Merge tag 'powerpc-6.7-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[linux-2.6-block.git] / drivers / cpufreq / intel_pstate.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pstate.c: Native P state management for Intel processors
4  *
5  * (C) Copyright 2012 Intel Corporation
6  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/module.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/slab.h>
18 #include <linux/sched/cpufreq.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/sysfs.h>
23 #include <linux/types.h>
24 #include <linux/fs.h>
25 #include <linux/acpi.h>
26 #include <linux/vmalloc.h>
27 #include <linux/pm_qos.h>
28 #include <trace/events/power.h>
29
30 #include <asm/cpu.h>
31 #include <asm/div64.h>
32 #include <asm/msr.h>
33 #include <asm/cpu_device_id.h>
34 #include <asm/cpufeature.h>
35 #include <asm/intel-family.h>
36 #include "../drivers/thermal/intel/thermal_interrupt.h"
37
38 #define INTEL_PSTATE_SAMPLING_INTERVAL  (10 * NSEC_PER_MSEC)
39
40 #define INTEL_CPUFREQ_TRANSITION_LATENCY        20000
41 #define INTEL_CPUFREQ_TRANSITION_DELAY_HWP      5000
42 #define INTEL_CPUFREQ_TRANSITION_DELAY          500
43
44 #ifdef CONFIG_ACPI
45 #include <acpi/processor.h>
46 #include <acpi/cppc_acpi.h>
47 #endif
48
49 #define FRAC_BITS 8
50 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
51 #define fp_toint(X) ((X) >> FRAC_BITS)
52
53 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
54
55 #define EXT_BITS 6
56 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
57 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
58 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
59
60 static inline int32_t mul_fp(int32_t x, int32_t y)
61 {
62         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
63 }
64
65 static inline int32_t div_fp(s64 x, s64 y)
66 {
67         return div64_s64((int64_t)x << FRAC_BITS, y);
68 }
69
70 static inline int ceiling_fp(int32_t x)
71 {
72         int mask, ret;
73
74         ret = fp_toint(x);
75         mask = (1 << FRAC_BITS) - 1;
76         if (x & mask)
77                 ret += 1;
78         return ret;
79 }
80
81 static inline u64 mul_ext_fp(u64 x, u64 y)
82 {
83         return (x * y) >> EXT_FRAC_BITS;
84 }
85
86 static inline u64 div_ext_fp(u64 x, u64 y)
87 {
88         return div64_u64(x << EXT_FRAC_BITS, y);
89 }
90
91 /**
92  * struct sample -      Store performance sample
93  * @core_avg_perf:      Ratio of APERF/MPERF which is the actual average
94  *                      performance during last sample period
95  * @busy_scaled:        Scaled busy value which is used to calculate next
96  *                      P state. This can be different than core_avg_perf
97  *                      to account for cpu idle period
98  * @aperf:              Difference of actual performance frequency clock count
99  *                      read from APERF MSR between last and current sample
100  * @mperf:              Difference of maximum performance frequency clock count
101  *                      read from MPERF MSR between last and current sample
102  * @tsc:                Difference of time stamp counter between last and
103  *                      current sample
104  * @time:               Current time from scheduler
105  *
106  * This structure is used in the cpudata structure to store performance sample
107  * data for choosing next P State.
108  */
109 struct sample {
110         int32_t core_avg_perf;
111         int32_t busy_scaled;
112         u64 aperf;
113         u64 mperf;
114         u64 tsc;
115         u64 time;
116 };
117
118 /**
119  * struct pstate_data - Store P state data
120  * @current_pstate:     Current requested P state
121  * @min_pstate:         Min P state possible for this platform
122  * @max_pstate:         Max P state possible for this platform
123  * @max_pstate_physical:This is physical Max P state for a processor
124  *                      This can be higher than the max_pstate which can
125  *                      be limited by platform thermal design power limits
126  * @perf_ctl_scaling:   PERF_CTL P-state to frequency scaling factor
127  * @scaling:            Scaling factor between performance and frequency
128  * @turbo_pstate:       Max Turbo P state possible for this platform
129  * @min_freq:           @min_pstate frequency in cpufreq units
130  * @max_freq:           @max_pstate frequency in cpufreq units
131  * @turbo_freq:         @turbo_pstate frequency in cpufreq units
132  *
133  * Stores the per cpu model P state limits and current P state.
134  */
135 struct pstate_data {
136         int     current_pstate;
137         int     min_pstate;
138         int     max_pstate;
139         int     max_pstate_physical;
140         int     perf_ctl_scaling;
141         int     scaling;
142         int     turbo_pstate;
143         unsigned int min_freq;
144         unsigned int max_freq;
145         unsigned int turbo_freq;
146 };
147
148 /**
149  * struct vid_data -    Stores voltage information data
150  * @min:                VID data for this platform corresponding to
151  *                      the lowest P state
152  * @max:                VID data corresponding to the highest P State.
153  * @turbo:              VID data for turbo P state
154  * @ratio:              Ratio of (vid max - vid min) /
155  *                      (max P state - Min P State)
156  *
157  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
158  * This data is used in Atom platforms, where in addition to target P state,
159  * the voltage data needs to be specified to select next P State.
160  */
161 struct vid_data {
162         int min;
163         int max;
164         int turbo;
165         int32_t ratio;
166 };
167
168 /**
169  * struct global_params - Global parameters, mostly tunable via sysfs.
170  * @no_turbo:           Whether or not to use turbo P-states.
171  * @turbo_disabled:     Whether or not turbo P-states are available at all,
172  *                      based on the MSR_IA32_MISC_ENABLE value and whether or
173  *                      not the maximum reported turbo P-state is different from
174  *                      the maximum reported non-turbo one.
175  * @turbo_disabled_mf:  The @turbo_disabled value reflected by cpuinfo.max_freq.
176  * @min_perf_pct:       Minimum capacity limit in percent of the maximum turbo
177  *                      P-state capacity.
178  * @max_perf_pct:       Maximum capacity limit in percent of the maximum turbo
179  *                      P-state capacity.
180  */
181 struct global_params {
182         bool no_turbo;
183         bool turbo_disabled;
184         bool turbo_disabled_mf;
185         int max_perf_pct;
186         int min_perf_pct;
187 };
188
189 /**
190  * struct cpudata -     Per CPU instance data storage
191  * @cpu:                CPU number for this instance data
192  * @policy:             CPUFreq policy value
193  * @update_util:        CPUFreq utility callback information
194  * @update_util_set:    CPUFreq utility callback is set
195  * @iowait_boost:       iowait-related boost fraction
196  * @last_update:        Time of the last update.
197  * @pstate:             Stores P state limits for this CPU
198  * @vid:                Stores VID limits for this CPU
199  * @last_sample_time:   Last Sample time
200  * @aperf_mperf_shift:  APERF vs MPERF counting frequency difference
201  * @prev_aperf:         Last APERF value read from APERF MSR
202  * @prev_mperf:         Last MPERF value read from MPERF MSR
203  * @prev_tsc:           Last timestamp counter (TSC) value
204  * @prev_cummulative_iowait: IO Wait time difference from last and
205  *                      current sample
206  * @sample:             Storage for storing last Sample data
207  * @min_perf_ratio:     Minimum capacity in terms of PERF or HWP ratios
208  * @max_perf_ratio:     Maximum capacity in terms of PERF or HWP ratios
209  * @acpi_perf_data:     Stores ACPI perf information read from _PSS
210  * @valid_pss_table:    Set to true for valid ACPI _PSS entries found
211  * @epp_powersave:      Last saved HWP energy performance preference
212  *                      (EPP) or energy performance bias (EPB),
213  *                      when policy switched to performance
214  * @epp_policy:         Last saved policy used to set EPP/EPB
215  * @epp_default:        Power on default HWP energy performance
216  *                      preference/bias
217  * @epp_cached          Cached HWP energy-performance preference value
218  * @hwp_req_cached:     Cached value of the last HWP Request MSR
219  * @hwp_cap_cached:     Cached value of the last HWP Capabilities MSR
220  * @last_io_update:     Last time when IO wake flag was set
221  * @sched_flags:        Store scheduler flags for possible cross CPU update
222  * @hwp_boost_min:      Last HWP boosted min performance
223  * @suspended:          Whether or not the driver has been suspended.
224  * @hwp_notify_work:    workqueue for HWP notifications.
225  *
226  * This structure stores per CPU instance data for all CPUs.
227  */
228 struct cpudata {
229         int cpu;
230
231         unsigned int policy;
232         struct update_util_data update_util;
233         bool   update_util_set;
234
235         struct pstate_data pstate;
236         struct vid_data vid;
237
238         u64     last_update;
239         u64     last_sample_time;
240         u64     aperf_mperf_shift;
241         u64     prev_aperf;
242         u64     prev_mperf;
243         u64     prev_tsc;
244         u64     prev_cummulative_iowait;
245         struct sample sample;
246         int32_t min_perf_ratio;
247         int32_t max_perf_ratio;
248 #ifdef CONFIG_ACPI
249         struct acpi_processor_performance acpi_perf_data;
250         bool valid_pss_table;
251 #endif
252         unsigned int iowait_boost;
253         s16 epp_powersave;
254         s16 epp_policy;
255         s16 epp_default;
256         s16 epp_cached;
257         u64 hwp_req_cached;
258         u64 hwp_cap_cached;
259         u64 last_io_update;
260         unsigned int sched_flags;
261         u32 hwp_boost_min;
262         bool suspended;
263         struct delayed_work hwp_notify_work;
264 };
265
266 static struct cpudata **all_cpu_data;
267
268 /**
269  * struct pstate_funcs - Per CPU model specific callbacks
270  * @get_max:            Callback to get maximum non turbo effective P state
271  * @get_max_physical:   Callback to get maximum non turbo physical P state
272  * @get_min:            Callback to get minimum P state
273  * @get_turbo:          Callback to get turbo P state
274  * @get_scaling:        Callback to get frequency scaling factor
275  * @get_cpu_scaling:    Get frequency scaling factor for a given cpu
276  * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
277  * @get_val:            Callback to convert P state to actual MSR write value
278  * @get_vid:            Callback to get VID data for Atom platforms
279  *
280  * Core and Atom CPU models have different way to get P State limits. This
281  * structure is used to store those callbacks.
282  */
283 struct pstate_funcs {
284         int (*get_max)(int cpu);
285         int (*get_max_physical)(int cpu);
286         int (*get_min)(int cpu);
287         int (*get_turbo)(int cpu);
288         int (*get_scaling)(void);
289         int (*get_cpu_scaling)(int cpu);
290         int (*get_aperf_mperf_shift)(void);
291         u64 (*get_val)(struct cpudata*, int pstate);
292         void (*get_vid)(struct cpudata *);
293 };
294
295 static struct pstate_funcs pstate_funcs __read_mostly;
296
297 static int hwp_active __read_mostly;
298 static int hwp_mode_bdw __read_mostly;
299 static bool per_cpu_limits __read_mostly;
300 static bool hwp_boost __read_mostly;
301 static bool hwp_forced __read_mostly;
302
303 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
304
305 #define HYBRID_SCALING_FACTOR   78741
306
307 static inline int core_get_scaling(void)
308 {
309         return 100000;
310 }
311
312 #ifdef CONFIG_ACPI
313 static bool acpi_ppc;
314 #endif
315
316 static struct global_params global;
317
318 static DEFINE_MUTEX(intel_pstate_driver_lock);
319 static DEFINE_MUTEX(intel_pstate_limits_lock);
320
321 #ifdef CONFIG_ACPI
322
323 static bool intel_pstate_acpi_pm_profile_server(void)
324 {
325         if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
326             acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
327                 return true;
328
329         return false;
330 }
331
332 static bool intel_pstate_get_ppc_enable_status(void)
333 {
334         if (intel_pstate_acpi_pm_profile_server())
335                 return true;
336
337         return acpi_ppc;
338 }
339
340 #ifdef CONFIG_ACPI_CPPC_LIB
341
342 /* The work item is needed to avoid CPU hotplug locking issues */
343 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
344 {
345         sched_set_itmt_support();
346 }
347
348 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
349
350 #define CPPC_MAX_PERF   U8_MAX
351
352 static void intel_pstate_set_itmt_prio(int cpu)
353 {
354         struct cppc_perf_caps cppc_perf;
355         static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
356         int ret;
357
358         ret = cppc_get_perf_caps(cpu, &cppc_perf);
359         if (ret)
360                 return;
361
362         /*
363          * On some systems with overclocking enabled, CPPC.highest_perf is hardcoded to 0xff.
364          * In this case we can't use CPPC.highest_perf to enable ITMT.
365          * In this case we can look at MSR_HWP_CAPABILITIES bits [8:0] to decide.
366          */
367         if (cppc_perf.highest_perf == CPPC_MAX_PERF)
368                 cppc_perf.highest_perf = HWP_HIGHEST_PERF(READ_ONCE(all_cpu_data[cpu]->hwp_cap_cached));
369
370         /*
371          * The priorities can be set regardless of whether or not
372          * sched_set_itmt_support(true) has been called and it is valid to
373          * update them at any time after it has been called.
374          */
375         sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
376
377         if (max_highest_perf <= min_highest_perf) {
378                 if (cppc_perf.highest_perf > max_highest_perf)
379                         max_highest_perf = cppc_perf.highest_perf;
380
381                 if (cppc_perf.highest_perf < min_highest_perf)
382                         min_highest_perf = cppc_perf.highest_perf;
383
384                 if (max_highest_perf > min_highest_perf) {
385                         /*
386                          * This code can be run during CPU online under the
387                          * CPU hotplug locks, so sched_set_itmt_support()
388                          * cannot be called from here.  Queue up a work item
389                          * to invoke it.
