Merge tag 'char-misc-4.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregk...
[linux-2.6-block.git] / drivers / crypto / ux500 / hash / hash_core.c
1 /*
2  * Cryptographic API.
3  * Support for Nomadik hardware crypto engine.
4
5  * Copyright (C) ST-Ericsson SA 2010
6  * Author: Shujuan Chen <shujuan.chen@stericsson.com> for ST-Ericsson
7  * Author: Joakim Bech <joakim.xx.bech@stericsson.com> for ST-Ericsson
8  * Author: Berne Hebark <berne.herbark@stericsson.com> for ST-Ericsson.
9  * Author: Niklas Hernaeus <niklas.hernaeus@stericsson.com> for ST-Ericsson.
10  * Author: Andreas Westin <andreas.westin@stericsson.com> for ST-Ericsson.
11  * License terms: GNU General Public License (GPL) version 2
12  */
13
14 #define pr_fmt(fmt) "hashX hashX: " fmt
15
16 #include <linux/clk.h>
17 #include <linux/device.h>
18 #include <linux/err.h>
19 #include <linux/init.h>
20 #include <linux/io.h>
21 #include <linux/klist.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/mod_devicetable.h>
25 #include <linux/platform_device.h>
26 #include <linux/crypto.h>
27
28 #include <linux/regulator/consumer.h>
29 #include <linux/dmaengine.h>
30 #include <linux/bitops.h>
31
32 #include <crypto/internal/hash.h>
33 #include <crypto/sha.h>
34 #include <crypto/scatterwalk.h>
35 #include <crypto/algapi.h>
36
37 #include <linux/platform_data/crypto-ux500.h>
38
39 #include "hash_alg.h"
40
41 static int hash_mode;
42 module_param(hash_mode, int, 0);
43 MODULE_PARM_DESC(hash_mode, "CPU or DMA mode. CPU = 0 (default), DMA = 1");
44
45 /* HMAC-SHA1, no key */
46 static const u8 zero_message_hmac_sha1[SHA1_DIGEST_SIZE] = {
47         0xfb, 0xdb, 0x1d, 0x1b, 0x18, 0xaa, 0x6c, 0x08,
48         0x32, 0x4b, 0x7d, 0x64, 0xb7, 0x1f, 0xb7, 0x63,
49         0x70, 0x69, 0x0e, 0x1d
50 };
51
52 /* HMAC-SHA256, no key */
53 static const u8 zero_message_hmac_sha256[SHA256_DIGEST_SIZE] = {
54         0xb6, 0x13, 0x67, 0x9a, 0x08, 0x14, 0xd9, 0xec,
55         0x77, 0x2f, 0x95, 0xd7, 0x78, 0xc3, 0x5f, 0xc5,
56         0xff, 0x16, 0x97, 0xc4, 0x93, 0x71, 0x56, 0x53,
57         0xc6, 0xc7, 0x12, 0x14, 0x42, 0x92, 0xc5, 0xad
58 };
59
60 /**
61  * struct hash_driver_data - data specific to the driver.
62  *
63  * @device_list:        A list of registered devices to choose from.
64  * @device_allocation:  A semaphore initialized with number of devices.
65  */
66 struct hash_driver_data {
67         struct klist            device_list;
68         struct semaphore        device_allocation;
69 };
70
71 static struct hash_driver_data  driver_data;
72
73 /* Declaration of functions */
74 /**
75  * hash_messagepad - Pads a message and write the nblw bits.
76  * @device_data:        Structure for the hash device.
77  * @message:            Last word of a message
78  * @index_bytes:        The number of bytes in the last message
79  *
80  * This function manages the final part of the digest calculation, when less
81  * than 512 bits (64 bytes) remain in message. This means index_bytes < 64.
82  *
83  */
84 static void hash_messagepad(struct hash_device_data *device_data,
85                             const u32 *message, u8 index_bytes);
86
87 /**
88  * release_hash_device - Releases a previously allocated hash device.
89  * @device_data:        Structure for the hash device.
90  *
91  */
92 static void release_hash_device(struct hash_device_data *device_data)
93 {
94         spin_lock(&device_data->ctx_lock);
95         device_data->current_ctx->device = NULL;
96         device_data->current_ctx = NULL;
97         spin_unlock(&device_data->ctx_lock);
98
99         /*
100          * The down_interruptible part for this semaphore is called in
101          * cryp_get_device_data.
102          */
103         up(&driver_data.device_allocation);
104 }
105
106 static void hash_dma_setup_channel(struct hash_device_data *device_data,
107                                    struct device *dev)
108 {
109         struct hash_platform_data *platform_data = dev->platform_data;
110         struct dma_slave_config conf = {
111                 .direction = DMA_MEM_TO_DEV,
112                 .dst_addr = device_data->phybase + HASH_DMA_FIFO,
113                 .dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES,
114                 .dst_maxburst = 16,
115         };
116
117         dma_cap_zero(device_data->dma.mask);
118         dma_cap_set(DMA_SLAVE, device_data->dma.mask);
119
120         device_data->dma.cfg_mem2hash = platform_data->mem_to_engine;
121         device_data->dma.chan_mem2hash =
122                 dma_request_channel(device_data->dma.mask,
123                                     platform_data->dma_filter,
124                                     device_data->dma.cfg_mem2hash);
125
126         dmaengine_slave_config(device_data->dma.chan_mem2hash, &conf);
127
128         init_completion(&device_data->dma.complete);
129 }
130
131 static void hash_dma_callback(void *data)
132 {
133         struct hash_ctx *ctx = data;
134
135         complete(&ctx->device->dma.complete);
136 }
137
138 static int hash_set_dma_transfer(struct hash_ctx *ctx, struct scatterlist *sg,
139                                  int len, enum dma_data_direction direction)
140 {
141         struct dma_async_tx_descriptor *desc = NULL;
142         struct dma_chan *channel = NULL;
143         dma_cookie_t cookie;
144
145         if (direction != DMA_TO_DEVICE) {
146                 dev_err(ctx->device->dev, "%s: Invalid DMA direction\n",
147                         __func__);
148                 return -EFAULT;
149         }
150
151         sg->length = ALIGN(sg->length, HASH_DMA_ALIGN_SIZE);
152
153         channel = ctx->device->dma.chan_mem2hash;
154         ctx->device->dma.sg = sg;
155         ctx->device->dma.sg_len = dma_map_sg(channel->device->dev,
156                         ctx->device->dma.sg, ctx->device->dma.nents,
157                         direction);
158
159         if (!ctx->device->dma.sg_len) {
160                 dev_err(ctx->device->dev, "%s: Could not map the sg list (TO_DEVICE)\n",
161                         __func__);
162                 return -EFAULT;
163         }
164
165         dev_dbg(ctx->device->dev, "%s: Setting up DMA for buffer (TO_DEVICE)\n",
166                 __func__);
167         desc = dmaengine_prep_slave_sg(channel,
168                         ctx->device->dma.sg, ctx->device->dma.sg_len,
169                         direction, DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
170         if (!desc) {
171                 dev_err(ctx->device->dev,
172                         "%s: dmaengine_prep_slave_sg() failed!\n", __func__);
173                 return -EFAULT;
174         }
175
176         desc->callback = hash_dma_callback;
177         desc->callback_param = ctx;
178
179         cookie = dmaengine_submit(desc);
180         dma_async_issue_pending(channel);
181
182         return 0;
183 }
184
185 static void hash_dma_done(struct hash_ctx *ctx)
186 {
187         struct dma_chan *chan;
188
189         chan = ctx->device->dma.chan_mem2hash;
190         dmaengine_terminate_all(chan);
191         dma_unmap_sg(chan->device->dev, ctx->device->dma.sg,
192                      ctx->device->dma.sg_len, DMA_TO_DEVICE);
193 }
194
195 static int hash_dma_write(struct hash_ctx *ctx,
196                           struct scatterlist *sg, int len)
197 {
198         int error = hash_set_dma_transfer(ctx, sg, len, DMA_TO_DEVICE);
199         if (error) {
200                 dev_dbg(ctx->device->dev,
201                         "%s: hash_set_dma_transfer() failed\n", __func__);
202                 return error;
203         }
204
205         return len;
206 }
207
208 /**
209  * get_empty_message_digest - Returns a pre-calculated digest for
210  * the empty message.
211  * @device_data:        Structure for the hash device.
212  * @zero_hash:          Buffer to return the empty message digest.
213  * @zero_hash_size:     Hash size of the empty message digest.
214  * @zero_digest:        True if zero_digest returned.
215  */
216 static int get_empty_message_digest(
217                 struct hash_device_data *device_data,
218                 u8 *zero_hash, u32 *zero_hash_size, bool *zero_digest)
219 {
220         int ret = 0;
221         struct hash_ctx *ctx = device_data->current_ctx;
222         *zero_digest = false;
223
224         /**
225          * Caller responsible for ctx != NULL.
