acedafe3fa98cd1d0ee07ba885a062a5080ec0eb
[linux-2.6-block.git] / drivers / crypto / ixp4xx_crypto.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Intel IXP4xx NPE-C crypto driver
4  *
5  * Copyright (C) 2008 Christian Hohnstaedt <chohnstaedt@innominate.com>
6  */
7
8 #include <linux/platform_device.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/dmapool.h>
11 #include <linux/crypto.h>
12 #include <linux/kernel.h>
13 #include <linux/rtnetlink.h>
14 #include <linux/interrupt.h>
15 #include <linux/spinlock.h>
16 #include <linux/gfp.h>
17 #include <linux/module.h>
18
19 #include <crypto/ctr.h>
20 #include <crypto/des.h>
21 #include <crypto/aes.h>
22 #include <crypto/hmac.h>
23 #include <crypto/sha.h>
24 #include <crypto/algapi.h>
25 #include <crypto/internal/aead.h>
26 #include <crypto/authenc.h>
27 #include <crypto/scatterwalk.h>
28
29 #include <linux/soc/ixp4xx/npe.h>
30 #include <linux/soc/ixp4xx/qmgr.h>
31
32 #define MAX_KEYLEN 32
33
34 /* hash: cfgword + 2 * digestlen; crypt: keylen + cfgword */
35 #define NPE_CTX_LEN 80
36 #define AES_BLOCK128 16
37
38 #define NPE_OP_HASH_VERIFY   0x01
39 #define NPE_OP_CCM_ENABLE    0x04
40 #define NPE_OP_CRYPT_ENABLE  0x08
41 #define NPE_OP_HASH_ENABLE   0x10
42 #define NPE_OP_NOT_IN_PLACE  0x20
43 #define NPE_OP_HMAC_DISABLE  0x40
44 #define NPE_OP_CRYPT_ENCRYPT 0x80
45
46 #define NPE_OP_CCM_GEN_MIC   0xcc
47 #define NPE_OP_HASH_GEN_ICV  0x50
48 #define NPE_OP_ENC_GEN_KEY   0xc9
49
50 #define MOD_ECB     0x0000
51 #define MOD_CTR     0x1000
52 #define MOD_CBC_ENC 0x2000
53 #define MOD_CBC_DEC 0x3000
54 #define MOD_CCM_ENC 0x4000
55 #define MOD_CCM_DEC 0x5000
56
57 #define KEYLEN_128  4
58 #define KEYLEN_192  6
59 #define KEYLEN_256  8
60
61 #define CIPH_DECR   0x0000
62 #define CIPH_ENCR   0x0400
63
64 #define MOD_DES     0x0000
65 #define MOD_TDEA2   0x0100
66 #define MOD_3DES   0x0200
67 #define MOD_AES     0x0800
68 #define MOD_AES128  (0x0800 | KEYLEN_128)
69 #define MOD_AES192  (0x0900 | KEYLEN_192)
70 #define MOD_AES256  (0x0a00 | KEYLEN_256)
71
72 #define MAX_IVLEN   16
73 #define NPE_ID      2  /* NPE C */
74 #define NPE_QLEN    16
75 /* Space for registering when the first
76  * NPE_QLEN crypt_ctl are busy */
77 #define NPE_QLEN_TOTAL 64
78
79 #define SEND_QID    29
80 #define RECV_QID    30
81
82 #define CTL_FLAG_UNUSED         0x0000
83 #define CTL_FLAG_USED           0x1000
84 #define CTL_FLAG_PERFORM_ABLK   0x0001
85 #define CTL_FLAG_GEN_ICV        0x0002
86 #define CTL_FLAG_GEN_REVAES     0x0004
87 #define CTL_FLAG_PERFORM_AEAD   0x0008
88 #define CTL_FLAG_MASK           0x000f
89
90 #define HMAC_PAD_BLOCKLEN SHA1_BLOCK_SIZE
91
92 #define MD5_DIGEST_SIZE   16
93
94 struct buffer_desc {
95         u32 phys_next;
96 #ifdef __ARMEB__
97         u16 buf_len;
98         u16 pkt_len;
99 #else
100         u16 pkt_len;
101         u16 buf_len;
102 #endif
103         dma_addr_t phys_addr;
104         u32 __reserved[4];
105         struct buffer_desc *next;
106         enum dma_data_direction dir;
107 };
108
109 struct crypt_ctl {
110 #ifdef __ARMEB__
111         u8 mode;                /* NPE_OP_*  operation mode */
112         u8 init_len;
113         u16 reserved;
114 #else
115         u16 reserved;
116         u8 init_len;
117         u8 mode;                /* NPE_OP_*  operation mode */
118 #endif
119         u8 iv[MAX_IVLEN];       /* IV for CBC mode or CTR IV for CTR mode */
120         dma_addr_t icv_rev_aes; /* icv or rev aes */
121         dma_addr_t src_buf;
122         dma_addr_t dst_buf;
123 #ifdef __ARMEB__
124         u16 auth_offs;          /* Authentication start offset */
125         u16 auth_len;           /* Authentication data length */
126         u16 crypt_offs;         /* Cryption start offset */
127         u16 crypt_len;          /* Cryption data length */
128 #else
129         u16 auth_len;           /* Authentication data length */
130         u16 auth_offs;          /* Authentication start offset */
131         u16 crypt_len;          /* Cryption data length */
132         u16 crypt_offs;         /* Cryption start offset */
133 #endif
134         u32 aadAddr;            /* Additional Auth Data Addr for CCM mode */
135         u32 crypto_ctx;         /* NPE Crypto Param structure address */
136
137         /* Used by Host: 4*4 bytes*/
138         unsigned ctl_flags;
139         union {
140                 struct ablkcipher_request *ablk_req;
141                 struct aead_request *aead_req;
142                 struct crypto_tfm *tfm;
143         } data;
144         struct buffer_desc *regist_buf;
145         u8 *regist_ptr;
146 };
147
148 struct ablk_ctx {
149         struct buffer_desc *src;
150         struct buffer_desc *dst;
151 };
152
153 struct aead_ctx {
154         struct buffer_desc *src;
155         struct buffer_desc *dst;
156         struct scatterlist ivlist;
157         /* used when the hmac is not on one sg entry */
158         u8 *hmac_virt;
159         int encrypt;
160 };
161
162 struct ix_hash_algo {
163         u32 cfgword;
164         unsigned char *icv;
165 };
166
167 struct ix_sa_dir {
168         unsigned char *npe_ctx;
169         dma_addr_t npe_ctx_phys;
170         int npe_ctx_idx;
171         u8 npe_mode;
172 };
173
174 struct ixp_ctx {
175         struct ix_sa_dir encrypt;
176         struct ix_sa_dir decrypt;
177         int authkey_len;
178         u8 authkey[MAX_KEYLEN];
179         int enckey_len;
180         u8 enckey[MAX_KEYLEN];
181         u8 salt[MAX_IVLEN];
182         u8 nonce[CTR_RFC3686_NONCE_SIZE];
183         unsigned salted;
184         atomic_t configuring;
185         struct completion completion;
186 };
187
188 struct ixp_alg {
189         struct crypto_alg crypto;
190         const struct ix_hash_algo *hash;
191         u32 cfg_enc;
192         u32 cfg_dec;
193
194         int registered;
195 };
196
197 struct ixp_aead_alg {
198         struct aead_alg crypto;
199         const struct ix_hash_algo *hash;
200         u32 cfg_enc;
201         u32 cfg_dec;
202
203         int registered;
204 };
205
206 static const struct ix_hash_algo hash_alg_md5 = {
207         .cfgword        = 0xAA010004,
208         .icv            = "\x01\x23\x45\x67\x89\xAB\xCD\xEF"
209                           "\xFE\xDC\xBA\x98\x76\x54\x32\x10",
210 };
211 static const struct ix_hash_algo hash_alg_sha1 = {
212         .cfgword        = 0x00000005,
213         .icv            = "\x67\x45\x23\x01\xEF\xCD\xAB\x89\x98\xBA"
214                           "\xDC\xFE\x10\x32\x54\x76\xC3\xD2\xE1\xF0",
215 };
216
217 static struct npe *npe_c;
218 static struct dma_pool *buffer_pool = NULL;
219 static struct dma_pool *ctx_pool = NULL;
220
221 static struct crypt_ctl *crypt_virt = NULL;
222 static dma_addr_t crypt_phys;
223
224 static int support_aes = 1;
225
226 #define DRIVER_NAME "ixp4xx_crypto"
227
228 static struct platform_device *pdev;
229
230 static inline dma_addr_t crypt_virt2phys(struct crypt_ctl *virt)
231 {
232         return crypt_phys + (virt - crypt_virt) * sizeof(struct crypt_ctl);
233 }
234
235 static inline struct crypt_ctl *crypt_phys2virt(dma_addr_t phys)
236 {
237         return crypt_virt + (phys - crypt_phys) / sizeof(struct crypt_ctl);
