
151  *                                              LWML event mask
152  *                                              0: LWE in EVENTS register
153  *                                              1: LWE in EVENTS2 register
154  *      29              Higher WML Event(HWE)   SDMA events reg to check for
155  *                                              HWML event mask
156  *                                              0: HWE in EVENTS register
157  *                                              1: HWE in EVENTS2 register
158  *      30              ---------               MUST BE 0
159  *      31              CONT                    1: Amount of samples to be
160  *                                              transferred is unknown and
161  *                                              script will keep on
162  *                                              transferring samples as long as
163  *                                              both events are detected and
164  *                                              script must be manually stopped
165  *                                              by the application
166  *                                              0: The amount of samples to be
167  *                                              transferred is equal to the
168  *                                              count field of mode word
169  */
170 #define SDMA_WATERMARK_LEVEL_LWML       0xFF
171 #define SDMA_WATERMARK_LEVEL_PS         BIT(8)
172 #define SDMA_WATERMARK_LEVEL_PA         BIT(9)
173 #define SDMA_WATERMARK_LEVEL_SPDIF      BIT(10)
174 #define SDMA_WATERMARK_LEVEL_SP         BIT(11)
175 #define SDMA_WATERMARK_LEVEL_DP         BIT(12)
176 #define SDMA_WATERMARK_LEVEL_HWML       (0xFF << 16)
177 #define SDMA_WATERMARK_LEVEL_LWE        BIT(28)
178 #define SDMA_WATERMARK_LEVEL_HWE        BIT(29)
179 #define SDMA_WATERMARK_LEVEL_CONT       BIT(31)
180
181 #define SDMA_DMA_BUSWIDTHS      (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
182                                  BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
183                                  BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
184
185 #define SDMA_DMA_DIRECTIONS     (BIT(DMA_DEV_TO_MEM) | \
186                                  BIT(DMA_MEM_TO_DEV) | \
187                                  BIT(DMA_DEV_TO_DEV))
188
189 /*
190  * Mode/Count of data node descriptors - IPCv2
191  */
192 struct sdma_mode_count {
193         u32 count   : 16; /* size of the buffer pointed by this BD */
194         u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
195         u32 command :  8; /* command mostly used for channel 0 */
196 };
197
198 /*
199  * Buffer descriptor
200  */
201 struct sdma_buffer_descriptor {
202         struct sdma_mode_count  mode;
203         u32 buffer_addr;        /* address of the buffer described */
204         u32 ext_buffer_addr;    /* extended buffer address */
205 } __attribute__ ((packed));
206
207 /**
208  * struct sdma_channel_control - Channel control Block
209  *
210  * @current_bd_ptr      current buffer descriptor processed
211  * @base_bd_ptr         first element of buffer descriptor array
212  * @unused              padding. The SDMA engine expects an array of 128 byte
213  *                      control blocks
214  */
215 struct sdma_channel_control {
216         u32 current_bd_ptr;
217         u32 base_bd_ptr;
218         u32 unused[2];
219 } __attribute__ ((packed));
220
221 /**
222  * struct sdma_state_registers - SDMA context for a channel
223  *
224  * @pc:         program counter
225  * @t:          test bit: status of arithmetic & test instruction
226  * @rpc:        return program counter
227  * @sf:         source fault while loading data
228  * @spc:        loop start program counter
229  * @df:         destination fault while storing data
230  * @epc:        loop end program counter
231  * @lm:         loop mode
232  */
233 struct sdma_state_registers {
234         u32 pc     :14;
235         u32 unused1: 1;
236         u32 t      : 1;
237         u32 rpc    :14;
238         u32 unused0: 1;
239         u32 sf     : 1;
240         u32 spc    :14;
241         u32 unused2: 1;
242         u32 df     : 1;
243         u32 epc    :14;
244         u32 lm     : 2;
245 } __attribute__ ((packed));
246
247 /**
248  * struct sdma_context_data - sdma context specific to a channel
249  *
250  * @channel_state:      channel state bits
251  * @gReg:               general registers
252  * @mda:                burst dma destination address register
253  * @msa:                burst dma source address register
254  * @ms:                 burst dma status register
255  * @md:                 burst dma data register
256  * @pda:                peripheral dma destination address register
257  * @psa:                peripheral dma source address register
258  * @ps:                 peripheral dma status register
259  * @pd:                 peripheral dma data register
260  * @ca:                 CRC polynomial register
261  * @cs:                 CRC accumulator register
262  * @dda:                dedicated core destination address register
263  * @dsa:                dedicated core source address register
264  * @ds:                 dedicated core status register
265  * @dd:                 dedicated core data register
266  */
267 struct sdma_context_data {
268         struct sdma_state_registers  channel_state;
269         u32  gReg[8];
270         u32  mda;
271         u32  msa;
272         u32  ms;
273         u32  md;
274         u32  pda;
275         u32  psa;
276         u32  ps;
277         u32  pd;
278         u32  ca;
279         u32  cs;
280         u32  dda;
281         u32  dsa;
282         u32  ds;
283         u32  dd;
284         u32  scratch0;
285         u32  scratch1;
286         u32  scratch2;
287         u32  scratch3;
288         u32  scratch4;
289         u32  scratch5;
290         u32  scratch6;
291         u32  scratch7;
292 } __attribute__ ((packed));
293
294 #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
295
296 struct sdma_engine;
297
298 /**
299  * struct sdma_channel - housekeeping for a SDMA channel
300  *
301  * @sdma                pointer to the SDMA engine for this channel
302  * @channel             the channel number, matches dmaengine chan_id + 1
303  * @direction           transfer type. Needed for setting SDMA script
304  * @peripheral_type     Peripheral type. Needed for setting SDMA script
305  * @event_id0           aka dma request line
306  * @event_id1           for channels that use 2 events
307  * @word_size           peripheral access size
308  * @buf_tail            ID of the buffer that was processed
309  * @buf_ptail           ID of the previous buffer that was processed
310  * @num_bd              max NUM_BD. number of descriptors currently handling
311  */
312 struct sdma_channel {
313         struct sdma_engine              *sdma;
314         unsigned int                    channel;
315         enum dma_transfer_direction             direction;
316         enum sdma_peripheral_type       peripheral_type;
317         unsigned int                    event_id0;
318         unsigned int                    event_id1;
319         enum dma_slave_buswidth         word_size;
320         unsigned int                    buf_tail;
321         unsigned int                    buf_ptail;
322         unsigned int                    num_bd;
323         unsigned int                    period_len;
324         struct sdma_buffer_descriptor   *bd;
325         dma_addr_t                      bd_phys;
326         unsigned int                    pc_from_device, pc_to_device;
327         unsigned int                    device_to_device;
328         unsigned long                   flags;
329         dma_addr_t                      per_address, per_address2;
330         unsigned long                   event_mask[2];
331         unsigned long                   watermark_level;
332         u32                             shp_addr, per_addr;
333         struct dma_chan                 chan;
334         spinlock_t                      lock;
335         struct dma_async_tx_descriptor  desc;
336         enum dma_status                 status;
337         unsigned int                    chn_count;
338         unsigned int                    chn_real_count;
339         struct tasklet_struct           tasklet;
340         struct imx_dma_data             data;
341         bool                            enabled;
342 };
343
344 #define IMX_DMA_SG_LOOP         BIT(0)
345
346 #define MAX_DMA_CHANNELS 32
347 #define MXC_SDMA_DEFAULT_PRIORITY 1
348 #define MXC_SDMA_MIN_PRIORITY 1
349 #define MXC_SDMA_MAX_PRIORITY 7
350
351 #define SDMA_FIRMWARE_MAGIC 0x414d4453
352
353 /**
354  * struct sdma_firmware_header - Layout of the firmware image
355  *
356  * @magic               "SDMA"
357  * @version_major       increased whenever layout of struct sdma_script_start_addrs
358  *                      changes.
