a78d7a27b4b56fd45da8423ef4776c0514358efc
[linux-block.git] / drivers / cpufreq / qcom-cpufreq-hw.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2018, The Linux Foundation. All rights reserved.
4  */
5
6 #include <linux/bitfield.h>
7 #include <linux/clk-provider.h>
8 #include <linux/cpufreq.h>
9 #include <linux/init.h>
10 #include <linux/interconnect.h>
11 #include <linux/interrupt.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/platform_device.h>
16 #include <linux/pm_opp.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/units.h>
20
21 #define LUT_MAX_ENTRIES                 40U
22 #define LUT_SRC                         GENMASK(31, 30)
23 #define LUT_L_VAL                       GENMASK(7, 0)
24 #define LUT_CORE_COUNT                  GENMASK(18, 16)
25 #define LUT_VOLT                        GENMASK(11, 0)
26 #define CLK_HW_DIV                      2
27 #define LUT_TURBO_IND                   1
28
29 #define GT_IRQ_STATUS                   BIT(2)
30
31 #define MAX_FREQ_DOMAINS                3
32
33 struct qcom_cpufreq_soc_data {
34         u32 reg_enable;
35         u32 reg_domain_state;
36         u32 reg_dcvs_ctrl;
37         u32 reg_freq_lut;
38         u32 reg_volt_lut;
39         u32 reg_intr_clr;
40         u32 reg_current_vote;
41         u32 reg_perf_state;
42         u8 lut_row_size;
43 };
44
45 struct qcom_cpufreq_data {
46         void __iomem *base;
47
48         /*
49          * Mutex to synchronize between de-init sequence and re-starting LMh
50          * polling/interrupts
51          */
52         struct mutex throttle_lock;
53         int throttle_irq;
54         char irq_name[15];
55         bool cancel_throttle;
56         struct delayed_work throttle_work;
57         struct cpufreq_policy *policy;
58         struct clk_hw cpu_clk;
59
60         bool per_core_dcvs;
61 };
62
63 static struct {
64         struct qcom_cpufreq_data *data;
65         const struct qcom_cpufreq_soc_data *soc_data;
66 } qcom_cpufreq;
67
68 static unsigned long cpu_hw_rate, xo_rate;
69 static bool icc_scaling_enabled;
70
71 static int qcom_cpufreq_set_bw(struct cpufreq_policy *policy,
72                                unsigned long freq_khz)
73 {
74         unsigned long freq_hz = freq_khz * 1000;
75         struct dev_pm_opp *opp;
76         struct device *dev;
77         int ret;
78
79         dev = get_cpu_device(policy->cpu);
80         if (!dev)
81                 return -ENODEV;
82
83         opp = dev_pm_opp_find_freq_exact(dev, freq_hz, true);
84         if (IS_ERR(opp))
85                 return PTR_ERR(opp);
86
87         ret = dev_pm_opp_set_opp(dev, opp);
88         dev_pm_opp_put(opp);
89         return ret;
90 }
91
92 static int qcom_cpufreq_update_opp(struct device *cpu_dev,
93                                    unsigned long freq_khz,
94                                    unsigned long volt)
95 {
96         unsigned long freq_hz = freq_khz * 1000;
97         int ret;
98
99         /* Skip voltage update if the opp table is not available */
100         if (!icc_scaling_enabled)
101                 return dev_pm_opp_add(cpu_dev, freq_hz, volt);
102
103         ret = dev_pm_opp_adjust_voltage(cpu_dev, freq_hz, volt, volt, volt);
104         if (ret) {
105                 dev_err(cpu_dev, "Voltage update failed freq=%ld\n", freq_khz);
106                 return ret;
107         }
108
109         return dev_pm_opp_enable(cpu_dev, freq_hz);
110 }
111
112 static int qcom_cpufreq_hw_target_index(struct cpufreq_policy *policy,
113                                         unsigned int index)
114 {
115         struct qcom_cpufreq_data *data = policy->driver_data;
116         const struct qcom_cpufreq_soc_data *soc_data = qcom_cpufreq.soc_data;
117         unsigned long freq = policy->freq_table[index].frequency;
118         unsigned int i;
119
120         writel_relaxed(index, data->base + soc_data->reg_perf_state);
121
122         if (data->per_core_dcvs)
123                 for (i = 1; i < cpumask_weight(policy->related_cpus); i++)
124                         writel_relaxed(index, data->base + soc_data->reg_perf_state + i * 4);
125
126         if (icc_scaling_enabled)