238 }
239
240 static inline u32 cipher_cfg_enc(struct crypto_tfm *tfm)
241 {
242         return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_enc;
243 }
244
245 static inline u32 cipher_cfg_dec(struct crypto_tfm *tfm)
246 {
247         return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_dec;
248 }
249
250 static inline const struct ix_hash_algo *ix_hash(struct crypto_tfm *tfm)
251 {
252         return container_of(tfm->__crt_alg, struct ixp_alg, crypto)->hash;
253 }
254
255 static int setup_crypt_desc(void)
256 {
257         struct device *dev = &pdev->dev;
258         BUILD_BUG_ON(sizeof(struct crypt_ctl) != 64);
259         crypt_virt = dma_alloc_coherent(dev,
260                                         NPE_QLEN * sizeof(struct crypt_ctl),
261                                         &crypt_phys, GFP_ATOMIC);
262         if (!crypt_virt)
263                 return -ENOMEM;
264         return 0;
265 }
266
267 static spinlock_t desc_lock;
268 static struct crypt_ctl *get_crypt_desc(void)
269 {
270         int i;
271         static int idx = 0;
272         unsigned long flags;
273
274         spin_lock_irqsave(&desc_lock, flags);
275
276         if (unlikely(!crypt_virt))
277                 setup_crypt_desc();
278         if (unlikely(!crypt_virt)) {
279                 spin_unlock_irqrestore(&desc_lock, flags);
280                 return NULL;
281         }
282         i = idx;
283         if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
284                 if (++idx >= NPE_QLEN)
285                         idx = 0;
286                 crypt_virt[i].ctl_flags = CTL_FLAG_USED;
287                 spin_unlock_irqrestore(&desc_lock, flags);
288                 return crypt_virt +i;
289         } else {
290                 spin_unlock_irqrestore(&desc_lock, flags);
291                 return NULL;
292         }
293 }
294
295 static spinlock_t emerg_lock;
296 static struct crypt_ctl *get_crypt_desc_emerg(void)
297 {
298         int i;
299         static int idx = NPE_QLEN;
300         struct crypt_ctl *desc;
301         unsigned long flags;
302
303         desc = get_crypt_desc();
304         if (desc)
305                 return desc;
306         if (unlikely(!crypt_virt))
307                 return NULL;
308
309         spin_lock_irqsave(&emerg_lock, flags);
310         i = idx;
311         if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
312                 if (++idx >= NPE_QLEN_TOTAL)
313                         idx = NPE_QLEN;
314                 crypt_virt[i].ctl_flags = CTL_FLAG_USED;
315                 spin_unlock_irqrestore(&emerg_lock, flags);
316                 return crypt_virt +i;
317         } else {
318                 spin_unlock_irqrestore(&emerg_lock, flags);
319                 return NULL;
320         }
321 }
322
323 static void free_buf_chain(struct device *dev, struct buffer_desc *buf,
324                            dma_addr_t phys)
325 {
326         while (buf) {
327                 struct buffer_desc *buf1;
328                 u32 phys1;
329
330                 buf1 = buf->next;
331                 phys1 = buf->phys_next;
332                 dma_unmap_single(dev, buf->phys_next, buf->buf_len, buf->dir);
333                 dma_pool_free(buffer_pool, buf, phys);
334                 buf = buf1;
335                 phys = phys1;
336         }
337 }
338
339 static struct tasklet_struct crypto_done_tasklet;
340
341 static void finish_scattered_hmac(struct crypt_ctl *crypt)
342 {
343         struct aead_request *req = crypt->data.aead_req;
344         struct aead_ctx *req_ctx = aead_request_ctx(req);
345         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
346         int authsize = crypto_aead_authsize(tfm);
347         int decryptlen = req->assoclen + req->cryptlen - authsize;
348
349         if (req_ctx->encrypt) {
350                 scatterwalk_map_and_copy(req_ctx->hmac_virt,
351                         req->dst, decryptlen, authsize, 1);
352         }
353         dma_pool_free(buffer_pool, req_ctx->hmac_virt, crypt->icv_rev_aes);
354 }
355
356 static void one_packet(dma_addr_t phys)
357 {
358         struct device *dev = &pdev->dev;
359         struct crypt_ctl *crypt;
360         struct ixp_ctx *ctx;
361         int failed;
362
363         failed = phys & 0x1 ? -EBADMSG : 0;
364         phys &= ~0x3;
365         crypt = crypt_phys2virt(phys);
366
367         switch (crypt->ctl_flags & CTL_FLAG_MASK) {
368         case CTL_FLAG_PERFORM_AEAD: {
369                 struct aead_request *req = crypt->data.aead_req;
370                 struct aead_ctx *req_ctx = aead_request_ctx(req);
371
372                 free_buf_chain(dev, req_ctx->src, crypt->src_buf);
373                 free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
374                 if (req_ctx->hmac_virt) {
375                         finish_scattered_hmac(crypt);
376                 }
377                 req->base.complete(&req->base, failed);
378                 break;
379         }
380         case CTL_FLAG_PERFORM_ABLK: {
381                 struct ablkcipher_request *req = crypt->data.ablk_req;
382                 struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
383
384                 if (req_ctx->dst) {
385                         free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
386                 }
387                 free_buf_chain(dev, req_ctx->src, crypt->src_buf);
388                 req->base.complete(&req->base, failed);
389                 break;
390         }
391         case CTL_FLAG_GEN_ICV:
392                 ctx = crypto_tfm_ctx(crypt->data.tfm);
393                 dma_pool_free(ctx_pool, crypt->regist_ptr,
394                                 crypt->regist_buf->phys_addr);
395                 dma_pool_free(buffer_pool, crypt->regist_buf, crypt->src_buf);
396                 if (atomic_dec_and_test(&ctx->configuring))
397                         complete(&ctx->completion);
398                 break;
399         case CTL_FLAG_GEN_REVAES:
400                 ctx = crypto_tfm_ctx(crypt->data.tfm);
401                 *(u32*)ctx->decrypt.npe_ctx &= cpu_to_be32(~CIPH_ENCR);
402                 if (atomic_dec_and_test(&ctx->configuring))
403                         complete(&ctx->completion);
404                 break;
405         default:
406                 BUG();
407         }
408         crypt->ctl_flags = CTL_FLAG_UNUSED;
409 }
410
411 static void irqhandler(void *_unused)
412 {
413         tasklet_schedule(&crypto_done_tasklet);
414 }
415
416 static void crypto_done_action(unsigned long arg)
417 {
418         int i;
419
420         for(i=0; i<4; i++) {
421                 dma_addr_t phys = qmgr_get_entry(RECV_QID);
422                 if (!phys)
423                         return;
424                 one_packet(phys);
425         }
426         tasklet_schedule(&crypto_done_tasklet);
427 }
428
429 static int init_ixp_crypto(struct device *dev)
430 {
431         int ret = -ENODEV;
432         u32 msg[2] = { 0, 0 };
433
434         if (! ( ~(*IXP4XX_EXP_CFG2) & (IXP4XX_FEATURE_HASH |
435                                 IXP4XX_FEATURE_AES | IXP4XX_FEATURE_DES))) {