359  * @version_minor       firmware minor version (for binary compatible changes)
360  * @script_addrs_start  offset of struct sdma_script_start_addrs in this image
361  * @num_script_addrs    Number of script addresses in this image
362  * @ram_code_start      offset of SDMA ram image in this firmware image
363  * @ram_code_size       size of SDMA ram image
364  * @script_addrs        Stores the start address of the SDMA scripts
365  *                      (in SDMA memory space)
366  */
367 struct sdma_firmware_header {
368         u32     magic;
369         u32     version_major;
370         u32     version_minor;
371         u32     script_addrs_start;
372         u32     num_script_addrs;
373         u32     ram_code_start;
374         u32     ram_code_size;
375 };
376
377 struct sdma_driver_data {
378         int chnenbl0;
379         int num_events;
380         struct sdma_script_start_addrs  *script_addrs;
381 };
382
383 struct sdma_engine {
384         struct device                   *dev;
385         struct device_dma_parameters    dma_parms;
386         struct sdma_channel             channel[MAX_DMA_CHANNELS];
387         struct sdma_channel_control     *channel_control;
388         void __iomem                    *regs;
389         struct sdma_context_data        *context;
390         dma_addr_t                      context_phys;
391         struct dma_device               dma_device;
392         struct clk                      *clk_ipg;
393         struct clk                      *clk_ahb;
394         spinlock_t                      channel_0_lock;
395         u32                             script_number;
396         struct sdma_script_start_addrs  *script_addrs;
397         const struct sdma_driver_data   *drvdata;
398         u32                             spba_start_addr;
399         u32                             spba_end_addr;
400         unsigned int                    irq;
401 };
402
403 static struct sdma_driver_data sdma_imx31 = {
404         .chnenbl0 = SDMA_CHNENBL0_IMX31,
405         .num_events = 32,
406 };
407
408 static struct sdma_script_start_addrs sdma_script_imx25 = {
409         .ap_2_ap_addr = 729,
410         .uart_2_mcu_addr = 904,
411         .per_2_app_addr = 1255,
412         .mcu_2_app_addr = 834,
413         .uartsh_2_mcu_addr = 1120,
414         .per_2_shp_addr = 1329,
415         .mcu_2_shp_addr = 1048,
416         .ata_2_mcu_addr = 1560,
417         .mcu_2_ata_addr = 1479,
418         .app_2_per_addr = 1189,
419         .app_2_mcu_addr = 770,
420         .shp_2_per_addr = 1407,
421         .shp_2_mcu_addr = 979,
422 };
423
424 static struct sdma_driver_data sdma_imx25 = {
425         .chnenbl0 = SDMA_CHNENBL0_IMX35,
426         .num_events = 48,
427         .script_addrs = &sdma_script_imx25,
428 };
429
430 static struct sdma_driver_data sdma_imx35 = {
431         .chnenbl0 = SDMA_CHNENBL0_IMX35,
432         .num_events = 48,
433 };
434
435 static struct sdma_script_start_addrs sdma_script_imx51 = {
436         .ap_2_ap_addr = 642,
437         .uart_2_mcu_addr = 817,
438         .mcu_2_app_addr = 747,
439         .mcu_2_shp_addr = 961,
440         .ata_2_mcu_addr = 1473,
441         .mcu_2_ata_addr = 1392,
442         .app_2_per_addr = 1033,
443         .app_2_mcu_addr = 683,
444         .shp_2_per_addr = 1251,
445         .shp_2_mcu_addr = 892,
446 };
447
448 static struct sdma_driver_data sdma_imx51 = {
449         .chnenbl0 = SDMA_CHNENBL0_IMX35,
450         .num_events = 48,
451         .script_addrs = &sdma_script_imx51,
452 };
453
454 static struct sdma_script_start_addrs sdma_script_imx53 = {
455         .ap_2_ap_addr = 642,
456         .app_2_mcu_addr = 683,
457         .mcu_2_app_addr = 747,
458         .uart_2_mcu_addr = 817,
459         .shp_2_mcu_addr = 891,
460         .mcu_2_shp_addr = 960,
461         .uartsh_2_mcu_addr = 1032,
462         .spdif_2_mcu_addr = 1100,
463         .mcu_2_spdif_addr = 1134,
464         .firi_2_mcu_addr = 1193,
465         .mcu_2_firi_addr = 1290,
466 };
467
468 static struct sdma_driver_data sdma_imx53 = {
469         .chnenbl0 = SDMA_CHNENBL0_IMX35,
470         .num_events = 48,
471         .script_addrs = &sdma_script_imx53,
472 };
473
474 static struct sdma_script_start_addrs sdma_script_imx6q = {
475         .ap_2_ap_addr = 642,
476         .uart_2_mcu_addr = 817,
477         .mcu_2_app_addr = 747,
478         .per_2_per_addr = 6331,
479         .uartsh_2_mcu_addr = 1032,
480         .mcu_2_shp_addr = 960,
481         .app_2_mcu_addr = 683,
482         .shp_2_mcu_addr = 891,
483         .spdif_2_mcu_addr = 1100,
484         .mcu_2_spdif_addr = 1134,
485 };
486
487 static struct sdma_driver_data sdma_imx6q = {
488         .chnenbl0 = SDMA_CHNENBL0_IMX35,
489         .num_events = 48,
490         .script_addrs = &sdma_script_imx6q,
491 };
492
493 static struct sdma_script_start_addrs sdma_script_imx7d = {
494         .ap_2_ap_addr = 644,
495         .uart_2_mcu_addr = 819,
496         .mcu_2_app_addr = 749,
497         .uartsh_2_mcu_addr = 1034,
498         .mcu_2_shp_addr = 962,
499         .app_2_mcu_addr = 685,
500         .shp_2_mcu_addr = 893,
501         .spdif_2_mcu_addr = 1102,
502         .mcu_2_spdif_addr = 1136,
503 };
504
505 static struct sdma_driver_data sdma_imx7d = {
506         .chnenbl0 = SDMA_CHNENBL0_IMX35,
507         .num_events = 48,
508         .script_addrs = &sdma_script_imx7d,
509 };
510
511 static const struct platform_device_id sdma_devtypes[] = {
512         {
513                 .name = "imx25-sdma",
514                 .driver_data = (unsigned long)&sdma_imx25,
515         }, {
516                 .name = "imx31-sdma",
517                 .driver_data = (unsigned long)&sdma_imx31,
518         }, {
519                 .name = "imx35-sdma",
520                 .driver_data = (unsigned long)&sdma_imx35,
521         }, {
522                 .name = "imx51-sdma",
523                 .driver_data = (unsigned long)&sdma_imx51,
524         }, {
525                 .name = "imx53-sdma",
526                 .driver_data = (unsigned long)&sdma_imx53,
527         }, {
528                 .name = "imx6q-sdma",
529                 .driver_data = (unsigned long)&sdma_imx6q,
530         }, {
531                 .name = "imx7d-sdma",
532                 .driver_data = (unsigned long)&sdma_imx7d,
533         }, {
534                 /* sentinel */
535         }
536 };
537 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
538
539 static const struct of_device_id sdma_dt_ids[] = {
540         { .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
541         { .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
542         { .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
543         { .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
544         { .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