226          */
227
228         if (HASH_OPER_MODE_HASH == ctx->config.oper_mode) {
229                 if (HASH_ALGO_SHA1 == ctx->config.algorithm) {
230                         memcpy(zero_hash, &sha1_zero_message_hash[0],
231                                SHA1_DIGEST_SIZE);
232                         *zero_hash_size = SHA1_DIGEST_SIZE;
233                         *zero_digest = true;
234                 } else if (HASH_ALGO_SHA256 ==
235                                 ctx->config.algorithm) {
236                         memcpy(zero_hash, &sha256_zero_message_hash[0],
237                                SHA256_DIGEST_SIZE);
238                         *zero_hash_size = SHA256_DIGEST_SIZE;
239                         *zero_digest = true;
240                 } else {
241                         dev_err(device_data->dev, "%s: Incorrect algorithm!\n",
242                                 __func__);
243                         ret = -EINVAL;
244                         goto out;
245                 }
246         } else if (HASH_OPER_MODE_HMAC == ctx->config.oper_mode) {
247                 if (!ctx->keylen) {
248                         if (HASH_ALGO_SHA1 == ctx->config.algorithm) {
249                                 memcpy(zero_hash, &zero_message_hmac_sha1[0],
250                                        SHA1_DIGEST_SIZE);
251                                 *zero_hash_size = SHA1_DIGEST_SIZE;
252                                 *zero_digest = true;
253                         } else if (HASH_ALGO_SHA256 == ctx->config.algorithm) {
254                                 memcpy(zero_hash, &zero_message_hmac_sha256[0],
255                                        SHA256_DIGEST_SIZE);
256                                 *zero_hash_size = SHA256_DIGEST_SIZE;
257                                 *zero_digest = true;
258                         } else {
259                                 dev_err(device_data->dev, "%s: Incorrect algorithm!\n",
260                                         __func__);
261                                 ret = -EINVAL;
262                                 goto out;
263                         }
264                 } else {
265                         dev_dbg(device_data->dev,
266                                 "%s: Continue hash calculation, since hmac key available\n",
267                                 __func__);
268                 }
269         }
270 out:
271
272         return ret;
273 }
274
275 /**
276  * hash_disable_power - Request to disable power and clock.
277  * @device_data:        Structure for the hash device.
278  * @save_device_state:  If true, saves the current hw state.
279  *
280  * This function request for disabling power (regulator) and clock,
281  * and could also save current hw state.
282  */
283 static int hash_disable_power(struct hash_device_data *device_data,
284                               bool save_device_state)
285 {
286         int ret = 0;
287         struct device *dev = device_data->dev;
288
289         spin_lock(&device_data->power_state_lock);
290         if (!device_data->power_state)
291                 goto out;
292
293         if (save_device_state) {
294                 hash_save_state(device_data,
295                                 &device_data->state);
296                 device_data->restore_dev_state = true;
297         }
298
299         clk_disable(device_data->clk);
300         ret = regulator_disable(device_data->regulator);
301         if (ret)
302                 dev_err(dev, "%s: regulator_disable() failed!\n", __func__);
303
304         device_data->power_state = false;
305
306 out:
307         spin_unlock(&device_data->power_state_lock);
308
309         return ret;
310 }
311
312 /**
313  * hash_enable_power - Request to enable power and clock.
314  * @device_data:                Structure for the hash device.
315  * @restore_device_state:       If true, restores a previous saved hw state.
316  *
317  * This function request for enabling power (regulator) and clock,
318  * and could also restore a previously saved hw state.
319  */
320 static int hash_enable_power(struct hash_device_data *device_data,
321                              bool restore_device_state)
322 {
323         int ret = 0;
324         struct device *dev = device_data->dev;
325
326         spin_lock(&device_data->power_state_lock);
327         if (!device_data->power_state) {
328                 ret = regulator_enable(device_data->regulator);
329                 if (ret) {
330                         dev_err(dev, "%s: regulator_enable() failed!\n",
331                                 __func__);
332                         goto out;
333                 }
334                 ret = clk_enable(device_data->clk);
335                 if (ret) {
336                         dev_err(dev, "%s: clk_enable() failed!\n", __func__);
337                         ret = regulator_disable(
338                                         device_data->regulator);
339                         goto out;
340                 }
341                 device_data->power_state = true;
342         }
343
344         if (device_data->restore_dev_state) {
345                 if (restore_device_state) {
346                         device_data->restore_dev_state = false;
347                         hash_resume_state(device_data, &device_data->state);
348                 }
349         }
350 out:
351         spin_unlock(&device_data->power_state_lock);
352
353         return ret;
354 }
355
356 /**
357  * hash_get_device_data - Checks for an available hash device and return it.
358  * @hash_ctx:           Structure for the hash context.
359  * @device_data:        Structure for the hash device.
360  *
361  * This function check for an available hash device and return it to
362  * the caller.
363  * Note! Caller need to release the device, calling up().
364  */
365 static int hash_get_device_data(struct hash_ctx *ctx,
366                                 struct hash_device_data **device_data)
367 {
368         int                     ret;
369         struct klist_iter       device_iterator;
370         struct klist_node       *device_node;
371         struct hash_device_data *local_device_data = NULL;
372
373         /* Wait until a device is available */
374         ret = down_interruptible(&driver_data.device_allocation);
375         if (ret)
376                 return ret;  /* Interrupted */
377
378         /* Select a device */
379         klist_iter_init(&driver_data.device_list, &device_iterator);
380         device_node = klist_next(&device_iterator);
381         while (device_node) {
382                 local_device_data = container_of(device_node,
383                                            struct hash_device_data, list_node);
384                 spin_lock(&local_device_data->ctx_lock);
385                 /* current_ctx allocates a device, NULL = unallocated */
386                 if (local_device_data->current_ctx) {
387                         device_node = klist_next(&device_iterator);
388                 } else {
389                         local_device_data->current_ctx = ctx;
390                         ctx->device = local_device_data;
391                         spin_unlock(&local_device_data->ctx_lock);
392                         break;
393                 }
394                 spin_unlock(&local_device_data->ctx_lock);
395         }
396         klist_iter_exit(&device_iterator);
397
398         if (!device_node) {
399                 /**
400                  * No free device found.
401                  * Since we allocated a device with down_interruptible, this
402                  * should not be able to happen.
403                  * Number of available devices, which are contained in
404                  * device_allocation, is therefore decremented by not doing
405                  * an up(device_allocation).
406                  */
407                 return -EBUSY;
408         }
409
410         *device_data = local_device_data;
411
412         return 0;
413 }
414
415 /**
416  * hash_hw_write_key - Writes the key to the hardware registries.
417  *
418  * @device_data:        Structure for the hash device.
419  * @key:                Key to be written.
420  * @keylen:             The lengt of the key.
421  *
422  * Note! This function DOES NOT write to the NBLW registry, even though
423  * specified in the the hw design spec. Either due to incorrect info in the
424  * spec or due to a bug in the hw.
425  */
426 static void hash_hw_write_key(struct hash_device_data *device_data,
427                               const u8 *key, unsigned int keylen)
428 {
429         u32 word = 0;
430         int nwords = 1;
431
432         HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
433
434         while (keylen >= 4) {
435                 u32 *key_word = (u32 *)key;
436
437                 HASH_SET_DIN(key_word, nwords);
438                 keylen -= 4;
439                 key += 4;
440         }
441
442         /* Take care of the remaining bytes in the last word */
443         if (keylen) {
444                 word = 0;
445                 while (keylen) {
446                         word |= (key[keylen - 1] << (8 * (keylen - 1)));
447                         keylen--;
448                 }
449
450                 HASH_SET_DIN(&word, nwords);
451         }
452
453         while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
454                 cpu_relax();
455
456         HASH_SET_DCAL;
457
458         while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
459                 cpu_relax();
460 }
461
462 /**
463  * init_hash_hw - Initialise the hash hardware for a new calculation.
464  * @device_data:        Structure for the hash device.
465  * @ctx:                The hash context.
466  *
467  * This function will enable the bits needed to clear and start a new
468  * calculation.
469  */
470 static int init_hash_hw(struct hash_device_data *device_data,
471                         struct hash_ctx *ctx)
472 {
473         int ret = 0;
474
475         ret = hash_setconfiguration(device_data, &ctx->config);
476         if (ret) {
477                 dev_err(device_data->dev, "%s: hash_setconfiguration() failed!\n",
478                         __func__);
479                 return ret;
480         }
481
482         hash_begin(device_data, ctx);
483
484         if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC)
485                 hash_hw_write_key(device_data, ctx->key, ctx->keylen);
486
487         return ret;
488 }
489
490 /**
491  * hash_get_nents - Return number of entries (nents) in scatterlist (sg).
492  *
493  * @sg:         Scatterlist.
494  * @size:       Size in bytes.
495  * @aligned:    True if sg data aligned to work in DMA mode.
