treewide: Use fallthrough pseudo-keyword
[linux-block.git] / drivers / crypto / marvell / octeontx / otx_cptvf_reqmgr.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell OcteonTX CPT driver
3  *
4  * Copyright (C) 2019 Marvell International Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10
11 #include "otx_cptvf.h"
12 #include "otx_cptvf_algs.h"
13
14 /* Completion code size and initial value */
15 #define COMPLETION_CODE_SIZE    8
16 #define COMPLETION_CODE_INIT    0
17
18 /* SG list header size in bytes */
19 #define SG_LIST_HDR_SIZE        8
20
21 /* Default timeout when waiting for free pending entry in us */
22 #define CPT_PENTRY_TIMEOUT      1000
23 #define CPT_PENTRY_STEP         50
24
25 /* Default threshold for stopping and resuming sender requests */
26 #define CPT_IQ_STOP_MARGIN      128
27 #define CPT_IQ_RESUME_MARGIN    512
28
29 #define CPT_DMA_ALIGN           128
30
31 void otx_cpt_dump_sg_list(struct pci_dev *pdev, struct otx_cpt_req_info *req)
32 {
33         int i;
34
35         pr_debug("Gather list size %d\n", req->incnt);
36         for (i = 0; i < req->incnt; i++) {
37                 pr_debug("Buffer %d size %d, vptr 0x%p, dmaptr 0x%p\n", i,
38                          req->in[i].size, req->in[i].vptr,
39                          (void *) req->in[i].dma_addr);
40                 pr_debug("Buffer hexdump (%d bytes)\n",
41                          req->in[i].size);
42                 print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1,
43                                      req->in[i].vptr, req->in[i].size, false);
44         }
45
46         pr_debug("Scatter list size %d\n", req->outcnt);
47         for (i = 0; i < req->outcnt; i++) {
48                 pr_debug("Buffer %d size %d, vptr 0x%p, dmaptr 0x%p\n", i,
49                          req->out[i].size, req->out[i].vptr,
50                          (void *) req->out[i].dma_addr);
51                 pr_debug("Buffer hexdump (%d bytes)\n", req->out[i].size);
52                 print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1,
53                                      req->out[i].vptr, req->out[i].size, false);
54         }
55 }
56
57 static inline struct otx_cpt_pending_entry *get_free_pending_entry(
58                                                 struct otx_cpt_pending_queue *q,
59                                                 int qlen)
60 {
61         struct otx_cpt_pending_entry *ent = NULL;
62
63         ent = &q->head[q->rear];
64         if (unlikely(ent->busy))
65                 return NULL;
66
67         q->rear++;
68         if (unlikely(q->rear == qlen))
69                 q->rear = 0;
70
71         return ent;
72 }
73
74 static inline u32 modulo_inc(u32 index, u32 length, u32 inc)
75 {
76         if (WARN_ON(inc > length))
77                 inc = length;
78
79         index += inc;
80         if (unlikely(index >= length))
81                 index -= length;
82
83         return index;
84 }
85
86 static inline void free_pentry(struct otx_cpt_pending_entry *pentry)
87 {
88         pentry->completion_addr = NULL;
89         pentry->info = NULL;
90         pentry->callback = NULL;
91         pentry->areq = NULL;
92         pentry->resume_sender = false;
93         pentry->busy = false;
94 }
95
96 static inline int setup_sgio_components(struct pci_dev *pdev,
97                                         struct otx_cpt_buf_ptr *list,
98                                         int buf_count, u8 *buffer)
99 {
100         struct otx_cpt_sglist_component *sg_ptr = NULL;
101         int ret = 0, i, j;
102         int components;
103
104         if (unlikely(!list)) {
105                 dev_err(&pdev->dev, "Input list pointer is NULL\n");
106                 return -EFAULT;
107         }
108
109         for (i = 0; i < buf_count; i++) {
110                 if (likely(list[i].vptr)) {
111                         list[i].dma_addr = dma_map_single(&pdev->dev,
