mm: update get_user_pages_longterm to migrate pages allocated from CMA region
[linux-2.6-block.git] / drivers / dma / hsu / hsu.c
1 /*
2  * Core driver for the High Speed UART DMA
3  *
4  * Copyright (C) 2015 Intel Corporation
5  * Author: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
6  *
7  * Partially based on the bits found in drivers/tty/serial/mfd.c.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13
14 /*
15  * DMA channel allocation:
16  * 1. Even number chans are used for DMA Read (UART TX), odd chans for DMA
17  *    Write (UART RX).
18  * 2. 0/1 channel are assigned to port 0, 2/3 chan to port 1, 4/5 chan to
19  *    port 3, and so on.
20  */
21
22 #include <linux/delay.h>
23 #include <linux/dmaengine.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28
29 #include "hsu.h"
30
31 #define HSU_DMA_BUSWIDTHS                               \
32         BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED)       |       \
33         BIT(DMA_SLAVE_BUSWIDTH_1_BYTE)          |       \
34         BIT(DMA_SLAVE_BUSWIDTH_2_BYTES)         |       \
35         BIT(DMA_SLAVE_BUSWIDTH_3_BYTES)         |       \
36         BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)         |       \
37         BIT(DMA_SLAVE_BUSWIDTH_8_BYTES)         |       \
38         BIT(DMA_SLAVE_BUSWIDTH_16_BYTES)
39
40 static inline void hsu_chan_disable(struct hsu_dma_chan *hsuc)
41 {
42         hsu_chan_writel(hsuc, HSU_CH_CR, 0);
43 }
44
45 static inline void hsu_chan_enable(struct hsu_dma_chan *hsuc)
46 {
47         u32 cr = HSU_CH_CR_CHA;
48
49         if (hsuc->direction == DMA_MEM_TO_DEV)
50                 cr &= ~HSU_CH_CR_CHD;
51         else if (hsuc->direction == DMA_DEV_TO_MEM)
52                 cr |= HSU_CH_CR_CHD;
53
54         hsu_chan_writel(hsuc, HSU_CH_CR, cr);
55 }
56
57 static void hsu_dma_chan_start(struct hsu_dma_chan *hsuc)
58 {
59         struct dma_slave_config *config = &hsuc->config;
60         struct hsu_dma_desc *desc = hsuc->desc;
61         u32 bsr = 0, mtsr = 0;  /* to shut the compiler up */
62         u32 dcr = HSU_CH_DCR_CHSOE | HSU_CH_DCR_CHEI;
63         unsigned int i, count;
64
65         if (hsuc->direction == DMA_MEM_TO_DEV) {
66                 bsr = config->dst_maxburst;
67                 mtsr = config->src_addr_width;
68         } else if (hsuc->direction == DMA_DEV_TO_MEM) {
69                 bsr = config->src_maxburst;
70                 mtsr = config->dst_addr_width;
71         }
72
73         hsu_chan_disable(hsuc);
74
75         hsu_chan_writel(hsuc, HSU_CH_DCR, 0);
76         hsu_chan_writel(hsuc, HSU_CH_BSR, bsr);
77         hsu_chan_writel(hsuc, HSU_CH_MTSR, mtsr);
78
79         /* Set descriptors */
80         count = desc->nents - desc->active;
81         for (i = 0; i < count && i < HSU_DMA_CHAN_NR_DESC; i++) {
82                 hsu_chan_writel(hsuc, HSU_CH_DxSAR(i), desc->sg[i].addr);
83                 hsu_chan_writel(hsuc, HSU_CH_DxTSR(i), desc->sg[i].len);
84
85                 /* Prepare value for DCR */
86                 dcr |= HSU_CH_DCR_DESCA(i);
87                 dcr |= HSU_CH_DCR_CHTOI(i);     /* timeout bit, see HSU Errata 1 */
88
89                 desc->active++;
90         }
91         /* Only for the last descriptor in the chain */
92         dcr |= HSU_CH_DCR_CHSOD(count - 1);
93         dcr |= HSU_CH_DCR_CHDI(count - 1);
94
95         hsu_chan_writel(hsuc, HSU_CH_DCR, dcr);
96
97         hsu_chan_enable(hsuc);
98 }
99
100 static void hsu_dma_stop_channel(struct hsu_dma_chan *hsuc)
101 {
102         hsu_chan_disable(hsuc);
103         hsu_chan_writel(hsuc, HSU_CH_DCR, 0);
104 }
105
106 static void hsu_dma_start_channel(struct hsu_dma_chan *hsuc)
107 {
108         hsu_dma_chan_start(hsuc);
109 }
110
111 static void hsu_dma_start_transfer(struct hsu_dma_chan *hsuc)
112 {
113         struct virt_dma_desc *vdesc;
114
115         /* Get the next descriptor */
116         vdesc = vchan_next_desc(&hsuc->vchan);
117         if (!vdesc) {
118                 hsuc->desc = NULL;
119                 return;
120         }
121
122         list_del(&vdesc->node);
123         hsuc->desc = to_hsu_dma_desc(vdesc);
124
125         /* Start the channel with a new descriptor */
126         hsu_dma_start_channel(hsuc);
127 }
128
129 /*
130  *      hsu_dma_get_status() - get DMA channel status
131  *      @chip: HSUART DMA chip
132  *      @nr: DMA channel number
133  *      @status: pointer for DMA Channel Status Register value
134  *
135  *      Description:
136  *      The function reads and clears the DMA Channel Status Register, checks
137  *      if it was a timeout interrupt and returns a corresponding value.