496  *
497  */
498 static int hash_get_nents(struct scatterlist *sg, int size, bool *aligned)
499 {
500         int nents = 0;
501         bool aligned_data = true;
502
503         while (size > 0 && sg) {
504                 nents++;
505                 size -= sg->length;
506
507                 /* hash_set_dma_transfer will align last nent */
508                 if ((aligned && !IS_ALIGNED(sg->offset, HASH_DMA_ALIGN_SIZE)) ||
509                     (!IS_ALIGNED(sg->length, HASH_DMA_ALIGN_SIZE) && size > 0))
510                         aligned_data = false;
511
512                 sg = sg_next(sg);
513         }
514
515         if (aligned)
516                 *aligned = aligned_data;
517
518         if (size != 0)
519                 return -EFAULT;
520
521         return nents;
522 }
523
524 /**
525  * hash_dma_valid_data - checks for dma valid sg data.
526  * @sg:         Scatterlist.
527  * @datasize:   Datasize in bytes.
528  *
529  * NOTE! This function checks for dma valid sg data, since dma
530  * only accept datasizes of even wordsize.
531  */
532 static bool hash_dma_valid_data(struct scatterlist *sg, int datasize)
533 {
534         bool aligned;
535
536         /* Need to include at least one nent, else error */
537         if (hash_get_nents(sg, datasize, &aligned) < 1)
538                 return false;
539
540         return aligned;
541 }
542
543 /**
544  * hash_init - Common hash init function for SHA1/SHA2 (SHA256).
545  * @req: The hash request for the job.
546  *
547  * Initialize structures.
548  */
549 static int hash_init(struct ahash_request *req)
550 {
551         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
552         struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
553         struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
554
555         if (!ctx->key)
556                 ctx->keylen = 0;
557
558         memset(&req_ctx->state, 0, sizeof(struct hash_state));
559         req_ctx->updated = 0;
560         if (hash_mode == HASH_MODE_DMA) {
561                 if (req->nbytes < HASH_DMA_ALIGN_SIZE) {
562                         req_ctx->dma_mode = false; /* Don't use DMA */
563
564                         pr_debug("%s: DMA mode, but direct to CPU mode for data size < %d\n",
565                                  __func__, HASH_DMA_ALIGN_SIZE);
566                 } else {
567                         if (req->nbytes >= HASH_DMA_PERFORMANCE_MIN_SIZE &&
568                             hash_dma_valid_data(req->src, req->nbytes)) {
569                                 req_ctx->dma_mode = true;
570                         } else {
571                                 req_ctx->dma_mode = false;
572                                 pr_debug("%s: DMA mode, but use CPU mode for datalength < %d or non-aligned data, except in last nent\n",
573                                          __func__,
574                                          HASH_DMA_PERFORMANCE_MIN_SIZE);
575                         }
576                 }
577         }
578         return 0;
579 }
580
581 /**
582  * hash_processblock - This function processes a single block of 512 bits (64
583  *                     bytes), word aligned, starting at message.
584  * @device_data:        Structure for the hash device.
585  * @message:            Block (512 bits) of message to be written to
586  *                      the HASH hardware.
587  *
588  */
589 static void hash_processblock(struct hash_device_data *device_data,
590                               const u32 *message, int length)
591 {
592         int len = length / HASH_BYTES_PER_WORD;
593         /*
594          * NBLW bits. Reset the number of bits in last word (NBLW).
595          */
596         HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
597
598         /*
599          * Write message data to the HASH_DIN register.
600          */
601         HASH_SET_DIN(message, len);
602 }
603
604 /**
605  * hash_messagepad - Pads a message and write the nblw bits.
606  * @device_data:        Structure for the hash device.
607  * @message:            Last word of a message.
608  * @index_bytes:        The number of bytes in the last message.
609  *
610  * This function manages the final part of the digest calculation, when less
611  * than 512 bits (64 bytes) remain in message. This means index_bytes < 64.
612  *
613  */
614 static void hash_messagepad(struct hash_device_data *device_data,
615                             const u32 *message, u8 index_bytes)
616 {
617         int nwords = 1;
618
619         /*
620          * Clear hash str register, only clear NBLW
621          * since DCAL will be reset by hardware.
622          */
623         HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
624
625         /* Main loop */
626         while (index_bytes >= 4) {
627                 HASH_SET_DIN(message, nwords);
628                 index_bytes -= 4;
629                 message++;
630         }
631
632         if (index_bytes)
633                 HASH_SET_DIN(message, nwords);
634
635         while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
636                 cpu_relax();
637
638         /* num_of_bytes == 0 => NBLW <- 0 (32 bits valid in DATAIN) */
639         HASH_SET_NBLW(index_bytes * 8);
640         dev_dbg(device_data->dev, "%s: DIN=0x%08x NBLW=%lu\n",
641                 __func__, readl_relaxed(&device_data->base->din),
642                 readl_relaxed(&device_data->base->str) & HASH_STR_NBLW_MASK);
643         HASH_SET_DCAL;
644         dev_dbg(device_data->dev, "%s: after dcal -> DIN=0x%08x NBLW=%lu\n",
645                 __func__, readl_relaxed(&device_data->base->din),
646                 readl_relaxed(&device_data->base->str) & HASH_STR_NBLW_MASK);
647
648         while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
649                 cpu_relax();
650 }
651
652 /**
653  * hash_incrementlength - Increments the length of the current message.
654  * @ctx: Hash context
655  * @incr: Length of message processed already
656  *
657  * Overflow cannot occur, because conditions for overflow are checked in
658  * hash_hw_update.
659  */
660 static void hash_incrementlength(struct hash_req_ctx *ctx, u32 incr)
661 {
662         ctx->state.length.low_word += incr;
663
664         /* Check for wrap-around */
665         if (ctx->state.length.low_word < incr)
666                 ctx->state.length.high_word++;
667 }
668
669 /**
670  * hash_setconfiguration - Sets the required configuration for the hash
671  *                         hardware.
672  * @device_data:        Structure for the hash device.
673  * @config:             Pointer to a configuration structure.
674  */
675 int hash_setconfiguration(struct hash_device_data *device_data,
676                           struct hash_config *config)
677 {
678         int ret = 0;
679
680         if (config->algorithm != HASH_ALGO_SHA1 &&
681             config->algorithm != HASH_ALGO_SHA256)
682                 return -EPERM;
683
684         /*
685          * DATAFORM bits. Set the DATAFORM bits to 0b11, which means the data
686          * to be written to HASH_DIN is considered as 32 bits.
687          */
688         HASH_SET_DATA_FORMAT(config->data_format);
689
690         /*
691          * ALGO bit. Set to 0b1 for SHA-1 and 0b0 for SHA-256
692          */
693         switch (config->algorithm) {
694         case HASH_ALGO_SHA1:
695                 HASH_SET_BITS(&device_data->base->cr, HASH_CR_ALGO_MASK);
696                 break;
697
698         case HASH_ALGO_SHA256:
699                 HASH_CLEAR_BITS(&device_data->base->cr, HASH_CR_ALGO_MASK);
700                 break;
701
702         default:
703                 dev_err(device_data->dev, "%s: Incorrect algorithm\n",
704                         __func__);
705                 return -EPERM;
706         }
707
708         /*
709          * MODE bit. This bit selects between HASH or HMAC mode for the
710          * selected algorithm. 0b0 = HASH and 0b1 = HMAC.
711          */
712         if (HASH_OPER_MODE_HASH == config->oper_mode)
713                 HASH_CLEAR_BITS(&device_data->base->cr,
714                                 HASH_CR_MODE_MASK);
715         else if (HASH_OPER_MODE_HMAC == config->oper_mode) {
716                 HASH_SET_BITS(&device_data->base->cr, HASH_CR_MODE_MASK);
717                 if (device_data->current_ctx->keylen > HASH_BLOCK_SIZE) {
718                         /* Truncate key to blocksize */
719                         dev_dbg(device_data->dev, "%s: LKEY set\n", __func__);
720                         HASH_SET_BITS(&device_data->base->cr,
721                                       HASH_CR_LKEY_MASK);
722                 } else {
723                         dev_dbg(device_data->dev, "%s: LKEY cleared\n",
724                                 __func__);
725                         HASH_CLEAR_BITS(&device_data->base->cr,
726                                         HASH_CR_LKEY_MASK);
727                 }
728         } else {        /* Wrong hash mode */
729                 ret = -EPERM;
730                 dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
731                         __func__);
732         }
733         return ret;
734 }
735
736 /**
737  * hash_begin - This routine resets some globals and initializes the hash
738  *              hardware.
739  * @device_data:        Structure for the hash device.
740  * @ctx:                Hash context.