545         { .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
546         { .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
547         { /* sentinel */ }
548 };
549 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
550
551 #define SDMA_H_CONFIG_DSPDMA    BIT(12) /* indicates if the DSPDMA is used */
552 #define SDMA_H_CONFIG_RTD_PINS  BIT(11) /* indicates if Real-Time Debug pins are enabled */
553 #define SDMA_H_CONFIG_ACR       BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
554 #define SDMA_H_CONFIG_CSM       (3)       /* indicates which context switch mode is selected*/
555
556 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
557 {
558         u32 chnenbl0 = sdma->drvdata->chnenbl0;
559         return chnenbl0 + event * 4;
560 }
561
562 static int sdma_config_ownership(struct sdma_channel *sdmac,
563                 bool event_override, bool mcu_override, bool dsp_override)
564 {
565         struct sdma_engine *sdma = sdmac->sdma;
566         int channel = sdmac->channel;
567         unsigned long evt, mcu, dsp;
568
569         if (event_override && mcu_override && dsp_override)
570                 return -EINVAL;
571
572         evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
573         mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
574         dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
575
576         if (dsp_override)
577                 __clear_bit(channel, &dsp);
578         else
579                 __set_bit(channel, &dsp);
580
581         if (event_override)
582                 __clear_bit(channel, &evt);
583         else
584                 __set_bit(channel, &evt);
585
586         if (mcu_override)
587                 __clear_bit(channel, &mcu);
588         else
589                 __set_bit(channel, &mcu);
590
591         writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
592         writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
593         writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
594
595         return 0;
596 }
597
598 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
599 {
600         unsigned long flags;
601         struct sdma_channel *sdmac = &sdma->channel[channel];
602
603         writel(BIT(channel), sdma->regs + SDMA_H_START);
604
605         spin_lock_irqsave(&sdmac->lock, flags);
606         sdmac->enabled = true;
607         spin_unlock_irqrestore(&sdmac->lock, flags);
608 }
609
610 /*
611  * sdma_run_channel0 - run a channel and wait till it's done
612  */
613 static int sdma_run_channel0(struct sdma_engine *sdma)
614 {
615         int ret;
616         u32 reg;
617
618         sdma_enable_channel(sdma, 0);
619
620         ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
621                                                 reg, !(reg & 1), 1, 500);
622         if (ret)
623                 dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
624
625         /* Set bits of CONFIG register with dynamic context switching */
626         if (readl(sdma->regs + SDMA_H_CONFIG) == 0)
627                 writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
628
629         return ret;
630 }
631
632 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
633                 u32 address)
634 {
635         struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
636         void *buf_virt;
637         dma_addr_t buf_phys;
638         int ret;
639         unsigned long flags;
640
641         buf_virt = dma_alloc_coherent(NULL,
642                         size,
643                         &buf_phys, GFP_KERNEL);
644         if (!buf_virt) {
645                 return -ENOMEM;
646         }
647
648         spin_lock_irqsave(&sdma->channel_0_lock, flags);
649
650         bd0->mode.command = C0_SETPM;
651         bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
652         bd0->mode.count = size / 2;
653         bd0->buffer_addr = buf_phys;
654         bd0->ext_buffer_addr = address;
655
656         memcpy(buf_virt, buf, size);
657
658         ret = sdma_run_channel0(sdma);
659
660         spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
661
662         dma_free_coherent(NULL, size, buf_virt, buf_phys);
663
664         return ret;
665 }
666
667 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
668 {
669         struct sdma_engine *sdma = sdmac->sdma;
670         int channel = sdmac->channel;
671         unsigned long val;
672         u32 chnenbl = chnenbl_ofs(sdma, event);
673
674         val = readl_relaxed(sdma->regs + chnenbl);
675         __set_bit(channel, &val);
676         writel_relaxed(val, sdma->regs + chnenbl);
677 }
678
679 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
680 {
681         struct sdma_engine *sdma = sdmac->sdma;
682         int channel = sdmac->channel;
683         u32 chnenbl = chnenbl_ofs(sdma, event);
684         unsigned long val;
685
686         val = readl_relaxed(sdma->regs + chnenbl);
687         __clear_bit(channel, &val);
688         writel_relaxed(val, sdma->regs + chnenbl);
689 }
690
691 static void sdma_update_channel_loop(struct sdma_channel *sdmac)
692 {
693         struct sdma_buffer_descriptor *bd;
694         int error = 0;
695         enum dma_status old_status = sdmac->status;
696         unsigned long flags;
697
698         spin_lock_irqsave(&sdmac->lock, flags);
699         if (!sdmac->enabled) {
700                 spin_unlock_irqrestore(&sdmac->lock, flags);
701                 return;
702         }
703         spin_unlock_irqrestore(&sdmac->lock, flags);
704
705         /*
706          * loop mode. Iterate over descriptors, re-setup them and
707          * call callback function.
708          */
709         while (1) {
710                 bd = &sdmac->bd[sdmac->buf_tail];
711
712                 if (bd->mode.status & BD_DONE)
713                         break;
714
715                 if (bd->mode.status & BD_RROR) {
716                         bd->mode.status &= ~BD_RROR;
717                         sdmac->status = DMA_ERROR;
718                         error = -EIO;
719                 }
720
721                /*
722                 * We use bd->mode.count to calculate the residue, since contains
723                 * the number of bytes present in the current buffer descriptor.
724                 */
725
726                 sdmac->chn_real_count = bd->mode.count;
727                 bd->mode.status |= BD_DONE;
728                 bd->mode.count = sdmac->period_len;
729                 sdmac->buf_ptail = sdmac->buf_tail;
730                 sdmac->buf_tail = (sdmac->buf_tail + 1) % sdmac->num_bd;
731
732                 /*
733                  * The callback is called from the interrupt context in order
734                  * to reduce latency and to avoid the risk of altering the
735                  * SDMA transaction status by the time the client tasklet is
736                  * executed.