138  *
139  *      Caller should provide a valid pointer for the DMA Channel Status
140  *      Register value that will be returned in @status.
141  *
142  *      Return:
143  *      1 for DMA timeout status, 0 for other DMA status, or error code for
144  *      invalid parameters or no interrupt pending.
145  */
146 int hsu_dma_get_status(struct hsu_dma_chip *chip, unsigned short nr,
147                        u32 *status)
148 {
149         struct hsu_dma_chan *hsuc;
150         unsigned long flags;
151         u32 sr;
152
153         /* Sanity check */
154         if (nr >= chip->hsu->nr_channels)
155                 return -EINVAL;
156
157         hsuc = &chip->hsu->chan[nr];
158
159         /*
160          * No matter what situation, need read clear the IRQ status
161          * There is a bug, see Errata 5, HSD 2900918
162          */
163         spin_lock_irqsave(&hsuc->vchan.lock, flags);
164         sr = hsu_chan_readl(hsuc, HSU_CH_SR);
165         spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
166
167         /* Check if any interrupt is pending */
168         sr &= ~(HSU_CH_SR_DESCE_ANY | HSU_CH_SR_CDESC_ANY);
169         if (!sr)
170                 return -EIO;
171
172         /* Timeout IRQ, need wait some time, see Errata 2 */
173         if (sr & HSU_CH_SR_DESCTO_ANY)
174                 udelay(2);
175
176         /*
177          * At this point, at least one of Descriptor Time Out, Channel Error
178          * or Descriptor Done bits must be set. Clear the Descriptor Time Out
179          * bits and if sr is still non-zero, it must be channel error or
180          * descriptor done which are higher priority than timeout and handled
181          * in hsu_dma_do_irq(). Else, it must be a timeout.
182          */
183         sr &= ~HSU_CH_SR_DESCTO_ANY;
184
185         *status = sr;
186
187         return sr ? 0 : 1;
188 }
189 EXPORT_SYMBOL_GPL(hsu_dma_get_status);
190
191 /*
192  *      hsu_dma_do_irq() - DMA interrupt handler
193  *      @chip: HSUART DMA chip
194  *      @nr: DMA channel number
195  *      @status: Channel Status Register value
196  *
197  *      Description:
198  *      This function handles Channel Error and Descriptor Done interrupts.
199  *      This function should be called after determining that the DMA interrupt
200  *      is not a normal timeout interrupt, ie. hsu_dma_get_status() returned 0.
201  *
202  *      Return:
203  *      0 for invalid channel number, 1 otherwise.