741  */
742 void hash_begin(struct hash_device_data *device_data, struct hash_ctx *ctx)
743 {
744         /* HW and SW initializations */
745         /* Note: there is no need to initialize buffer and digest members */
746
747         while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
748                 cpu_relax();
749
750         /*
751          * INIT bit. Set this bit to 0b1 to reset the HASH processor core and
752          * prepare the initialize the HASH accelerator to compute the message
753          * digest of a new message.
754          */
755         HASH_INITIALIZE;
756
757         /*
758          * NBLW bits. Reset the number of bits in last word (NBLW).
759          */
760         HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
761 }
762
763 static int hash_process_data(struct hash_device_data *device_data,
764                              struct hash_ctx *ctx, struct hash_req_ctx *req_ctx,
765                              int msg_length, u8 *data_buffer, u8 *buffer,
766                              u8 *index)
767 {
768         int ret = 0;
769         u32 count;
770
771         do {
772                 if ((*index + msg_length) < HASH_BLOCK_SIZE) {
773                         for (count = 0; count < msg_length; count++) {
774                                 buffer[*index + count] =
775                                         *(data_buffer + count);
776                         }
777                         *index += msg_length;
778                         msg_length = 0;
779                 } else {
780                         if (req_ctx->updated) {
781                                 ret = hash_resume_state(device_data,
782                                                 &device_data->state);
783                                 memmove(req_ctx->state.buffer,
784                                         device_data->state.buffer,
785                                         HASH_BLOCK_SIZE);
786                                 if (ret) {
787                                         dev_err(device_data->dev,
788                                                 "%s: hash_resume_state() failed!\n",
789                                                 __func__);
790                                         goto out;
791                                 }
792                         } else {
793                                 ret = init_hash_hw(device_data, ctx);
794                                 if (ret) {
795                                         dev_err(device_data->dev,
796                                                 "%s: init_hash_hw() failed!\n",
797                                                 __func__);
798                                         goto out;
799                                 }
800                                 req_ctx->updated = 1;
801                         }
802                         /*
803                          * If 'data_buffer' is four byte aligned and
804                          * local buffer does not have any data, we can
805                          * write data directly from 'data_buffer' to
806                          * HW peripheral, otherwise we first copy data
807                          * to a local buffer
808                          */
809                         if ((0 == (((u32)data_buffer) % 4)) &&
810                             (0 == *index))
811                                 hash_processblock(device_data,
812                                                   (const u32 *)data_buffer,
813                                                   HASH_BLOCK_SIZE);
814                         else {
815                                 for (count = 0;
816                                      count < (u32)(HASH_BLOCK_SIZE - *index);
817                                      count++) {
818                                         buffer[*index + count] =
819                                                 *(data_buffer + count);
820                                 }
821                                 hash_processblock(device_data,
822                                                   (const u32 *)buffer,
823                                                   HASH_BLOCK_SIZE);
824                         }
825                         hash_incrementlength(req_ctx, HASH_BLOCK_SIZE);
826                         data_buffer += (HASH_BLOCK_SIZE - *index);
827
828                         msg_length -= (HASH_BLOCK_SIZE - *index);
829                         *index = 0;
830
831                         ret = hash_save_state(device_data,
832                                         &device_data->state);
833
834                         memmove(device_data->state.buffer,
835                                 req_ctx->state.buffer,
836                                 HASH_BLOCK_SIZE);
837                         if (ret) {
838                                 dev_err(device_data->dev, "%s: hash_save_state() failed!\n",
839                                         __func__);
840                                 goto out;
841                         }
842                 }
843         } while (msg_length != 0);
844 out:
845
846         return ret;
847 }
848
849 /**
850  * hash_dma_final - The hash dma final function for SHA1/SHA256.
851  * @req:        The hash request for the job.
852  */
853 static int hash_dma_final(struct ahash_request *req)
854 {
855         int ret = 0;
856         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
857         struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
858         struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
859         struct hash_device_data *device_data;
860         u8 digest[SHA256_DIGEST_SIZE];
861         int bytes_written = 0;
862
863         ret = hash_get_device_data(ctx, &device_data);
864         if (ret)
865                 return ret;
866
867         dev_dbg(device_data->dev, "%s: (ctx=0x%x)!\n", __func__, (u32) ctx);
868
869         if (req_ctx->updated) {
870                 ret = hash_resume_state(device_data, &device_data->state);
871
872                 if (ret) {
873                         dev_err(device_data->dev, "%s: hash_resume_state() failed!\n",
874                                 __func__);
875                         goto out;
876                 }
877         }
878
879         if (!req_ctx->updated) {
880                 ret = hash_setconfiguration(device_data, &ctx->config);
881                 if (ret) {
882                         dev_err(device_data->dev,
883                                 "%s: hash_setconfiguration() failed!\n",
884                                 __func__);
885                         goto out;
886                 }
887
888                 /* Enable DMA input */
889                 if (hash_mode != HASH_MODE_DMA || !req_ctx->dma_mode) {
890                         HASH_CLEAR_BITS(&device_data->base->cr,
891                                         HASH_CR_DMAE_MASK);
892                 } else {
893                         HASH_SET_BITS(&device_data->base->cr,
894                                       HASH_CR_DMAE_MASK);
895                         HASH_SET_BITS(&device_data->base->cr,
896                                       HASH_CR_PRIVN_MASK);
897                 }
898
899                 HASH_INITIALIZE;
900
901                 if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC)
902                         hash_hw_write_key(device_data, ctx->key, ctx->keylen);
903
904                 /* Number of bits in last word = (nbytes * 8) % 32 */
905                 HASH_SET_NBLW((req->nbytes * 8) % 32);
906                 req_ctx->updated = 1;
907         }
908
909         /* Store the nents in the dma struct. */
910         ctx->device->dma.nents = hash_get_nents(req->src, req->nbytes, NULL);
911         if (!ctx->device->dma.nents) {
912                 dev_err(device_data->dev, "%s: ctx->device->dma.nents = 0\n",
913                         __func__);
914                 ret = ctx->device->dma.nents;
915                 goto out;
916         }
917
918         bytes_written = hash_dma_write(ctx, req->src, req->nbytes);
919         if (bytes_written != req->nbytes) {
920                 dev_err(device_data->dev, "%s: hash_dma_write() failed!\n",
921                         __func__);
922                 ret = bytes_written;
923                 goto out;
924         }
925
926         wait_for_completion(&ctx->device->dma.complete);
927         hash_dma_done(ctx);
928
929         while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
930                 cpu_relax();
931
932         if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC && ctx->key) {
933                 unsigned int keylen = ctx->keylen;
934                 u8 *key = ctx->key;
935
936                 dev_dbg(device_data->dev, "%s: keylen: %d\n",
937                         __func__, ctx->keylen);
938                 hash_hw_write_key(device_data, key, keylen);
939         }
940
941         hash_get_digest(device_data, digest, ctx->config.algorithm);
942         memcpy(req->result, digest, ctx->digestsize);
943
944 out:
945         release_hash_device(device_data);
946
947         /**
948          * Allocated in setkey, and only used in HMAC.
949          */
950         kfree(ctx->key);
951
952         return ret;
953 }
954
955 /**
956  * hash_hw_final - The final hash calculation function
957  * @req:        The hash request for the job.
958  */
959 static int hash_hw_final(struct ahash_request *req)
960 {
961         int ret = 0;
962         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
963         struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
964         struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
965         struct hash_device_data *device_data;
966         u8 digest[SHA256_DIGEST_SIZE];
967
968         ret = hash_get_device_data(ctx, &device_data);
969         if (ret)
970                 return ret;
971
972         dev_dbg(device_data->dev, "%s: (ctx=0x%x)!\n", __func__, (u32) ctx);
973
974         if (req_ctx->updated) {
975                 ret = hash_resume_state(device_data, &device_data->state);
976
977                 if (ret) {
978                         dev_err(device_data->dev,
979                                 "%s: hash_resume_state() failed!\n", __func__);
980                         goto out;
981                 }
982         } else if (req->nbytes == 0 && ctx->keylen == 0) {
983                 u8 zero_hash[SHA256_DIGEST_SIZE];
984                 u32 zero_hash_size = 0;
985                 bool zero_digest = false;
986                 /**
987                  * Use a pre-calculated empty message digest
988                  * (workaround since hw return zeroes, hw bug!?)
989                  */
990                 ret = get_empty_message_digest(device_data, &zero_hash[0],
991                                 &zero_hash_size, &zero_digest);
992                 if (!ret && likely(zero_hash_size == ctx->digestsize) &&
993                     zero_digest) {
994                         memcpy(req->result, &zero_hash[0], ctx->digestsize);
995                         goto out;
996                 } else if (!ret && !zero_digest) {
997                         dev_dbg(device_data->dev,
998                                 "%s: HMAC zero msg with key, continue...\n",
999                                 __func__);
1000                 } else {
1001                         dev_err(device_data->dev,
1002                                 "%s: ret=%d, or wrong digest size? %s\n",
1003                                 __func__, ret,
1004                                 zero_hash_size == ctx->digestsize ?