390                          */
391                         schedule_work(&sched_itmt_work);
392                 }
393         }
394 }
395
396 static int intel_pstate_get_cppc_guaranteed(int cpu)
397 {
398         struct cppc_perf_caps cppc_perf;
399         int ret;
400
401         ret = cppc_get_perf_caps(cpu, &cppc_perf);
402         if (ret)
403                 return ret;
404
405         if (cppc_perf.guaranteed_perf)
406                 return cppc_perf.guaranteed_perf;
407
408         return cppc_perf.nominal_perf;
409 }
410
411 static int intel_pstate_cppc_get_scaling(int cpu)
412 {
413         struct cppc_perf_caps cppc_perf;
414         int ret;
415
416         ret = cppc_get_perf_caps(cpu, &cppc_perf);
417
418         /*
419          * If the nominal frequency and the nominal performance are not
420          * zero and the ratio between them is not 100, return the hybrid
421          * scaling factor.
422          */
423         if (!ret && cppc_perf.nominal_perf && cppc_perf.nominal_freq &&
424             cppc_perf.nominal_perf * 100 != cppc_perf.nominal_freq)
425                 return HYBRID_SCALING_FACTOR;
426
427         return core_get_scaling();
428 }
429
430 #else /* CONFIG_ACPI_CPPC_LIB */
431 static inline void intel_pstate_set_itmt_prio(int cpu)
432 {
433 }
434 #endif /* CONFIG_ACPI_CPPC_LIB */
435
436 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
437 {
438         struct cpudata *cpu;
439         int ret;
440         int i;
441
442         if (hwp_active) {
443                 intel_pstate_set_itmt_prio(policy->cpu);
444                 return;
445         }
446
447         if (!intel_pstate_get_ppc_enable_status())
448                 return;
449
450         cpu = all_cpu_data[policy->cpu];
451
452         ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
453                                                   policy->cpu);
454         if (ret)
455                 return;
456
457         /*
458          * Check if the control value in _PSS is for PERF_CTL MSR, which should
459          * guarantee that the states returned by it map to the states in our
460          * list directly.
461          */
462         if (cpu->acpi_perf_data.control_register.space_id !=
463                                                 ACPI_ADR_SPACE_FIXED_HARDWARE)
464                 goto err;
465
466         /*
467          * If there is only one entry _PSS, simply ignore _PSS and continue as
468          * usual without taking _PSS into account
469          */
470         if (cpu->acpi_perf_data.state_count < 2)
471                 goto err;
472
473         pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
474         for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
475                 pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
476                          (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
477                          (u32) cpu->acpi_perf_data.states[i].core_frequency,
478                          (u32) cpu->acpi_perf_data.states[i].power,
479                          (u32) cpu->acpi_perf_data.states[i].control);
480         }
481
482         cpu->valid_pss_table = true;
483         pr_debug("_PPC limits will be enforced\n");
484
485         return;
486
487  err:
488         cpu->valid_pss_table = false;
489         acpi_processor_unregister_performance(policy->cpu);
490 }
491
492 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
493 {
494         struct cpudata *cpu;
495
496         cpu = all_cpu_data[policy->cpu];
497         if (!cpu->valid_pss_table)
498                 return;
499
500         acpi_processor_unregister_performance(policy->cpu);
501 }
502 #else /* CONFIG_ACPI */
503 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
504 {
505 }
506
507 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
508 {
509 }
510
511 static inline bool intel_pstate_acpi_pm_profile_server(void)
512 {
513         return false;
514 }
515 #endif /* CONFIG_ACPI */
516
517 #ifndef CONFIG_ACPI_CPPC_LIB
518 static inline int intel_pstate_get_cppc_guaranteed(int cpu)
519 {
520         return -ENOTSUPP;
521 }
522
523 static int intel_pstate_cppc_get_scaling(int cpu)
524 {
525         return core_get_scaling();
526 }
527 #endif /* CONFIG_ACPI_CPPC_LIB */
528
529 /**
530  * intel_pstate_hybrid_hwp_adjust - Calibrate HWP performance levels.
531  * @cpu: Target CPU.
532  *
533  * On hybrid processors, HWP may expose more performance levels than there are
534  * P-states accessible through the PERF_CTL interface.  If that happens, the
535  * scaling factor between HWP performance levels and CPU frequency will be less
536  * than the scaling factor between P-state values and CPU frequency.
537  *
538  * In that case, adjust the CPU parameters used in computations accordingly.
539  */
540 static void intel_pstate_hybrid_hwp_adjust(struct cpudata *cpu)
541 {
542         int perf_ctl_max_phys = cpu->pstate.max_pstate_physical;
543         int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
544         int perf_ctl_turbo = pstate_funcs.get_turbo(cpu->cpu);
545         int scaling = cpu->pstate.scaling;
546
547         pr_debug("CPU%d: perf_ctl_max_phys = %d\n", cpu->cpu, perf_ctl_max_phys);
548         pr_debug("CPU%d: perf_ctl_turbo = %d\n", cpu->cpu, perf_ctl_turbo);
549         pr_debug("CPU%d: perf_ctl_scaling = %d\n", cpu->cpu, perf_ctl_scaling);
550         pr_debug("CPU%d: HWP_CAP guaranteed = %d\n", cpu->cpu, cpu->pstate.max_pstate);
551         pr_debug("CPU%d: HWP_CAP highest = %d\n", cpu->cpu, cpu->pstate.turbo_pstate);
552         pr_debug("CPU%d: HWP-to-frequency scaling factor: %d\n", cpu->cpu, scaling);
553
554         cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_pstate * scaling,
555                                            perf_ctl_scaling);
556         cpu->pstate.max_freq = rounddown(cpu->pstate.max_pstate * scaling,
557                                          perf_ctl_scaling);
558
559         cpu->pstate.max_pstate_physical =
560                         DIV_ROUND_UP(perf_ctl_max_phys * perf_ctl_scaling,
561                                      scaling);
562
563         cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
564         /*
565          * Cast the min P-state value retrieved via pstate_funcs.get_min() to
566          * the effective range of HWP performance levels.
567          */
568         cpu->pstate.min_pstate = DIV_ROUND_UP(cpu->pstate.min_freq, scaling);
569 }
570
571 static inline void update_turbo_state(void)
572 {
573         u64 misc_en;
574
575         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
576         global.turbo_disabled = misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE;
577 }
578
579 static int min_perf_pct_min(void)
580 {
581         struct cpudata *cpu = all_cpu_data[0];
582         int turbo_pstate = cpu->pstate.turbo_pstate;
583
584         return turbo_pstate ?
585                 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
586 }
587
588 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
589 {
590         u64 epb;
591         int ret;
592
593         if (!boot_cpu_has(X86_FEATURE_EPB))
594                 return -ENXIO;
595
596         ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
597         if (ret)
598                 return (s16)ret;
599
600         return (s16)(epb & 0x0f);
601 }
602
603 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
604 {
605         s16 epp;
606
607         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
608                 /*
609                  * When hwp_req_data is 0, means that caller didn't read
610                  * MSR_HWP_REQUEST, so need to read and get EPP.
611                  */
612                 if (!hwp_req_data) {
613                         epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
614                                             &hwp_req_data);
615                         if (epp)
616                                 return epp;
617                 }
618                 epp = (hwp_req_data >> 24) & 0xff;
619         } else {
620                 /* When there is no EPP present, HWP uses EPB settings */
621                 epp = intel_pstate_get_epb(cpu_data);
622         }
623
624         return epp;
625 }
626
627 static int intel_pstate_set_epb(int cpu, s16 pref)
628 {
629         u64 epb;
630         int ret;
631
632         if (!boot_cpu_has(X86_FEATURE_EPB))
633                 return -ENXIO;
634
635         ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
636         if (ret)
637                 return ret;
638
639         epb = (epb & ~0x0f) | pref;
640         wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
641
642         return 0;
643 }
644
645 /*
646  * EPP/EPB display strings corresponding to EPP index in the
647  * energy_perf_strings[]
648  *      index           String
649  *-------------------------------------
650  *      0               default
651  *      1               performance
652  *      2               balance_performance
653  *      3               balance_power
654  *      4               power
655  */
656
657 enum energy_perf_value_index {
658         EPP_INDEX_DEFAULT = 0,
659         EPP_INDEX_PERFORMANCE,
660         EPP_INDEX_BALANCE_PERFORMANCE,
661         EPP_INDEX_BALANCE_POWERSAVE,
662         EPP_INDEX_POWERSAVE,
663 };
664
665 static const char * const energy_perf_strings[] = {
666         [EPP_INDEX_DEFAULT] = "default",
667         [EPP_INDEX_PERFORMANCE] = "performance",
668         [EPP_INDEX_BALANCE_PERFORMANCE] = "balance_performance",
669         [EPP_INDEX_BALANCE_POWERSAVE] = "balance_power",
670         [EPP_INDEX_POWERSAVE] = "power",
671         NULL
672 };
673 static unsigned int epp_values[] = {
674         [EPP_INDEX_DEFAULT] = 0, /* Unused index */
675         [EPP_INDEX_PERFORMANCE] = HWP_EPP_PERFORMANCE,
676         [EPP_INDEX_BALANCE_PERFORMANCE] = HWP_EPP_BALANCE_PERFORMANCE,
677         [EPP_INDEX_BALANCE_POWERSAVE] = HWP_EPP_BALANCE_POWERSAVE,
678         [EPP_INDEX_POWERSAVE] = HWP_EPP_POWERSAVE,
679 };
680
681 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
682 {
683         s16 epp;
684         int index = -EINVAL;
685
686         *raw_epp = 0;
687         epp = intel_pstate_get_epp(cpu_data, 0);
688         if (epp < 0)
689                 return epp;
690
691         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
692                 if (epp == epp_values[EPP_INDEX_PERFORMANCE])
693                         return EPP_INDEX_PERFORMANCE;
694                 if (epp == epp_values[EPP_INDEX_BALANCE_PERFORMANCE])
695                         return EPP_INDEX_BALANCE_PERFORMANCE;
696                 if (epp == epp_values[EPP_INDEX_BALANCE_POWERSAVE])
697                         return EPP_INDEX_BALANCE_POWERSAVE;
698                 if (epp == epp_values[EPP_INDEX_POWERSAVE])
699                         return EPP_INDEX_POWERSAVE;
700                 *raw_epp = epp;
701                 return 0;
702         } else if (boot_cpu_has(X86_FEATURE_EPB)) {
703                 /*
704                  * Range:
705                  *      0x00-0x03       :       Performance
706                  *      0x04-0x07       :       Balance performance
707                  *      0x08-0x0B       :       Balance power
708                  *      0x0C-0x0F       :       Power
709                  * The EPB is a 4 bit value, but our ranges restrict the
710                  * value which can be set. Here only using top two bits
711                  * effectively.
712                  */
713                 index = (epp >> 2) + 1;
714         }
715
716         return index;
717 }
718
719 static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp)
720 {
721         int ret;
722
723         /*
724          * Use the cached HWP Request MSR value, because in the active mode the
725          * register itself may be updated by intel_pstate_hwp_boost_up() or
726          * intel_pstate_hwp_boost_down() at any time.
727          */
728         u64 value = READ_ONCE(cpu->hwp_req_cached);
729
730         value &= ~GENMASK_ULL(31, 24);
731         value |= (u64)epp << 24;
732         /*
733          * The only other updater of hwp_req_cached in the active mode,
734          * intel_pstate_hwp_set(), is called under the same lock as this
735          * function, so it cannot run in parallel with the update below.
736          */
737         WRITE_ONCE(cpu->hwp_req_cached, value);
738         ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
739         if (!ret)
740                 cpu->epp_cached = epp;
741
742         return ret;
743 }
744
745 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
746                                               int pref_index, bool use_raw,
747                                               u32 raw_epp)
748 {
749         int epp = -EINVAL;
750         int ret;
751
752         if (!pref_index)
753                 epp = cpu_data->epp_default;
754
755         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
756                 if (use_raw)
757                         epp = raw_epp;
758                 else if (epp == -EINVAL)
759                         epp = epp_values[pref_index];
760
761                 /*
762                  * To avoid confusion, refuse to set EPP to any values different
763                  * from 0 (performance) if the current policy is "performance",
764                  * because those values would be overridden.
765                  */
766                 if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
767                         return -EBUSY;
768
769                 ret = intel_pstate_set_epp(cpu_data, epp);
770         } else {
771                 if (epp == -EINVAL)
772                         epp = (pref_index - 1) << 2;
773                 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
774         }
775
776         return ret;
777 }
778
779 static ssize_t show_energy_performance_available_preferences(
780                                 struct cpufreq_policy *policy, char *buf)
781 {
782         int i = 0;
783         int ret = 0;
784
785         while (energy_perf_strings[i] != NULL)
786                 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
787
788         ret += sprintf(&buf[ret], "\n");
789
790         return ret;
791 }
792
793 cpufreq_freq_attr_ro(energy_performance_available_preferences);
794
795 static struct cpufreq_driver intel_pstate;
796
797 static ssize_t store_energy_performance_preference(
798                 struct cpufreq_policy *policy, const char *buf, size_t count)
799 {
800         struct cpudata *cpu = all_cpu_data[policy->cpu];
801         char str_preference[21];
802         bool raw = false;
803         ssize_t ret;
804         u32 epp = 0;
805
806         ret = sscanf(buf, "%20s", str_preference);
807         if (ret != 1)
808                 return -EINVAL;
809
810         ret = match_string(energy_perf_strings, -1, str_preference);
811         if (ret < 0) {
812                 if (!boot_cpu_has(X86_FEATURE_HWP_EPP))
813                         return ret;
814
815                 ret = kstrtouint(buf, 10, &epp);
816                 if (ret)
817                         return ret;
818
819                 if (epp > 255)
820                         return -EINVAL;
821
822                 raw = true;
823         }
824
825         /*
826          * This function runs with the policy R/W semaphore held, which
827          * guarantees that the driver pointer will not change while it is
828          * running.