436                 printk(KERN_ERR "ixp_crypto: No HW crypto available\n");
437                 return ret;
438         }
439         npe_c = npe_request(NPE_ID);
440         if (!npe_c)
441                 return ret;
442
443         if (!npe_running(npe_c)) {
444                 ret = npe_load_firmware(npe_c, npe_name(npe_c), dev);
445                 if (ret)
446                         goto npe_release;
447                 if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
448                         goto npe_error;
449         } else {
450                 if (npe_send_message(npe_c, msg, "STATUS_MSG"))
451                         goto npe_error;
452
453                 if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
454                         goto npe_error;
455         }
456
457         switch ((msg[1]>>16) & 0xff) {
458         case 3:
459                 printk(KERN_WARNING "Firmware of %s lacks AES support\n",
460                                 npe_name(npe_c));
461                 support_aes = 0;
462                 break;
463         case 4:
464         case 5:
465                 support_aes = 1;
466                 break;
467         default:
468                 printk(KERN_ERR "Firmware of %s lacks crypto support\n",
469                         npe_name(npe_c));
470                 ret = -ENODEV;
471                 goto npe_release;
472         }
473         /* buffer_pool will also be used to sometimes store the hmac,
474          * so assure it is large enough
475          */
476         BUILD_BUG_ON(SHA1_DIGEST_SIZE > sizeof(struct buffer_desc));
477         buffer_pool = dma_pool_create("buffer", dev,
478                         sizeof(struct buffer_desc), 32, 0);
479         ret = -ENOMEM;
480         if (!buffer_pool) {
481                 goto err;
482         }
483         ctx_pool = dma_pool_create("context", dev,
484                         NPE_CTX_LEN, 16, 0);
485         if (!ctx_pool) {
486                 goto err;
487         }
488         ret = qmgr_request_queue(SEND_QID, NPE_QLEN_TOTAL, 0, 0,
489                                  "ixp_crypto:out", NULL);
490         if (ret)
491                 goto err;
492         ret = qmgr_request_queue(RECV_QID, NPE_QLEN, 0, 0,
493                                  "ixp_crypto:in", NULL);
494         if (ret) {
495                 qmgr_release_queue(SEND_QID);
496                 goto err;
497         }
498         qmgr_set_irq(RECV_QID, QUEUE_IRQ_SRC_NOT_EMPTY, irqhandler, NULL);
499         tasklet_init(&crypto_done_tasklet, crypto_done_action, 0);
500
501         qmgr_enable_irq(RECV_QID);
502         return 0;
503
504 npe_error:
505         printk(KERN_ERR "%s not responding\n", npe_name(npe_c));
506         ret = -EIO;
507 err:
508         dma_pool_destroy(ctx_pool);
509         dma_pool_destroy(buffer_pool);
510 npe_release:
511         npe_release(npe_c);
512         return ret;
513 }
514
515 static void release_ixp_crypto(struct device *dev)
516 {
517         qmgr_disable_irq(RECV_QID);
518         tasklet_kill(&crypto_done_tasklet);
519
520         qmgr_release_queue(SEND_QID);
521         qmgr_release_queue(RECV_QID);
522
523         dma_pool_destroy(ctx_pool);
524         dma_pool_destroy(buffer_pool);
525
526         npe_release(npe_c);
527
528         if (crypt_virt) {
529                 dma_free_coherent(dev,
530                         NPE_QLEN_TOTAL * sizeof( struct crypt_ctl),
531                         crypt_virt, crypt_phys);
532         }
533 }
534
535 static void reset_sa_dir(struct ix_sa_dir *dir)
536 {
537         memset(dir->npe_ctx, 0, NPE_CTX_LEN);
538         dir->npe_ctx_idx = 0;
539         dir->npe_mode = 0;
540 }
541
542 static int init_sa_dir(struct ix_sa_dir *dir)
543 {
544         dir->npe_ctx = dma_pool_alloc(ctx_pool, GFP_KERNEL, &dir->npe_ctx_phys);
545         if (!dir->npe_ctx) {
546                 return -ENOMEM;
547         }
548         reset_sa_dir(dir);
549         return 0;
550 }
551
552 static void free_sa_dir(struct ix_sa_dir *dir)
553 {
554         memset(dir->npe_ctx, 0, NPE_CTX_LEN);
555         dma_pool_free(ctx_pool, dir->npe_ctx, dir->npe_ctx_phys);
556 }
557
558 static int init_tfm(struct crypto_tfm *tfm)
559 {
560         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
561         int ret;
562
563         atomic_set(&ctx->configuring, 0);
564         ret = init_sa_dir(&ctx->encrypt);
565         if (ret)
566                 return ret;
567         ret = init_sa_dir(&ctx->decrypt);
568         if (ret) {
569                 free_sa_dir(&ctx->encrypt);
570         }
571         return ret;
572 }
573
574 static int init_tfm_ablk(struct crypto_tfm *tfm)
575 {
576         tfm->crt_ablkcipher.reqsize = sizeof(struct ablk_ctx);
577         return init_tfm(tfm);
578 }
579
580 static int init_tfm_aead(struct crypto_aead *tfm)
581 {
582         crypto_aead_set_reqsize(tfm, sizeof(struct aead_ctx));
583         return init_tfm(crypto_aead_tfm(tfm));
584 }
585
586 static void exit_tfm(struct crypto_tfm *tfm)
587 {
588         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
589         free_sa_dir(&ctx->encrypt);
590         free_sa_dir(&ctx->decrypt);
591 }
592
593 static void exit_tfm_aead(struct crypto_aead *tfm)
594 {
595         exit_tfm(crypto_aead_tfm(tfm));
596 }
597
598 static int register_chain_var(struct crypto_tfm *tfm, u8 xpad, u32 target,
599                 int init_len, u32 ctx_addr, const u8 *key, int key_len)
600 {
601         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
602         struct crypt_ctl *crypt;
603         struct buffer_desc *buf;
604         int i;
605         u8 *pad;
606         dma_addr_t pad_phys, buf_phys;
607
608         BUILD_BUG_ON(NPE_CTX_LEN < HMAC_PAD_BLOCKLEN);
609         pad = dma_pool_alloc(ctx_pool, GFP_KERNEL, &pad_phys);
610         if (!pad)
611                 return -ENOMEM;
612         buf = dma_pool_alloc(buffer_pool, GFP_KERNEL, &buf_phys);
613         if (!buf) {
614                 dma_pool_free(ctx_pool, pad, pad_phys);
615                 return -ENOMEM;
616         }
617         crypt = get_crypt_desc_emerg();
618         if (!crypt) {
619                 dma_pool_free(ctx_pool, pad, pad_phys);
620                 dma_pool_free(buffer_pool, buf, buf_phys);
621                 return -EAGAIN;
622         }
623
624         memcpy(pad, key, key_len);
625         memset(pad + key_len, 0, HMAC_PAD_BLOCKLEN - key_len);
626         for (i = 0; i < HMAC_PAD_BLOCKLEN; i++) {
627                 pad[i] ^= xpad;
628         }
629
630         crypt->data.tfm = tfm;
631         crypt->regist_ptr = pad;
632         crypt->regist_buf = buf;
633
634         crypt->auth_offs = 0;
635         crypt->auth_len = HMAC_PAD_BLOCKLEN;
636         crypt->crypto_ctx = ctx_addr;
637         crypt->src_buf = buf_phys;
638         crypt->icv_rev_aes = target;
639         crypt->mode = NPE_OP_HASH_GEN_ICV;
640         crypt->init_len = init_len;
641         crypt->ctl_flags |= CTL_FLAG_GEN_ICV;
642
643         buf->next = 0;
644         buf->buf_len = HMAC_PAD_BLOCKLEN;
645         buf->pkt_len = 0;
646         buf->phys_addr = pad_phys;