112                                                           list[i].vptr,
113                                                           list[i].size,
114                                                           DMA_BIDIRECTIONAL);
115                         if (unlikely(dma_mapping_error(&pdev->dev,
116                                                        list[i].dma_addr))) {
117                                 dev_err(&pdev->dev, "Dma mapping failed\n");
118                                 ret = -EIO;
119                                 goto sg_cleanup;
120                         }
121                 }
122         }
123
124         components = buf_count / 4;
125         sg_ptr = (struct otx_cpt_sglist_component *)buffer;
126         for (i = 0; i < components; i++) {
127                 sg_ptr->u.s.len0 = cpu_to_be16(list[i * 4 + 0].size);
128                 sg_ptr->u.s.len1 = cpu_to_be16(list[i * 4 + 1].size);
129                 sg_ptr->u.s.len2 = cpu_to_be16(list[i * 4 + 2].size);
130                 sg_ptr->u.s.len3 = cpu_to_be16(list[i * 4 + 3].size);
131                 sg_ptr->ptr0 = cpu_to_be64(list[i * 4 + 0].dma_addr);
132                 sg_ptr->ptr1 = cpu_to_be64(list[i * 4 + 1].dma_addr);
133                 sg_ptr->ptr2 = cpu_to_be64(list[i * 4 + 2].dma_addr);
134                 sg_ptr->ptr3 = cpu_to_be64(list[i * 4 + 3].dma_addr);
135                 sg_ptr++;
136         }
137         components = buf_count % 4;
138
139         switch (components) {
140         case 3:
141                 sg_ptr->u.s.len2 = cpu_to_be16(list[i * 4 + 2].size);
142                 sg_ptr->ptr2 = cpu_to_be64(list[i * 4 + 2].dma_addr);
143                 fallthrough;
144         case 2:
145                 sg_ptr->u.s.len1 = cpu_to_be16(list[i * 4 + 1].size);
146                 sg_ptr->ptr1 = cpu_to_be64(list[i * 4 + 1].dma_addr);
147                 fallthrough;
148         case 1:
149                 sg_ptr->u.s.len0 = cpu_to_be16(list[i * 4 + 0].size);
150                 sg_ptr->ptr0 = cpu_to_be64(list[i * 4 + 0].dma_addr);
151                 break;
152         default:
153                 break;
154         }
155         return ret;
156
157 sg_cleanup:
158         for (j = 0; j < i; j++) {
159                 if (list[j].dma_addr) {
160                         dma_unmap_single(&pdev->dev, list[i].dma_addr,
161                                          list[i].size, DMA_BIDIRECTIONAL);
162                 }
163
164                 list[j].dma_addr = 0;
165         }
166         return ret;
167 }
168
169 static inline int setup_sgio_list(struct pci_dev *pdev,
170                                   struct otx_cpt_info_buffer **pinfo,
171                                   struct otx_cpt_req_info *req, gfp_t gfp)
172 {
173         u32 dlen, align_dlen, info_len, rlen;
174         struct otx_cpt_info_buffer *info;
175         u16 g_sz_bytes, s_sz_bytes;
176         int align = CPT_DMA_ALIGN;
177         u32 total_mem_len;
178
179         if (unlikely(req->incnt > OTX_CPT_MAX_SG_IN_CNT ||
180                      req->outcnt > OTX_CPT_MAX_SG_OUT_CNT)) {
181                 dev_err(&pdev->dev, "Error too many sg components\n");
182                 return -EINVAL;
183         }
184
185         g_sz_bytes = ((req->incnt + 3) / 4) *
186                       sizeof(struct otx_cpt_sglist_component);
187         s_sz_bytes = ((req->outcnt + 3) / 4) *
188                       sizeof(struct otx_cpt_sglist_component);
189
190         dlen = g_sz_bytes + s_sz_bytes + SG_LIST_HDR_SIZE;
191         align_dlen = ALIGN(dlen, align);
192         info_len = ALIGN(sizeof(*info), align);
193         rlen = ALIGN(sizeof(union otx_cpt_res_s), align);
194         total_mem_len = align_dlen + info_len + rlen + COMPLETION_CODE_SIZE;
195
196         info = kzalloc(total_mem_len, gfp);
197         if (unlikely(!info)) {
198                 dev_err(&pdev->dev, "Memory allocation failed\n");