737                  */
738
739                 dmaengine_desc_get_callback_invoke(&sdmac->desc, NULL);
740
741                 if (error)
742                         sdmac->status = old_status;
743         }
744 }
745
746 static void mxc_sdma_handle_channel_normal(unsigned long data)
747 {
748         struct sdma_channel *sdmac = (struct sdma_channel *) data;
749         struct sdma_buffer_descriptor *bd;
750         int i, error = 0;
751
752         sdmac->chn_real_count = 0;
753         /*
754          * non loop mode. Iterate over all descriptors, collect
755          * errors and call callback function
756          */
757         for (i = 0; i < sdmac->num_bd; i++) {
758                 bd = &sdmac->bd[i];
759
760                  if (bd->mode.status & (BD_DONE | BD_RROR))
761                         error = -EIO;
762                  sdmac->chn_real_count += bd->mode.count;
763         }
764
765         if (error)
766                 sdmac->status = DMA_ERROR;
767         else
768                 sdmac->status = DMA_COMPLETE;
769
770         dma_cookie_complete(&sdmac->desc);
771
772         dmaengine_desc_get_callback_invoke(&sdmac->desc, NULL);
773 }
774
775 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
776 {
777         struct sdma_engine *sdma = dev_id;
778         unsigned long stat;
779
780         stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
781         writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
782         /* channel 0 is special and not handled here, see run_channel0() */
783         stat &= ~1;
784
785         while (stat) {
786                 int channel = fls(stat) - 1;
787                 struct sdma_channel *sdmac = &sdma->channel[channel];
788
789                 if (sdmac->flags & IMX_DMA_SG_LOOP)
790                         sdma_update_channel_loop(sdmac);
791                 else
792                         tasklet_schedule(&sdmac->tasklet);
793
794                 __clear_bit(channel, &stat);
795         }
796
797         return IRQ_HANDLED;
798 }
799
800 /*
801  * sets the pc of SDMA script according to the peripheral type
802  */
803 static void sdma_get_pc(struct sdma_channel *sdmac,
804                 enum sdma_peripheral_type peripheral_type)
805 {
806         struct sdma_engine *sdma = sdmac->sdma;
807         int per_2_emi = 0, emi_2_per = 0;
808         /*
809          * These are needed once we start to support transfers between
810          * two peripherals or memory-to-memory transfers
811          */
812         int per_2_per = 0;
813
814         sdmac->pc_from_device = 0;
815         sdmac->pc_to_device = 0;
816         sdmac->device_to_device = 0;
817
818         switch (peripheral_type) {
819         case IMX_DMATYPE_MEMORY:
820                 break;
821         case IMX_DMATYPE_DSP:
822                 emi_2_per = sdma->script_addrs->bp_2_ap_addr;
823                 per_2_emi = sdma->script_addrs->ap_2_bp_addr;
824                 break;
825         case IMX_DMATYPE_FIRI:
826                 per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
827                 emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
828                 break;
829         case IMX_DMATYPE_UART:
830                 per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
831                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
832                 break;
833         case IMX_DMATYPE_UART_SP:
834                 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
835                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
836                 break;
837         case IMX_DMATYPE_ATA:
838                 per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
839                 emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
840                 break;
841         case IMX_DMATYPE_CSPI:
842         case IMX_DMATYPE_EXT:
843         case IMX_DMATYPE_SSI:
844         case IMX_DMATYPE_SAI:
845                 per_2_emi = sdma->script_addrs->app_2_mcu_addr;
846                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
847                 break;
848         case IMX_DMATYPE_SSI_DUAL:
849                 per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
850                 emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
851                 break;
852         case IMX_DMATYPE_SSI_SP:
853         case IMX_DMATYPE_MMC:
854         case IMX_DMATYPE_SDHC:
855         case IMX_DMATYPE_CSPI_SP:
856         case IMX_DMATYPE_ESAI:
857         case IMX_DMATYPE_MSHC_SP:
858                 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
859                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
860                 break;
861         case IMX_DMATYPE_ASRC:
862                 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
863                 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
864                 per_2_per = sdma->script_addrs->per_2_per_addr;
865                 break;
866         case IMX_DMATYPE_ASRC_SP:
867                 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
868                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
869                 per_2_per = sdma->script_addrs->per_2_per_addr;
870                 break;
871         case IMX_DMATYPE_MSHC:
872                 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
873                 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
874                 break;
875         case IMX_DMATYPE_CCM:
876                 per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
877                 break;
878         case IMX_DMATYPE_SPDIF:
879                 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
880                 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
881                 break;
882         case IMX_DMATYPE_IPU_MEMORY:
883                 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
884                 break;
885         default:
886                 break;
887         }
888
889         sdmac->pc_from_device = per_2_emi;
890         sdmac->pc_to_device = emi_2_per;
891         sdmac->device_to_device = per_2_per;
892 }
893
894 static int sdma_load_context(struct sdma_channel *sdmac)
895 {
896         struct sdma_engine *sdma = sdmac->sdma;
897         int channel = sdmac->channel;
898         int load_address;
899         struct sdma_context_data *context = sdma->context;
900         struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
901         int ret;
902         unsigned long flags;
903
904         if (sdmac->direction == DMA_DEV_TO_MEM)
905                 load_address = sdmac->pc_from_device;
906         else if (sdmac->direction == DMA_DEV_TO_DEV)
907                 load_address = sdmac->device_to_device;
908         else
909                 load_address = sdmac->pc_to_device;
910
911         if (load_address < 0)
912                 return load_address;
913
914         dev_dbg(sdma->dev, "load_address = %d\n", load_address);
915         dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
916         dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
917         dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
918         dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
919         dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
920
921         spin_lock_irqsave(&sdma->channel_0_lock, flags);
922
923         memset(context, 0, sizeof(*context));
924         context->channel_state.pc = load_address;
925
926         /* Send by context the event mask,base address for peripheral
927          * and watermark level
928          */
929         context->gReg[0] = sdmac->event_mask[1];
930         context->gReg[1] = sdmac->event_mask[0];
931         context->gReg[2] = sdmac->per_addr;
932         context->gReg[6] = sdmac->shp_addr;
933         context->gReg[7] = sdmac->watermark_level;
934
935         bd0->mode.command = C0_SETDM;
936         bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
937         bd0->mode.count = sizeof(*context) / 4;
938         bd0->buffer_addr = sdma->context_phys;
939         bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
940         ret = sdma_run_channel0(sdma);
941
942         spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
943
944         return ret;
945 }
946
947 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
948 {
949         return container_of(chan, struct sdma_channel, chan);
950 }
951
952 static int sdma_disable_channel(struct dma_chan *chan)
953 {
954         struct sdma_channel *sdmac = to_sdma_chan(chan);
955         struct sdma_engine *sdma = sdmac->sdma;
956         int channel = sdmac->channel;
957         unsigned long flags;
958
959         writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
960         sdmac->status = DMA_ERROR;
961
962         spin_lock_irqsave(&sdmac->lock, flags);
963         sdmac->enabled = false;
964         spin_unlock_irqrestore(&sdmac->lock, flags);
965
966         return 0;
967 }
968
969 static int sdma_disable_channel_with_delay(struct dma_chan *chan)
970 {
971         sdma_disable_channel(chan);
972
973         /*
974          * According to NXP R&D team a delay of one BD SDMA cost time
975          * (maximum is 1ms) should be added after disable of the channel
976          * bit, to ensure SDMA core has really been stopped after SDMA
977          * clients call .device_terminate_all.
978          */
979         mdelay(1);
980
981         return 0;
982 }
983
984 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
985 {
986         struct sdma_engine *sdma = sdmac->sdma;
987
988         int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
989         int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
990
991         set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
992         set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
993
994         if (sdmac->event_id0 > 31)
995                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
996
997         if (sdmac->event_id1 > 31)
998                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
999
1000         /*
1001          * If LWML(src_maxburst) > HWML(dst_maxburst), we need
1002          * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
1003          * r0(event_mask[1]) and r1(event_mask[0]).