647
648         atomic_inc(&ctx->configuring);
649         qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
650         BUG_ON(qmgr_stat_overflow(SEND_QID));
651         return 0;
652 }
653
654 static int setup_auth(struct crypto_tfm *tfm, int encrypt, unsigned authsize,
655                 const u8 *key, int key_len, unsigned digest_len)
656 {
657         u32 itarget, otarget, npe_ctx_addr;
658         unsigned char *cinfo;
659         int init_len, ret = 0;
660         u32 cfgword;
661         struct ix_sa_dir *dir;
662         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
663         const struct ix_hash_algo *algo;
664
665         dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
666         cinfo = dir->npe_ctx + dir->npe_ctx_idx;
667         algo = ix_hash(tfm);
668
669         /* write cfg word to cryptinfo */
670         cfgword = algo->cfgword | ( authsize << 6); /* (authsize/4) << 8 */
671 #ifndef __ARMEB__
672         cfgword ^= 0xAA000000; /* change the "byte swap" flags */
673 #endif
674         *(u32*)cinfo = cpu_to_be32(cfgword);
675         cinfo += sizeof(cfgword);
676
677         /* write ICV to cryptinfo */
678         memcpy(cinfo, algo->icv, digest_len);
679         cinfo += digest_len;
680
681         itarget = dir->npe_ctx_phys + dir->npe_ctx_idx
682                                 + sizeof(algo->cfgword);
683         otarget = itarget + digest_len;
684         init_len = cinfo - (dir->npe_ctx + dir->npe_ctx_idx);
685         npe_ctx_addr = dir->npe_ctx_phys + dir->npe_ctx_idx;
686
687         dir->npe_ctx_idx += init_len;
688         dir->npe_mode |= NPE_OP_HASH_ENABLE;
689
690         if (!encrypt)
691                 dir->npe_mode |= NPE_OP_HASH_VERIFY;
692
693         ret = register_chain_var(tfm, HMAC_OPAD_VALUE, otarget,
694                         init_len, npe_ctx_addr, key, key_len);
695         if (ret)
696                 return ret;
697         return register_chain_var(tfm, HMAC_IPAD_VALUE, itarget,
698                         init_len, npe_ctx_addr, key, key_len);
699 }
700
701 static int gen_rev_aes_key(struct crypto_tfm *tfm)
702 {
703         struct crypt_ctl *crypt;
704         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
705         struct ix_sa_dir *dir = &ctx->decrypt;
706
707         crypt = get_crypt_desc_emerg();
708         if (!crypt) {
709                 return -EAGAIN;
710         }
711         *(u32*)dir->npe_ctx |= cpu_to_be32(CIPH_ENCR);
712
713         crypt->data.tfm = tfm;
714         crypt->crypt_offs = 0;
715         crypt->crypt_len = AES_BLOCK128;
716         crypt->src_buf = 0;
717         crypt->crypto_ctx = dir->npe_ctx_phys;
718         crypt->icv_rev_aes = dir->npe_ctx_phys + sizeof(u32);
719         crypt->mode = NPE_OP_ENC_GEN_KEY;
720         crypt->init_len = dir->npe_ctx_idx;
721         crypt->ctl_flags |= CTL_FLAG_GEN_REVAES;
722
723         atomic_inc(&ctx->configuring);
724         qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
725         BUG_ON(qmgr_stat_overflow(SEND_QID));
726         return 0;
727 }
728
729 static int setup_cipher(struct crypto_tfm *tfm, int encrypt,
730                 const u8 *key, int key_len)
731 {
732         u8 *cinfo;
733         u32 cipher_cfg;
734         u32 keylen_cfg = 0;
735         struct ix_sa_dir *dir;
736         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
737         u32 *flags = &tfm->crt_flags;
738
739         dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
740         cinfo = dir->npe_ctx;
741
742         if (encrypt) {
743                 cipher_cfg = cipher_cfg_enc(tfm);
744                 dir->npe_mode |= NPE_OP_CRYPT_ENCRYPT;
745         } else {
746                 cipher_cfg = cipher_cfg_dec(tfm);
747         }
748         if (cipher_cfg & MOD_AES) {
749                 switch (key_len) {
750                 case 16: keylen_cfg = MOD_AES128; break;
751                 case 24: keylen_cfg = MOD_AES192; break;
752                 case 32: keylen_cfg = MOD_AES256; break;
753                 default:
754                         *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
755                         return -EINVAL;
756                 }
757                 cipher_cfg |= keylen_cfg;
758         } else {
759                 u32 tmp[DES_EXPKEY_WORDS];
760                 if (des_ekey(tmp, key) == 0) {
761                         *flags |= CRYPTO_TFM_RES_WEAK_KEY;
762                 }
763         }
764         /* write cfg word to cryptinfo */
765         *(u32*)cinfo = cpu_to_be32(cipher_cfg);
766         cinfo += sizeof(cipher_cfg);
767
768         /* write cipher key to cryptinfo */
769         memcpy(cinfo, key, key_len);
770         /* NPE wants keylen set to DES3_EDE_KEY_SIZE even for single DES */
771         if (key_len < DES3_EDE_KEY_SIZE && !(cipher_cfg & MOD_AES)) {
772                 memset(cinfo + key_len, 0, DES3_EDE_KEY_SIZE -key_len);
773                 key_len = DES3_EDE_KEY_SIZE;
774         }
775         dir->npe_ctx_idx = sizeof(cipher_cfg) + key_len;
776         dir->npe_mode |= NPE_OP_CRYPT_ENABLE;
777         if ((cipher_cfg & MOD_AES) && !encrypt) {
778                 return gen_rev_aes_key(tfm);
779         }
780         return 0;
781 }
782
783 static struct buffer_desc *chainup_buffers(struct device *dev,
784                 struct scatterlist *sg, unsigned nbytes,
785                 struct buffer_desc *buf, gfp_t flags,
786                 enum dma_data_direction dir)
787 {
788         for (; nbytes > 0; sg = sg_next(sg)) {
789                 unsigned len = min(nbytes, sg->length);
790                 struct buffer_desc *next_buf;
791                 dma_addr_t next_buf_phys;
792                 void *ptr;
793
794                 nbytes -= len;
795                 ptr = sg_virt(sg);
796                 next_buf = dma_pool_alloc(buffer_pool, flags, &next_buf_phys);
797                 if (!next_buf) {
798                         buf = NULL;
799                         break;
800                 }
801                 sg_dma_address(sg) = dma_map_single(dev, ptr, len, dir);
802                 buf->next = next_buf;
803                 buf->phys_next = next_buf_phys;
804                 buf = next_buf;
805
806                 buf->phys_addr = sg_dma_address(sg);
807                 buf->buf_len = len;
808                 buf->dir = dir;
809         }
810         buf->next = NULL;
811         buf->phys_next = 0;
812         return buf;
813 }
814
815 static int ablk_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
816                         unsigned int key_len)
817 {
818         struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
819         u32 *flags = &tfm->base.crt_flags;
820         int ret;
821
822         init_completion(&ctx->completion);
823         atomic_inc(&ctx->configuring);
824
825         reset_sa_dir(&ctx->encrypt);
826         reset_sa_dir(&ctx->decrypt);
827
828         ctx->encrypt.npe_mode = NPE_OP_HMAC_DISABLE;
829         ctx->decrypt.npe_mode = NPE_OP_HMAC_DISABLE;
830
831         ret = setup_cipher(&tfm->base, 0, key, key_len);
832         if (ret)
833                 goto out;