199                 return -ENOMEM;
200         }
201         *pinfo = info;
202         info->dlen = dlen;
203         info->in_buffer = (u8 *)info + info_len;
204
205         ((__be16 *)info->in_buffer)[0] = cpu_to_be16(req->outcnt);
206         ((__be16 *)info->in_buffer)[1] = cpu_to_be16(req->incnt);
207         ((u16 *)info->in_buffer)[2] = 0;
208         ((u16 *)info->in_buffer)[3] = 0;
209
210         /* Setup gather (input) components */
211         if (setup_sgio_components(pdev, req->in, req->incnt,
212                                   &info->in_buffer[8])) {
213                 dev_err(&pdev->dev, "Failed to setup gather list\n");
214                 return -EFAULT;
215         }
216
217         if (setup_sgio_components(pdev, req->out, req->outcnt,
218                                   &info->in_buffer[8 + g_sz_bytes])) {
219                 dev_err(&pdev->dev, "Failed to setup scatter list\n");
220                 return -EFAULT;
221         }
222
223         info->dma_len = total_mem_len - info_len;
224         info->dptr_baddr = dma_map_single(&pdev->dev, (void *)info->in_buffer,
225                                           info->dma_len, DMA_BIDIRECTIONAL);
226         if (unlikely(dma_mapping_error(&pdev->dev, info->dptr_baddr))) {
227                 dev_err(&pdev->dev, "DMA Mapping failed for cpt req\n");
228                 return -EIO;
229         }
230         /*
231          * Get buffer for union otx_cpt_res_s response
232          * structure and its physical address
233          */
234         info->completion_addr = (u64 *)(info->in_buffer + align_dlen);
235         info->comp_baddr = info->dptr_baddr + align_dlen;
236
237         /* Create and initialize RPTR */
238         info->out_buffer = (u8 *)info->completion_addr + rlen;
239         info->rptr_baddr = info->comp_baddr + rlen;
240
241         *((u64 *) info->out_buffer) = ~((u64) COMPLETION_CODE_INIT);
242
243         return 0;
244 }
245
246
247 static void cpt_fill_inst(union otx_cpt_inst_s *inst,
248                           struct otx_cpt_info_buffer *info,
249                           struct otx_cpt_iq_cmd *cmd)
250 {
251         inst->u[0] = 0x0;
252         inst->s.doneint = true;
253         inst->s.res_addr = (u64)info->comp_baddr;
254         inst->u[2] = 0x0;
255         inst->s.wq_ptr = 0;
256         inst->s.ei0 = cmd->cmd.u64;
257         inst->s.ei1 = cmd->dptr;
258         inst->s.ei2 = cmd->rptr;
259         inst->s.ei3 = cmd->cptr.u64;
260 }
261
262 /*
263  * On OcteonTX platform the parameter db_count is used as a count for ringing
264  * door bell. The valid values for db_count are:
265  * 0 - 1 CPT instruction will be enqueued however CPT will not be informed
266  * 1 - 1 CPT instruction will be enqueued and CPT will be informed
267  */
268 static void cpt_send_cmd(union otx_cpt_inst_s *cptinst, struct otx_cptvf *cptvf)
269 {
270         struct otx_cpt_cmd_qinfo *qinfo = &cptvf->cqinfo;
271         struct otx_cpt_cmd_queue *queue;
272         struct otx_cpt_cmd_chunk *curr;
273         u8 *ent;
274
275         queue = &qinfo->queue[0];
276         /*
277          * cpt_send_cmd is currently called only from critical section
278          * therefore no locking is required for accessing instruction queue
279          */
280         ent = &queue->qhead->head[queue->idx * OTX_CPT_INST_SIZE];
281         memcpy(ent, (void *) cptinst, OTX_CPT_INST_SIZE);
282
283         if (++queue->idx >= queue->qhead->size / 64) {
284                 curr = queue->qhead;
285
286                 if (list_is_last(&curr->nextchunk, &queue->chead))
287                         queue->qhead = queue->base;
288                 else
289                         queue->qhead = list_next_entry(queue->qhead, nextchunk);
290                 queue->idx = 0;
291         }
292         /* make sure all memory stores are done before ringing doorbell */
293         smp_wmb();