127                 qcom_cpufreq_set_bw(policy, freq);
128
129         return 0;
130 }
131
132 static unsigned long qcom_lmh_get_throttle_freq(struct qcom_cpufreq_data *data)
133 {
134         unsigned int lval;
135
136         if (qcom_cpufreq.soc_data->reg_current_vote)
137                 lval = readl_relaxed(data->base + qcom_cpufreq.soc_data->reg_current_vote) & 0x3ff;
138         else
139                 lval = readl_relaxed(data->base + qcom_cpufreq.soc_data->reg_domain_state) & 0xff;
140
141         return lval * xo_rate;
142 }
143
144 /* Get the frequency requested by the cpufreq core for the CPU */
145 static unsigned int qcom_cpufreq_get_freq(unsigned int cpu)
146 {
147         struct qcom_cpufreq_data *data;
148         const struct qcom_cpufreq_soc_data *soc_data;
149         struct cpufreq_policy *policy;
150         unsigned int index;
151
152         policy = cpufreq_cpu_get_raw(cpu);
153         if (!policy)
154                 return 0;
155
156         data = policy->driver_data;
157         soc_data = qcom_cpufreq.soc_data;
158
159         index = readl_relaxed(data->base + soc_data->reg_perf_state);
160         index = min(index, LUT_MAX_ENTRIES - 1);
161
162         return policy->freq_table[index].frequency;
163 }
164
165 static unsigned int qcom_cpufreq_hw_get(unsigned int cpu)
166 {
167         struct qcom_cpufreq_data *data;
168         struct cpufreq_policy *policy;
169
170         policy = cpufreq_cpu_get_raw(cpu);
171         if (!policy)
172                 return 0;
173
174         data = policy->driver_data;
175
176         if (data->throttle_irq >= 0)
177                 return qcom_lmh_get_throttle_freq(data) / HZ_PER_KHZ;
178
179         return qcom_cpufreq_get_freq(cpu);
180 }
181
182 static unsigned int qcom_cpufreq_hw_fast_switch(struct cpufreq_policy *policy,
183                                                 unsigned int target_freq)
184 {
185         struct qcom_cpufreq_data *data = policy->driver_data;
186         const struct qcom_cpufreq_soc_data *soc_data = qcom_cpufreq.soc_data;
187         unsigned int index;
188         unsigned int i;
189
190         index = policy->cached_resolved_idx;
191         writel_relaxed(index, data->base + soc_data->reg_perf_state);
192
193         if (data->per_core_dcvs)
194                 for (i = 1; i < cpumask_weight(policy->related_cpus); i++)
195                         writel_relaxed(index, data->base + soc_data->reg_perf_state + i * 4);
196
197         return policy->freq_table[index].frequency;
198 }
199
200 static int qcom_cpufreq_hw_read_lut(struct device *cpu_dev,
201                                     struct cpufreq_policy *policy)
202 {
203         u32 data, src, lval, i, core_count, prev_freq = 0, freq;
204         u32 volt;
205         struct cpufreq_frequency_table  *table;
206         struct dev_pm_opp *opp;
207         unsigned long rate;
208         int ret;
209         struct qcom_cpufreq_data *drv_data = policy->driver_data;
210         const struct qcom_cpufreq_soc_data *soc_data = qcom_cpufreq.soc_data;
211
212         table = kcalloc(LUT_MAX_ENTRIES + 1, sizeof(*table), GFP_KERNEL);
213         if (!table)
214                 return -ENOMEM;
215
216         ret = dev_pm_opp_of_add_table(cpu_dev);
217         if (!ret) {
218                 /* Disable all opps and cross-validate against LUT later */
219                 icc_scaling_enabled = true;
220                 for (rate = 0; ; rate++) {
221                         opp = dev_pm_opp_find_freq_ceil(cpu_dev, &rate);
222                         if (IS_ERR(opp))
223                                 break;
224
225                         dev_pm_opp_put(opp);
226                         dev_pm_opp_disable(cpu_dev, rate);
227                 }
228         } else if (ret != -ENODEV) {
229                 dev_err(cpu_dev, "Invalid opp table in device tree\n");
230                 kfree(table);
231                 return ret;
232         } else {
233                 policy->fast_switch_possible = true;
234                 icc_scaling_enabled = false;
235         }
236
237         for (i = 0; i < LUT_MAX_ENTRIES; i++) {
238                 data = readl_relaxed(drv_data->base + soc_data->reg_freq_lut +