1004          */
1005         if (lwml > hwml) {
1006                 sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
1007                                                 SDMA_WATERMARK_LEVEL_HWML);
1008                 sdmac->watermark_level |= hwml;
1009                 sdmac->watermark_level |= lwml << 16;
1010                 swap(sdmac->event_mask[0], sdmac->event_mask[1]);
1011         }
1012
1013         if (sdmac->per_address2 >= sdma->spba_start_addr &&
1014                         sdmac->per_address2 <= sdma->spba_end_addr)
1015                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
1016
1017         if (sdmac->per_address >= sdma->spba_start_addr &&
1018                         sdmac->per_address <= sdma->spba_end_addr)
1019                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
1020
1021         sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
1022 }
1023
1024 static int sdma_config_channel(struct dma_chan *chan)
1025 {
1026         struct sdma_channel *sdmac = to_sdma_chan(chan);
1027         int ret;
1028
1029         sdma_disable_channel(chan);
1030
1031         sdmac->event_mask[0] = 0;
1032         sdmac->event_mask[1] = 0;
1033         sdmac->shp_addr = 0;
1034         sdmac->per_addr = 0;
1035
1036         if (sdmac->event_id0) {
1037                 if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
1038                         return -EINVAL;
1039                 sdma_event_enable(sdmac, sdmac->event_id0);
1040         }
1041
1042         if (sdmac->event_id1) {
1043                 if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
1044                         return -EINVAL;
1045                 sdma_event_enable(sdmac, sdmac->event_id1);
1046         }
1047
1048         switch (sdmac->peripheral_type) {
1049         case IMX_DMATYPE_DSP:
1050                 sdma_config_ownership(sdmac, false, true, true);
1051                 break;
1052         case IMX_DMATYPE_MEMORY:
1053                 sdma_config_ownership(sdmac, false, true, false);
1054                 break;
1055         default:
1056                 sdma_config_ownership(sdmac, true, true, false);
1057                 break;
1058         }
1059
1060         sdma_get_pc(sdmac, sdmac->peripheral_type);
1061
1062         if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
1063                         (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
1064                 /* Handle multiple event channels differently */
1065                 if (sdmac->event_id1) {
1066                         if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
1067                             sdmac->peripheral_type == IMX_DMATYPE_ASRC)
1068                                 sdma_set_watermarklevel_for_p2p(sdmac);
1069                 } else
1070                         __set_bit(sdmac->event_id0, sdmac->event_mask);
1071
1072                 /* Address */
1073                 sdmac->shp_addr = sdmac->per_address;
1074                 sdmac->per_addr = sdmac->per_address2;
1075         } else {
1076                 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
1077         }
1078
1079         ret = sdma_load_context(sdmac);
1080
1081         return ret;
1082 }
1083
1084 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
1085                 unsigned int priority)
1086 {
1087         struct sdma_engine *sdma = sdmac->sdma;
1088         int channel = sdmac->channel;
1089
1090         if (priority < MXC_SDMA_MIN_PRIORITY
1091             || priority > MXC_SDMA_MAX_PRIORITY) {
1092                 return -EINVAL;
1093         }
1094
1095         writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1096
1097         return 0;
1098 }
1099
1100 static int sdma_request_channel(struct sdma_channel *sdmac)
1101 {
1102         struct sdma_engine *sdma = sdmac->sdma;
1103         int channel = sdmac->channel;
1104         int ret = -EBUSY;
1105
1106         sdmac->bd = dma_zalloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys,
1107                                         GFP_KERNEL);
1108         if (!sdmac->bd) {
1109                 ret = -ENOMEM;
1110                 goto out;
1111         }
1112
1113         sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
1114         sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1115
1116         sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
1117         return 0;
1118 out:
1119
1120         return ret;
1121 }
1122
1123 static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
1124 {
1125         unsigned long flags;
1126         struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
1127         dma_cookie_t cookie;
1128
1129         spin_lock_irqsave(&sdmac->lock, flags);
1130
1131         cookie = dma_cookie_assign(tx);
1132
1133         spin_unlock_irqrestore(&sdmac->lock, flags);
1134
1135         return cookie;
1136 }
1137
1138 static int sdma_alloc_chan_resources(struct dma_chan *chan)
1139 {
1140         struct sdma_channel *sdmac = to_sdma_chan(chan);
1141         struct imx_dma_data *data = chan->private;
1142         int prio, ret;
1143
1144         if (!data)
1145                 return -EINVAL;
1146
1147         switch (data->priority) {
1148         case DMA_PRIO_HIGH:
1149                 prio = 3;
1150                 break;
1151         case DMA_PRIO_MEDIUM:
1152                 prio = 2;
1153                 break;
1154         case DMA_PRIO_LOW:
1155         default:
1156                 prio = 1;
1157                 break;
1158         }
1159
1160         sdmac->peripheral_type = data->peripheral_type;
1161         sdmac->event_id0 = data->dma_request;
1162         sdmac->event_id1 = data->dma_request2;
1163
1164         ret = clk_enable(sdmac->sdma->clk_ipg);
1165         if (ret)
1166                 return ret;
1167         ret = clk_enable(sdmac->sdma->clk_ahb);
1168         if (ret)
1169                 goto disable_clk_ipg;
1170
1171         ret = sdma_request_channel(sdmac);
1172         if (ret)
1173                 goto disable_clk_ahb;
1174
1175         ret = sdma_set_channel_priority(sdmac, prio);
1176         if (ret)
1177                 goto disable_clk_ahb;
1178
1179         dma_async_tx_descriptor_init(&sdmac->desc, chan);
1180         sdmac->desc.tx_submit = sdma_tx_submit;
1181         /* txd.flags will be overwritten in prep funcs */
1182         sdmac->desc.flags = DMA_CTRL_ACK;
1183
1184         return 0;
1185
1186 disable_clk_ahb:
1187         clk_disable(sdmac->sdma->clk_ahb);
1188 disable_clk_ipg:
1189         clk_disable(sdmac->sdma->clk_ipg);
1190         return ret;
1191 }
1192
1193 static void sdma_free_chan_resources(struct dma_chan *chan)
1194 {
1195         struct sdma_channel *sdmac = to_sdma_chan(chan);
1196         struct sdma_engine *sdma = sdmac->sdma;
1197
1198         sdma_disable_channel(chan);
1199
1200         if (sdmac->event_id0)
1201                 sdma_event_disable(sdmac, sdmac->event_id0);
1202         if (sdmac->event_id1)
1203                 sdma_event_disable(sdmac, sdmac->event_id1);
1204
1205         sdmac->event_id0 = 0;
1206         sdmac->event_id1 = 0;
1207
1208         sdma_set_channel_priority(sdmac, 0);
1209
1210         dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
1211
1212         clk_disable(sdma->clk_ipg);
1213         clk_disable(sdma->clk_ahb);
1214 }
1215
1216 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1217                 struct dma_chan *chan, struct scatterlist *sgl,
1218                 unsigned int sg_len, enum dma_transfer_direction direction,
1219                 unsigned long flags, void *context)
1220 {
1221         struct sdma_channel *sdmac = to_sdma_chan(chan);
1222         struct sdma_engine *sdma = sdmac->sdma;
1223         int ret, i, count;
1224         int channel = sdmac->channel;
1225         struct scatterlist *sg;
1226
1227         if (sdmac->status == DMA_IN_PROGRESS)
1228                 return NULL;
1229         sdmac->status = DMA_IN_PROGRESS;
1230
1231         sdmac->flags = 0;
1232
1233         sdmac->buf_tail = 0;
1234         sdmac->buf_ptail = 0;
1235         sdmac->chn_real_count = 0;
1236
1237         dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1238                         sg_len, channel);
1239
1240         sdmac->direction = direction;
1241         ret = sdma_load_context(sdmac);
1242         if (ret)
1243                 goto err_out;
1244
1245         if (sg_len > NUM_BD) {
1246                 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1247                                 channel, sg_len, NUM_BD);
1248                 ret = -EINVAL;
1249                 goto err_out;
1250         }
1251
1252         sdmac->chn_count = 0;
1253         for_each_sg(sgl, sg, sg_len, i) {
1254                 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1255                 int param;
1256
1257                 bd->buffer_addr = sg->dma_address;
1258
1259                 count = sg_dma_len(sg);
1260
1261                 if (count > 0xffff) {