834         ret = setup_cipher(&tfm->base, 1, key, key_len);
835         if (ret)
836                 goto out;
837
838         if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
839                 if (*flags & CRYPTO_TFM_REQ_FORBID_WEAK_KEYS) {
840                         ret = -EINVAL;
841                 } else {
842                         *flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
843                 }
844         }
845 out:
846         if (!atomic_dec_and_test(&ctx->configuring))
847                 wait_for_completion(&ctx->completion);
848         return ret;
849 }
850
851 static int ablk_des3_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
852                             unsigned int key_len)
853 {
854         u32 flags = crypto_ablkcipher_get_flags(tfm);
855         int err;
856
857         err = __des3_verify_key(&flags, key);
858         if (unlikely(err))
859                 crypto_ablkcipher_set_flags(tfm, flags);
860
861         return ablk_setkey(tfm, key, key_len);
862 }
863
864 static int ablk_rfc3686_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
865                 unsigned int key_len)
866 {
867         struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
868
869         /* the nonce is stored in bytes at end of key */
870         if (key_len < CTR_RFC3686_NONCE_SIZE)
871                 return -EINVAL;
872
873         memcpy(ctx->nonce, key + (key_len - CTR_RFC3686_NONCE_SIZE),
874                         CTR_RFC3686_NONCE_SIZE);
875
876         key_len -= CTR_RFC3686_NONCE_SIZE;
877         return ablk_setkey(tfm, key, key_len);
878 }
879
880 static int ablk_perform(struct ablkcipher_request *req, int encrypt)
881 {
882         struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
883         struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
884         unsigned ivsize = crypto_ablkcipher_ivsize(tfm);
885         struct ix_sa_dir *dir;
886         struct crypt_ctl *crypt;
887         unsigned int nbytes = req->nbytes;
888         enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
889         struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
890         struct buffer_desc src_hook;
891         struct device *dev = &pdev->dev;
892         gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
893                                 GFP_KERNEL : GFP_ATOMIC;
894
895         if (qmgr_stat_full(SEND_QID))
896                 return -EAGAIN;
897         if (atomic_read(&ctx->configuring))
898                 return -EAGAIN;
899
900         dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
901
902         crypt = get_crypt_desc();
903         if (!crypt)
904                 return -ENOMEM;
905
906         crypt->data.ablk_req = req;
907         crypt->crypto_ctx = dir->npe_ctx_phys;
908         crypt->mode = dir->npe_mode;
909         crypt->init_len = dir->npe_ctx_idx;
910
911         crypt->crypt_offs = 0;
912         crypt->crypt_len = nbytes;
913
914         BUG_ON(ivsize && !req->info);
915         memcpy(crypt->iv, req->info, ivsize);
916         if (req->src != req->dst) {
917                 struct buffer_desc dst_hook;
918                 crypt->mode |= NPE_OP_NOT_IN_PLACE;
919                 /* This was never tested by Intel
920                  * for more than one dst buffer, I think. */
921                 req_ctx->dst = NULL;
922                 if (!chainup_buffers(dev, req->dst, nbytes, &dst_hook,
923                                         flags, DMA_FROM_DEVICE))
924                         goto free_buf_dest;
925                 src_direction = DMA_TO_DEVICE;
926                 req_ctx->dst = dst_hook.next;
927                 crypt->dst_buf = dst_hook.phys_next;
928         } else {
929                 req_ctx->dst = NULL;
930         }
931         req_ctx->src = NULL;
932         if (!chainup_buffers(dev, req->src, nbytes, &src_hook,
933                                 flags, src_direction))
934                 goto free_buf_src;
935
936         req_ctx->src = src_hook.next;
937         crypt->src_buf = src_hook.phys_next;
938         crypt->ctl_flags |= CTL_FLAG_PERFORM_ABLK;
939         qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
940         BUG_ON(qmgr_stat_overflow(SEND_QID));
941         return -EINPROGRESS;
942
943 free_buf_src:
944         free_buf_chain(dev, req_ctx->src, crypt->src_buf);
945 free_buf_dest:
946         if (req->src != req->dst) {
947                 free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
948         }
949         crypt->ctl_flags = CTL_FLAG_UNUSED;
950         return -ENOMEM;
951 }
952
953 static int ablk_encrypt(struct ablkcipher_request *req)
954 {
955         return ablk_perform(req, 1);
956 }
957
958 static int ablk_decrypt(struct ablkcipher_request *req)
959 {
960         return ablk_perform(req, 0);
961 }
962
963 static int ablk_rfc3686_crypt(struct ablkcipher_request *req)
964 {
965         struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
966         struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
967         u8 iv[CTR_RFC3686_BLOCK_SIZE];
968         u8 *info = req->info;
969         int ret;
970
971         /* set up counter block */
972         memcpy(iv, ctx->nonce, CTR_RFC3686_NONCE_SIZE);
973         memcpy(iv + CTR_RFC3686_NONCE_SIZE, info, CTR_RFC3686_IV_SIZE);
974
975         /* initialize counter portion of counter block */
976         *(__be32 *)(iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) =
977                 cpu_to_be32(1);
978
979         req->info = iv;
980         ret = ablk_perform(req, 1);
981         req->info = info;
982         return ret;
983 }
984
985 static int aead_perform(struct aead_request *req, int encrypt,
986                 int cryptoffset, int eff_cryptlen, u8 *iv)
987 {
988         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
989         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
990         unsigned ivsize = crypto_aead_ivsize(tfm);
991         unsigned authsize = crypto_aead_authsize(tfm);
992         struct ix_sa_dir *dir;
993         struct crypt_ctl *crypt;
994         unsigned int cryptlen;
995         struct buffer_desc *buf, src_hook;
996         struct aead_ctx *req_ctx = aead_request_ctx(req);
997         struct device *dev = &pdev->dev;
998         gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
999                                 GFP_KERNEL : GFP_ATOMIC;
1000         enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
1001         unsigned int lastlen;
1002
1003         if (qmgr_stat_full(SEND_QID))
1004                 return -EAGAIN;
1005         if (atomic_read(&ctx->configuring))
1006                 return -EAGAIN;
1007
1008         if (encrypt) {
1009                 dir = &ctx->encrypt;
1010                 cryptlen = req->cryptlen;
1011         } else {
1012                 dir = &ctx->decrypt;
1013                 /* req->cryptlen includes the authsize when decrypting */
1014                 cryptlen = req->cryptlen -authsize;
1015                 eff_cryptlen -= authsize;
1016         }
1017         crypt = get_crypt_desc();
1018         if (!crypt)