239                                       i * soc_data->lut_row_size);
240                 src = FIELD_GET(LUT_SRC, data);
241                 lval = FIELD_GET(LUT_L_VAL, data);
242                 core_count = FIELD_GET(LUT_CORE_COUNT, data);
243
244                 data = readl_relaxed(drv_data->base + soc_data->reg_volt_lut +
245                                       i * soc_data->lut_row_size);
246                 volt = FIELD_GET(LUT_VOLT, data) * 1000;
247
248                 if (src)
249                         freq = xo_rate * lval / 1000;
250                 else
251                         freq = cpu_hw_rate / 1000;
252
253                 if (freq != prev_freq && core_count != LUT_TURBO_IND) {
254                         if (!qcom_cpufreq_update_opp(cpu_dev, freq, volt)) {
255                                 table[i].frequency = freq;
256                                 dev_dbg(cpu_dev, "index=%d freq=%d, core_count %d\n", i,
257                                 freq, core_count);
258                         } else {
259                                 dev_warn(cpu_dev, "failed to update OPP for freq=%d\n", freq);
260                                 table[i].frequency = CPUFREQ_ENTRY_INVALID;
261                         }
262
263                 } else if (core_count == LUT_TURBO_IND) {
264                         table[i].frequency = CPUFREQ_ENTRY_INVALID;
265                 }
266
267                 /*
268                  * Two of the same frequencies with the same core counts means
269                  * end of table
270                  */
271                 if (i > 0 && prev_freq == freq) {
272                         struct cpufreq_frequency_table *prev = &table[i - 1];
273
274                         /*
275                          * Only treat the last frequency that might be a boost
276                          * as the boost frequency
277                          */
278                         if (prev->frequency == CPUFREQ_ENTRY_INVALID) {
279                                 if (!qcom_cpufreq_update_opp(cpu_dev, prev_freq, volt)) {
280                                         prev->frequency = prev_freq;
281                                         prev->flags = CPUFREQ_BOOST_FREQ;
282                                 } else {
283                                         dev_warn(cpu_dev, "failed to update OPP for freq=%d\n",
284                                                  freq);
285                                 }
286                         }
287
288                         break;
289                 }
290
291                 prev_freq = freq;
292         }
293
294         table[i].frequency = CPUFREQ_TABLE_END;
295         policy->freq_table = table;
296         dev_pm_opp_set_sharing_cpus(cpu_dev, policy->cpus);
297
298         return 0;
299 }
300
301 static void qcom_get_related_cpus(int index, struct cpumask *m)
302 {
303         struct device_node *cpu_np;
304         struct of_phandle_args args;
305         int cpu, ret;
306
307         for_each_possible_cpu(cpu) {
308                 cpu_np = of_cpu_device_node_get(cpu);
309                 if (!cpu_np)
310                         continue;
311
312                 ret = of_parse_phandle_with_args(cpu_np, "qcom,freq-domain",
313                                                  "#freq-domain-cells", 0,
314                                                  &args);
315                 of_node_put(cpu_np);
316                 if (ret < 0)
317                         continue;
318
319                 if (index == args.args[0])
320                         cpumask_set_cpu(cpu, m);
321         }
322 }
323
324 static void qcom_lmh_dcvs_notify(struct qcom_cpufreq_data *data)
325 {
326         struct cpufreq_policy *policy = data->policy;
327         int cpu = cpumask_first(policy->related_cpus);
328         struct device *dev = get_cpu_device(cpu);
329         unsigned long freq_hz, throttled_freq;
330         struct dev_pm_opp *opp;
331
332         /*
333          * Get the h/w throttled frequency, normalize it using the
334          * registered opp table and use it to calculate thermal pressure.