829          */
830         if (!intel_pstate_driver)
831                 return -EAGAIN;
832
833         mutex_lock(&intel_pstate_limits_lock);
834
835         if (intel_pstate_driver == &intel_pstate) {
836                 ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp);
837         } else {
838                 /*
839                  * In the passive mode the governor needs to be stopped on the
840                  * target CPU before the EPP update and restarted after it,
841                  * which is super-heavy-weight, so make sure it is worth doing
842                  * upfront.
843                  */
844                 if (!raw)
845                         epp = ret ? epp_values[ret] : cpu->epp_default;
846
847                 if (cpu->epp_cached != epp) {
848                         int err;
849
850                         cpufreq_stop_governor(policy);
851                         ret = intel_pstate_set_epp(cpu, epp);
852                         err = cpufreq_start_governor(policy);
853                         if (!ret)
854                                 ret = err;
855                 } else {
856                         ret = 0;
857                 }
858         }
859
860         mutex_unlock(&intel_pstate_limits_lock);
861
862         return ret ?: count;
863 }
864
865 static ssize_t show_energy_performance_preference(
866                                 struct cpufreq_policy *policy, char *buf)
867 {
868         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
869         int preference, raw_epp;
870
871         preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp);
872         if (preference < 0)
873                 return preference;
874
875         if (raw_epp)
876                 return  sprintf(buf, "%d\n", raw_epp);
877         else
878                 return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
879 }
880
881 cpufreq_freq_attr_rw(energy_performance_preference);
882
883 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
884 {
885         struct cpudata *cpu = all_cpu_data[policy->cpu];
886         int ratio, freq;
887
888         ratio = intel_pstate_get_cppc_guaranteed(policy->cpu);
889         if (ratio <= 0) {
890                 u64 cap;
891
892                 rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
893                 ratio = HWP_GUARANTEED_PERF(cap);
894         }
895
896         freq = ratio * cpu->pstate.scaling;
897         if (cpu->pstate.scaling != cpu->pstate.perf_ctl_scaling)
898                 freq = rounddown(freq, cpu->pstate.perf_ctl_scaling);
899
900         return sprintf(buf, "%d\n", freq);
901 }
902
903 cpufreq_freq_attr_ro(base_frequency);
904
905 static struct freq_attr *hwp_cpufreq_attrs[] = {
906         &energy_performance_preference,
907         &energy_performance_available_preferences,
908         &base_frequency,
909         NULL,
910 };
911
912 static void __intel_pstate_get_hwp_cap(struct cpudata *cpu)
913 {
914         u64 cap;
915
916         rdmsrl_on_cpu(cpu->cpu, MSR_HWP_CAPABILITIES, &cap);
917         WRITE_ONCE(cpu->hwp_cap_cached, cap);
918         cpu->pstate.max_pstate = HWP_GUARANTEED_PERF(cap);
919         cpu->pstate.turbo_pstate = HWP_HIGHEST_PERF(cap);
920 }
921
922 static void intel_pstate_get_hwp_cap(struct cpudata *cpu)
923 {
924         int scaling = cpu->pstate.scaling;
925
926         __intel_pstate_get_hwp_cap(cpu);
927
928         cpu->pstate.max_freq = cpu->pstate.max_pstate * scaling;
929         cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling;
930         if (scaling != cpu->pstate.perf_ctl_scaling) {
931                 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
932
933                 cpu->pstate.max_freq = rounddown(cpu->pstate.max_freq,
934                                                  perf_ctl_scaling);
935                 cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_freq,
936                                                    perf_ctl_scaling);
937         }
938 }
939
940 static void intel_pstate_hwp_set(unsigned int cpu)
941 {
942         struct cpudata *cpu_data = all_cpu_data[cpu];
943         int max, min;
944         u64 value;
945         s16 epp;
946
947         max = cpu_data->max_perf_ratio;
948         min = cpu_data->min_perf_ratio;
949
950         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
951                 min = max;
952
953         rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
954
955         value &= ~HWP_MIN_PERF(~0L);
956         value |= HWP_MIN_PERF(min);
957
958         value &= ~HWP_MAX_PERF(~0L);
959         value |= HWP_MAX_PERF(max);
960
961         if (cpu_data->epp_policy == cpu_data->policy)
962                 goto skip_epp;
963
964         cpu_data->epp_policy = cpu_data->policy;
965
966         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
967                 epp = intel_pstate_get_epp(cpu_data, value);
968                 cpu_data->epp_powersave = epp;
969                 /* If EPP read was failed, then don't try to write */
970                 if (epp < 0)
971                         goto skip_epp;
972
973                 epp = 0;
974         } else {
975                 /* skip setting EPP, when saved value is invalid */
976                 if (cpu_data->epp_powersave < 0)
977                         goto skip_epp;
978
979                 /*
980                  * No need to restore EPP when it is not zero. This
981                  * means:
982                  *  - Policy is not changed
983                  *  - user has manually changed
984                  *  - Error reading EPB
985                  */
986                 epp = intel_pstate_get_epp(cpu_data, value);
987                 if (epp)
988                         goto skip_epp;
989
990                 epp = cpu_data->epp_powersave;
991         }
992         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
993                 value &= ~GENMASK_ULL(31, 24);
994                 value |= (u64)epp << 24;
995         } else {
996                 intel_pstate_set_epb(cpu, epp);
997         }
998 skip_epp:
999         WRITE_ONCE(cpu_data->hwp_req_cached, value);
1000         wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
1001 }
1002
1003 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata);
1004
1005 static void intel_pstate_hwp_offline(struct cpudata *cpu)
1006 {
1007         u64 value = READ_ONCE(cpu->hwp_req_cached);
1008         int min_perf;
1009
1010         intel_pstate_disable_hwp_interrupt(cpu);
1011
1012         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
1013                 /*
1014                  * In case the EPP has been set to "performance" by the
1015                  * active mode "performance" scaling algorithm, replace that
1016                  * temporary value with the cached EPP one.
1017                  */
1018                 value &= ~GENMASK_ULL(31, 24);
1019                 value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached);
1020                 /*
1021                  * However, make sure that EPP will be set to "performance" when
1022                  * the CPU is brought back online again and the "performance"
1023                  * scaling algorithm is still in effect.
1024                  */
1025                 cpu->epp_policy = CPUFREQ_POLICY_UNKNOWN;
1026         }
1027
1028         /*
1029          * Clear the desired perf field in the cached HWP request value to
1030          * prevent nonzero desired values from being leaked into the active
1031          * mode.
1032          */
1033         value &= ~HWP_DESIRED_PERF(~0L);
1034         WRITE_ONCE(cpu->hwp_req_cached, value);
1035
1036         value &= ~GENMASK_ULL(31, 0);
1037         min_perf = HWP_LOWEST_PERF(READ_ONCE(cpu->hwp_cap_cached));
1038
1039         /* Set hwp_max = hwp_min */
1040         value |= HWP_MAX_PERF(min_perf);
1041         value |= HWP_MIN_PERF(min_perf);
1042
1043         /* Set EPP to min */
1044         if (boot_cpu_has(X86_FEATURE_HWP_EPP))
1045                 value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
1046
1047         wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
1048 }
1049
1050 #define POWER_CTL_EE_ENABLE     1
1051 #define POWER_CTL_EE_DISABLE    2
1052
1053 static int power_ctl_ee_state;
1054
1055 static void set_power_ctl_ee_state(bool input)
1056 {
1057         u64 power_ctl;
1058
1059         mutex_lock(&intel_pstate_driver_lock);
1060         rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1061         if (input) {
1062                 power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE);
1063                 power_ctl_ee_state = POWER_CTL_EE_ENABLE;
1064         } else {
1065                 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1066                 power_ctl_ee_state = POWER_CTL_EE_DISABLE;
1067         }
1068         wrmsrl(MSR_IA32_POWER_CTL, power_ctl);
1069         mutex_unlock(&intel_pstate_driver_lock);
1070 }
1071
1072 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
1073
1074 static void intel_pstate_hwp_reenable(struct cpudata *cpu)
1075 {
1076         intel_pstate_hwp_enable(cpu);
1077         wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached));
1078 }
1079
1080 static int intel_pstate_suspend(struct cpufreq_policy *policy)
1081 {
1082         struct cpudata *cpu = all_cpu_data[policy->cpu];
1083
1084         pr_debug("CPU %d suspending\n", cpu->cpu);
1085
1086         cpu->suspended = true;
1087
1088         /* disable HWP interrupt and cancel any pending work */
1089         intel_pstate_disable_hwp_interrupt(cpu);
1090
1091         return 0;
1092 }
1093
1094 static int intel_pstate_resume(struct cpufreq_policy *policy)
1095 {
1096         struct cpudata *cpu = all_cpu_data[policy->cpu];
1097
1098         pr_debug("CPU %d resuming\n", cpu->cpu);
1099
1100         /* Only restore if the system default is changed */
1101         if (power_ctl_ee_state == POWER_CTL_EE_ENABLE)
1102                 set_power_ctl_ee_state(true);
1103         else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE)
1104                 set_power_ctl_ee_state(false);
1105
1106         if (cpu->suspended && hwp_active) {
1107                 mutex_lock(&intel_pstate_limits_lock);
1108
1109                 /* Re-enable HWP, because "online" has not done that. */
1110                 intel_pstate_hwp_reenable(cpu);
1111
1112                 mutex_unlock(&intel_pstate_limits_lock);
1113         }
1114
1115         cpu->suspended = false;
1116
1117         return 0;
1118 }
1119
1120 static void intel_pstate_update_policies(void)
1121 {
1122         int cpu;
1123
1124         for_each_possible_cpu(cpu)
1125                 cpufreq_update_policy(cpu);
1126 }
1127
1128 static void __intel_pstate_update_max_freq(struct cpudata *cpudata,
1129                                            struct cpufreq_policy *policy)
1130 {
1131         policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
1132                         cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
1133         refresh_frequency_limits(policy);
1134 }
1135
1136 static void intel_pstate_update_max_freq(unsigned int cpu)
1137 {
1138         struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
1139
1140         if (!policy)
1141                 return;
1142
1143         __intel_pstate_update_max_freq(all_cpu_data[cpu], policy);
1144
1145         cpufreq_cpu_release(policy);
1146 }
1147
1148 static void intel_pstate_update_limits(unsigned int cpu)
1149 {
1150         mutex_lock(&intel_pstate_driver_lock);
1151
1152         update_turbo_state();
1153         /*
1154          * If turbo has been turned on or off globally, policy limits for
1155          * all CPUs need to be updated to reflect that.