204  */
205 int hsu_dma_do_irq(struct hsu_dma_chip *chip, unsigned short nr, u32 status)
206 {
207         struct hsu_dma_chan *hsuc;
208         struct hsu_dma_desc *desc;
209         unsigned long flags;
210
211         /* Sanity check */
212         if (nr >= chip->hsu->nr_channels)
213                 return 0;
214
215         hsuc = &chip->hsu->chan[nr];
216
217         spin_lock_irqsave(&hsuc->vchan.lock, flags);
218         desc = hsuc->desc;
219         if (desc) {
220                 if (status & HSU_CH_SR_CHE) {
221                         desc->status = DMA_ERROR;
222                 } else if (desc->active < desc->nents) {
223                         hsu_dma_start_channel(hsuc);
224                 } else {
225                         vchan_cookie_complete(&desc->vdesc);
226                         desc->status = DMA_COMPLETE;
227                         hsu_dma_start_transfer(hsuc);
228                 }
229         }
230         spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
231
232         return 1;
233 }
234 EXPORT_SYMBOL_GPL(hsu_dma_do_irq);
235
236 static struct hsu_dma_desc *hsu_dma_alloc_desc(unsigned int nents)
237 {
238         struct hsu_dma_desc *desc;
239
240         desc = kzalloc(sizeof(*desc), GFP_NOWAIT);
241         if (!desc)
242                 return NULL;
243
244         desc->sg = kcalloc(nents, sizeof(*desc->sg), GFP_NOWAIT);
245         if (!desc->sg) {
246                 kfree(desc);
247                 return NULL;
248         }
249
250         return desc;
251 }
252
253 static void hsu_dma_desc_free(struct virt_dma_desc *vdesc)
254 {
255         struct hsu_dma_desc *desc = to_hsu_dma_desc(vdesc);
256
257         kfree(desc->sg);
258         kfree(desc);
259 }
260
261 static struct dma_async_tx_descriptor *hsu_dma_prep_slave_sg(
262                 struct dma_chan *chan, struct scatterlist *sgl,
263                 unsigned int sg_len, enum dma_transfer_direction direction,
264                 unsigned long flags, void *context)
265 {
266         struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
267         struct hsu_dma_desc *desc;
268         struct scatterlist *sg;
269         unsigned int i;
270
271         desc = hsu_dma_alloc_desc(sg_len);
272         if (!desc)
273                 return NULL;
274
275         for_each_sg(sgl, sg, sg_len, i) {
276                 desc->sg[i].addr = sg_dma_address(sg);
277                 desc->sg[i].len = sg_dma_len(sg);
278
279                 desc->length += sg_dma_len(sg);
280         }
281
282         desc->nents = sg_len;
283         desc->direction = direction;
284         /* desc->active = 0 by kzalloc */
285         desc->status = DMA_IN_PROGRESS;
286
287         return vchan_tx_prep(&hsuc->vchan, &desc->vdesc, flags);
288 }
289
290 static void hsu_dma_issue_pending(struct dma_chan *chan)
291 {
292         struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
293         unsigned long flags;
294
295         spin_lock_irqsave(&hsuc->vchan.lock, flags);
296         if (vchan_issue_pending(&hsuc->vchan) && !hsuc->desc)
297                 hsu_dma_start_transfer(hsuc);
298         spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
299 }
300
301 static size_t hsu_dma_active_desc_size(struct hsu_dma_chan *hsuc)
302 {
303         struct hsu_dma_desc *desc = hsuc->desc;
304         size_t bytes = 0;
305         int i;
306
307         for (i = desc->active; i < desc->nents; i++)
308                 bytes += desc->sg[i].len;
309
310         i = HSU_DMA_CHAN_NR_DESC - 1;
311         do {
312                 bytes += hsu_chan_readl(hsuc, HSU_CH_DxTSR(i));
313         } while (--i >= 0);
314
315         return bytes;
316 }
317
318 static enum dma_status hsu_dma_tx_status(struct dma_chan *chan,
319         dma_cookie_t cookie, struct dma_tx_state *state)
320 {
321         struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
322         struct virt_dma_desc *vdesc;
323         enum dma_status status;
324         size_t bytes;
325         unsigned long flags;
326
327         status = dma_cookie_status(chan, cookie, state);
328         if (status == DMA_COMPLETE)
329                 return status;
330
331         spin_lock_irqsave(&hsuc->vchan.lock, flags);
332         vdesc = vchan_find_desc(&hsuc->vchan, cookie);
333         if (hsuc->desc && cookie == hsuc->desc->vdesc.tx.cookie) {
334                 bytes = hsu_dma_active_desc_size(hsuc);
335                 dma_set_residue(state, bytes);
336                 status = hsuc->desc->status;
337         } else if (vdesc) {
338                 bytes = to_hsu_dma_desc(vdesc)->length;
339                 dma_set_residue(state, bytes);
340         }
341         spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
342
343         return status;
344 }
345
346 static int hsu_dma_slave_config(struct dma_chan *chan,
347                                 struct dma_slave_config *config)
348 {
349         struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
350
351         memcpy(&hsuc->config, config, sizeof(hsuc->config));
352
353         return 0;
354 }
355
356 static int hsu_dma_pause(struct dma_chan *chan)