1019                 return -ENOMEM;
1020
1021         crypt->data.aead_req = req;
1022         crypt->crypto_ctx = dir->npe_ctx_phys;
1023         crypt->mode = dir->npe_mode;
1024         crypt->init_len = dir->npe_ctx_idx;
1025
1026         crypt->crypt_offs = cryptoffset;
1027         crypt->crypt_len = eff_cryptlen;
1028
1029         crypt->auth_offs = 0;
1030         crypt->auth_len = req->assoclen + cryptlen;
1031         BUG_ON(ivsize && !req->iv);
1032         memcpy(crypt->iv, req->iv, ivsize);
1033
1034         buf = chainup_buffers(dev, req->src, crypt->auth_len,
1035                               &src_hook, flags, src_direction);
1036         req_ctx->src = src_hook.next;
1037         crypt->src_buf = src_hook.phys_next;
1038         if (!buf)
1039                 goto free_buf_src;
1040
1041         lastlen = buf->buf_len;
1042         if (lastlen >= authsize)
1043                 crypt->icv_rev_aes = buf->phys_addr +
1044                                      buf->buf_len - authsize;
1045
1046         req_ctx->dst = NULL;
1047
1048         if (req->src != req->dst) {
1049                 struct buffer_desc dst_hook;
1050
1051                 crypt->mode |= NPE_OP_NOT_IN_PLACE;
1052                 src_direction = DMA_TO_DEVICE;
1053
1054                 buf = chainup_buffers(dev, req->dst, crypt->auth_len,
1055                                       &dst_hook, flags, DMA_FROM_DEVICE);
1056                 req_ctx->dst = dst_hook.next;
1057                 crypt->dst_buf = dst_hook.phys_next;
1058
1059                 if (!buf)
1060                         goto free_buf_dst;
1061
1062                 if (encrypt) {
1063                         lastlen = buf->buf_len;
1064                         if (lastlen >= authsize)
1065                                 crypt->icv_rev_aes = buf->phys_addr +
1066                                                      buf->buf_len - authsize;
1067                 }
1068         }
1069
1070         if (unlikely(lastlen < authsize)) {
1071                 /* The 12 hmac bytes are scattered,
1072                  * we need to copy them into a safe buffer */
1073                 req_ctx->hmac_virt = dma_pool_alloc(buffer_pool, flags,
1074                                 &crypt->icv_rev_aes);
1075                 if (unlikely(!req_ctx->hmac_virt))
1076                         goto free_buf_dst;
1077                 if (!encrypt) {
1078                         scatterwalk_map_and_copy(req_ctx->hmac_virt,
1079                                 req->src, cryptlen, authsize, 0);
1080                 }
1081                 req_ctx->encrypt = encrypt;
1082         } else {
1083                 req_ctx->hmac_virt = NULL;
1084         }
1085
1086         crypt->ctl_flags |= CTL_FLAG_PERFORM_AEAD;
1087         qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
1088         BUG_ON(qmgr_stat_overflow(SEND_QID));
1089         return -EINPROGRESS;
1090
1091 free_buf_dst:
1092         free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
1093 free_buf_src:
1094         free_buf_chain(dev, req_ctx->src, crypt->src_buf);
1095         crypt->ctl_flags = CTL_FLAG_UNUSED;
1096         return -ENOMEM;
1097 }
1098
1099 static int aead_setup(struct crypto_aead *tfm, unsigned int authsize)
1100 {
1101         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1102         u32 *flags = &tfm->base.crt_flags;
1103         unsigned digest_len = crypto_aead_maxauthsize(tfm);
1104         int ret;
1105
1106         if (!ctx->enckey_len && !ctx->authkey_len)
1107                 return 0;
1108         init_completion(&ctx->completion);
1109         atomic_inc(&ctx->configuring);
1110
1111         reset_sa_dir(&ctx->encrypt);
1112         reset_sa_dir(&ctx->decrypt);
1113
1114         ret = setup_cipher(&tfm->base, 0, ctx->enckey, ctx->enckey_len);
1115         if (ret)
1116                 goto out;
1117         ret = setup_cipher(&tfm->base, 1, ctx->enckey, ctx->enckey_len);
1118         if (ret)
1119                 goto out;
1120         ret = setup_auth(&tfm->base, 0, authsize, ctx->authkey,
1121                         ctx->authkey_len, digest_len);
1122         if (ret)
1123                 goto out;
1124         ret = setup_auth(&tfm->base, 1, authsize,  ctx->authkey,
1125                         ctx->authkey_len, digest_len);
1126         if (ret)
1127                 goto out;
1128
1129         if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
1130                 if (*flags & CRYPTO_TFM_REQ_FORBID_WEAK_KEYS) {
1131                         ret = -EINVAL;
1132                         goto out;
1133                 } else {
1134                         *flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
1135                 }
1136         }
1137 out:
1138         if (!atomic_dec_and_test(&ctx->configuring))
1139                 wait_for_completion(&ctx->completion);
1140         return ret;
1141 }
1142
1143 static int aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
1144 {
1145         int max = crypto_aead_maxauthsize(tfm) >> 2;
1146
1147         if ((authsize>>2) < 1 || (authsize>>2) > max || (authsize & 3))
1148                 return -EINVAL;
1149         return aead_setup(tfm, authsize);
1150 }
1151
1152 static int aead_setkey(struct crypto_aead *tfm, const u8 *key,
1153                         unsigned int keylen)
1154 {
1155         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1156         struct crypto_authenc_keys keys;
1157
1158         if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
1159                 goto badkey;
1160
1161         if (keys.authkeylen > sizeof(ctx->authkey))
1162                 goto badkey;
1163
1164         if (keys.enckeylen > sizeof(ctx->enckey))
1165                 goto badkey;
1166
1167         memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
1168         memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
1169         ctx->authkey_len = keys.authkeylen;
1170         ctx->enckey_len = keys.enckeylen;
1171
1172         memzero_explicit(&keys, sizeof(keys));
1173         return aead_setup(tfm, crypto_aead_authsize(tfm));
1174 badkey:
1175         crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1176         memzero_explicit(&keys, sizeof(keys));
1177         return -EINVAL;
1178 }
1179
1180 static int des3_aead_setkey(struct crypto_aead *tfm, const u8 *key,
1181                             unsigned int keylen)
1182 {
1183         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1184         u32 flags = CRYPTO_TFM_RES_BAD_KEY_LEN;
1185         struct crypto_authenc_keys keys;
1186         int err;
1187
1188         err = crypto_authenc_extractkeys(&keys, key, keylen);
1189         if (unlikely(err))
1190                 goto badkey;
1191
1192         err = -EINVAL;
1193         if (keys.authkeylen > sizeof(ctx->authkey))
1194                 goto badkey;
1195
1196         if (keys.enckeylen != DES3_EDE_KEY_SIZE)
1197                 goto badkey;
1198
1199         flags = crypto_aead_get_flags(tfm);
1200         err = __des3_verify_key(&flags, keys.enckey);
1201         if (unlikely(err))
1202                 goto badkey;