1156          */
1157         if (global.turbo_disabled_mf != global.turbo_disabled) {
1158                 global.turbo_disabled_mf = global.turbo_disabled;
1159                 arch_set_max_freq_ratio(global.turbo_disabled);
1160                 for_each_possible_cpu(cpu)
1161                         intel_pstate_update_max_freq(cpu);
1162         } else {
1163                 cpufreq_update_policy(cpu);
1164         }
1165
1166         mutex_unlock(&intel_pstate_driver_lock);
1167 }
1168
1169 /************************** sysfs begin ************************/
1170 #define show_one(file_name, object)                                     \
1171         static ssize_t show_##file_name                                 \
1172         (struct kobject *kobj, struct kobj_attribute *attr, char *buf)  \
1173         {                                                               \
1174                 return sprintf(buf, "%u\n", global.object);             \
1175         }
1176
1177 static ssize_t intel_pstate_show_status(char *buf);
1178 static int intel_pstate_update_status(const char *buf, size_t size);
1179
1180 static ssize_t show_status(struct kobject *kobj,
1181                            struct kobj_attribute *attr, char *buf)
1182 {
1183         ssize_t ret;
1184
1185         mutex_lock(&intel_pstate_driver_lock);
1186         ret = intel_pstate_show_status(buf);
1187         mutex_unlock(&intel_pstate_driver_lock);
1188
1189         return ret;
1190 }
1191
1192 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
1193                             const char *buf, size_t count)
1194 {
1195         char *p = memchr(buf, '\n', count);
1196         int ret;
1197
1198         mutex_lock(&intel_pstate_driver_lock);
1199         ret = intel_pstate_update_status(buf, p ? p - buf : count);
1200         mutex_unlock(&intel_pstate_driver_lock);
1201
1202         return ret < 0 ? ret : count;
1203 }
1204
1205 static ssize_t show_turbo_pct(struct kobject *kobj,
1206                                 struct kobj_attribute *attr, char *buf)
1207 {
1208         struct cpudata *cpu;
1209         int total, no_turbo, turbo_pct;
1210         uint32_t turbo_fp;
1211
1212         mutex_lock(&intel_pstate_driver_lock);
1213
1214         if (!intel_pstate_driver) {
1215                 mutex_unlock(&intel_pstate_driver_lock);
1216                 return -EAGAIN;
1217         }
1218
1219         cpu = all_cpu_data[0];
1220
1221         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1222         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1223         turbo_fp = div_fp(no_turbo, total);
1224         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1225
1226         mutex_unlock(&intel_pstate_driver_lock);
1227
1228         return sprintf(buf, "%u\n", turbo_pct);
1229 }
1230
1231 static ssize_t show_num_pstates(struct kobject *kobj,
1232                                 struct kobj_attribute *attr, char *buf)
1233 {
1234         struct cpudata *cpu;
1235         int total;
1236
1237         mutex_lock(&intel_pstate_driver_lock);
1238
1239         if (!intel_pstate_driver) {
1240                 mutex_unlock(&intel_pstate_driver_lock);
1241                 return -EAGAIN;
1242         }
1243
1244         cpu = all_cpu_data[0];
1245         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1246
1247         mutex_unlock(&intel_pstate_driver_lock);
1248
1249         return sprintf(buf, "%u\n", total);
1250 }
1251
1252 static ssize_t show_no_turbo(struct kobject *kobj,
1253                              struct kobj_attribute *attr, char *buf)
1254 {
1255         ssize_t ret;
1256
1257         mutex_lock(&intel_pstate_driver_lock);
1258
1259         if (!intel_pstate_driver) {
1260                 mutex_unlock(&intel_pstate_driver_lock);
1261                 return -EAGAIN;
1262         }
1263
1264         update_turbo_state();
1265         if (global.turbo_disabled)
1266                 ret = sprintf(buf, "%u\n", global.turbo_disabled);
1267         else
1268                 ret = sprintf(buf, "%u\n", global.no_turbo);
1269
1270         mutex_unlock(&intel_pstate_driver_lock);
1271
1272         return ret;
1273 }
1274
1275 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1276                               const char *buf, size_t count)
1277 {
1278         unsigned int input;
1279         int ret;
1280
1281         ret = sscanf(buf, "%u", &input);
1282         if (ret != 1)
1283                 return -EINVAL;
1284
1285         mutex_lock(&intel_pstate_driver_lock);
1286
1287         if (!intel_pstate_driver) {
1288                 mutex_unlock(&intel_pstate_driver_lock);
1289                 return -EAGAIN;
1290         }
1291
1292         mutex_lock(&intel_pstate_limits_lock);
1293
1294         update_turbo_state();
1295         if (global.turbo_disabled) {
1296                 pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n");
1297                 mutex_unlock(&intel_pstate_limits_lock);
1298                 mutex_unlock(&intel_pstate_driver_lock);
1299                 return -EPERM;
1300         }
1301
1302         global.no_turbo = clamp_t(int, input, 0, 1);
1303
1304         if (global.no_turbo) {
1305                 struct cpudata *cpu = all_cpu_data[0];
1306                 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1307
1308                 /* Squash the global minimum into the permitted range. */
1309                 if (global.min_perf_pct > pct)
1310                         global.min_perf_pct = pct;
1311         }
1312
1313         mutex_unlock(&intel_pstate_limits_lock);
1314
1315         intel_pstate_update_policies();
1316         arch_set_max_freq_ratio(global.no_turbo);
1317
1318         mutex_unlock(&intel_pstate_driver_lock);
1319
1320         return count;
1321 }
1322
1323 static void update_qos_request(enum freq_qos_req_type type)
1324 {
1325         struct freq_qos_request *req;
1326         struct cpufreq_policy *policy;
1327         int i;
1328
1329         for_each_possible_cpu(i) {
1330                 struct cpudata *cpu = all_cpu_data[i];
1331                 unsigned int freq, perf_pct;
1332
1333                 policy = cpufreq_cpu_get(i);
1334                 if (!policy)
1335                         continue;
1336
1337                 req = policy->driver_data;
1338                 cpufreq_cpu_put(policy);
1339
1340                 if (!req)
1341                         continue;
1342
1343                 if (hwp_active)
1344                         intel_pstate_get_hwp_cap(cpu);
1345
1346                 if (type == FREQ_QOS_MIN) {
1347                         perf_pct = global.min_perf_pct;
1348                 } else {
1349                         req++;
1350                         perf_pct = global.max_perf_pct;
1351                 }
1352
1353                 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * perf_pct, 100);
1354
1355                 if (freq_qos_update_request(req, freq) < 0)
1356                         pr_warn("Failed to update freq constraint: CPU%d\n", i);
1357         }
1358 }
1359
1360 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1361                                   const char *buf, size_t count)
1362 {
1363         unsigned int input;
1364         int ret;
1365
1366         ret = sscanf(buf, "%u", &input);
1367         if (ret != 1)
1368                 return -EINVAL;
1369
1370         mutex_lock(&intel_pstate_driver_lock);
1371
1372         if (!intel_pstate_driver) {
1373                 mutex_unlock(&intel_pstate_driver_lock);
1374                 return -EAGAIN;
1375         }
1376
1377         mutex_lock(&intel_pstate_limits_lock);
1378
1379         global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1380
1381         mutex_unlock(&intel_pstate_limits_lock);
1382
1383         if (intel_pstate_driver == &intel_pstate)
1384                 intel_pstate_update_policies();
1385         else
1386                 update_qos_request(FREQ_QOS_MAX);
1387
1388         mutex_unlock(&intel_pstate_driver_lock);
1389
1390         return count;
1391 }
1392
1393 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1394                                   const char *buf, size_t count)
1395 {
1396         unsigned int input;
1397         int ret;
1398
1399         ret = sscanf(buf, "%u", &input);
1400         if (ret != 1)
1401                 return -EINVAL;
1402
1403         mutex_lock(&intel_pstate_driver_lock);
1404
1405         if (!intel_pstate_driver) {
1406                 mutex_unlock(&intel_pstate_driver_lock);
1407                 return -EAGAIN;
1408         }
1409
1410         mutex_lock(&intel_pstate_limits_lock);
1411
1412         global.min_perf_pct = clamp_t(int, input,
1413                                       min_perf_pct_min(), global.max_perf_pct);
1414
1415         mutex_unlock(&intel_pstate_limits_lock);
1416
1417         if (intel_pstate_driver == &intel_pstate)
1418                 intel_pstate_update_policies();
1419         else
1420                 update_qos_request(FREQ_QOS_MIN);
1421
1422         mutex_unlock(&intel_pstate_driver_lock);
1423
1424         return count;
1425 }
1426
1427 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1428                                 struct kobj_attribute *attr, char *buf)
1429 {
1430         return sprintf(buf, "%u\n", hwp_boost);
1431 }
1432
1433 static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1434                                        struct kobj_attribute *b,
1435                                        const char *buf, size_t count)
1436 {
1437         unsigned int input;
1438         int ret;
1439
1440         ret = kstrtouint(buf, 10, &input);
1441         if (ret)
1442                 return ret;
1443
1444         mutex_lock(&intel_pstate_driver_lock);
1445         hwp_boost = !!input;
1446         intel_pstate_update_policies();
1447         mutex_unlock(&intel_pstate_driver_lock);
1448
1449         return count;
1450 }
1451
1452 static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr,
1453                                       char *buf)
1454 {
1455         u64 power_ctl;
1456         int enable;
1457
1458         rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1459         enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE));
1460         return sprintf(buf, "%d\n", !enable);
1461 }
1462
1463 static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b,
1464                                        const char *buf, size_t count)
1465 {
1466         bool input;
1467         int ret;
1468
1469         ret = kstrtobool(buf, &input);
1470         if (ret)
1471                 return ret;
1472
1473         set_power_ctl_ee_state(input);
1474
1475         return count;
1476 }
1477
1478 show_one(max_perf_pct, max_perf_pct);
1479 show_one(min_perf_pct, min_perf_pct);
1480
1481 define_one_global_rw(status);
1482 define_one_global_rw(no_turbo);
1483 define_one_global_rw(max_perf_pct);
1484 define_one_global_rw(min_perf_pct);
1485 define_one_global_ro(turbo_pct);
1486 define_one_global_ro(num_pstates);
1487 define_one_global_rw(hwp_dynamic_boost);
1488 define_one_global_rw(energy_efficiency);
1489
1490 static struct attribute *intel_pstate_attributes[] = {
1491         &status.attr,
1492         &no_turbo.attr,
1493         NULL
1494 };
1495
1496 static const struct attribute_group intel_pstate_attr_group = {
1497         .attrs = intel_pstate_attributes,
1498 };
1499
1500 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[];
1501
1502 static struct kobject *intel_pstate_kobject;
1503
1504 static void __init intel_pstate_sysfs_expose_params(void)
1505 {
1506         struct device *dev_root = bus_get_dev_root(&cpu_subsys);
1507         int rc;
1508
1509         if (dev_root) {
1510                 intel_pstate_kobject = kobject_create_and_add("intel_pstate", &dev_root->kobj);
1511                 put_device(dev_root);
1512         }
1513         if (WARN_ON(!intel_pstate_kobject))
1514                 return;
1515
1516         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1517         if (WARN_ON(rc))
1518                 return;
1519
1520         if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1521                 rc = sysfs_create_file(intel_pstate_kobject, &turbo_pct.attr);
1522                 WARN_ON(rc);
1523
1524                 rc = sysfs_create_file(intel_pstate_kobject, &num_pstates.attr);
1525                 WARN_ON(rc);
1526         }
1527
1528         /*
1529          * If per cpu limits are enforced there are no global limits, so
1530          * return without creating max/min_perf_pct attributes
1531          */
1532         if (per_cpu_limits)
1533                 return;
1534
1535         rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1536         WARN_ON(rc);
1537
1538         rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1539         WARN_ON(rc);
1540
1541         if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) {
1542                 rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr);
1543                 WARN_ON(rc);
1544         }
1545 }
1546
1547 static void __init intel_pstate_sysfs_remove(void)
1548 {
1549         if (!intel_pstate_kobject)
1550                 return;
1551
1552         sysfs_remove_group(intel_pstate_kobject, &intel_pstate_attr_group);
1553
1554         if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1555                 sysfs_remove_file(intel_pstate_kobject, &num_pstates.attr);
1556                 sysfs_remove_file(intel_pstate_kobject, &turbo_pct.attr);
1557         }
1558
1559         if (!per_cpu_limits) {
1560                 sysfs_remove_file(intel_pstate_kobject, &max_perf_pct.attr);
1561                 sysfs_remove_file(intel_pstate_kobject, &min_perf_pct.attr);
1562
1563                 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids))
1564                         sysfs_remove_file(intel_pstate_kobject, &energy_efficiency.attr);
1565         }
1566
1567         kobject_put(intel_pstate_kobject);
1568 }
1569
1570 static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void)
1571 {
1572         int rc;
1573
1574         if (!hwp_active)
1575                 return;
1576
1577         rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1578         WARN_ON_ONCE(rc);
1579 }
1580
1581 static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void)
1582 {
1583         if (!hwp_active)
1584                 return;
1585
1586         sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1587 }
1588
1589 /************************** sysfs end ************************/
1590
1591 static void intel_pstate_notify_work(struct work_struct *work)
1592 {
1593         struct cpudata *cpudata =
1594                 container_of(to_delayed_work(work), struct cpudata, hwp_notify_work);
1595         struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpudata->cpu);
1596
1597         if (policy) {
1598                 intel_pstate_get_hwp_cap(cpudata);
1599                 __intel_pstate_update_max_freq(cpudata, policy);
1600
1601                 cpufreq_cpu_release(policy);
1602         }
1603
1604         wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1605 }
1606
1607 static DEFINE_SPINLOCK(hwp_notify_lock);
1608 static cpumask_t hwp_intr_enable_mask;
1609
1610 void notify_hwp_interrupt(void)
1611 {
1612         unsigned int this_cpu = smp_processor_id();
1613         struct cpudata *cpudata;
1614         unsigned long flags;
1615         u64 value;
1616
1617         if (!READ_ONCE(hwp_active) || !boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1618                 return;
1619
1620         rdmsrl_safe(MSR_HWP_STATUS, &value);
1621         if (!(value & 0x01))
1622                 return;
1623
1624         spin_lock_irqsave(&hwp_notify_lock, flags);
1625
1626         if (!cpumask_test_cpu(this_cpu, &hwp_intr_enable_mask))
1627                 goto ack_intr;
1628
1629         /*
1630          * Currently we never free all_cpu_data. And we can't reach here
1631          * without this allocated. But for safety for future changes, added
1632          * check.
1633          */
1634         if (unlikely(!READ_ONCE(all_cpu_data)))
1635                 goto ack_intr;
1636
1637         /*
1638          * The free is done during cleanup, when cpufreq registry is failed.
1639          * We wouldn't be here if it fails on init or switch status. But for
1640          * future changes, added check.
1641          */
1642         cpudata = READ_ONCE(all_cpu_data[this_cpu]);
1643         if (unlikely(!cpudata))
1644                 goto ack_intr;
1645
1646         schedule_delayed_work(&cpudata->hwp_notify_work, msecs_to_jiffies(10));
1647
1648         spin_unlock_irqrestore(&hwp_notify_lock, flags);
1649
1650         return;
1651
1652 ack_intr:
1653         wrmsrl_safe(MSR_HWP_STATUS, 0);
1654         spin_unlock_irqrestore(&hwp_notify_lock, flags);
1655 }
1656
1657 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata)
1658 {
1659         unsigned long flags;
1660
1661         if (!boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1662                 return;
1663
1664         /* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */
1665         wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1666
1667         spin_lock_irqsave(&hwp_notify_lock, flags);
1668         if (cpumask_test_and_clear_cpu(cpudata->cpu, &hwp_intr_enable_mask))
1669                 cancel_delayed_work(&cpudata->hwp_notify_work);
1670         spin_unlock_irqrestore(&hwp_notify_lock, flags);
1671 }
1672
1673 static void intel_pstate_enable_hwp_interrupt(struct cpudata *cpudata)
1674 {
1675         /* Enable HWP notification interrupt for guaranteed performance change */
1676         if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) {
1677                 unsigned long flags;
1678
1679                 spin_lock_irqsave(&hwp_notify_lock, flags);
1680                 INIT_DELAYED_WORK(&cpudata->hwp_notify_work, intel_pstate_notify_work);
1681                 cpumask_set_cpu(cpudata->cpu, &hwp_intr_enable_mask);
1682                 spin_unlock_irqrestore(&hwp_notify_lock, flags);
1683
1684                 /* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */
1685                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x01);
1686                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1687         }
1688 }
1689
1690 static void intel_pstate_update_epp_defaults(struct cpudata *cpudata)
1691 {
1692         cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1693
1694         /*
1695          * If this CPU gen doesn't call for change in balance_perf
1696          * EPP return.