357 {
358         struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
359         unsigned long flags;
360
361         spin_lock_irqsave(&hsuc->vchan.lock, flags);
362         if (hsuc->desc && hsuc->desc->status == DMA_IN_PROGRESS) {
363                 hsu_chan_disable(hsuc);
364                 hsuc->desc->status = DMA_PAUSED;
365         }
366         spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
367
368         return 0;
369 }
370
371 static int hsu_dma_resume(struct dma_chan *chan)
372 {
373         struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
374         unsigned long flags;
375
376         spin_lock_irqsave(&hsuc->vchan.lock, flags);
377         if (hsuc->desc && hsuc->desc->status == DMA_PAUSED) {
378                 hsuc->desc->status = DMA_IN_PROGRESS;
379                 hsu_chan_enable(hsuc);
380         }
381         spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
382
383         return 0;
384 }
385
386 static int hsu_dma_terminate_all(struct dma_chan *chan)
387 {
388         struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
389         unsigned long flags;
390         LIST_HEAD(head);
391
392         spin_lock_irqsave(&hsuc->vchan.lock, flags);
393
394         hsu_dma_stop_channel(hsuc);
395         if (hsuc->desc) {
396                 hsu_dma_desc_free(&hsuc->desc->vdesc);
397                 hsuc->desc = NULL;
398         }
399
400         vchan_get_all_descriptors(&hsuc->vchan, &head);
401         spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
402         vchan_dma_desc_free_list(&hsuc->vchan, &head);
403
404         return 0;
405 }
406
407 static void hsu_dma_free_chan_resources(struct dma_chan *chan)
408 {
409         vchan_free_chan_resources(to_virt_chan(chan));
410 }
411
412 static void hsu_dma_synchronize(struct dma_chan *chan)
413 {
414         struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
415
416         vchan_synchronize(&hsuc->vchan);
417 }
418
419 int hsu_dma_probe(struct hsu_dma_chip *chip)
420 {
421         struct hsu_dma *hsu;
422         void __iomem *addr = chip->regs + chip->offset;
423         unsigned short i;
424         int ret;
425
426         hsu = devm_kzalloc(chip->dev, sizeof(*hsu), GFP_KERNEL);
427         if (!hsu)
428                 return -ENOMEM;
429
430         chip->hsu = hsu;
431
432         /* Calculate nr_channels from the IO space length */
433         hsu->nr_channels = (chip->length - chip->offset) / HSU_DMA_CHAN_LENGTH;
434
435         hsu->chan = devm_kcalloc(chip->dev, hsu->nr_channels,
436                                  sizeof(*hsu->chan), GFP_KERNEL);
437         if (!hsu->chan)
438                 return -ENOMEM;
439
440         INIT_LIST_HEAD(&hsu->dma.channels);
441         for (i = 0; i < hsu->nr_channels; i++) {
442                 struct hsu_dma_chan *hsuc = &hsu->chan[i];
443
444                 hsuc->vchan.desc_free = hsu_dma_desc_free;
445                 vchan_init(&hsuc->vchan, &hsu->dma);
446
447                 hsuc->direction = (i & 0x1) ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
448                 hsuc->reg = addr + i * HSU_DMA_CHAN_LENGTH;
449         }
450
451         dma_cap_set(DMA_SLAVE, hsu->dma.cap_mask);
452         dma_cap_set(DMA_PRIVATE, hsu->dma.cap_mask);
453
454         hsu->dma.device_free_chan_resources = hsu_dma_free_chan_resources;
455
456         hsu->dma.device_prep_slave_sg = hsu_dma_prep_slave_sg;
457
458         hsu->dma.device_issue_pending = hsu_dma_issue_pending;
459         hsu->dma.device_tx_status = hsu_dma_tx_status;
460
461         hsu->dma.device_config = hsu_dma_slave_config;
462         hsu->dma.device_pause = hsu_dma_pause;
463         hsu->dma.device_resume = hsu_dma_resume;
464         hsu->dma.device_terminate_all = hsu_dma_terminate_all;
465         hsu->dma.device_synchronize = hsu_dma_synchronize;
466
467         hsu->dma.src_addr_widths = HSU_DMA_BUSWIDTHS;
468         hsu->dma.dst_addr_widths = HSU_DMA_BUSWIDTHS;
469         hsu->dma.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
470         hsu->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
471
472         hsu->dma.dev = chip->dev;
473
474         dma_set_max_seg_size(hsu->dma.dev, HSU_CH_DxTSR_MASK);
475
476         ret = dma_async_device_register(&hsu->dma);
477         if (ret)
478                 return ret;
479
480         dev_info(chip->dev, "Found HSU DMA, %d channels\n", hsu->nr_channels);
481         return 0;
482 }
483 EXPORT_SYMBOL_GPL(hsu_dma_probe);
484
485 int hsu_dma_remove(struct hsu_dma_chip *chip)
486 {
487         struct hsu_dma *hsu = chip->hsu;
488         unsigned short i;
489
490         dma_async_device_unregister(&hsu->dma);
491
492         for (i = 0; i < hsu->nr_channels; i++) {
493                 struct hsu_dma_chan *hsuc = &hsu->chan[i];
494
495                 tasklet_kill(&hsuc->vchan.task);
496         }
497
498         return 0;
499 }
500 EXPORT_SYMBOL_GPL(hsu_dma_remove);
501
502 MODULE_LICENSE("GPL v2");
503 MODULE_DESCRIPTION("High Speed UART DMA core driver");
504 MODULE_AUTHOR("Andy Shevchenko <andriy.shevchenko@linux.intel.com>");