1005                                 "true" : "false");
1006                         /* Return error */
1007                         goto out;
1008                 }
1009         } else if (req->nbytes == 0 && ctx->keylen > 0) {
1010                 dev_err(device_data->dev, "%s: Empty message with keylength > 0, NOT supported\n",
1011                         __func__);
1012                 goto out;
1013         }
1014
1015         if (!req_ctx->updated) {
1016                 ret = init_hash_hw(device_data, ctx);
1017                 if (ret) {
1018                         dev_err(device_data->dev,
1019                                 "%s: init_hash_hw() failed!\n", __func__);
1020                         goto out;
1021                 }
1022         }
1023
1024         if (req_ctx->state.index) {
1025                 hash_messagepad(device_data, req_ctx->state.buffer,
1026                                 req_ctx->state.index);
1027         } else {
1028                 HASH_SET_DCAL;
1029                 while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
1030                         cpu_relax();
1031         }
1032
1033         if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC && ctx->key) {
1034                 unsigned int keylen = ctx->keylen;
1035                 u8 *key = ctx->key;
1036
1037                 dev_dbg(device_data->dev, "%s: keylen: %d\n",
1038                         __func__, ctx->keylen);
1039                 hash_hw_write_key(device_data, key, keylen);
1040         }
1041
1042         hash_get_digest(device_data, digest, ctx->config.algorithm);
1043         memcpy(req->result, digest, ctx->digestsize);
1044
1045 out:
1046         release_hash_device(device_data);
1047
1048         /**
1049          * Allocated in setkey, and only used in HMAC.
1050          */
1051         kfree(ctx->key);
1052
1053         return ret;
1054 }
1055
1056 /**
1057  * hash_hw_update - Updates current HASH computation hashing another part of
1058  *                  the message.
1059  * @req:        Byte array containing the message to be hashed (caller
1060  *              allocated).
1061  */
1062 int hash_hw_update(struct ahash_request *req)
1063 {
1064         int ret = 0;
1065         u8 index = 0;
1066         u8 *buffer;
1067         struct hash_device_data *device_data;
1068         u8 *data_buffer;
1069         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1070         struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1071         struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1072         struct crypto_hash_walk walk;
1073         int msg_length = crypto_hash_walk_first(req, &walk);
1074
1075         /* Empty message ("") is correct indata */
1076         if (msg_length == 0)
1077                 return ret;
1078
1079         index = req_ctx->state.index;
1080         buffer = (u8 *)req_ctx->state.buffer;
1081
1082         /* Check if ctx->state.length + msg_length
1083            overflows */
1084         if (msg_length > (req_ctx->state.length.low_word + msg_length) &&
1085             HASH_HIGH_WORD_MAX_VAL == req_ctx->state.length.high_word) {
1086                 pr_err("%s: HASH_MSG_LENGTH_OVERFLOW!\n", __func__);
1087                 return -EPERM;
1088         }
1089
1090         ret = hash_get_device_data(ctx, &device_data);
1091         if (ret)
1092                 return ret;
1093
1094         /* Main loop */
1095         while (0 != msg_length) {
1096                 data_buffer = walk.data;
1097                 ret = hash_process_data(device_data, ctx, req_ctx, msg_length,
1098                                 data_buffer, buffer, &index);
1099
1100                 if (ret) {
1101                         dev_err(device_data->dev, "%s: hash_internal_hw_update() failed!\n",
1102                                 __func__);
1103                         goto out;
1104                 }
1105
1106                 msg_length = crypto_hash_walk_done(&walk, 0);
1107         }
1108
1109         req_ctx->state.index = index;
1110         dev_dbg(device_data->dev, "%s: indata length=%d, bin=%d\n",
1111                 __func__, req_ctx->state.index, req_ctx->state.bit_index);
1112
1113 out:
1114         release_hash_device(device_data);
1115
1116         return ret;
1117 }
1118
1119 /**
1120  * hash_resume_state - Function that resumes the state of an calculation.
1121  * @device_data:        Pointer to the device structure.
1122  * @device_state:       The state to be restored in the hash hardware
1123  */
1124 int hash_resume_state(struct hash_device_data *device_data,
1125                       const struct hash_state *device_state)
1126 {
1127         u32 temp_cr;
1128         s32 count;
1129         int hash_mode = HASH_OPER_MODE_HASH;
1130
1131         if (NULL == device_state) {
1132                 dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
1133                         __func__);
1134                 return -EPERM;
1135         }
1136
1137         /* Check correctness of index and length members */
1138         if (device_state->index > HASH_BLOCK_SIZE ||
1139             (device_state->length.low_word % HASH_BLOCK_SIZE) != 0) {
1140                 dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
1141                         __func__);
1142                 return -EPERM;
1143         }
1144
1145         /*
1146          * INIT bit. Set this bit to 0b1 to reset the HASH processor core and
1147          * prepare the initialize the HASH accelerator to compute the message
1148          * digest of a new message.
1149          */
1150         HASH_INITIALIZE;
1151
1152         temp_cr = device_state->temp_cr;
1153         writel_relaxed(temp_cr & HASH_CR_RESUME_MASK, &device_data->base->cr);
1154
1155         if (readl(&device_data->base->cr) & HASH_CR_MODE_MASK)
1156                 hash_mode = HASH_OPER_MODE_HMAC;
1157         else
1158                 hash_mode = HASH_OPER_MODE_HASH;
1159
1160         for (count = 0; count < HASH_CSR_COUNT; count++) {
1161                 if ((count >= 36) && (hash_mode == HASH_OPER_MODE_HASH))
1162                         break;
1163
1164                 writel_relaxed(device_state->csr[count],
1165                                &device_data->base->csrx[count]);
1166         }
1167
1168         writel_relaxed(device_state->csfull, &device_data->base->csfull);
1169         writel_relaxed(device_state->csdatain, &device_data->base->csdatain);
1170
1171         writel_relaxed(device_state->str_reg, &device_data->base->str);
1172         writel_relaxed(temp_cr, &device_data->base->cr);
1173
1174         return 0;
1175 }
1176
1177 /**
1178  * hash_save_state - Function that saves the state of hardware.
1179  * @device_data:        Pointer to the device structure.
1180  * @device_state:       The strucure where the hardware state should be saved.
1181  */
1182 int hash_save_state(struct hash_device_data *device_data,
1183                     struct hash_state *device_state)
1184 {
1185         u32 temp_cr;
1186         u32 count;
1187         int hash_mode = HASH_OPER_MODE_HASH;
1188
1189         if (NULL == device_state) {
1190                 dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
1191                         __func__);
1192                 return -ENOTSUPP;
1193         }
1194
1195         /* Write dummy value to force digest intermediate calculation. This
1196          * actually makes sure that there isn't any ongoing calculation in the
1197          * hardware.
1198          */
1199         while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
1200                 cpu_relax();
1201
1202         temp_cr = readl_relaxed(&device_data->base->cr);
1203
1204         device_state->str_reg = readl_relaxed(&device_data->base->str);
1205
1206         device_state->din_reg = readl_relaxed(&device_data->base->din);
1207
1208         if (readl(&device_data->base->cr) & HASH_CR_MODE_MASK)
1209                 hash_mode = HASH_OPER_MODE_HMAC;
1210         else
1211                 hash_mode = HASH_OPER_MODE_HASH;
1212
1213         for (count = 0; count < HASH_CSR_COUNT; count++) {
1214                 if ((count >= 36) && (hash_mode == HASH_OPER_MODE_HASH))
1215                         break;
1216
1217                 device_state->csr[count] =
1218                         readl_relaxed(&device_data->base->csrx[count]);
1219         }
1220
1221         device_state->csfull = readl_relaxed(&device_data->base->csfull);
1222         device_state->csdatain = readl_relaxed(&device_data->base->csdatain);
1223
1224         device_state->temp_cr = temp_cr;
1225
1226         return 0;
1227 }
1228
1229 /**
1230  * hash_check_hw - This routine checks for peripheral Ids and PCell Ids.
1231  * @device_data:
1232  *
1233  */
1234 int hash_check_hw(struct hash_device_data *device_data)
1235 {
1236         /* Checking Peripheral Ids  */
1237         if (HASH_P_ID0 == readl_relaxed(&device_data->base->periphid0) &&
1238             HASH_P_ID1 == readl_relaxed(&device_data->base->periphid1) &&
1239             HASH_P_ID2 == readl_relaxed(&device_data->base->periphid2) &&
1240             HASH_P_ID3 == readl_relaxed(&device_data->base->periphid3) &&
1241             HASH_CELL_ID0 == readl_relaxed(&device_data->base->cellid0) &&
1242             HASH_CELL_ID1 == readl_relaxed(&device_data->base->cellid1) &&
1243             HASH_CELL_ID2 == readl_relaxed(&device_data->base->cellid2) &&
1244             HASH_CELL_ID3 == readl_relaxed(&device_data->base->cellid3)) {
1245                 return 0;
1246         }
1247
1248         dev_err(device_data->dev, "%s: HASH_UNSUPPORTED_HW!\n", __func__);
1249         return -ENOTSUPP;
1250 }
1251
1252 /**
1253  * hash_get_digest - Gets the digest.