1203
1204         memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
1205         memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
1206         ctx->authkey_len = keys.authkeylen;
1207         ctx->enckey_len = keys.enckeylen;
1208
1209         memzero_explicit(&keys, sizeof(keys));
1210         return aead_setup(tfm, crypto_aead_authsize(tfm));
1211 badkey:
1212         crypto_aead_set_flags(tfm, flags);
1213         memzero_explicit(&keys, sizeof(keys));
1214         return err;
1215 }
1216
1217 static int aead_encrypt(struct aead_request *req)
1218 {
1219         return aead_perform(req, 1, req->assoclen, req->cryptlen, req->iv);
1220 }
1221
1222 static int aead_decrypt(struct aead_request *req)
1223 {
1224         return aead_perform(req, 0, req->assoclen, req->cryptlen, req->iv);
1225 }
1226
1227 static struct ixp_alg ixp4xx_algos[] = {
1228 {
1229         .crypto = {
1230                 .cra_name       = "cbc(des)",
1231                 .cra_blocksize  = DES_BLOCK_SIZE,
1232                 .cra_u          = { .ablkcipher = {
1233                         .min_keysize    = DES_KEY_SIZE,
1234                         .max_keysize    = DES_KEY_SIZE,
1235                         .ivsize         = DES_BLOCK_SIZE,
1236                         }
1237                 }
1238         },
1239         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1240         .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1241
1242 }, {
1243         .crypto = {
1244                 .cra_name       = "ecb(des)",
1245                 .cra_blocksize  = DES_BLOCK_SIZE,
1246                 .cra_u          = { .ablkcipher = {
1247                         .min_keysize    = DES_KEY_SIZE,
1248                         .max_keysize    = DES_KEY_SIZE,
1249                         }
1250                 }
1251         },
1252         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_ECB | KEYLEN_192,
1253         .cfg_dec = CIPH_DECR | MOD_DES | MOD_ECB | KEYLEN_192,
1254 }, {
1255         .crypto = {
1256                 .cra_name       = "cbc(des3_ede)",
1257                 .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1258                 .cra_u          = { .ablkcipher = {
1259                         .min_keysize    = DES3_EDE_KEY_SIZE,
1260                         .max_keysize    = DES3_EDE_KEY_SIZE,
1261                         .ivsize         = DES3_EDE_BLOCK_SIZE,
1262                         .setkey         = ablk_des3_setkey,
1263                         }
1264                 }
1265         },
1266         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1267         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1268 }, {
1269         .crypto = {
1270                 .cra_name       = "ecb(des3_ede)",
1271                 .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1272                 .cra_u          = { .ablkcipher = {
1273                         .min_keysize    = DES3_EDE_KEY_SIZE,
1274                         .max_keysize    = DES3_EDE_KEY_SIZE,
1275                         .setkey         = ablk_des3_setkey,
1276                         }
1277                 }
1278         },
1279         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_ECB | KEYLEN_192,
1280         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_ECB | KEYLEN_192,
1281 }, {
1282         .crypto = {
1283                 .cra_name       = "cbc(aes)",
1284                 .cra_blocksize  = AES_BLOCK_SIZE,
1285                 .cra_u          = { .ablkcipher = {
1286                         .min_keysize    = AES_MIN_KEY_SIZE,
1287                         .max_keysize    = AES_MAX_KEY_SIZE,
1288                         .ivsize         = AES_BLOCK_SIZE,
1289                         }
1290                 }
1291         },
1292         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1293         .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1294 }, {
1295         .crypto = {
1296                 .cra_name       = "ecb(aes)",
1297                 .cra_blocksize  = AES_BLOCK_SIZE,
1298                 .cra_u          = { .ablkcipher = {
1299                         .min_keysize    = AES_MIN_KEY_SIZE,
1300                         .max_keysize    = AES_MAX_KEY_SIZE,
1301                         }
1302                 }
1303         },
1304         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_ECB,
1305         .cfg_dec = CIPH_DECR | MOD_AES | MOD_ECB,
1306 }, {
1307         .crypto = {
1308                 .cra_name       = "ctr(aes)",
1309                 .cra_blocksize  = AES_BLOCK_SIZE,
1310                 .cra_u          = { .ablkcipher = {
1311                         .min_keysize    = AES_MIN_KEY_SIZE,
1312                         .max_keysize    = AES_MAX_KEY_SIZE,
1313                         .ivsize         = AES_BLOCK_SIZE,
1314                         }
1315                 }
1316         },
1317         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1318         .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1319 }, {
1320         .crypto = {
1321                 .cra_name       = "rfc3686(ctr(aes))",
1322                 .cra_blocksize  = AES_BLOCK_SIZE,
1323                 .cra_u          = { .ablkcipher = {
1324                         .min_keysize    = AES_MIN_KEY_SIZE,
1325                         .max_keysize    = AES_MAX_KEY_SIZE,
1326                         .ivsize         = AES_BLOCK_SIZE,
1327                         .setkey         = ablk_rfc3686_setkey,
1328                         .encrypt        = ablk_rfc3686_crypt,
1329                         .decrypt        = ablk_rfc3686_crypt }
1330                 }
1331         },
1332         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1333         .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1334 } };
1335
1336 static struct ixp_aead_alg ixp4xx_aeads[] = {
1337 {
1338         .crypto = {
1339                 .base = {
1340                         .cra_name       = "authenc(hmac(md5),cbc(des))",
1341                         .cra_blocksize  = DES_BLOCK_SIZE,
1342                 },
1343                 .ivsize         = DES_BLOCK_SIZE,
1344                 .maxauthsize    = MD5_DIGEST_SIZE,
1345         },
1346         .hash = &hash_alg_md5,
1347         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1348         .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1349 }, {
1350         .crypto = {
1351                 .base = {
1352                         .cra_name       = "authenc(hmac(md5),cbc(des3_ede))",
1353                         .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1354                 },
1355                 .ivsize         = DES3_EDE_BLOCK_SIZE,
1356                 .maxauthsize    = MD5_DIGEST_SIZE,
1357                 .setkey         = des3_aead_setkey,
1358         },
1359         .hash = &hash_alg_md5,
1360         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1361         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1362 }, {
1363         .crypto = {
1364                 .base = {
1365                         .cra_name       = "authenc(hmac(sha1),cbc(des))",