1697          */
1698         if (epp_values[EPP_INDEX_BALANCE_PERFORMANCE] == HWP_EPP_BALANCE_PERFORMANCE)
1699                 return;
1700
1701         /*
1702          * If the EPP is set by firmware, which means that firmware enabled HWP
1703          * - Is equal or less than 0x80 (default balance_perf EPP)
1704          * - But less performance oriented than performance EPP
1705          *   then use this as new balance_perf EPP.
1706          */
1707         if (hwp_forced && cpudata->epp_default <= HWP_EPP_BALANCE_PERFORMANCE &&
1708             cpudata->epp_default > HWP_EPP_PERFORMANCE) {
1709                 epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = cpudata->epp_default;
1710                 return;
1711         }
1712
1713         /*
1714          * Use hard coded value per gen to update the balance_perf
1715          * and default EPP.
1716          */
1717         cpudata->epp_default = epp_values[EPP_INDEX_BALANCE_PERFORMANCE];
1718         intel_pstate_set_epp(cpudata, cpudata->epp_default);
1719 }
1720
1721 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1722 {
1723         /* First disable HWP notification interrupt till we activate again */
1724         if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1725                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1726
1727         wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1728
1729         intel_pstate_enable_hwp_interrupt(cpudata);
1730
1731         if (cpudata->epp_default >= 0)
1732                 return;
1733
1734         intel_pstate_update_epp_defaults(cpudata);
1735 }
1736
1737 static int atom_get_min_pstate(int not_used)
1738 {
1739         u64 value;
1740
1741         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1742         return (value >> 8) & 0x7F;
1743 }
1744
1745 static int atom_get_max_pstate(int not_used)
1746 {
1747         u64 value;
1748
1749         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1750         return (value >> 16) & 0x7F;
1751 }
1752
1753 static int atom_get_turbo_pstate(int not_used)
1754 {
1755         u64 value;
1756
1757         rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1758         return value & 0x7F;
1759 }
1760
1761 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1762 {
1763         u64 val;
1764         int32_t vid_fp;
1765         u32 vid;
1766
1767         val = (u64)pstate << 8;
1768         if (global.no_turbo && !global.turbo_disabled)
1769                 val |= (u64)1 << 32;
1770
1771         vid_fp = cpudata->vid.min + mul_fp(
1772                 int_tofp(pstate - cpudata->pstate.min_pstate),
1773                 cpudata->vid.ratio);
1774
1775         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1776         vid = ceiling_fp(vid_fp);
1777
1778         if (pstate > cpudata->pstate.max_pstate)
1779                 vid = cpudata->vid.turbo;
1780
1781         return val | vid;
1782 }
1783
1784 static int silvermont_get_scaling(void)
1785 {
1786         u64 value;
1787         int i;
1788         /* Defined in Table 35-6 from SDM (Sept 2015) */
1789         static int silvermont_freq_table[] = {
1790                 83300, 100000, 133300, 116700, 80000};
1791
1792         rdmsrl(MSR_FSB_FREQ, value);
1793         i = value & 0x7;
1794         WARN_ON(i > 4);
1795
1796         return silvermont_freq_table[i];
1797 }
1798
1799 static int airmont_get_scaling(void)
1800 {
1801         u64 value;
1802         int i;
1803         /* Defined in Table 35-10 from SDM (Sept 2015) */
1804         static int airmont_freq_table[] = {
1805                 83300, 100000, 133300, 116700, 80000,
1806                 93300, 90000, 88900, 87500};
1807
1808         rdmsrl(MSR_FSB_FREQ, value);
1809         i = value & 0xF;
1810         WARN_ON(i > 8);
1811
1812         return airmont_freq_table[i];
1813 }
1814
1815 static void atom_get_vid(struct cpudata *cpudata)
1816 {
1817         u64 value;
1818
1819         rdmsrl(MSR_ATOM_CORE_VIDS, value);
1820         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1821         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1822         cpudata->vid.ratio = div_fp(
1823                 cpudata->vid.max - cpudata->vid.min,
1824                 int_tofp(cpudata->pstate.max_pstate -
1825                         cpudata->pstate.min_pstate));
1826
1827         rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1828         cpudata->vid.turbo = value & 0x7f;
1829 }
1830
1831 static int core_get_min_pstate(int cpu)
1832 {
1833         u64 value;
1834
1835         rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value);
1836         return (value >> 40) & 0xFF;
1837 }
1838
1839 static int core_get_max_pstate_physical(int cpu)
1840 {
1841         u64 value;
1842
1843         rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value);
1844         return (value >> 8) & 0xFF;
1845 }
1846
1847 static int core_get_tdp_ratio(int cpu, u64 plat_info)
1848 {
1849         /* Check how many TDP levels present */
1850         if (plat_info & 0x600000000) {
1851                 u64 tdp_ctrl;
1852                 u64 tdp_ratio;
1853                 int tdp_msr;
1854                 int err;
1855
1856                 /* Get the TDP level (0, 1, 2) to get ratios */
1857                 err = rdmsrl_safe_on_cpu(cpu, MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1858                 if (err)
1859                         return err;
1860
1861                 /* TDP MSR are continuous starting at 0x648 */
1862                 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1863                 err = rdmsrl_safe_on_cpu(cpu, tdp_msr, &tdp_ratio);
1864                 if (err)
1865                         return err;
1866
1867                 /* For level 1 and 2, bits[23:16] contain the ratio */
1868                 if (tdp_ctrl & 0x03)
1869                         tdp_ratio >>= 16;
1870
1871                 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1872                 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1873
1874                 return (int)tdp_ratio;
1875         }
1876
1877         return -ENXIO;
1878 }
1879
1880 static int core_get_max_pstate(int cpu)
1881 {
1882         u64 tar;
1883         u64 plat_info;
1884         int max_pstate;
1885         int tdp_ratio;
1886         int err;
1887
1888         rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &plat_info);
1889         max_pstate = (plat_info >> 8) & 0xFF;
1890
1891         tdp_ratio = core_get_tdp_ratio(cpu, plat_info);
1892         if (tdp_ratio <= 0)
1893                 return max_pstate;
1894
1895         if (hwp_active) {
1896                 /* Turbo activation ratio is not used on HWP platforms */
1897                 return tdp_ratio;
1898         }
1899
1900         err = rdmsrl_safe_on_cpu(cpu, MSR_TURBO_ACTIVATION_RATIO, &tar);
1901         if (!err) {
1902                 int tar_levels;
1903
1904                 /* Do some sanity checking for safety */
1905                 tar_levels = tar & 0xff;
1906                 if (tdp_ratio - 1 == tar_levels) {
1907                         max_pstate = tar_levels;
1908                         pr_debug("max_pstate=TAC %x\n", max_pstate);
1909                 }
1910         }
1911
1912         return max_pstate;
1913 }
1914
1915 static int core_get_turbo_pstate(int cpu)
1916 {
1917         u64 value;
1918         int nont, ret;
1919
1920         rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value);
1921         nont = core_get_max_pstate(cpu);
1922         ret = (value) & 255;
1923         if (ret <= nont)
1924                 ret = nont;
1925         return ret;
1926 }
1927
1928 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1929 {
1930         u64 val;
1931
1932         val = (u64)pstate << 8;
1933         if (global.no_turbo && !global.turbo_disabled)
1934                 val |= (u64)1 << 32;
1935
1936         return val;
1937 }
1938
1939 static int knl_get_aperf_mperf_shift(void)
1940 {
1941         return 10;
1942 }
1943
1944 static int knl_get_turbo_pstate(int cpu)
1945 {
1946         u64 value;
1947         int nont, ret;
1948
1949         rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value);
1950         nont = core_get_max_pstate(cpu);
1951         ret = (((value) >> 8) & 0xFF);
1952         if (ret <= nont)
1953                 ret = nont;
1954         return ret;
1955 }
1956
1957 static void hybrid_get_type(void *data)
1958 {
1959         u8 *cpu_type = data;
1960
1961         *cpu_type = get_this_hybrid_cpu_type();
1962 }
1963
1964 static int hwp_get_cpu_scaling(int cpu)
1965 {
1966         u8 cpu_type = 0;
1967
1968         smp_call_function_single(cpu, hybrid_get_type, &cpu_type, 1);
1969         /* P-cores have a smaller perf level-to-freqency scaling factor. */
1970         if (cpu_type == 0x40)
1971                 return HYBRID_SCALING_FACTOR;
1972
1973         /* Use default core scaling for E-cores */
1974         if (cpu_type == 0x20)
1975                 return core_get_scaling();
1976
1977         /*
1978          * If reached here, this system is either non-hybrid (like Tiger
1979          * Lake) or hybrid-capable (like Alder Lake or Raptor Lake) with
1980          * no E cores (in which case CPUID for hybrid support is 0).
1981          *
1982          * The CPPC nominal_frequency field is 0 for non-hybrid systems,
1983          * so the default core scaling will be used for them.
1984          */
1985         return intel_pstate_cppc_get_scaling(cpu);
1986 }
1987
1988 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1989 {
1990         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1991         cpu->pstate.current_pstate = pstate;
1992         /*
1993          * Generally, there is no guarantee that this code will always run on
1994          * the CPU being updated, so force the register update to run on the
1995          * right CPU.
1996          */
1997         wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1998                       pstate_funcs.get_val(cpu, pstate));
1999 }
2000
2001 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
2002 {
2003         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
2004 }
2005
2006 static void intel_pstate_max_within_limits(struct cpudata *cpu)
2007 {
2008         int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
2009
2010         update_turbo_state();
2011         intel_pstate_set_pstate(cpu, pstate);
2012 }
2013
2014 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
2015 {
2016         int perf_ctl_max_phys = pstate_funcs.get_max_physical(cpu->cpu);
2017         int perf_ctl_scaling = pstate_funcs.get_scaling();
2018
2019         cpu->pstate.min_pstate = pstate_funcs.get_min(cpu->cpu);
2020         cpu->pstate.max_pstate_physical = perf_ctl_max_phys;
2021         cpu->pstate.perf_ctl_scaling = perf_ctl_scaling;
2022
2023         if (hwp_active && !hwp_mode_bdw) {
2024                 __intel_pstate_get_hwp_cap(cpu);
2025
2026                 if (pstate_funcs.get_cpu_scaling) {
2027                         cpu->pstate.scaling = pstate_funcs.get_cpu_scaling(cpu->cpu);
2028                         if (cpu->pstate.scaling != perf_ctl_scaling)
2029                                 intel_pstate_hybrid_hwp_adjust(cpu);
2030                 } else {
2031                         cpu->pstate.scaling = perf_ctl_scaling;
2032                 }
2033         } else {
2034                 cpu->pstate.scaling = perf_ctl_scaling;
2035                 cpu->pstate.max_pstate = pstate_funcs.get_max(cpu->cpu);
2036                 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo(cpu->cpu);
2037         }
2038
2039         if (cpu->pstate.scaling == perf_ctl_scaling) {
2040                 cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
2041                 cpu->pstate.max_freq = cpu->pstate.max_pstate * perf_ctl_scaling;
2042                 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * perf_ctl_scaling;
2043         }
2044
2045         if (pstate_funcs.get_aperf_mperf_shift)
2046                 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
2047
2048         if (pstate_funcs.get_vid)
2049                 pstate_funcs.get_vid(cpu);
2050
2051         intel_pstate_set_min_pstate(cpu);
2052 }
2053
2054 /*
2055  * Long hold time will keep high perf limits for long time,
2056  * which negatively impacts perf/watt for some workloads,
2057  * like specpower. 3ms is based on experiements on some
2058  * workoads.
2059  */
2060 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
2061
2062 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
2063 {
2064         u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
2065         u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2066         u32 max_limit = (hwp_req & 0xff00) >> 8;
2067         u32 min_limit = (hwp_req & 0xff);
2068         u32 boost_level1;
2069
2070         /*
2071          * Cases to consider (User changes via sysfs or boot time):
2072          * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
2073          *      No boost, return.
2074          * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
2075          *     Should result in one level boost only for P0.
2076          * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
2077          *     Should result in two level boost:
2078          *         (min + p1)/2 and P1.
2079          * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
2080          *     Should result in three level boost:
2081          *        (min + p1)/2, P1 and P0.