1254  * @device_data:        Pointer to the device structure.
1255  * @digest:             User allocated byte array for the calculated digest.
1256  * @algorithm:          The algorithm in use.
1257  */
1258 void hash_get_digest(struct hash_device_data *device_data,
1259                      u8 *digest, int algorithm)
1260 {
1261         u32 temp_hx_val, count;
1262         int loop_ctr;
1263
1264         if (algorithm != HASH_ALGO_SHA1 && algorithm != HASH_ALGO_SHA256) {
1265                 dev_err(device_data->dev, "%s: Incorrect algorithm %d\n",
1266                         __func__, algorithm);
1267                 return;
1268         }
1269
1270         if (algorithm == HASH_ALGO_SHA1)
1271                 loop_ctr = SHA1_DIGEST_SIZE / sizeof(u32);
1272         else
1273                 loop_ctr = SHA256_DIGEST_SIZE / sizeof(u32);
1274
1275         dev_dbg(device_data->dev, "%s: digest array:(0x%x)\n",
1276                 __func__, (u32) digest);
1277
1278         /* Copy result into digest array */
1279         for (count = 0; count < loop_ctr; count++) {
1280                 temp_hx_val = readl_relaxed(&device_data->base->hx[count]);
1281                 digest[count * 4] = (u8) ((temp_hx_val >> 24) & 0xFF);
1282                 digest[count * 4 + 1] = (u8) ((temp_hx_val >> 16) & 0xFF);
1283                 digest[count * 4 + 2] = (u8) ((temp_hx_val >> 8) & 0xFF);
1284                 digest[count * 4 + 3] = (u8) ((temp_hx_val >> 0) & 0xFF);
1285         }
1286 }
1287
1288 /**
1289  * hash_update - The hash update function for SHA1/SHA2 (SHA256).
1290  * @req: The hash request for the job.
1291  */
1292 static int ahash_update(struct ahash_request *req)
1293 {
1294         int ret = 0;
1295         struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1296
1297         if (hash_mode != HASH_MODE_DMA || !req_ctx->dma_mode)
1298                 ret = hash_hw_update(req);
1299         /* Skip update for DMA, all data will be passed to DMA in final */
1300
1301         if (ret) {
1302                 pr_err("%s: hash_hw_update() failed!\n", __func__);
1303         }
1304
1305         return ret;
1306 }
1307
1308 /**
1309  * hash_final - The hash final function for SHA1/SHA2 (SHA256).
1310  * @req:        The hash request for the job.
1311  */
1312 static int ahash_final(struct ahash_request *req)
1313 {
1314         int ret = 0;
1315         struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1316
1317         pr_debug("%s: data size: %d\n", __func__, req->nbytes);
1318
1319         if ((hash_mode == HASH_MODE_DMA) && req_ctx->dma_mode)
1320                 ret = hash_dma_final(req);
1321         else
1322                 ret = hash_hw_final(req);
1323
1324         if (ret) {
1325                 pr_err("%s: hash_hw/dma_final() failed\n", __func__);
1326         }
1327
1328         return ret;
1329 }
1330
1331 static int hash_setkey(struct crypto_ahash *tfm,
1332                        const u8 *key, unsigned int keylen, int alg)
1333 {
1334         int ret = 0;
1335         struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1336
1337         /**
1338          * Freed in final.
1339          */
1340         ctx->key = kmemdup(key, keylen, GFP_KERNEL);
1341         if (!ctx->key) {
1342                 pr_err("%s: Failed to allocate ctx->key for %d\n",
1343                        __func__, alg);
1344                 return -ENOMEM;
1345         }
1346         ctx->keylen = keylen;
1347
1348         return ret;
1349 }
1350
1351 static int ahash_sha1_init(struct ahash_request *req)
1352 {
1353         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1354         struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1355
1356         ctx->config.data_format = HASH_DATA_8_BITS;
1357         ctx->config.algorithm = HASH_ALGO_SHA1;
1358         ctx->config.oper_mode = HASH_OPER_MODE_HASH;
1359         ctx->digestsize = SHA1_DIGEST_SIZE;
1360
1361         return hash_init(req);
1362 }
1363
1364 static int ahash_sha256_init(struct ahash_request *req)
1365 {
1366         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1367         struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1368
1369         ctx->config.data_format = HASH_DATA_8_BITS;
1370         ctx->config.algorithm = HASH_ALGO_SHA256;
1371         ctx->config.oper_mode = HASH_OPER_MODE_HASH;
1372         ctx->digestsize = SHA256_DIGEST_SIZE;
1373
1374         return hash_init(req);
1375 }
1376
1377 static int ahash_sha1_digest(struct ahash_request *req)
1378 {
1379         int ret2, ret1;
1380
1381         ret1 = ahash_sha1_init(req);
1382         if (ret1)
1383                 goto out;
1384
1385         ret1 = ahash_update(req);
1386         ret2 = ahash_final(req);
1387
1388 out:
1389         return ret1 ? ret1 : ret2;
1390 }
1391
1392 static int ahash_sha256_digest(struct ahash_request *req)
1393 {
1394         int ret2, ret1;
1395
1396         ret1 = ahash_sha256_init(req);
1397         if (ret1)
1398                 goto out;
1399
1400         ret1 = ahash_update(req);
1401         ret2 = ahash_final(req);
1402
1403 out:
1404         return ret1 ? ret1 : ret2;
1405 }
1406
1407 static int ahash_noimport(struct ahash_request *req, const void *in)
1408 {
1409         return -ENOSYS;
1410 }
1411
1412 static int ahash_noexport(struct ahash_request *req, void *out)
1413 {
1414         return -ENOSYS;
1415 }
1416
1417 static int hmac_sha1_init(struct ahash_request *req)
1418 {
1419         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1420         struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1421
1422         ctx->config.data_format = HASH_DATA_8_BITS;
1423         ctx->config.algorithm   = HASH_ALGO_SHA1;
1424         ctx->config.oper_mode   = HASH_OPER_MODE_HMAC;
1425         ctx->digestsize         = SHA1_DIGEST_SIZE;
1426
1427         return hash_init(req);
1428 }
1429
1430 static int hmac_sha256_init(struct ahash_request *req)
1431 {
1432         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1433         struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1434
1435         ctx->config.data_format = HASH_DATA_8_BITS;
1436         ctx->config.algorithm   = HASH_ALGO_SHA256;
1437         ctx->config.oper_mode   = HASH_OPER_MODE_HMAC;
1438         ctx->digestsize         = SHA256_DIGEST_SIZE;
1439
1440         return hash_init(req);
1441 }
1442
1443 static int hmac_sha1_digest(struct ahash_request *req)
1444 {
1445         int ret2, ret1;
1446
1447         ret1 = hmac_sha1_init(req);
1448         if (ret1)
1449                 goto out;
1450
1451         ret1 = ahash_update(req);
1452         ret2 = ahash_final(req);
1453
1454 out:
1455         return ret1 ? ret1 : ret2;
1456 }
1457
1458 static int hmac_sha256_digest(struct ahash_request *req)
1459 {
1460         int ret2, ret1;
1461
1462         ret1 = hmac_sha256_init(req);
1463         if (ret1)
1464                 goto out;
1465
1466         ret1 = ahash_update(req);
1467         ret2 = ahash_final(req);
1468
1469 out:
1470         return ret1 ? ret1 : ret2;
1471 }
1472
1473 static int hmac_sha1_setkey(struct crypto_ahash *tfm,
1474                             const u8 *key, unsigned int keylen)
1475 {
1476         return hash_setkey(tfm, key, keylen, HASH_ALGO_SHA1);
1477 }
1478
1479 static int hmac_sha256_setkey(struct crypto_ahash *tfm,
1480                               const u8 *key, unsigned int keylen)
1481 {
1482         return hash_setkey(tfm, key, keylen, HASH_ALGO_SHA256);
1483 }
1484
1485 struct hash_algo_template {
1486         struct hash_config conf;
1487         struct ahash_alg hash;
1488 };
1489
1490 static int hash_cra_init(struct crypto_tfm *tfm)
1491 {
1492         struct hash_ctx *ctx = crypto_tfm_ctx(tfm);
1493         struct crypto_alg *alg = tfm->__crt_alg;
1494         struct hash_algo_template *hash_alg;
1495
1496         hash_alg = container_of(__crypto_ahash_alg(alg),
1497                         struct hash_algo_template,
1498                         hash);
1499
1500         crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1501                                  sizeof(struct hash_req_ctx));
1502
1503         ctx->config.data_format = HASH_DATA_8_BITS;
1504         ctx->config.algorithm = hash_alg->conf.algorithm;
1505         ctx->config.oper_mode = hash_alg->conf.oper_mode;
1506
1507         ctx->digestsize = hash_alg->hash.halg.digestsize;
1508
1509         return 0;
1510 }
1511
1512 static struct hash_algo_template hash_algs[] = {
1513         {
1514                 .conf.algorithm = HASH_ALGO_SHA1,
1515                 .conf.oper_mode = HASH_OPER_MODE_HASH,
1516                 .hash = {
1517                         .init = hash_init,
1518                         .update = ahash_update,
1519                         .final = ahash_final,
1520                         .digest = ahash_sha1_digest,
1521                         .export = ahash_noexport,
1522                         .import = ahash_noimport,
1523                         .halg.digestsize = SHA1_DIGEST_SIZE,
1524                         .halg.statesize = sizeof(struct hash_ctx),
1525                         .halg.base = {
1526                                 .cra_name = "sha1",
1527                                 .cra_driver_name = "sha1-ux500",