294         otx_cptvf_write_vq_doorbell(cptvf, 1);
295 }
296
297 static int process_request(struct pci_dev *pdev, struct otx_cpt_req_info *req,
298                            struct otx_cpt_pending_queue *pqueue,
299                            struct otx_cptvf *cptvf)
300 {
301         struct otx_cptvf_request *cpt_req = &req->req;
302         struct otx_cpt_pending_entry *pentry = NULL;
303         union otx_cpt_ctrl_info *ctrl = &req->ctrl;
304         struct otx_cpt_info_buffer *info = NULL;
305         union otx_cpt_res_s *result = NULL;
306         struct otx_cpt_iq_cmd iq_cmd;
307         union otx_cpt_inst_s cptinst;
308         int retry, ret = 0;
309         u8 resume_sender;
310         gfp_t gfp;
311
312         gfp = (req->areq->flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL :
313                                                               GFP_ATOMIC;
314         ret = setup_sgio_list(pdev, &info, req, gfp);
315         if (unlikely(ret)) {
316                 dev_err(&pdev->dev, "Setting up SG list failed\n");
317                 goto request_cleanup;
318         }
319         cpt_req->dlen = info->dlen;
320
321         result = (union otx_cpt_res_s *) info->completion_addr;
322         result->s.compcode = COMPLETION_CODE_INIT;
323
324         spin_lock_bh(&pqueue->lock);
325         pentry = get_free_pending_entry(pqueue, pqueue->qlen);
326         retry = CPT_PENTRY_TIMEOUT / CPT_PENTRY_STEP;
327         while (unlikely(!pentry) && retry--) {
328                 spin_unlock_bh(&pqueue->lock);
329                 udelay(CPT_PENTRY_STEP);
330                 spin_lock_bh(&pqueue->lock);
331                 pentry = get_free_pending_entry(pqueue, pqueue->qlen);
332         }
333
334         if (unlikely(!pentry)) {
335                 ret = -ENOSPC;
336                 spin_unlock_bh(&pqueue->lock);
337                 goto request_cleanup;
338         }
339
340         /*
341          * Check if we are close to filling in entire pending queue,
342          * if so then tell the sender to stop/sleep by returning -EBUSY
343          * We do it only for context which can sleep (GFP_KERNEL)
344          */
345         if (gfp == GFP_KERNEL &&
346             pqueue->pending_count > (pqueue->qlen - CPT_IQ_STOP_MARGIN)) {
347                 pentry->resume_sender = true;
348         } else
349                 pentry->resume_sender = false;
350         resume_sender = pentry->resume_sender;
351         pqueue->pending_count++;
352
353         pentry->completion_addr = info->completion_addr;
354         pentry->info = info;
355         pentry->callback = req->callback;
356         pentry->areq = req->areq;
357         pentry->busy = true;
358         info->pentry = pentry;
359         info->time_in = jiffies;
360         info->req = req;
361
362         /* Fill in the command */
363         iq_cmd.cmd.u64 = 0;
364         iq_cmd.cmd.s.opcode = cpu_to_be16(cpt_req->opcode.flags);
365         iq_cmd.cmd.s.param1 = cpu_to_be16(cpt_req->param1);
366         iq_cmd.cmd.s.param2 = cpu_to_be16(cpt_req->param2);
367         iq_cmd.cmd.s.dlen   = cpu_to_be16(cpt_req->dlen);
368
369         iq_cmd.dptr = info->dptr_baddr;
370         iq_cmd.rptr = info->rptr_baddr;
371         iq_cmd.cptr.u64 = 0;
372         iq_cmd.cptr.s.grp = ctrl->s.grp;
373
374         /* Fill in the CPT_INST_S type command for HW interpretation */
375         cpt_fill_inst(&cptinst, info, &iq_cmd);
376
377         /* Print debug info if enabled */
378         otx_cpt_dump_sg_list(pdev, req);
379         pr_debug("Cpt_inst_s hexdump (%d bytes)\n", OTX_CPT_INST_SIZE);
380         print_hex_dump_debug("", 0, 16, 1, &cptinst, OTX_CPT_INST_SIZE, false);
381         pr_debug("Dptr hexdump (%d bytes)\n", cpt_req->dlen);
382         print_hex_dump_debug("", 0, 16, 1, info->in_buffer,
383                              cpt_req->dlen, false);
384
385         /* Send CPT command */