2082          */
2083
2084         /* If max and min are equal or already at max, nothing to boost */
2085         if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
2086                 return;
2087
2088         if (!cpu->hwp_boost_min)
2089                 cpu->hwp_boost_min = min_limit;
2090
2091         /* level at half way mark between min and guranteed */
2092         boost_level1 = (HWP_GUARANTEED_PERF(hwp_cap) + min_limit) >> 1;
2093
2094         if (cpu->hwp_boost_min < boost_level1)
2095                 cpu->hwp_boost_min = boost_level1;
2096         else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(hwp_cap))
2097                 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(hwp_cap);
2098         else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(hwp_cap) &&
2099                  max_limit != HWP_GUARANTEED_PERF(hwp_cap))
2100                 cpu->hwp_boost_min = max_limit;
2101         else
2102                 return;
2103
2104         hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
2105         wrmsrl(MSR_HWP_REQUEST, hwp_req);
2106         cpu->last_update = cpu->sample.time;
2107 }
2108
2109 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
2110 {
2111         if (cpu->hwp_boost_min) {
2112                 bool expired;
2113
2114                 /* Check if we are idle for hold time to boost down */
2115                 expired = time_after64(cpu->sample.time, cpu->last_update +
2116                                        hwp_boost_hold_time_ns);
2117                 if (expired) {
2118                         wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
2119                         cpu->hwp_boost_min = 0;
2120                 }
2121         }
2122         cpu->last_update = cpu->sample.time;
2123 }
2124
2125 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
2126                                                       u64 time)
2127 {
2128         cpu->sample.time = time;
2129
2130         if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
2131                 bool do_io = false;
2132
2133                 cpu->sched_flags = 0;
2134                 /*
2135                  * Set iowait_boost flag and update time. Since IO WAIT flag
2136                  * is set all the time, we can't just conclude that there is
2137                  * some IO bound activity is scheduled on this CPU with just
2138                  * one occurrence. If we receive at least two in two
2139                  * consecutive ticks, then we treat as boost candidate.
2140                  */
2141                 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
2142                         do_io = true;
2143
2144                 cpu->last_io_update = time;
2145
2146                 if (do_io)
2147                         intel_pstate_hwp_boost_up(cpu);
2148
2149         } else {
2150                 intel_pstate_hwp_boost_down(cpu);
2151         }
2152 }
2153
2154 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
2155                                                 u64 time, unsigned int flags)
2156 {
2157         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2158
2159         cpu->sched_flags |= flags;
2160
2161         if (smp_processor_id() == cpu->cpu)
2162                 intel_pstate_update_util_hwp_local(cpu, time);
2163 }
2164
2165 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
2166 {
2167         struct sample *sample = &cpu->sample;
2168
2169         sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
2170 }
2171
2172 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
2173 {
2174         u64 aperf, mperf;
2175         unsigned long flags;
2176         u64 tsc;
2177
2178         local_irq_save(flags);
2179         rdmsrl(MSR_IA32_APERF, aperf);
2180         rdmsrl(MSR_IA32_MPERF, mperf);
2181         tsc = rdtsc();
2182         if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
2183                 local_irq_restore(flags);
2184                 return false;
2185         }
2186         local_irq_restore(flags);
2187
2188         cpu->last_sample_time = cpu->sample.time;
2189         cpu->sample.time = time;
2190         cpu->sample.aperf = aperf;
2191         cpu->sample.mperf = mperf;
2192         cpu->sample.tsc =  tsc;
2193         cpu->sample.aperf -= cpu->prev_aperf;
2194         cpu->sample.mperf -= cpu->prev_mperf;
2195         cpu->sample.tsc -= cpu->prev_tsc;
2196
2197         cpu->prev_aperf = aperf;
2198         cpu->prev_mperf = mperf;
2199         cpu->prev_tsc = tsc;
2200         /*
2201          * First time this function is invoked in a given cycle, all of the
2202          * previous sample data fields are equal to zero or stale and they must
2203          * be populated with meaningful numbers for things to work, so assume
2204          * that sample.time will always be reset before setting the utilization
2205          * update hook and make the caller skip the sample then.
2206          */
2207         if (cpu->last_sample_time) {
2208                 intel_pstate_calc_avg_perf(cpu);
2209                 return true;
2210         }
2211         return false;
2212 }
2213
2214 static inline int32_t get_avg_frequency(struct cpudata *cpu)
2215 {
2216         return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
2217 }
2218
2219 static inline int32_t get_avg_pstate(struct cpudata *cpu)
2220 {
2221         return mul_ext_fp(cpu->pstate.max_pstate_physical,
2222                           cpu->sample.core_avg_perf);
2223 }
2224
2225 static inline int32_t get_target_pstate(struct cpudata *cpu)
2226 {
2227         struct sample *sample = &cpu->sample;
2228         int32_t busy_frac;
2229         int target, avg_pstate;
2230
2231         busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
2232                            sample->tsc);
2233
2234         if (busy_frac < cpu->iowait_boost)
2235                 busy_frac = cpu->iowait_boost;
2236
2237         sample->busy_scaled = busy_frac * 100;
2238
2239         target = global.no_turbo || global.turbo_disabled ?
2240                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2241         target += target >> 2;
2242         target = mul_fp(target, busy_frac);
2243         if (target < cpu->pstate.min_pstate)
2244                 target = cpu->pstate.min_pstate;
2245
2246         /*
2247          * If the average P-state during the previous cycle was higher than the
2248          * current target, add 50% of the difference to the target to reduce
2249          * possible performance oscillations and offset possible performance
2250          * loss related to moving the workload from one CPU to another within
2251          * a package/module.
2252          */
2253         avg_pstate = get_avg_pstate(cpu);
2254         if (avg_pstate > target)
2255                 target += (avg_pstate - target) >> 1;
2256
2257         return target;
2258 }
2259
2260 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
2261 {
2262         int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
2263         int max_pstate = max(min_pstate, cpu->max_perf_ratio);
2264
2265         return clamp_t(int, pstate, min_pstate, max_pstate);
2266 }
2267
2268 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
2269 {
2270         if (pstate == cpu->pstate.current_pstate)
2271                 return;
2272
2273         cpu->pstate.current_pstate = pstate;
2274         wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
2275 }
2276
2277 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
2278 {
2279         int from = cpu->pstate.current_pstate;
2280         struct sample *sample;
2281         int target_pstate;
2282
2283         update_turbo_state();
2284
2285         target_pstate = get_target_pstate(cpu);
2286         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2287         trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
2288         intel_pstate_update_pstate(cpu, target_pstate);
2289
2290         sample = &cpu->sample;
2291         trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
2292                 fp_toint(sample->busy_scaled),
2293                 from,
2294                 cpu->pstate.current_pstate,
2295                 sample->mperf,
2296                 sample->aperf,
2297                 sample->tsc,
2298                 get_avg_frequency(cpu),
2299                 fp_toint(cpu->iowait_boost * 100));
2300 }
2301
2302 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
2303                                      unsigned int flags)
2304 {
2305         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2306         u64 delta_ns;
2307
2308         /* Don't allow remote callbacks */
2309         if (smp_processor_id() != cpu->cpu)
2310                 return;
2311
2312         delta_ns = time - cpu->last_update;
2313         if (flags & SCHED_CPUFREQ_IOWAIT) {
2314                 /* Start over if the CPU may have been idle. */
2315                 if (delta_ns > TICK_NSEC) {
2316                         cpu->iowait_boost = ONE_EIGHTH_FP;
2317                 } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
2318                         cpu->iowait_boost <<= 1;
2319                         if (cpu->iowait_boost > int_tofp(1))
2320                                 cpu->iowait_boost = int_tofp(1);
2321                 } else {
2322                         cpu->iowait_boost = ONE_EIGHTH_FP;
2323                 }
2324         } else if (cpu->iowait_boost) {
2325                 /* Clear iowait_boost if the CPU may have been idle. */
2326                 if (delta_ns > TICK_NSEC)
2327                         cpu->iowait_boost = 0;
2328                 else
2329                         cpu->iowait_boost >>= 1;
2330         }
2331         cpu->last_update = time;
2332         delta_ns = time - cpu->sample.time;
2333         if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
2334                 return;
2335
2336         if (intel_pstate_sample(cpu, time))
2337                 intel_pstate_adjust_pstate(cpu);
2338 }
2339
2340 static struct pstate_funcs core_funcs = {
2341         .get_max = core_get_max_pstate,
2342         .get_max_physical = core_get_max_pstate_physical,
2343         .get_min = core_get_min_pstate,
2344         .get_turbo = core_get_turbo_pstate,
2345         .get_scaling = core_get_scaling,
2346         .get_val = core_get_val,
2347 };
2348
2349 static const struct pstate_funcs silvermont_funcs = {
2350         .get_max = atom_get_max_pstate,
2351         .get_max_physical = atom_get_max_pstate,
2352         .get_min = atom_get_min_pstate,
2353         .get_turbo = atom_get_turbo_pstate,
2354         .get_val = atom_get_val,
2355         .get_scaling = silvermont_get_scaling,
2356         .get_vid = atom_get_vid,
2357 };
2358
2359 static const struct pstate_funcs airmont_funcs = {
2360         .get_max = atom_get_max_pstate,
2361         .get_max_physical = atom_get_max_pstate,
2362         .get_min = atom_get_min_pstate,
2363         .get_turbo = atom_get_turbo_pstate,
2364         .get_val = atom_get_val,
2365         .get_scaling = airmont_get_scaling,
2366         .get_vid = atom_get_vid,
2367 };
2368
2369 static const struct pstate_funcs knl_funcs = {
2370         .get_max = core_get_max_pstate,
2371         .get_max_physical = core_get_max_pstate_physical,
2372         .get_min = core_get_min_pstate,
2373         .get_turbo = knl_get_turbo_pstate,
2374         .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
2375         .get_scaling = core_get_scaling,
2376         .get_val = core_get_val,
2377 };
2378
2379 #define X86_MATCH(model, policy)                                         \
2380         X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
2381                                            X86_FEATURE_APERFMPERF, &policy)
2382
2383 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
2384         X86_MATCH(SANDYBRIDGE,          core_funcs),
2385         X86_MATCH(SANDYBRIDGE_X,        core_funcs),
2386         X86_MATCH(ATOM_SILVERMONT,      silvermont_funcs),
2387         X86_MATCH(IVYBRIDGE,            core_funcs),
2388         X86_MATCH(HASWELL,              core_funcs),
2389         X86_MATCH(BROADWELL,            core_funcs),
2390         X86_MATCH(IVYBRIDGE_X,          core_funcs),
2391         X86_MATCH(HASWELL_X,            core_funcs),
2392         X86_MATCH(HASWELL_L,            core_funcs),
2393         X86_MATCH(HASWELL_G,            core_funcs),
2394         X86_MATCH(BROADWELL_G,          core_funcs),
2395         X86_MATCH(ATOM_AIRMONT,         airmont_funcs),
2396         X86_MATCH(SKYLAKE_L,            core_funcs),
2397         X86_MATCH(BROADWELL_X,          core_funcs),
2398         X86_MATCH(SKYLAKE,              core_funcs),
2399         X86_MATCH(BROADWELL_D,          core_funcs),
2400         X86_MATCH(XEON_PHI_KNL,         knl_funcs),
2401         X86_MATCH(XEON_PHI_KNM,         knl_funcs),
2402         X86_MATCH(ATOM_GOLDMONT,        core_funcs),
2403         X86_MATCH(ATOM_GOLDMONT_PLUS,   core_funcs),
2404         X86_MATCH(SKYLAKE_X,            core_funcs),
2405         X86_MATCH(COMETLAKE,            core_funcs),
2406         X86_MATCH(ICELAKE_X,            core_funcs),
2407         X86_MATCH(TIGERLAKE,            core_funcs),
2408         X86_MATCH(SAPPHIRERAPIDS_X,     core_funcs),
2409         {}
2410 };
2411 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
2412
2413 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2414         X86_MATCH(BROADWELL_D,          core_funcs),
2415         X86_MATCH(BROADWELL_X,          core_funcs),
2416         X86_MATCH(SKYLAKE_X,            core_funcs),
2417         X86_MATCH(ICELAKE_X,            core_funcs),
2418         X86_MATCH(SAPPHIRERAPIDS_X,     core_funcs),
2419         {}
2420 };
2421
2422 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2423         X86_MATCH(KABYLAKE,             core_funcs),
2424         {}
2425 };
2426
2427 static int intel_pstate_init_cpu(unsigned int cpunum)
2428 {
2429         struct cpudata *cpu;
2430
2431         cpu = all_cpu_data[cpunum];
2432
2433         if (!cpu) {
2434                 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
2435                 if (!cpu)
2436                         return -ENOMEM;
2437
2438                 WRITE_ONCE(all_cpu_data[cpunum], cpu);
2439
2440                 cpu->cpu = cpunum;
2441
2442                 cpu->epp_default = -EINVAL;
2443
2444                 if (hwp_active) {
2445                         intel_pstate_hwp_enable(cpu);
2446
2447                         if (intel_pstate_acpi_pm_profile_server())
2448                                 hwp_boost = true;
2449                 }
2450         } else if (hwp_active) {
2451                 /*
2452                  * Re-enable HWP in case this happens after a resume from ACPI
2453                  * S3 if the CPU was offline during the whole system/resume
2454                  * cycle.
2455                  */
2456                 intel_pstate_hwp_reenable(cpu);
2457         }
2458
2459         cpu->epp_powersave = -EINVAL;
2460         cpu->epp_policy = 0;
2461
2462         intel_pstate_get_cpu_pstates(cpu);
2463
2464         pr_debug("controlling: cpu %d\n", cpunum);
2465
2466         return 0;
2467 }
2468
2469 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2470 {
2471         struct cpudata *cpu = all_cpu_data[cpu_num];
2472
2473         if (hwp_active && !hwp_boost)
2474                 return;
2475
2476         if (cpu->update_util_set)
2477                 return;
2478
2479         /* Prevent intel_pstate_update_util() from using stale data. */
2480         cpu->sample.time = 0;
2481         cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2482                                      (hwp_active ?