1528                                 .cra_flags = CRYPTO_ALG_ASYNC,
1529                                 .cra_blocksize = SHA1_BLOCK_SIZE,
1530                                 .cra_ctxsize = sizeof(struct hash_ctx),
1531                                 .cra_init = hash_cra_init,
1532                                 .cra_module = THIS_MODULE,
1533                         }
1534                 }
1535         },
1536         {
1537                 .conf.algorithm = HASH_ALGO_SHA256,
1538                 .conf.oper_mode = HASH_OPER_MODE_HASH,
1539                 .hash = {
1540                         .init = hash_init,
1541                         .update = ahash_update,
1542                         .final = ahash_final,
1543                         .digest = ahash_sha256_digest,
1544                         .export = ahash_noexport,
1545                         .import = ahash_noimport,
1546                         .halg.digestsize = SHA256_DIGEST_SIZE,
1547                         .halg.statesize = sizeof(struct hash_ctx),
1548                         .halg.base = {
1549                                 .cra_name = "sha256",
1550                                 .cra_driver_name = "sha256-ux500",
1551                                 .cra_flags = CRYPTO_ALG_ASYNC,
1552                                 .cra_blocksize = SHA256_BLOCK_SIZE,
1553                                 .cra_ctxsize = sizeof(struct hash_ctx),
1554                                 .cra_init = hash_cra_init,
1555                                 .cra_module = THIS_MODULE,
1556                         }
1557                 }
1558         },
1559         {
1560                 .conf.algorithm = HASH_ALGO_SHA1,
1561                 .conf.oper_mode = HASH_OPER_MODE_HMAC,
1562                         .hash = {
1563                         .init = hash_init,
1564                         .update = ahash_update,
1565                         .final = ahash_final,
1566                         .digest = hmac_sha1_digest,
1567                         .setkey = hmac_sha1_setkey,
1568                         .export = ahash_noexport,
1569                         .import = ahash_noimport,
1570                         .halg.digestsize = SHA1_DIGEST_SIZE,
1571                         .halg.statesize = sizeof(struct hash_ctx),
1572                         .halg.base = {
1573                                 .cra_name = "hmac(sha1)",
1574                                 .cra_driver_name = "hmac-sha1-ux500",
1575                                 .cra_flags = CRYPTO_ALG_ASYNC,
1576                                 .cra_blocksize = SHA1_BLOCK_SIZE,
1577                                 .cra_ctxsize = sizeof(struct hash_ctx),
1578                                 .cra_init = hash_cra_init,
1579                                 .cra_module = THIS_MODULE,
1580                         }
1581                 }
1582         },
1583         {
1584                 .conf.algorithm = HASH_ALGO_SHA256,
1585                 .conf.oper_mode = HASH_OPER_MODE_HMAC,
1586                 .hash = {
1587                         .init = hash_init,
1588                         .update = ahash_update,
1589                         .final = ahash_final,
1590                         .digest = hmac_sha256_digest,
1591                         .setkey = hmac_sha256_setkey,
1592                         .export = ahash_noexport,
1593                         .import = ahash_noimport,
1594                         .halg.digestsize = SHA256_DIGEST_SIZE,
1595                         .halg.statesize = sizeof(struct hash_ctx),
1596                         .halg.base = {
1597                                 .cra_name = "hmac(sha256)",
1598                                 .cra_driver_name = "hmac-sha256-ux500",
1599                                 .cra_flags = CRYPTO_ALG_ASYNC,
1600                                 .cra_blocksize = SHA256_BLOCK_SIZE,
1601                                 .cra_ctxsize = sizeof(struct hash_ctx),
1602                                 .cra_init = hash_cra_init,
1603                                 .cra_module = THIS_MODULE,
1604                         }
1605                 }
1606         }
1607 };
1608
1609 /**
1610  * hash_algs_register_all -
1611  */
1612 static int ahash_algs_register_all(struct hash_device_data *device_data)
1613 {
1614         int ret;
1615         int i;
1616         int count;
1617
1618         for (i = 0; i < ARRAY_SIZE(hash_algs); i++) {
1619                 ret = crypto_register_ahash(&hash_algs[i].hash);
1620                 if (ret) {
1621                         count = i;
1622                         dev_err(device_data->dev, "%s: alg registration failed\n",
1623                                 hash_algs[i].hash.halg.base.cra_driver_name);
1624                         goto unreg;
1625                 }
1626         }
1627         return 0;
1628 unreg:
1629         for (i = 0; i < count; i++)
1630                 crypto_unregister_ahash(&hash_algs[i].hash);
1631         return ret;
1632 }
1633
1634 /**
1635  * hash_algs_unregister_all -
1636  */
1637 static void ahash_algs_unregister_all(struct hash_device_data *device_data)
1638 {
1639         int i;
1640
1641         for (i = 0; i < ARRAY_SIZE(hash_algs); i++)
1642                 crypto_unregister_ahash(&hash_algs[i].hash);
1643 }
1644
1645 /**
1646  * ux500_hash_probe - Function that probes the hash hardware.
1647  * @pdev: The platform device.
1648  */
1649 static int ux500_hash_probe(struct platform_device *pdev)
1650 {
1651         int                     ret = 0;
1652         struct resource         *res = NULL;
1653         struct hash_device_data *device_data;
1654         struct device           *dev = &pdev->dev;
1655
1656         device_data = devm_kzalloc(dev, sizeof(*device_data), GFP_ATOMIC);
1657         if (!device_data) {
1658                 ret = -ENOMEM;
1659                 goto out;
1660         }
1661
1662         device_data->dev = dev;
1663         device_data->current_ctx = NULL;
1664
1665         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1666         if (!res) {
1667                 dev_dbg(dev, "%s: platform_get_resource() failed!\n", __func__);
1668                 ret = -ENODEV;
1669                 goto out;
1670         }
1671
1672         device_data->phybase = res->start;
1673         device_data->base = devm_ioremap_resource(dev, res);
1674         if (IS_ERR(device_data->base)) {
1675                 dev_err(dev, "%s: ioremap() failed!\n", __func__);
1676                 ret = PTR_ERR(device_data->base);
1677                 goto out;
1678         }
1679         spin_lock_init(&device_data->ctx_lock);
1680         spin_lock_init(&device_data->power_state_lock);
1681
1682         /* Enable power for HASH1 hardware block */
1683         device_data->regulator = regulator_get(dev, "v-ape");
1684         if (IS_ERR(device_data->regulator)) {
1685                 dev_err(dev, "%s: regulator_get() failed!\n", __func__);
1686                 ret = PTR_ERR(device_data->regulator);
1687                 device_data->regulator = NULL;
1688                 goto out;
1689         }
1690
1691         /* Enable the clock for HASH1 hardware block */
1692         device_data->clk = devm_clk_get(dev, NULL);
1693         if (IS_ERR(device_data->clk)) {
1694                 dev_err(dev, "%s: clk_get() failed!\n", __func__);
1695                 ret = PTR_ERR(device_data->clk);
1696                 goto out_regulator;
1697         }
1698
1699         ret = clk_prepare(device_data->clk);
1700         if (ret) {
1701                 dev_err(dev, "%s: clk_prepare() failed!\n", __func__);
1702                 goto out_regulator;
1703         }
1704
1705         /* Enable device power (and clock) */
1706         ret = hash_enable_power(device_data, false);
1707         if (ret) {
1708                 dev_err(dev, "%s: hash_enable_power() failed!\n", __func__);
1709                 goto out_clk_unprepare;
1710         }
1711
1712         ret = hash_check_hw(device_data);
1713         if (ret) {
1714                 dev_err(dev, "%s: hash_check_hw() failed!\n", __func__);
1715                 goto out_power;
1716         }
1717
1718         if (hash_mode == HASH_MODE_DMA)
1719                 hash_dma_setup_channel(device_data, dev);
1720
1721         platform_set_drvdata(pdev, device_data);
1722
1723         /* Put the new device into the device list... */
1724         klist_add_tail(&device_data->list_node, &driver_data.device_list);
1725         /* ... and signal that a new device is available. */
1726         up(&driver_data.device_allocation);
1727
1728         ret = ahash_algs_register_all(device_data);
1729         if (ret) {
1730                 dev_err(dev, "%s: ahash_algs_register_all() failed!\n",
1731                         __func__);
1732                 goto out_power;
1733         }
1734
1735         dev_info(dev, "successfully registered\n");
1736         return 0;
1737
1738 out_power:
1739         hash_disable_power(device_data, false);
1740
1741 out_clk_unprepare:
1742         clk_unprepare(device_data->clk);
1743
1744 out_regulator:
1745         regulator_put(device_data->regulator);
1746
1747 out:
1748         return ret;
1749 }
1750
1751 /**
1752  * ux500_hash_remove - Function that removes the hash device from the platform.