1262                         dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1263                                         channel, count, 0xffff);
1264                         ret = -EINVAL;
1265                         goto err_out;
1266                 }
1267
1268                 bd->mode.count = count;
1269                 sdmac->chn_count += count;
1270
1271                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
1272                         ret =  -EINVAL;
1273                         goto err_out;
1274                 }
1275
1276                 switch (sdmac->word_size) {
1277                 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1278                         bd->mode.command = 0;
1279                         if (count & 3 || sg->dma_address & 3)
1280                                 return NULL;
1281                         break;
1282                 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1283                         bd->mode.command = 2;
1284                         if (count & 1 || sg->dma_address & 1)
1285                                 return NULL;
1286                         break;
1287                 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1288                         bd->mode.command = 1;
1289                         break;
1290                 default:
1291                         return NULL;
1292                 }
1293
1294                 param = BD_DONE | BD_EXTD | BD_CONT;
1295
1296                 if (i + 1 == sg_len) {
1297                         param |= BD_INTR;
1298                         param |= BD_LAST;
1299                         param &= ~BD_CONT;
1300                 }
1301
1302                 dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1303                                 i, count, (u64)sg->dma_address,
1304                                 param & BD_WRAP ? "wrap" : "",
1305                                 param & BD_INTR ? " intr" : "");
1306
1307                 bd->mode.status = param;
1308         }
1309
1310         sdmac->num_bd = sg_len;
1311         sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1312
1313         return &sdmac->desc;
1314 err_out:
1315         sdmac->status = DMA_ERROR;
1316         return NULL;
1317 }
1318
1319 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1320                 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1321                 size_t period_len, enum dma_transfer_direction direction,
1322                 unsigned long flags)
1323 {
1324         struct sdma_channel *sdmac = to_sdma_chan(chan);
1325         struct sdma_engine *sdma = sdmac->sdma;
1326         int num_periods = buf_len / period_len;
1327         int channel = sdmac->channel;
1328         int ret, i = 0, buf = 0;
1329
1330         dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1331
1332         if (sdmac->status == DMA_IN_PROGRESS)
1333                 return NULL;
1334
1335         sdmac->status = DMA_IN_PROGRESS;
1336
1337         sdmac->buf_tail = 0;
1338         sdmac->buf_ptail = 0;
1339         sdmac->chn_real_count = 0;
1340         sdmac->period_len = period_len;
1341
1342         sdmac->flags |= IMX_DMA_SG_LOOP;
1343         sdmac->direction = direction;
1344         ret = sdma_load_context(sdmac);
1345         if (ret)
1346                 goto err_out;
1347
1348         if (num_periods > NUM_BD) {
1349                 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1350                                 channel, num_periods, NUM_BD);
1351                 goto err_out;
1352         }
1353
1354         if (period_len > 0xffff) {
1355                 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n",
1356                                 channel, period_len, 0xffff);
1357                 goto err_out;
1358         }
1359
1360         while (buf < buf_len) {
1361                 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1362                 int param;
1363
1364                 bd->buffer_addr = dma_addr;
1365
1366                 bd->mode.count = period_len;
1367
1368                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1369                         goto err_out;
1370                 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1371                         bd->mode.command = 0;
1372                 else
1373                         bd->mode.command = sdmac->word_size;
1374
1375                 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1376                 if (i + 1 == num_periods)
1377                         param |= BD_WRAP;
1378
1379                 dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n",
1380                                 i, period_len, (u64)dma_addr,
1381                                 param & BD_WRAP ? "wrap" : "",
1382                                 param & BD_INTR ? " intr" : "");
1383
1384                 bd->mode.status = param;
1385
1386                 dma_addr += period_len;
1387                 buf += period_len;
1388
1389                 i++;
1390         }
1391
1392         sdmac->num_bd = num_periods;
1393         sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1394
1395         return &sdmac->desc;
1396 err_out:
1397         sdmac->status = DMA_ERROR;
1398         return NULL;
1399 }
1400
1401 static int sdma_config(struct dma_chan *chan,
1402                        struct dma_slave_config *dmaengine_cfg)
1403 {
1404         struct sdma_channel *sdmac = to_sdma_chan(chan);
1405
1406         if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
1407                 sdmac->per_address = dmaengine_cfg->src_addr;
1408                 sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1409                         dmaengine_cfg->src_addr_width;
1410                 sdmac->word_size = dmaengine_cfg->src_addr_width;
1411         } else if (dmaengine_cfg->direction == DMA_DEV_TO_DEV) {
1412                 sdmac->per_address2 = dmaengine_cfg->src_addr;
1413                 sdmac->per_address = dmaengine_cfg->dst_addr;
1414                 sdmac->watermark_level = dmaengine_cfg->src_maxburst &
1415                         SDMA_WATERMARK_LEVEL_LWML;
1416                 sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
1417                         SDMA_WATERMARK_LEVEL_HWML;
1418                 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1419         } else {
1420                 sdmac->per_address = dmaengine_cfg->dst_addr;
1421                 sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1422                         dmaengine_cfg->dst_addr_width;
1423                 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1424         }
1425         sdmac->direction = dmaengine_cfg->direction;
1426         return sdma_config_channel(chan);
1427 }
1428
1429 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1430                                       dma_cookie_t cookie,
1431                                       struct dma_tx_state *txstate)
1432 {
1433         struct sdma_channel *sdmac = to_sdma_chan(chan);
1434         u32 residue;
1435
1436         if (sdmac->flags & IMX_DMA_SG_LOOP)
1437                 residue = (sdmac->num_bd - sdmac->buf_ptail) *
1438                            sdmac->period_len - sdmac->chn_real_count;
1439         else
1440                 residue = sdmac->chn_count - sdmac->chn_real_count;
1441
1442         dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1443                          residue);
1444
1445         return sdmac->status;
1446 }
1447
1448 static void sdma_issue_pending(struct dma_chan *chan)
1449 {
1450         struct sdma_channel *sdmac = to_sdma_chan(chan);
1451         struct sdma_engine *sdma = sdmac->sdma;
1452
1453         if (sdmac->status == DMA_IN_PROGRESS)
1454                 sdma_enable_channel(sdma, sdmac->channel);
1455 }
1456
1457 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
1458 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2 38
1459 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3 41
1460 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4 42
1461
1462 static void sdma_add_scripts(struct sdma_engine *sdma,
1463                 const struct sdma_script_start_addrs *addr)
1464 {
1465         s32 *addr_arr = (u32 *)addr;
1466         s32 *saddr_arr = (u32 *)sdma->script_addrs;
1467         int i;
1468
1469         /* use the default firmware in ROM if missing external firmware */
1470         if (!sdma->script_number)
1471                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1472
1473         for (i = 0; i < sdma->script_number; i++)
1474                 if (addr_arr[i] > 0)
1475                         saddr_arr[i] = addr_arr[i];
1476 }
1477
1478 static void sdma_load_firmware(const struct firmware *fw, void *context)
1479 {
1480         struct sdma_engine *sdma = context;
1481         const struct sdma_firmware_header *header;
1482         const struct sdma_script_start_addrs *addr;
1483         unsigned short *ram_code;
1484
1485         if (!fw) {