335          */
336         freq_hz = qcom_lmh_get_throttle_freq(data);
337
338         opp = dev_pm_opp_find_freq_floor(dev, &freq_hz);
339         if (IS_ERR(opp) && PTR_ERR(opp) == -ERANGE)
340                 opp = dev_pm_opp_find_freq_ceil(dev, &freq_hz);
341
342         if (IS_ERR(opp)) {
343                 dev_warn(dev, "Can't find the OPP for throttling: %pe!\n", opp);
344         } else {
345                 dev_pm_opp_put(opp);
346         }
347
348         throttled_freq = freq_hz / HZ_PER_KHZ;
349
350         /* Update thermal pressure (the boost frequencies are accepted) */
351         arch_update_thermal_pressure(policy->related_cpus, throttled_freq);
352
353         /*
354          * In the unlikely case policy is unregistered do not enable
355          * polling or h/w interrupt
356          */
357         mutex_lock(&data->throttle_lock);
358         if (data->cancel_throttle)
359                 goto out;
360
361         /*
362          * If h/w throttled frequency is higher than what cpufreq has requested
363          * for, then stop polling and switch back to interrupt mechanism.
364          */
365         if (throttled_freq >= qcom_cpufreq_get_freq(cpu))
366                 enable_irq(data->throttle_irq);
367         else
368                 mod_delayed_work(system_highpri_wq, &data->throttle_work,
369                                  msecs_to_jiffies(10));
370
371 out:
372         mutex_unlock(&data->throttle_lock);
373 }
374
375 static void qcom_lmh_dcvs_poll(struct work_struct *work)
376 {
377         struct qcom_cpufreq_data *data;
378
379         data = container_of(work, struct qcom_cpufreq_data, throttle_work.work);
380         qcom_lmh_dcvs_notify(data);
381 }
382
383 static irqreturn_t qcom_lmh_dcvs_handle_irq(int irq, void *data)
384 {
385         struct qcom_cpufreq_data *c_data = data;
386
387         /* Disable interrupt and enable polling */
388         disable_irq_nosync(c_data->throttle_irq);
389         schedule_delayed_work(&c_data->throttle_work, 0);
390
391         if (qcom_cpufreq.soc_data->reg_intr_clr)
392                 writel_relaxed(GT_IRQ_STATUS,
393                                c_data->base + qcom_cpufreq.soc_data->reg_intr_clr);
394
395         return IRQ_HANDLED;
396 }
397
398 static const struct qcom_cpufreq_soc_data qcom_soc_data = {
399         .reg_enable = 0x0,
400         .reg_dcvs_ctrl = 0xbc,
401         .reg_freq_lut = 0x110,
402         .reg_volt_lut = 0x114,
403         .reg_current_vote = 0x704,
404         .reg_perf_state = 0x920,
405         .lut_row_size = 32,
406 };
407
408 static const struct qcom_cpufreq_soc_data epss_soc_data = {
409         .reg_enable = 0x0,
410         .reg_domain_state = 0x20,
411         .reg_dcvs_ctrl = 0xb0,
412         .reg_freq_lut = 0x100,
413         .reg_volt_lut = 0x200,
414         .reg_intr_clr = 0x308,
415         .reg_perf_state = 0x320,
416         .lut_row_size = 4,
417 };
418
419 static const struct of_device_id qcom_cpufreq_hw_match[] = {
420         { .compatible = "qcom,cpufreq-hw", .data = &qcom_soc_data },
421         { .compatible = "qcom,cpufreq-epss", .data = &epss_soc_data },
422         {}
423 };
424 MODULE_DEVICE_TABLE(of, qcom_cpufreq_hw_match);
425
426 static int qcom_cpufreq_hw_lmh_init(struct cpufreq_policy *policy, int index)
427 {
428         struct qcom_cpufreq_data *data = policy->driver_data;
429         struct platform_device *pdev = cpufreq_get_driver_data();
430         int ret;
431
432         /*
433          * Look for LMh interrupt. If no interrupt line is specified /
434          * if there is an error, allow cpufreq to be enabled as usual.