386         cpt_send_cmd(&cptinst, cptvf);
387
388         /*
389          * We allocate and prepare pending queue entry in critical section
390          * together with submitting CPT instruction to CPT instruction queue
391          * to make sure that order of CPT requests is the same in both
392          * pending and instruction queues
393          */
394         spin_unlock_bh(&pqueue->lock);
395
396         ret = resume_sender ? -EBUSY : -EINPROGRESS;
397         return ret;
398
399 request_cleanup:
400         do_request_cleanup(pdev, info);
401         return ret;
402 }
403
404 int otx_cpt_do_request(struct pci_dev *pdev, struct otx_cpt_req_info *req,
405                        int cpu_num)
406 {
407         struct otx_cptvf *cptvf = pci_get_drvdata(pdev);
408
409         if (!otx_cpt_device_ready(cptvf)) {
410                 dev_err(&pdev->dev, "CPT Device is not ready\n");
411                 return -ENODEV;
412         }
413
414         if ((cptvf->vftype == OTX_CPT_SE_TYPES) && (!req->ctrl.s.se_req)) {
415                 dev_err(&pdev->dev, "CPTVF-%d of SE TYPE got AE request\n",
416                         cptvf->vfid);
417                 return -EINVAL;
418         } else if ((cptvf->vftype == OTX_CPT_AE_TYPES) &&
419                    (req->ctrl.s.se_req)) {
420                 dev_err(&pdev->dev, "CPTVF-%d of AE TYPE got SE request\n",
421                         cptvf->vfid);
422                 return -EINVAL;
423         }
424
425         return process_request(pdev, req, &cptvf->pqinfo.queue[0], cptvf);
426 }
427
428 static int cpt_process_ccode(struct pci_dev *pdev,
429                              union otx_cpt_res_s *cpt_status,
430                              struct otx_cpt_info_buffer *cpt_info,
431                              struct otx_cpt_req_info *req, u32 *res_code)
432 {
433         u8 ccode = cpt_status->s.compcode;
434         union otx_cpt_error_code ecode;
435
436         ecode.u = be64_to_cpup((__be64 *)cpt_info->out_buffer);
437         switch (ccode) {
438         case CPT_COMP_E_FAULT:
439                 dev_err(&pdev->dev,
440                         "Request failed with DMA fault\n");
441                 otx_cpt_dump_sg_list(pdev, req);
442                 break;
443
444         case CPT_COMP_E_SWERR:
445                 dev_err(&pdev->dev,
446                         "Request failed with software error code %d\n",
447                         ecode.s.ccode);
448                 otx_cpt_dump_sg_list(pdev, req);
449                 break;
450
451         case CPT_COMP_E_HWERR:
452                 dev_err(&pdev->dev,
453                         "Request failed with hardware error\n");
454                 otx_cpt_dump_sg_list(pdev, req);
455                 break;
456
457         case COMPLETION_CODE_INIT:
458                 /* check for timeout */
459                 if (time_after_eq(jiffies, cpt_info->time_in +
460                                   OTX_CPT_COMMAND_TIMEOUT * HZ))
461                         dev_warn(&pdev->dev, "Request timed out 0x%p\n", req);
462                 else if (cpt_info->extra_time < OTX_CPT_TIME_IN_RESET_COUNT) {
463                         cpt_info->time_in = jiffies;
464                         cpt_info->extra_time++;
465                 }
466                 return 1;
467
468         case CPT_COMP_E_GOOD:
469                 /* Check microcode completion code */
470                 if (ecode.s.ccode) {
471                         /*
472                          * If requested hmac is truncated and ucode returns
473                          * s/g write length error then we report success
474                          * because ucode writes as many bytes of calculated
475                          * hmac as available in gather buffer and reports
476                          * s/g write length error if number of bytes in gather
477                          * buffer is less than full hmac size.