1486                 dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1487                 /* In this case we just use the ROM firmware. */
1488                 return;
1489         }
1490
1491         if (fw->size < sizeof(*header))
1492                 goto err_firmware;
1493
1494         header = (struct sdma_firmware_header *)fw->data;
1495
1496         if (header->magic != SDMA_FIRMWARE_MAGIC)
1497                 goto err_firmware;
1498         if (header->ram_code_start + header->ram_code_size > fw->size)
1499                 goto err_firmware;
1500         switch (header->version_major) {
1501         case 1:
1502                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1503                 break;
1504         case 2:
1505                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1506                 break;
1507         case 3:
1508                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
1509                 break;
1510         case 4:
1511                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4;
1512                 break;
1513         default:
1514                 dev_err(sdma->dev, "unknown firmware version\n");
1515                 goto err_firmware;
1516         }
1517
1518         addr = (void *)header + header->script_addrs_start;
1519         ram_code = (void *)header + header->ram_code_start;
1520
1521         clk_enable(sdma->clk_ipg);
1522         clk_enable(sdma->clk_ahb);
1523         /* download the RAM image for SDMA */
1524         sdma_load_script(sdma, ram_code,
1525                         header->ram_code_size,
1526                         addr->ram_code_start_addr);
1527         clk_disable(sdma->clk_ipg);
1528         clk_disable(sdma->clk_ahb);
1529
1530         sdma_add_scripts(sdma, addr);
1531
1532         dev_info(sdma->dev, "loaded firmware %d.%d\n",
1533                         header->version_major,
1534                         header->version_minor);
1535
1536 err_firmware:
1537         release_firmware(fw);
1538 }
1539
1540 #define EVENT_REMAP_CELLS 3
1541
1542 static int sdma_event_remap(struct sdma_engine *sdma)
1543 {
1544         struct device_node *np = sdma->dev->of_node;
1545         struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
1546         struct property *event_remap;
1547         struct regmap *gpr;
1548         char propname[] = "fsl,sdma-event-remap";
1549         u32 reg, val, shift, num_map, i;
1550         int ret = 0;
1551
1552         if (IS_ERR(np) || IS_ERR(gpr_np))
1553                 goto out;
1554
1555         event_remap = of_find_property(np, propname, NULL);
1556         num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
1557         if (!num_map) {
1558                 dev_dbg(sdma->dev, "no event needs to be remapped\n");
1559                 goto out;
1560         } else if (num_map % EVENT_REMAP_CELLS) {
1561                 dev_err(sdma->dev, "the property %s must modulo %d\n",
1562                                 propname, EVENT_REMAP_CELLS);
1563                 ret = -EINVAL;
1564                 goto out;
1565         }
1566
1567         gpr = syscon_node_to_regmap(gpr_np);
1568         if (IS_ERR(gpr)) {
1569                 dev_err(sdma->dev, "failed to get gpr regmap\n");
1570                 ret = PTR_ERR(gpr);
1571                 goto out;
1572         }
1573
1574         for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
1575                 ret = of_property_read_u32_index(np, propname, i, &reg);
1576                 if (ret) {
1577                         dev_err(sdma->dev, "failed to read property %s index %d\n",
1578                                         propname, i);
1579                         goto out;
1580                 }
1581
1582                 ret = of_property_read_u32_index(np, propname, i + 1, &shift);
1583                 if (ret) {
1584                         dev_err(sdma->dev, "failed to read property %s index %d\n",
1585                                         propname, i + 1);
1586                         goto out;
1587                 }
1588
1589                 ret = of_property_read_u32_index(np, propname, i + 2, &val);
1590                 if (ret) {
1591                         dev_err(sdma->dev, "failed to read property %s index %d\n",
1592                                         propname, i + 2);
1593                         goto out;
1594                 }
1595
1596                 regmap_update_bits(gpr, reg, BIT(shift), val << shift);
1597         }
1598
1599 out:
1600         if (!IS_ERR(gpr_np))
1601                 of_node_put(gpr_np);
1602
1603         return ret;
1604 }
1605
1606 static int sdma_get_firmware(struct sdma_engine *sdma,
1607                 const char *fw_name)
1608 {
1609         int ret;
1610
1611         ret = request_firmware_nowait(THIS_MODULE,
1612                         FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1613                         GFP_KERNEL, sdma, sdma_load_firmware);
1614
1615         return ret;
1616 }
1617
1618 static int sdma_init(struct sdma_engine *sdma)
1619 {
1620         int i, ret;
1621         dma_addr_t ccb_phys;
1622
1623         ret = clk_enable(sdma->clk_ipg);
1624         if (ret)
1625                 return ret;
1626         ret = clk_enable(sdma->clk_ahb);
1627         if (ret)
1628                 goto disable_clk_ipg;
1629
1630         /* Be sure SDMA has not started yet */
1631         writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1632
1633         sdma->channel_control = dma_alloc_coherent(NULL,
1634                         MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1635                         sizeof(struct sdma_context_data),
1636                         &ccb_phys, GFP_KERNEL);
1637
1638         if (!sdma->channel_control) {
1639                 ret = -ENOMEM;
1640                 goto err_dma_alloc;
1641         }
1642
1643         sdma->context = (void *)sdma->channel_control +
1644                 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1645         sdma->context_phys = ccb_phys +
1646                 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1647
1648         /* Zero-out the CCB structures array just allocated */
1649         memset(sdma->channel_control, 0,
1650                         MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1651
1652         /* disable all channels */
1653         for (i = 0; i < sdma->drvdata->num_events; i++)
1654                 writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1655
1656         /* All channels have priority 0 */
1657         for (i = 0; i < MAX_DMA_CHANNELS; i++)
1658                 writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1659
1660         ret = sdma_request_channel(&sdma->channel[0]);
1661         if (ret)
1662                 goto err_dma_alloc;
1663
1664         sdma_config_ownership(&sdma->channel[0], false, true, false);
1665
1666         /* Set Command Channel (Channel Zero) */
1667         writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1668
1669         /* Set bits of CONFIG register but with static context switching */
1670         /* FIXME: Check whether to set ACR bit depending on clock ratios */
1671         writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1672
1673         writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1674
1675         /* Initializes channel's priorities */
1676         sdma_set_channel_priority(&sdma->channel[0], 7);
1677
1678         clk_disable(sdma->clk_ipg);
1679         clk_disable(sdma->clk_ahb);
1680
1681         return 0;
1682
1683 err_dma_alloc:
1684         clk_disable(sdma->clk_ahb);
1685 disable_clk_ipg:
1686         clk_disable(sdma->clk_ipg);
1687         dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1688         return ret;
1689 }
1690
1691 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
1692 {
1693         struct sdma_channel *sdmac = to_sdma_chan(chan);
1694         struct imx_dma_data *data = fn_param;
1695
1696         if (!imx_dma_is_general_purpose(chan))
1697                 return false;
1698
1699         sdmac->data = *data;
1700         chan->private = &sdmac->data;
1701
1702         return true;
1703 }
1704
1705 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
1706                                    struct of_dma *ofdma)
1707 {
1708         struct sdma_engine *sdma = ofdma->of_dma_data;
1709         dma_cap_mask_t mask = sdma->dma_device.cap_mask;
1710         struct imx_dma_data data;
1711
1712         if (dma_spec->args_count != 3)
1713                 return NULL;
1714
1715         data.dma_request = dma_spec->args[0];
1716         data.peripheral_type = dma_spec->args[1];
1717         data.priority = dma_spec->args[2];
1718         /*
1719          * init dma_request2 to zero, which is not used by the dts.
1720          * For P2P, dma_request2 is init from dma_request_channel(),
1721          * chan->private will point to the imx_dma_data, and in
1722          * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
1723          * be set to sdmac->event_id1.