1366                         .cra_blocksize  = DES_BLOCK_SIZE,
1367                 },
1368                         .ivsize         = DES_BLOCK_SIZE,
1369                         .maxauthsize    = SHA1_DIGEST_SIZE,
1370         },
1371         .hash = &hash_alg_sha1,
1372         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1373         .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1374 }, {
1375         .crypto = {
1376                 .base = {
1377                         .cra_name       = "authenc(hmac(sha1),cbc(des3_ede))",
1378                         .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1379                 },
1380                 .ivsize         = DES3_EDE_BLOCK_SIZE,
1381                 .maxauthsize    = SHA1_DIGEST_SIZE,
1382                 .setkey         = des3_aead_setkey,
1383         },
1384         .hash = &hash_alg_sha1,
1385         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1386         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1387 }, {
1388         .crypto = {
1389                 .base = {
1390                         .cra_name       = "authenc(hmac(md5),cbc(aes))",
1391                         .cra_blocksize  = AES_BLOCK_SIZE,
1392                 },
1393                 .ivsize         = AES_BLOCK_SIZE,
1394                 .maxauthsize    = MD5_DIGEST_SIZE,
1395         },
1396         .hash = &hash_alg_md5,
1397         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1398         .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1399 }, {
1400         .crypto = {
1401                 .base = {
1402                         .cra_name       = "authenc(hmac(sha1),cbc(aes))",
1403                         .cra_blocksize  = AES_BLOCK_SIZE,
1404                 },
1405                 .ivsize         = AES_BLOCK_SIZE,
1406                 .maxauthsize    = SHA1_DIGEST_SIZE,
1407         },
1408         .hash = &hash_alg_sha1,
1409         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1410         .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1411 } };
1412
1413 #define IXP_POSTFIX "-ixp4xx"
1414
1415 static const struct platform_device_info ixp_dev_info __initdata = {
1416         .name           = DRIVER_NAME,
1417         .id             = 0,
1418         .dma_mask       = DMA_BIT_MASK(32),
1419 };
1420
1421 static int __init ixp_module_init(void)
1422 {
1423         int num = ARRAY_SIZE(ixp4xx_algos);
1424         int i, err;
1425
1426         pdev = platform_device_register_full(&ixp_dev_info);
1427         if (IS_ERR(pdev))
1428                 return PTR_ERR(pdev);
1429
1430         spin_lock_init(&desc_lock);
1431         spin_lock_init(&emerg_lock);
1432
1433         err = init_ixp_crypto(&pdev->dev);
1434         if (err) {
1435                 platform_device_unregister(pdev);
1436                 return err;
1437         }
1438         for (i=0; i< num; i++) {
1439                 struct crypto_alg *cra = &ixp4xx_algos[i].crypto;
1440
1441                 if (snprintf(cra->cra_driver_name, CRYPTO_MAX_ALG_NAME,
1442                         "%s"IXP_POSTFIX, cra->cra_name) >=
1443                         CRYPTO_MAX_ALG_NAME)
1444                 {
1445                         continue;
1446                 }
1447                 if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES)) {
1448                         continue;
1449                 }
1450
1451                 /* block ciphers */
1452                 cra->cra_type = &crypto_ablkcipher_type;
1453                 cra->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1454                                  CRYPTO_ALG_KERN_DRIVER_ONLY |
1455                                  CRYPTO_ALG_ASYNC;
1456                 if (!cra->cra_ablkcipher.setkey)
1457                         cra->cra_ablkcipher.setkey = ablk_setkey;
1458                 if (!cra->cra_ablkcipher.encrypt)
1459                         cra->cra_ablkcipher.encrypt = ablk_encrypt;
1460                 if (!cra->cra_ablkcipher.decrypt)
1461                         cra->cra_ablkcipher.decrypt = ablk_decrypt;
1462                 cra->cra_init = init_tfm_ablk;
1463
1464                 cra->cra_ctxsize = sizeof(struct ixp_ctx);
1465                 cra->cra_module = THIS_MODULE;
1466                 cra->cra_alignmask = 3;
1467                 cra->cra_priority = 300;
1468                 cra->cra_exit = exit_tfm;
1469                 if (crypto_register_alg(cra))
1470                         printk(KERN_ERR "Failed to register '%s'\n",
1471                                 cra->cra_name);
1472                 else
1473                         ixp4xx_algos[i].registered = 1;
1474         }
1475
1476         for (i = 0; i < ARRAY_SIZE(ixp4xx_aeads); i++) {
1477                 struct aead_alg *cra = &ixp4xx_aeads[i].crypto;
1478
1479                 if (snprintf(cra->base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
1480                              "%s"IXP_POSTFIX, cra->base.cra_name) >=
1481                     CRYPTO_MAX_ALG_NAME)
1482                         continue;
1483                 if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES))
1484                         continue;
1485
1486                 /* authenc */
1487                 cra->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1488                                       CRYPTO_ALG_ASYNC;
1489                 cra->setkey = cra->setkey ?: aead_setkey;
1490                 cra->setauthsize = aead_setauthsize;
1491                 cra->encrypt = aead_encrypt;
1492                 cra->decrypt = aead_decrypt;
1493                 cra->init = init_tfm_aead;
1494                 cra->exit = exit_tfm_aead;
1495
1496                 cra->base.cra_ctxsize = sizeof(struct ixp_ctx);
1497                 cra->base.cra_module = THIS_MODULE;
1498                 cra->base.cra_alignmask = 3;
1499                 cra->base.cra_priority = 300;
1500
1501                 if (crypto_register_aead(cra))
1502                         printk(KERN_ERR "Failed to register '%s'\n",
1503                                 cra->base.cra_driver_name);
1504                 else
1505                         ixp4xx_aeads[i].registered = 1;
1506         }
1507         return 0;
1508 }
1509
1510 static void __exit ixp_module_exit(void)
1511 {
1512         int num = ARRAY_SIZE(ixp4xx_algos);
1513         int i;
1514
1515         for (i = 0; i < ARRAY_SIZE(ixp4xx_aeads); i++) {
1516                 if (ixp4xx_aeads[i].registered)
1517                         crypto_unregister_aead(&ixp4xx_aeads[i].crypto);
1518         }
1519
1520         for (i=0; i< num; i++) {
1521                 if (ixp4xx_algos[i].registered)
1522                         crypto_unregister_alg(&ixp4xx_algos[i].crypto);
1523         }
1524         release_ixp_crypto(&pdev->dev);
1525         platform_device_unregister(pdev);
1526 }
1527
1528 module_init(ixp_module_init);
1529 module_exit(ixp_module_exit);
1530
1531 MODULE_LICENSE("GPL");
1532 MODULE_AUTHOR("Christian Hohnstaedt <chohnstaedt@innominate.com>");
1533 MODULE_DESCRIPTION("IXP4xx hardware crypto");
1534