435          */
436         data->throttle_irq = platform_get_irq_optional(pdev, index);
437         if (data->throttle_irq == -ENXIO)
438                 return 0;
439         if (data->throttle_irq < 0)
440                 return data->throttle_irq;
441
442         data->cancel_throttle = false;
443         data->policy = policy;
444
445         mutex_init(&data->throttle_lock);
446         INIT_DEFERRABLE_WORK(&data->throttle_work, qcom_lmh_dcvs_poll);
447
448         snprintf(data->irq_name, sizeof(data->irq_name), "dcvsh-irq-%u", policy->cpu);
449         ret = request_threaded_irq(data->throttle_irq, NULL, qcom_lmh_dcvs_handle_irq,
450                                    IRQF_ONESHOT | IRQF_NO_AUTOEN, data->irq_name, data);
451         if (ret) {
452                 dev_err(&pdev->dev, "Error registering %s: %d\n", data->irq_name, ret);
453                 return 0;
454         }
455
456         ret = irq_set_affinity_and_hint(data->throttle_irq, policy->cpus);
457         if (ret)
458                 dev_err(&pdev->dev, "Failed to set CPU affinity of %s[%d]\n",
459                         data->irq_name, data->throttle_irq);
460
461         return 0;
462 }
463
464 static int qcom_cpufreq_hw_cpu_online(struct cpufreq_policy *policy)
465 {
466         struct qcom_cpufreq_data *data = policy->driver_data;
467         struct platform_device *pdev = cpufreq_get_driver_data();
468         int ret;
469
470         if (data->throttle_irq <= 0)
471                 return 0;
472
473         mutex_lock(&data->throttle_lock);
474         data->cancel_throttle = false;
475         mutex_unlock(&data->throttle_lock);
476
477         ret = irq_set_affinity_and_hint(data->throttle_irq, policy->cpus);
478         if (ret)
479                 dev_err(&pdev->dev, "Failed to set CPU affinity of %s[%d]\n",
480                         data->irq_name, data->throttle_irq);
481
482         return ret;
483 }
484
485 static int qcom_cpufreq_hw_cpu_offline(struct cpufreq_policy *policy)
486 {
487         struct qcom_cpufreq_data *data = policy->driver_data;
488
489         if (data->throttle_irq <= 0)
490                 return 0;
491
492         mutex_lock(&data->throttle_lock);
493         data->cancel_throttle = true;
494         mutex_unlock(&data->throttle_lock);
495
496         cancel_delayed_work_sync(&data->throttle_work);
497         irq_set_affinity_and_hint(data->throttle_irq, NULL);
498         disable_irq_nosync(data->throttle_irq);
499
500         return 0;
501 }
502
503 static void qcom_cpufreq_hw_lmh_exit(struct qcom_cpufreq_data *data)
504 {
505         if (data->throttle_irq <= 0)
506                 return;
507
508         free_irq(data->throttle_irq, data);
509 }
510
511 static int qcom_cpufreq_hw_cpu_init(struct cpufreq_policy *policy)
512 {
513         struct platform_device *pdev = cpufreq_get_driver_data();
514         struct device *dev = &pdev->dev;
515         struct of_phandle_args args;
516         struct device_node *cpu_np;
517         struct device *cpu_dev;
518         struct qcom_cpufreq_data *data;
519         int ret, index;
520
521         cpu_dev = get_cpu_device(policy->cpu);
522         if (!cpu_dev) {
523                 pr_err("%s: failed to get cpu%d device\n", __func__,
524                        policy->cpu);
525                 return -ENODEV;
526         }
527
528         cpu_np = of_cpu_device_node_get(policy->cpu);
529         if (!cpu_np)
530                 return -EINVAL;
531
532         ret = of_parse_phandle_with_args(cpu_np, "qcom,freq-domain",
533                                          "#freq-domain-cells", 0, &args);
534         of_node_put(cpu_np);
535         if (ret)
536                 return ret;
537
538         index = args.args[0];
539         data = &qcom_cpufreq.data[index];
540
541         /* HW should be in enabled state to proceed */
542         if (!(readl_relaxed(data->base + qcom_cpufreq.soc_data->reg_enable) & 0x1)) {
543                 dev_err(dev, "Domain-%d cpufreq hardware not enabled\n", index);