2483                                       intel_pstate_update_util_hwp :
2484                                       intel_pstate_update_util));
2485         cpu->update_util_set = true;
2486 }
2487
2488 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2489 {
2490         struct cpudata *cpu_data = all_cpu_data[cpu];
2491
2492         if (!cpu_data->update_util_set)
2493                 return;
2494
2495         cpufreq_remove_update_util_hook(cpu);
2496         cpu_data->update_util_set = false;
2497         synchronize_rcu();
2498 }
2499
2500 static int intel_pstate_get_max_freq(struct cpudata *cpu)
2501 {
2502         return global.turbo_disabled || global.no_turbo ?
2503                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2504 }
2505
2506 static void intel_pstate_update_perf_limits(struct cpudata *cpu,
2507                                             unsigned int policy_min,
2508                                             unsigned int policy_max)
2509 {
2510         int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
2511         int32_t max_policy_perf, min_policy_perf;
2512
2513         max_policy_perf = policy_max / perf_ctl_scaling;
2514         if (policy_max == policy_min) {
2515                 min_policy_perf = max_policy_perf;
2516         } else {
2517                 min_policy_perf = policy_min / perf_ctl_scaling;
2518                 min_policy_perf = clamp_t(int32_t, min_policy_perf,
2519                                           0, max_policy_perf);
2520         }
2521
2522         /*
2523          * HWP needs some special consideration, because HWP_REQUEST uses
2524          * abstract values to represent performance rather than pure ratios.
2525          */
2526         if (hwp_active && cpu->pstate.scaling != perf_ctl_scaling) {
2527                 int scaling = cpu->pstate.scaling;
2528                 int freq;
2529
2530                 freq = max_policy_perf * perf_ctl_scaling;
2531                 max_policy_perf = DIV_ROUND_UP(freq, scaling);
2532                 freq = min_policy_perf * perf_ctl_scaling;
2533                 min_policy_perf = DIV_ROUND_UP(freq, scaling);
2534         }
2535
2536         pr_debug("cpu:%d min_policy_perf:%d max_policy_perf:%d\n",
2537                  cpu->cpu, min_policy_perf, max_policy_perf);
2538
2539         /* Normalize user input to [min_perf, max_perf] */
2540         if (per_cpu_limits) {
2541                 cpu->min_perf_ratio = min_policy_perf;
2542                 cpu->max_perf_ratio = max_policy_perf;
2543         } else {
2544                 int turbo_max = cpu->pstate.turbo_pstate;
2545                 int32_t global_min, global_max;
2546
2547                 /* Global limits are in percent of the maximum turbo P-state. */
2548                 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2549                 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2550                 global_min = clamp_t(int32_t, global_min, 0, global_max);
2551
2552                 pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2553                          global_min, global_max);
2554
2555                 cpu->min_perf_ratio = max(min_policy_perf, global_min);
2556                 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2557                 cpu->max_perf_ratio = min(max_policy_perf, global_max);
2558                 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2559
2560                 /* Make sure min_perf <= max_perf */
2561                 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2562                                           cpu->max_perf_ratio);
2563
2564         }
2565         pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2566                  cpu->max_perf_ratio,
2567                  cpu->min_perf_ratio);
2568 }
2569
2570 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2571 {
2572         struct cpudata *cpu;
2573
2574         if (!policy->cpuinfo.max_freq)
2575                 return -ENODEV;
2576
2577         pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2578                  policy->cpuinfo.max_freq, policy->max);
2579
2580         cpu = all_cpu_data[policy->cpu];
2581         cpu->policy = policy->policy;
2582
2583         mutex_lock(&intel_pstate_limits_lock);
2584
2585         intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2586
2587         if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2588                 /*
2589                  * NOHZ_FULL CPUs need this as the governor callback may not
2590                  * be invoked on them.
2591                  */
2592                 intel_pstate_clear_update_util_hook(policy->cpu);
2593                 intel_pstate_max_within_limits(cpu);
2594         } else {
2595                 intel_pstate_set_update_util_hook(policy->cpu);
2596         }
2597
2598         if (hwp_active) {
2599                 /*
2600                  * When hwp_boost was active before and dynamically it
2601                  * was turned off, in that case we need to clear the
2602                  * update util hook.
2603                  */
2604                 if (!hwp_boost)
2605                         intel_pstate_clear_update_util_hook(policy->cpu);
2606                 intel_pstate_hwp_set(policy->cpu);
2607         }
2608         /*
2609          * policy->cur is never updated with the intel_pstate driver, but it
2610          * is used as a stale frequency value. So, keep it within limits.
2611          */
2612         policy->cur = policy->min;
2613
2614         mutex_unlock(&intel_pstate_limits_lock);
2615
2616         return 0;
2617 }
2618
2619 static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
2620                                            struct cpufreq_policy_data *policy)
2621 {
2622         if (!hwp_active &&
2623             cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2624             policy->max < policy->cpuinfo.max_freq &&
2625             policy->max > cpu->pstate.max_freq) {
2626                 pr_debug("policy->max > max non turbo frequency\n");
2627                 policy->max = policy->cpuinfo.max_freq;
2628         }
2629 }
2630
2631 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
2632                                            struct cpufreq_policy_data *policy)
2633 {
2634         int max_freq;
2635
2636         update_turbo_state();
2637         if (hwp_active) {
2638                 intel_pstate_get_hwp_cap(cpu);
2639                 max_freq = global.no_turbo || global.turbo_disabled ?
2640                                 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2641         } else {
2642                 max_freq = intel_pstate_get_max_freq(cpu);
2643         }
2644         cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, max_freq);
2645
2646         intel_pstate_adjust_policy_max(cpu, policy);
2647 }
2648
2649 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
2650 {
2651         intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2652
2653         return 0;
2654 }
2655
2656 static int intel_cpufreq_cpu_offline(struct cpufreq_policy *policy)
2657 {
2658         struct cpudata *cpu = all_cpu_data[policy->cpu];
2659
2660         pr_debug("CPU %d going offline\n", cpu->cpu);
2661
2662         if (cpu->suspended)
2663                 return 0;
2664
2665         /*
2666          * If the CPU is an SMT thread and it goes offline with the performance
2667          * settings different from the minimum, it will prevent its sibling
2668          * from getting to lower performance levels, so force the minimum
2669          * performance on CPU offline to prevent that from happening.
2670          */
2671         if (hwp_active)
2672                 intel_pstate_hwp_offline(cpu);
2673         else
2674                 intel_pstate_set_min_pstate(cpu);
2675
2676         intel_pstate_exit_perf_limits(policy);
2677
2678         return 0;
2679 }
2680
2681 static int intel_pstate_cpu_online(struct cpufreq_policy *policy)
2682 {
2683         struct cpudata *cpu = all_cpu_data[policy->cpu];
2684
2685         pr_debug("CPU %d going online\n", cpu->cpu);
2686
2687         intel_pstate_init_acpi_perf_limits(policy);
2688
2689         if (hwp_active) {
2690                 /*
2691                  * Re-enable HWP and clear the "suspended" flag to let "resume"
2692                  * know that it need not do that.
2693                  */
2694                 intel_pstate_hwp_reenable(cpu);
2695                 cpu->suspended = false;
2696         }
2697
2698         return 0;
2699 }
2700
2701 static int intel_pstate_cpu_offline(struct cpufreq_policy *policy)
2702 {
2703         intel_pstate_clear_update_util_hook(policy->cpu);
2704
2705         return intel_cpufreq_cpu_offline(policy);
2706 }
2707
2708 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2709 {
2710         pr_debug("CPU %d exiting\n", policy->cpu);
2711
2712         policy->fast_switch_possible = false;
2713
2714         return 0;
2715 }
2716
2717 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2718 {
2719         struct cpudata *cpu;
2720         int rc;
2721
2722         rc = intel_pstate_init_cpu(policy->cpu);
2723         if (rc)
2724                 return rc;
2725
2726         cpu = all_cpu_data[policy->cpu];
2727
2728         cpu->max_perf_ratio = 0xFF;
2729         cpu->min_perf_ratio = 0;
2730
2731         /* cpuinfo and default policy values */
2732         policy->cpuinfo.min_freq = cpu->pstate.min_freq;
2733         update_turbo_state();
2734         global.turbo_disabled_mf = global.turbo_disabled;
2735         policy->cpuinfo.max_freq = global.turbo_disabled ?
2736                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2737
2738         policy->min = policy->cpuinfo.min_freq;
2739         policy->max = policy->cpuinfo.max_freq;
2740
2741         intel_pstate_init_acpi_perf_limits(policy);
2742
2743         policy->fast_switch_possible = true;
2744
2745         return 0;
2746 }
2747
2748 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2749 {
2750         int ret = __intel_pstate_cpu_init(policy);
2751
2752         if (ret)
2753                 return ret;
2754
2755         /*
2756          * Set the policy to powersave to provide a valid fallback value in case
2757          * the default cpufreq governor is neither powersave nor performance.
2758          */
2759         policy->policy = CPUFREQ_POLICY_POWERSAVE;
2760
2761         if (hwp_active) {
2762                 struct cpudata *cpu = all_cpu_data[policy->cpu];
2763
2764                 cpu->epp_cached = intel_pstate_get_epp(cpu, 0);
2765         }
2766
2767         return 0;
2768 }
2769
2770 static struct cpufreq_driver intel_pstate = {
2771         .flags          = CPUFREQ_CONST_LOOPS,
2772         .verify         = intel_pstate_verify_policy,
2773         .setpolicy      = intel_pstate_set_policy,
2774         .suspend        = intel_pstate_suspend,
2775         .resume         = intel_pstate_resume,
2776         .init           = intel_pstate_cpu_init,
2777         .exit           = intel_pstate_cpu_exit,
2778         .offline        = intel_pstate_cpu_offline,
2779         .online         = intel_pstate_cpu_online,
2780         .update_limits  = intel_pstate_update_limits,
2781         .name           = "intel_pstate",
2782 };
2783
2784 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
2785 {
2786         struct cpudata *cpu = all_cpu_data[policy->cpu];
2787
2788         intel_pstate_verify_cpu_policy(cpu, policy);
2789         intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2790
2791         return 0;
2792 }
2793
2794 /* Use of trace in passive mode:
2795  *
2796  * In passive mode the trace core_busy field (also known as the
2797  * performance field, and lablelled as such on the graphs; also known as
2798  * core_avg_perf) is not needed and so is re-assigned to indicate if the
2799  * driver call was via the normal or fast switch path. Various graphs
2800  * output from the intel_pstate_tracer.py utility that include core_busy
2801  * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2802  * so we use 10 to indicate the normal path through the driver, and
2803  * 90 to indicate the fast switch path through the driver.
2804  * The scaled_busy field is not used, and is set to 0.
2805  */
2806
2807 #define INTEL_PSTATE_TRACE_TARGET 10
2808 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90
2809
2810 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2811 {
2812         struct sample *sample;
2813
2814         if (!trace_pstate_sample_enabled())
2815                 return;
2816
2817         if (!intel_pstate_sample(cpu, ktime_get()))
2818                 return;
2819
2820         sample = &cpu->sample;
2821         trace_pstate_sample(trace_type,
2822                 0,
2823                 old_pstate,
2824                 cpu->pstate.current_pstate,
2825                 sample->mperf,
2826                 sample->aperf,
2827                 sample->tsc,
2828                 get_avg_frequency(cpu),
2829                 fp_toint(cpu->iowait_boost * 100));
2830 }
2831
2832 static void intel_cpufreq_hwp_update(struct cpudata *cpu, u32 min, u32 max,
2833                                      u32 desired, bool fast_switch)
2834 {
2835         u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev;
2836
2837         value &= ~HWP_MIN_PERF(~0L);
2838         value |= HWP_MIN_PERF(min);
2839
2840         value &= ~HWP_MAX_PERF(~0L);
2841         value |= HWP_MAX_PERF(max);
2842
2843         value &= ~HWP_DESIRED_PERF(~0L);
2844         value |= HWP_DESIRED_PERF(desired);
2845
2846         if (value == prev)
2847                 return;
2848
2849         WRITE_ONCE(cpu->hwp_req_cached, value);
2850         if (fast_switch)
2851                 wrmsrl(MSR_HWP_REQUEST, value);
2852         else
2853                 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
2854 }
2855
2856 static void intel_cpufreq_perf_ctl_update(struct cpudata *cpu,
2857                                           u32 target_pstate, bool fast_switch)
2858 {
2859         if (fast_switch)
2860                 wrmsrl(MSR_IA32_PERF_CTL,
2861                        pstate_funcs.get_val(cpu, target_pstate));
2862         else
2863                 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
2864                               pstate_funcs.get_val(cpu, target_pstate));
2865 }
2866
2867 static int intel_cpufreq_update_pstate(struct cpufreq_policy *policy,
2868                                        int target_pstate, bool fast_switch)
2869 {
2870         struct cpudata *cpu = all_cpu_data[policy->cpu];
2871         int old_pstate = cpu->pstate.current_pstate;
2872
2873         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2874         if (hwp_active) {
2875                 int max_pstate = policy->strict_target ?