1753  * @pdev: The platform device.
1754  */
1755 static int ux500_hash_remove(struct platform_device *pdev)
1756 {
1757         struct hash_device_data *device_data;
1758         struct device           *dev = &pdev->dev;
1759
1760         device_data = platform_get_drvdata(pdev);
1761         if (!device_data) {
1762                 dev_err(dev, "%s: platform_get_drvdata() failed!\n", __func__);
1763                 return -ENOMEM;
1764         }
1765
1766         /* Try to decrease the number of available devices. */
1767         if (down_trylock(&driver_data.device_allocation))
1768                 return -EBUSY;
1769
1770         /* Check that the device is free */
1771         spin_lock(&device_data->ctx_lock);
1772         /* current_ctx allocates a device, NULL = unallocated */
1773         if (device_data->current_ctx) {
1774                 /* The device is busy */
1775                 spin_unlock(&device_data->ctx_lock);
1776                 /* Return the device to the pool. */
1777                 up(&driver_data.device_allocation);
1778                 return -EBUSY;
1779         }
1780
1781         spin_unlock(&device_data->ctx_lock);
1782
1783         /* Remove the device from the list */
1784         if (klist_node_attached(&device_data->list_node))
1785                 klist_remove(&device_data->list_node);
1786
1787         /* If this was the last device, remove the services */
1788         if (list_empty(&driver_data.device_list.k_list))
1789                 ahash_algs_unregister_all(device_data);
1790
1791         if (hash_disable_power(device_data, false))
1792                 dev_err(dev, "%s: hash_disable_power() failed\n",
1793                         __func__);
1794
1795         clk_unprepare(device_data->clk);
1796         regulator_put(device_data->regulator);
1797
1798         return 0;
1799 }
1800
1801 /**
1802  * ux500_hash_shutdown - Function that shutdown the hash device.
1803  * @pdev: The platform device
1804  */
1805 static void ux500_hash_shutdown(struct platform_device *pdev)
1806 {
1807         struct hash_device_data *device_data;
1808
1809         device_data = platform_get_drvdata(pdev);
1810         if (!device_data) {
1811                 dev_err(&pdev->dev, "%s: platform_get_drvdata() failed!\n",
1812                         __func__);
1813                 return;
1814         }
1815
1816         /* Check that the device is free */
1817         spin_lock(&device_data->ctx_lock);
1818         /* current_ctx allocates a device, NULL = unallocated */
1819         if (!device_data->current_ctx) {
1820                 if (down_trylock(&driver_data.device_allocation))
1821                         dev_dbg(&pdev->dev, "%s: Cryp still in use! Shutting down anyway...\n",
1822                                 __func__);
1823                 /**
1824                  * (Allocate the device)
1825                  * Need to set this to non-null (dummy) value,
1826                  * to avoid usage if context switching.
1827                  */
1828                 device_data->current_ctx++;
1829         }
1830         spin_unlock(&device_data->ctx_lock);
1831
1832         /* Remove the device from the list */
1833         if (klist_node_attached(&device_data->list_node))
1834                 klist_remove(&device_data->list_node);
1835
1836         /* If this was the last device, remove the services */
1837         if (list_empty(&driver_data.device_list.k_list))
1838                 ahash_algs_unregister_all(device_data);
1839
1840         if (hash_disable_power(device_data, false))
1841                 dev_err(&pdev->dev, "%s: hash_disable_power() failed\n",
1842                         __func__);
1843 }
1844
1845 #ifdef CONFIG_PM_SLEEP
1846 /**
1847  * ux500_hash_suspend - Function that suspends the hash device.
1848  * @dev:        Device to suspend.
1849  */
1850 static int ux500_hash_suspend(struct device *dev)
1851 {
1852         int ret;
1853         struct hash_device_data *device_data;
1854         struct hash_ctx *temp_ctx = NULL;
1855
1856         device_data = dev_get_drvdata(dev);
1857         if (!device_data) {
1858                 dev_err(dev, "%s: platform_get_drvdata() failed!\n", __func__);
1859                 return -ENOMEM;
1860         }
1861
1862         spin_lock(&device_data->ctx_lock);
1863         if (!device_data->current_ctx)
1864                 device_data->current_ctx++;
1865         spin_unlock(&device_data->ctx_lock);
1866
1867         if (device_data->current_ctx == ++temp_ctx) {
1868                 if (down_interruptible(&driver_data.device_allocation))
1869                         dev_dbg(dev, "%s: down_interruptible() failed\n",
1870                                 __func__);
1871                 ret = hash_disable_power(device_data, false);
1872
1873         } else {
1874                 ret = hash_disable_power(device_data, true);
1875         }
1876
1877         if (ret)
1878                 dev_err(dev, "%s: hash_disable_power()\n", __func__);
1879
1880         return ret;
1881 }
1882
1883 /**
1884  * ux500_hash_resume - Function that resume the hash device.
1885  * @dev:        Device to resume.
1886  */
1887 static int ux500_hash_resume(struct device *dev)
1888 {
1889         int ret = 0;
1890         struct hash_device_data *device_data;
1891         struct hash_ctx *temp_ctx = NULL;
1892
1893         device_data = dev_get_drvdata(dev);
1894         if (!device_data) {
1895                 dev_err(dev, "%s: platform_get_drvdata() failed!\n", __func__);
1896                 return -ENOMEM;
1897         }
1898
1899         spin_lock(&device_data->ctx_lock);
1900         if (device_data->current_ctx == ++temp_ctx)
1901                 device_data->current_ctx = NULL;
1902         spin_unlock(&device_data->ctx_lock);
1903
1904         if (!device_data->current_ctx)
1905                 up(&driver_data.device_allocation);
1906         else
1907                 ret = hash_enable_power(device_data, true);
1908
1909         if (ret)
1910                 dev_err(dev, "%s: hash_enable_power() failed!\n", __func__);
1911
1912         return ret;
1913 }
1914 #endif
1915
1916 static SIMPLE_DEV_PM_OPS(ux500_hash_pm, ux500_hash_suspend, ux500_hash_resume);
1917
1918 static const struct of_device_id ux500_hash_match[] = {
1919         { .compatible = "stericsson,ux500-hash" },
1920         { },
1921 };
1922 MODULE_DEVICE_TABLE(of, ux500_hash_match);
1923
1924 static struct platform_driver hash_driver = {
1925         .probe  = ux500_hash_probe,
1926         .remove = ux500_hash_remove,
1927         .shutdown = ux500_hash_shutdown,
1928         .driver = {
1929                 .name  = "hash1",
1930                 .of_match_table = ux500_hash_match,
1931                 .pm    = &ux500_hash_pm,
1932         }
1933 };
1934
1935 /**
1936  * ux500_hash_mod_init - The kernel module init function.
1937  */
1938 static int __init ux500_hash_mod_init(void)
1939 {
1940         klist_init(&driver_data.device_list, NULL, NULL);
1941         /* Initialize the semaphore to 0 devices (locked state) */
1942         sema_init(&driver_data.device_allocation, 0);
1943
1944         return platform_driver_register(&hash_driver);
1945 }
1946
1947 /**
1948  * ux500_hash_mod_fini - The kernel module exit function.
1949  */
1950 static void __exit ux500_hash_mod_fini(void)
1951 {
1952         platform_driver_unregister(&hash_driver);
1953 }
1954
1955 module_init(ux500_hash_mod_init);
1956 module_exit(ux500_hash_mod_fini);
1957
1958 MODULE_DESCRIPTION("Driver for ST-Ericsson UX500 HASH engine.");
1959 MODULE_LICENSE("GPL");
1960
1961 MODULE_ALIAS_CRYPTO("sha1-all");
1962 MODULE_ALIAS_CRYPTO("sha256-all");
1963 MODULE_ALIAS_CRYPTO("hmac-sha1-all");
1964 MODULE_ALIAS_CRYPTO("hmac-sha256-all");