544                 return -ENODEV;
545         }
546
547         if (readl_relaxed(data->base + qcom_cpufreq.soc_data->reg_dcvs_ctrl) & 0x1)
548                 data->per_core_dcvs = true;
549
550         qcom_get_related_cpus(index, policy->cpus);
551
552         policy->driver_data = data;
553         policy->dvfs_possible_from_any_cpu = true;
554
555         ret = qcom_cpufreq_hw_read_lut(cpu_dev, policy);
556         if (ret) {
557                 dev_err(dev, "Domain-%d failed to read LUT\n", index);
558                 return ret;
559         }
560
561         ret = dev_pm_opp_get_opp_count(cpu_dev);
562         if (ret <= 0) {
563                 dev_err(cpu_dev, "Failed to add OPPs\n");
564                 return -ENODEV;
565         }
566
567         if (policy_has_boost_freq(policy)) {
568                 ret = cpufreq_enable_boost_support();
569                 if (ret)
570                         dev_warn(cpu_dev, "failed to enable boost: %d\n", ret);
571         }
572
573         return qcom_cpufreq_hw_lmh_init(policy, index);
574 }
575
576 static int qcom_cpufreq_hw_cpu_exit(struct cpufreq_policy *policy)
577 {
578         struct device *cpu_dev = get_cpu_device(policy->cpu);
579         struct qcom_cpufreq_data *data = policy->driver_data;
580
581         dev_pm_opp_remove_all_dynamic(cpu_dev);
582         dev_pm_opp_of_cpumask_remove_table(policy->related_cpus);
583         qcom_cpufreq_hw_lmh_exit(data);
584         kfree(policy->freq_table);
585         kfree(data);
586
587         return 0;
588 }
589
590 static void qcom_cpufreq_ready(struct cpufreq_policy *policy)
591 {
592         struct qcom_cpufreq_data *data = policy->driver_data;
593
594         if (data->throttle_irq >= 0)
595                 enable_irq(data->throttle_irq);
596 }
597
598 static struct freq_attr *qcom_cpufreq_hw_attr[] = {
599         &cpufreq_freq_attr_scaling_available_freqs,
600         &cpufreq_freq_attr_scaling_boost_freqs,
601         NULL
602 };
603
604 static struct cpufreq_driver cpufreq_qcom_hw_driver = {
605         .flags          = CPUFREQ_NEED_INITIAL_FREQ_CHECK |
606                           CPUFREQ_HAVE_GOVERNOR_PER_POLICY |
607                           CPUFREQ_IS_COOLING_DEV,
608         .verify         = cpufreq_generic_frequency_table_verify,
609         .target_index   = qcom_cpufreq_hw_target_index,
610         .get            = qcom_cpufreq_hw_get,
611         .init           = qcom_cpufreq_hw_cpu_init,
612         .exit           = qcom_cpufreq_hw_cpu_exit,
613         .online         = qcom_cpufreq_hw_cpu_online,
614         .offline        = qcom_cpufreq_hw_cpu_offline,
615         .register_em    = cpufreq_register_em_with_opp,
616         .fast_switch    = qcom_cpufreq_hw_fast_switch,
617         .name           = "qcom-cpufreq-hw",
618         .attr           = qcom_cpufreq_hw_attr,
619         .ready          = qcom_cpufreq_ready,
620 };
621
622 static unsigned long qcom_cpufreq_hw_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
623 {
624         struct qcom_cpufreq_data *data = container_of(hw, struct qcom_cpufreq_data, cpu_clk);
625
626         return qcom_lmh_get_throttle_freq(data);
627 }
628
629 static const struct clk_ops qcom_cpufreq_hw_clk_ops = {
630         .recalc_rate = qcom_cpufreq_hw_recalc_rate,
631 };
632
633 static int qcom_cpufreq_hw_driver_probe(struct platform_device *pdev)
634 {
635         struct clk_hw_onecell_data *clk_data;
636         struct device *dev = &pdev->dev;
637         struct device *cpu_dev;
638         struct clk *clk;
639         int ret, i, num_domains;
640
641         clk = clk_get(dev, "xo");
642         if (IS_ERR(clk))
643                 return PTR_ERR(clk);
644
645         xo_rate = clk_get_rate(clk);
646         clk_put(clk);
647
648         clk = clk_get(dev, "alternate");
649         if (IS_ERR(clk))
650                 return PTR_ERR(clk);
651
652         cpu_hw_rate = clk_get_rate(clk) / CLK_HW_DIV;