478                          */
479                         if (req->is_trunc_hmac &&
480                             ecode.s.ccode == ERR_SCATTER_GATHER_WRITE_LENGTH) {
481                                 *res_code = 0;
482                                 break;
483                         }
484
485                         dev_err(&pdev->dev,
486                                 "Request failed with software error code 0x%x\n",
487                                 ecode.s.ccode);
488                         otx_cpt_dump_sg_list(pdev, req);
489                         break;
490                 }
491
492                 /* Request has been processed with success */
493                 *res_code = 0;
494                 break;
495
496         default:
497                 dev_err(&pdev->dev, "Request returned invalid status\n");
498                 break;
499         }
500
501         return 0;
502 }
503
504 static inline void process_pending_queue(struct pci_dev *pdev,
505                                          struct otx_cpt_pending_queue *pqueue)
506 {
507         void (*callback)(int status, void *arg1, void *arg2);
508         struct otx_cpt_pending_entry *resume_pentry = NULL;
509         struct otx_cpt_pending_entry *pentry = NULL;
510         struct otx_cpt_info_buffer *cpt_info = NULL;
511         union otx_cpt_res_s *cpt_status = NULL;
512         struct otx_cpt_req_info *req = NULL;
513         struct crypto_async_request *areq;
514         u32 res_code, resume_index;
515
516         while (1) {
517                 spin_lock_bh(&pqueue->lock);
518                 pentry = &pqueue->head[pqueue->front];
519
520                 if (WARN_ON(!pentry)) {
521                         spin_unlock_bh(&pqueue->lock);
522                         break;
523                 }
524
525                 res_code = -EINVAL;
526                 if (unlikely(!pentry->busy)) {
527                         spin_unlock_bh(&pqueue->lock);
528                         break;
529                 }
530
531                 if (unlikely(!pentry->callback)) {
532                         dev_err(&pdev->dev, "Callback NULL\n");
533                         goto process_pentry;
534                 }
535
536                 cpt_info = pentry->info;
537                 if (unlikely(!cpt_info)) {
538                         dev_err(&pdev->dev, "Pending entry post arg NULL\n");
539                         goto process_pentry;
540                 }
541
542                 req = cpt_info->req;
543                 if (unlikely(!req)) {
544                         dev_err(&pdev->dev, "Request NULL\n");
545                         goto process_pentry;
546                 }
547
548                 cpt_status = (union otx_cpt_res_s *) pentry->completion_addr;
549                 if (unlikely(!cpt_status)) {
550                         dev_err(&pdev->dev, "Completion address NULL\n");
551                         goto process_pentry;
552                 }
553
554                 if (cpt_process_ccode(pdev, cpt_status, cpt_info, req,
555                                       &res_code)) {
556                         spin_unlock_bh(&pqueue->lock);
557                         return;
558                 }
559                 cpt_info->pdev = pdev;
560
561 process_pentry:
562                 /*
563                  * Check if we should inform sending side to resume
564                  * We do it CPT_IQ_RESUME_MARGIN elements in advance before
565                  * pending queue becomes empty
566                  */
567                 resume_index = modulo_inc(pqueue->front, pqueue->qlen,
568                                           CPT_IQ_RESUME_MARGIN);
569                 resume_pentry = &pqueue->head[resume_index];
570                 if (resume_pentry &&
571                     resume_pentry->resume_sender) {
572                         resume_pentry->resume_sender = false;
573                         callback = resume_pentry->callback;
574                         areq = resume_pentry->areq;
575
576                         if (callback) {
577                                 spin_unlock_bh(&pqueue->lock);
578
579                                 /*
580                                  * EINPROGRESS is an indication for sending
581                                  * side that it can resume sending requests
582                                  */
583                                 callback(-EINPROGRESS, areq, cpt_info);
584                                 spin_lock_bh(&pqueue->lock);
585                         }
586                 }
587
588                 callback = pentry->callback;
589                 areq = pentry->areq;
590                 free_pentry(pentry);
591
592                 pqueue->pending_count--;
593                 pqueue->front = modulo_inc(pqueue->front, pqueue->qlen, 1);
594                 spin_unlock_bh(&pqueue->lock);
595
596                 /*
597                  * Call callback after current pending entry has been
598                  * processed, we don't do it if the callback pointer is
599                  * invalid.
600                  */
601                 if (callback)
602                         callback(res_code, areq, cpt_info);
603         }
604 }
605
606 void otx_cpt_post_process(struct otx_cptvf_wqe *wqe)
607 {
608         process_pending_queue(wqe->cptvf->pdev, &wqe->cptvf->pqinfo.queue[0]);
609 }