1724          */
1725         data.dma_request2 = 0;
1726
1727         return dma_request_channel(mask, sdma_filter_fn, &data);
1728 }
1729
1730 static int sdma_probe(struct platform_device *pdev)
1731 {
1732         const struct of_device_id *of_id =
1733                         of_match_device(sdma_dt_ids, &pdev->dev);
1734         struct device_node *np = pdev->dev.of_node;
1735         struct device_node *spba_bus;
1736         const char *fw_name;
1737         int ret;
1738         int irq;
1739         struct resource *iores;
1740         struct resource spba_res;
1741         struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1742         int i;
1743         struct sdma_engine *sdma;
1744         s32 *saddr_arr;
1745         const struct sdma_driver_data *drvdata = NULL;
1746
1747         if (of_id)
1748                 drvdata = of_id->data;
1749         else if (pdev->id_entry)
1750                 drvdata = (void *)pdev->id_entry->driver_data;
1751
1752         if (!drvdata) {
1753                 dev_err(&pdev->dev, "unable to find driver data\n");
1754                 return -EINVAL;
1755         }
1756
1757         ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1758         if (ret)
1759                 return ret;
1760
1761         sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
1762         if (!sdma)
1763                 return -ENOMEM;
1764
1765         spin_lock_init(&sdma->channel_0_lock);
1766
1767         sdma->dev = &pdev->dev;
1768         sdma->drvdata = drvdata;
1769
1770         irq = platform_get_irq(pdev, 0);
1771         if (irq < 0)
1772                 return irq;
1773
1774         iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1775         sdma->regs = devm_ioremap_resource(&pdev->dev, iores);
1776         if (IS_ERR(sdma->regs))
1777                 return PTR_ERR(sdma->regs);
1778
1779         sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1780         if (IS_ERR(sdma->clk_ipg))
1781                 return PTR_ERR(sdma->clk_ipg);
1782
1783         sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1784         if (IS_ERR(sdma->clk_ahb))
1785                 return PTR_ERR(sdma->clk_ahb);
1786
1787         ret = clk_prepare(sdma->clk_ipg);
1788         if (ret)
1789                 return ret;
1790
1791         ret = clk_prepare(sdma->clk_ahb);
1792         if (ret)
1793                 goto err_clk;
1794
1795         ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma",
1796                                sdma);
1797         if (ret)
1798                 goto err_irq;
1799
1800         sdma->irq = irq;
1801
1802         sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1803         if (!sdma->script_addrs) {
1804                 ret = -ENOMEM;
1805                 goto err_irq;
1806         }
1807
1808         /* initially no scripts available */
1809         saddr_arr = (s32 *)sdma->script_addrs;
1810         for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1811                 saddr_arr[i] = -EINVAL;
1812
1813         dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
1814         dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1815
1816         INIT_LIST_HEAD(&sdma->dma_device.channels);
1817         /* Initialize channel parameters */
1818         for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1819                 struct sdma_channel *sdmac = &sdma->channel[i];
1820
1821                 sdmac->sdma = sdma;
1822                 spin_lock_init(&sdmac->lock);
1823
1824                 sdmac->chan.device = &sdma->dma_device;
1825                 dma_cookie_init(&sdmac->chan);
1826                 sdmac->channel = i;
1827
1828                 tasklet_init(&sdmac->tasklet, mxc_sdma_handle_channel_normal,
1829                              (unsigned long) sdmac);
1830                 /*
1831                  * Add the channel to the DMAC list. Do not add channel 0 though
1832                  * because we need it internally in the SDMA driver. This also means
1833                  * that channel 0 in dmaengine counting matches sdma channel 1.
1834                  */
1835                 if (i)
1836                         list_add_tail(&sdmac->chan.device_node,
1837                                         &sdma->dma_device.channels);
1838         }
1839
1840         ret = sdma_init(sdma);
1841         if (ret)
1842                 goto err_init;
1843
1844         ret = sdma_event_remap(sdma);
1845         if (ret)
1846                 goto err_init;
1847
1848         if (sdma->drvdata->script_addrs)
1849                 sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
1850         if (pdata && pdata->script_addrs)
1851                 sdma_add_scripts(sdma, pdata->script_addrs);
1852
1853         if (pdata) {
1854                 ret = sdma_get_firmware(sdma, pdata->fw_name);
1855                 if (ret)
1856                         dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
1857         } else {
1858                 /*
1859                  * Because that device tree does not encode ROM script address,
1860                  * the RAM script in firmware is mandatory for device tree
1861                  * probe, otherwise it fails.
1862                  */
1863                 ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
1864                                               &fw_name);
1865                 if (ret)
1866                         dev_warn(&pdev->dev, "failed to get firmware name\n");
1867                 else {
1868                         ret = sdma_get_firmware(sdma, fw_name);
1869                         if (ret)
1870                                 dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
1871                 }
1872         }
1873
1874         sdma->dma_device.dev = &pdev->dev;
1875
1876         sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
1877         sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
1878         sdma->dma_device.device_tx_status = sdma_tx_status;
1879         sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
1880         sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1881         sdma->dma_device.device_config = sdma_config;
1882         sdma->dma_device.device_terminate_all = sdma_disable_channel_with_delay;
1883         sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS;
1884         sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS;
1885         sdma->dma_device.directions = SDMA_DMA_DIRECTIONS;
1886         sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
1887         sdma->dma_device.device_issue_pending = sdma_issue_pending;
1888         sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
1889         dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1890
1891         platform_set_drvdata(pdev, sdma);
1892
1893         ret = dma_async_device_register(&sdma->dma_device);
1894         if (ret) {
1895                 dev_err(&pdev->dev, "unable to register\n");
1896                 goto err_init;
1897         }
1898
1899         if (np) {
1900                 ret = of_dma_controller_register(np, sdma_xlate, sdma);
1901                 if (ret) {
1902                         dev_err(&pdev->dev, "failed to register controller\n");
1903                         goto err_register;
1904                 }
1905
1906                 spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
1907                 ret = of_address_to_resource(spba_bus, 0, &spba_res);
1908                 if (!ret) {
1909                         sdma->spba_start_addr = spba_res.start;
1910                         sdma->spba_end_addr = spba_res.end;
1911                 }
1912                 of_node_put(spba_bus);
1913         }
1914
1915         return 0;
1916
1917 err_register:
1918         dma_async_device_unregister(&sdma->dma_device);
1919 err_init:
1920         kfree(sdma->script_addrs);
1921 err_irq:
1922         clk_unprepare(sdma->clk_ahb);
1923 err_clk:
1924         clk_unprepare(sdma->clk_ipg);
1925         return ret;
1926 }
1927
1928 static int sdma_remove(struct platform_device *pdev)
1929 {
1930         struct sdma_engine *sdma = platform_get_drvdata(pdev);
1931         int i;
1932
1933         devm_free_irq(&pdev->dev, sdma->irq, sdma);
1934         dma_async_device_unregister(&sdma->dma_device);
1935         kfree(sdma->script_addrs);
1936         clk_unprepare(sdma->clk_ahb);
1937         clk_unprepare(sdma->clk_ipg);
1938         /* Kill the tasklet */
1939         for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1940                 struct sdma_channel *sdmac = &sdma->channel[i];
1941
1942                 tasklet_kill(&sdmac->tasklet);
1943         }
1944
1945         platform_set_drvdata(pdev, NULL);
1946         return 0;
1947 }
1948
1949 static struct platform_driver sdma_driver = {
1950         .driver         = {
1951                 .name   = "imx-sdma",
1952                 .of_match_table = sdma_dt_ids,
1953         },
1954         .id_table       = sdma_devtypes,
1955         .remove         = sdma_remove,
1956         .probe          = sdma_probe,
1957 };
1958
1959 module_platform_driver(sdma_driver);
1960
1961 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
1962 MODULE_DESCRIPTION("i.MX SDMA driver");
1963 #if IS_ENABLED(CONFIG_SOC_IMX6Q)
1964 MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin");
1965 #endif
1966 #if IS_ENABLED(CONFIG_SOC_IMX7D)
1967 MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin");
1968 #endif
1969 MODULE_LICENSE("GPL");