653         clk_put(clk);
654
655         cpufreq_qcom_hw_driver.driver_data = pdev;
656
657         /* Check for optional interconnect paths on CPU0 */
658         cpu_dev = get_cpu_device(0);
659         if (!cpu_dev)
660                 return -EPROBE_DEFER;
661
662         ret = dev_pm_opp_of_find_icc_paths(cpu_dev, NULL);
663         if (ret)
664                 return ret;
665
666         for (num_domains = 0; num_domains < MAX_FREQ_DOMAINS; num_domains++)
667                 if (!platform_get_resource(pdev, IORESOURCE_MEM, num_domains))
668                         break;
669
670         qcom_cpufreq.data = devm_kzalloc(dev, sizeof(struct qcom_cpufreq_data) * num_domains,
671                                          GFP_KERNEL);
672         if (!qcom_cpufreq.data)
673                 return -ENOMEM;
674
675         qcom_cpufreq.soc_data = of_device_get_match_data(dev);
676         if (!qcom_cpufreq.soc_data)
677                 return -ENODEV;
678
679         clk_data = devm_kzalloc(dev, struct_size(clk_data, hws, num_domains), GFP_KERNEL);
680         if (!clk_data)
681                 return -ENOMEM;
682
683         clk_data->num = num_domains;
684
685         for (i = 0; i < num_domains; i++) {
686                 struct qcom_cpufreq_data *data = &qcom_cpufreq.data[i];
687                 struct clk_init_data clk_init = {};
688                 void __iomem *base;
689
690                 base = devm_platform_ioremap_resource(pdev, i);
691                 if (IS_ERR(base)) {
692                         dev_err(dev, "Failed to map resource index %d\n", i);
693                         return PTR_ERR(base);
694                 }
695
696                 data->base = base;
697
698                 /* Register CPU clock for each frequency domain */
699                 clk_init.name = kasprintf(GFP_KERNEL, "qcom_cpufreq%d", i);
700                 if (!clk_init.name)
701                         return -ENOMEM;
702
703                 clk_init.flags = CLK_GET_RATE_NOCACHE;
704                 clk_init.ops = &qcom_cpufreq_hw_clk_ops;
705                 data->cpu_clk.init = &clk_init;
706
707                 ret = devm_clk_hw_register(dev, &data->cpu_clk);
708                 if (ret < 0) {
709                         dev_err(dev, "Failed to register clock %d: %d\n", i, ret);
710                         kfree(clk_init.name);
711                         return ret;
712                 }
713
714                 clk_data->hws[i] = &data->cpu_clk;
715                 kfree(clk_init.name);
716         }
717
718         ret = devm_of_clk_add_hw_provider(dev, of_clk_hw_onecell_get, clk_data);
719         if (ret < 0) {
720                 dev_err(dev, "Failed to add clock provider\n");
721                 return ret;
722         }
723
724         ret = cpufreq_register_driver(&cpufreq_qcom_hw_driver);
725         if (ret)
726                 dev_err(dev, "CPUFreq HW driver failed to register\n");
727         else
728                 dev_dbg(dev, "QCOM CPUFreq HW driver initialized\n");
729
730         return ret;
731 }
732
733 static int qcom_cpufreq_hw_driver_remove(struct platform_device *pdev)
734 {
735         cpufreq_unregister_driver(&cpufreq_qcom_hw_driver);
736
737         return 0;
738 }
739
740 static struct platform_driver qcom_cpufreq_hw_driver = {
741         .probe = qcom_cpufreq_hw_driver_probe,
742         .remove = qcom_cpufreq_hw_driver_remove,
743         .driver = {
744                 .name = "qcom-cpufreq-hw",
745                 .of_match_table = qcom_cpufreq_hw_match,
746         },
747 };
748
749 static int __init qcom_cpufreq_hw_init(void)
750 {
751         return platform_driver_register(&qcom_cpufreq_hw_driver);
752 }
753 postcore_initcall(qcom_cpufreq_hw_init);
754
755 static void __exit qcom_cpufreq_hw_exit(void)
756 {
757         platform_driver_unregister(&qcom_cpufreq_hw_driver);
758 }
759 module_exit(qcom_cpufreq_hw_exit);
760
761 MODULE_DESCRIPTION("QCOM CPUFREQ HW Driver");
762 MODULE_LICENSE("GPL v2");