2876                                         target_pstate : cpu->max_perf_ratio;
2877
2878                 intel_cpufreq_hwp_update(cpu, target_pstate, max_pstate, 0,
2879                                          fast_switch);
2880         } else if (target_pstate != old_pstate) {
2881                 intel_cpufreq_perf_ctl_update(cpu, target_pstate, fast_switch);
2882         }
2883
2884         cpu->pstate.current_pstate = target_pstate;
2885
2886         intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH :
2887                             INTEL_PSTATE_TRACE_TARGET, old_pstate);
2888
2889         return target_pstate;
2890 }
2891
2892 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2893                                 unsigned int target_freq,
2894                                 unsigned int relation)
2895 {
2896         struct cpudata *cpu = all_cpu_data[policy->cpu];
2897         struct cpufreq_freqs freqs;
2898         int target_pstate;
2899
2900         update_turbo_state();
2901
2902         freqs.old = policy->cur;
2903         freqs.new = target_freq;
2904
2905         cpufreq_freq_transition_begin(policy, &freqs);
2906
2907         switch (relation) {
2908         case CPUFREQ_RELATION_L:
2909                 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2910                 break;
2911         case CPUFREQ_RELATION_H:
2912                 target_pstate = freqs.new / cpu->pstate.scaling;
2913                 break;
2914         default:
2915                 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2916                 break;
2917         }
2918
2919         target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, false);
2920
2921         freqs.new = target_pstate * cpu->pstate.scaling;
2922
2923         cpufreq_freq_transition_end(policy, &freqs, false);
2924
2925         return 0;
2926 }
2927
2928 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2929                                               unsigned int target_freq)
2930 {
2931         struct cpudata *cpu = all_cpu_data[policy->cpu];
2932         int target_pstate;
2933
2934         update_turbo_state();
2935
2936         target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2937
2938         target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, true);
2939
2940         return target_pstate * cpu->pstate.scaling;
2941 }
2942
2943 static void intel_cpufreq_adjust_perf(unsigned int cpunum,
2944                                       unsigned long min_perf,
2945                                       unsigned long target_perf,
2946                                       unsigned long capacity)
2947 {
2948         struct cpudata *cpu = all_cpu_data[cpunum];
2949         u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2950         int old_pstate = cpu->pstate.current_pstate;
2951         int cap_pstate, min_pstate, max_pstate, target_pstate;
2952
2953         update_turbo_state();
2954         cap_pstate = global.turbo_disabled ? HWP_GUARANTEED_PERF(hwp_cap) :
2955                                              HWP_HIGHEST_PERF(hwp_cap);
2956
2957         /* Optimization: Avoid unnecessary divisions. */
2958
2959         target_pstate = cap_pstate;
2960         if (target_perf < capacity)
2961                 target_pstate = DIV_ROUND_UP(cap_pstate * target_perf, capacity);
2962
2963         min_pstate = cap_pstate;
2964         if (min_perf < capacity)
2965                 min_pstate = DIV_ROUND_UP(cap_pstate * min_perf, capacity);
2966
2967         if (min_pstate < cpu->pstate.min_pstate)
2968                 min_pstate = cpu->pstate.min_pstate;
2969
2970         if (min_pstate < cpu->min_perf_ratio)
2971                 min_pstate = cpu->min_perf_ratio;
2972
2973         max_pstate = min(cap_pstate, cpu->max_perf_ratio);
2974         if (max_pstate < min_pstate)
2975                 max_pstate = min_pstate;
2976
2977         target_pstate = clamp_t(int, target_pstate, min_pstate, max_pstate);
2978
2979         intel_cpufreq_hwp_update(cpu, min_pstate, max_pstate, target_pstate, true);
2980
2981         cpu->pstate.current_pstate = target_pstate;
2982         intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2983 }
2984
2985 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2986 {
2987         struct freq_qos_request *req;
2988         struct cpudata *cpu;
2989         struct device *dev;
2990         int ret, freq;
2991
2992         dev = get_cpu_device(policy->cpu);
2993         if (!dev)
2994                 return -ENODEV;
2995
2996         ret = __intel_pstate_cpu_init(policy);
2997         if (ret)
2998                 return ret;
2999
3000         policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
3001         /* This reflects the intel_pstate_get_cpu_pstates() setting. */
3002         policy->cur = policy->cpuinfo.min_freq;
3003
3004         req = kcalloc(2, sizeof(*req), GFP_KERNEL);
3005         if (!req) {
3006                 ret = -ENOMEM;
3007                 goto pstate_exit;
3008         }
3009
3010         cpu = all_cpu_data[policy->cpu];
3011
3012         if (hwp_active) {
3013                 u64 value;
3014
3015                 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP;
3016
3017                 intel_pstate_get_hwp_cap(cpu);
3018
3019                 rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value);
3020                 WRITE_ONCE(cpu->hwp_req_cached, value);
3021
3022                 cpu->epp_cached = intel_pstate_get_epp(cpu, value);
3023         } else {
3024                 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
3025         }
3026
3027         freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.min_perf_pct, 100);
3028
3029         ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
3030                                    freq);
3031         if (ret < 0) {
3032                 dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
3033                 goto free_req;
3034         }
3035
3036         freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.max_perf_pct, 100);
3037
3038         ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
3039                                    freq);
3040         if (ret < 0) {
3041                 dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
3042                 goto remove_min_req;
3043         }
3044
3045         policy->driver_data = req;
3046
3047         return 0;
3048
3049 remove_min_req:
3050         freq_qos_remove_request(req);
3051 free_req:
3052         kfree(req);
3053 pstate_exit:
3054         intel_pstate_exit_perf_limits(policy);
3055
3056         return ret;
3057 }
3058
3059 static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
3060 {
3061         struct freq_qos_request *req;
3062
3063         req = policy->driver_data;
3064
3065         freq_qos_remove_request(req + 1);
3066         freq_qos_remove_request(req);
3067         kfree(req);
3068
3069         return intel_pstate_cpu_exit(policy);
3070 }
3071
3072 static int intel_cpufreq_suspend(struct cpufreq_policy *policy)
3073 {
3074         intel_pstate_suspend(policy);
3075
3076         if (hwp_active) {
3077                 struct cpudata *cpu = all_cpu_data[policy->cpu];
3078                 u64 value = READ_ONCE(cpu->hwp_req_cached);
3079
3080                 /*
3081                  * Clear the desired perf field in MSR_HWP_REQUEST in case
3082                  * intel_cpufreq_adjust_perf() is in use and the last value
3083                  * written by it may not be suitable.
3084                  */
3085                 value &= ~HWP_DESIRED_PERF(~0L);
3086                 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
3087                 WRITE_ONCE(cpu->hwp_req_cached, value);
3088         }
3089
3090         return 0;
3091 }
3092
3093 static struct cpufreq_driver intel_cpufreq = {
3094         .flags          = CPUFREQ_CONST_LOOPS,
3095         .verify         = intel_cpufreq_verify_policy,
3096         .target         = intel_cpufreq_target,
3097         .fast_switch    = intel_cpufreq_fast_switch,
3098         .init           = intel_cpufreq_cpu_init,
3099         .exit           = intel_cpufreq_cpu_exit,
3100         .offline        = intel_cpufreq_cpu_offline,
3101         .online         = intel_pstate_cpu_online,
3102         .suspend        = intel_cpufreq_suspend,
3103         .resume         = intel_pstate_resume,
3104         .update_limits  = intel_pstate_update_limits,
3105         .name           = "intel_cpufreq",
3106 };
3107
3108 static struct cpufreq_driver *default_driver;
3109
3110 static void intel_pstate_driver_cleanup(void)
3111 {
3112         unsigned int cpu;
3113
3114         cpus_read_lock();
3115         for_each_online_cpu(cpu) {
3116                 if (all_cpu_data[cpu]) {
3117                         if (intel_pstate_driver == &intel_pstate)
3118                                 intel_pstate_clear_update_util_hook(cpu);
3119
3120                         spin_lock(&hwp_notify_lock);
3121                         kfree(all_cpu_data[cpu]);
3122                         WRITE_ONCE(all_cpu_data[cpu], NULL);
3123                         spin_unlock(&hwp_notify_lock);
3124                 }
3125         }
3126         cpus_read_unlock();
3127
3128         intel_pstate_driver = NULL;
3129 }
3130
3131 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
3132 {
3133         int ret;
3134
3135         if (driver == &intel_pstate)
3136                 intel_pstate_sysfs_expose_hwp_dynamic_boost();
3137
3138         memset(&global, 0, sizeof(global));
3139         global.max_perf_pct = 100;
3140
3141         intel_pstate_driver = driver;
3142         ret = cpufreq_register_driver(intel_pstate_driver);
3143         if (ret) {
3144                 intel_pstate_driver_cleanup();
3145                 return ret;
3146         }
3147
3148         global.min_perf_pct = min_perf_pct_min();
3149
3150         return 0;
3151 }
3152
3153 static ssize_t intel_pstate_show_status(char *buf)
3154 {
3155         if (!intel_pstate_driver)
3156                 return sprintf(buf, "off\n");
3157
3158         return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
3159                                         "active" : "passive");
3160 }
3161
3162 static int intel_pstate_update_status(const char *buf, size_t size)
3163 {
3164         if (size == 3 && !strncmp(buf, "off", size)) {
3165                 if (!intel_pstate_driver)
3166                         return -EINVAL;
3167
3168                 if (hwp_active)
3169                         return -EBUSY;
3170
3171                 cpufreq_unregister_driver(intel_pstate_driver);
3172                 intel_pstate_driver_cleanup();
3173                 return 0;
3174         }
3175
3176         if (size == 6 && !strncmp(buf, "active", size)) {
3177                 if (intel_pstate_driver) {
3178                         if (intel_pstate_driver == &intel_pstate)
3179                                 return 0;
3180
3181                         cpufreq_unregister_driver(intel_pstate_driver);
3182                 }
3183
3184                 return intel_pstate_register_driver(&intel_pstate);
3185         }
3186
3187         if (size == 7 && !strncmp(buf, "passive", size)) {
3188                 if (intel_pstate_driver) {
3189                         if (intel_pstate_driver == &intel_cpufreq)
3190                                 return 0;
3191
3192                         cpufreq_unregister_driver(intel_pstate_driver);
3193                         intel_pstate_sysfs_hide_hwp_dynamic_boost();
3194                 }
3195
3196                 return intel_pstate_register_driver(&intel_cpufreq);
3197         }
3198
3199         return -EINVAL;
3200 }
3201
3202 static int no_load __initdata;
3203 static int no_hwp __initdata;
3204 static int hwp_only __initdata;
3205 static unsigned int force_load __initdata;
3206
3207 static int __init intel_pstate_msrs_not_valid(void)
3208 {
3209         if (!pstate_funcs.get_max(0) ||
3210             !pstate_funcs.get_min(0) ||
3211             !pstate_funcs.get_turbo(0))
3212                 return -ENODEV;
3213
3214         return 0;
3215 }
3216
3217 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
3218 {
3219         pstate_funcs.get_max   = funcs->get_max;
3220         pstate_funcs.get_max_physical = funcs->get_max_physical;
3221         pstate_funcs.get_min   = funcs->get_min;
3222         pstate_funcs.get_turbo = funcs->get_turbo;
3223         pstate_funcs.get_scaling = funcs->get_scaling;
3224         pstate_funcs.get_val   = funcs->get_val;
3225         pstate_funcs.get_vid   = funcs->get_vid;
3226         pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
3227 }
3228
3229 #ifdef CONFIG_ACPI
3230
3231 static bool __init intel_pstate_no_acpi_pss(void)
3232 {
3233         int i;
3234
3235         for_each_possible_cpu(i) {
3236                 acpi_status status;
3237                 union acpi_object *pss;
3238                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
3239                 struct acpi_processor *pr = per_cpu(processors, i);
3240
3241                 if (!pr)
3242                         continue;
3243
3244                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
3245                 if (ACPI_FAILURE(status))
3246                         continue;
3247
3248                 pss = buffer.pointer;
3249                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
3250                         kfree(pss);
3251                         return false;
3252                 }
3253
3254                 kfree(pss);
3255         }
3256
3257         pr_debug("ACPI _PSS not found\n");
3258         return true;
3259 }
3260
3261 static bool __init intel_pstate_no_acpi_pcch(void)
3262 {
3263         acpi_status status;
3264         acpi_handle handle;
3265
3266         status = acpi_get_handle(NULL, "\\_SB", &handle);
3267         if (ACPI_FAILURE(status))
3268                 goto not_found;
3269
3270         if (acpi_has_method(handle, "PCCH"))
3271                 return false;
3272
3273 not_found:
3274         pr_debug("ACPI PCCH not found\n");
3275         return true;
3276 }
3277
3278 static bool __init intel_pstate_has_acpi_ppc(void)
3279 {
3280         int i;
3281
3282         for_each_possible_cpu(i) {
3283                 struct acpi_processor *pr = per_cpu(processors, i);
3284
3285                 if (!pr)
3286                         continue;
3287                 if (acpi_has_method(pr->handle, "_PPC"))
3288                         return true;
3289         }
3290         pr_debug("ACPI _PPC not found\n");
3291         return false;
3292 }
3293
3294 enum {
3295         PSS,
3296         PPC,
3297 };
3298
3299 /* Hardware vendor-specific info that has its own power management modes */
3300 static struct acpi_platform_list plat_info[] __initdata = {
3301         {"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
3302         {"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3303         {"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3304         {"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3305         {"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3306         {"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3307         {"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3308         {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3309         {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3310         {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3311         {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3312         {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3313         {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3314         {"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3315         {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3316         { } /* End */
3317 };
3318
3319 #define BITMASK_OOB     (BIT(8) | BIT(18))
3320
3321 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
3322 {
3323         const struct x86_cpu_id *id;
3324         u64 misc_pwr;
3325         int idx;
3326
3327         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
3328         if (id) {
3329                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
3330                 if (misc_pwr & BITMASK_OOB) {
3331                         pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
3332                         pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
3333                         return true;
3334                 }
3335         }
3336
3337         idx = acpi_match_platform_list(plat_info);
3338         if (idx < 0)
3339                 return false;
3340
3341         switch (plat_info[idx].data) {
3342         case PSS:
3343                 if (!intel_pstate_no_acpi_pss())
3344                         return false;
3345
3346                 return intel_pstate_no_acpi_pcch();
3347         case PPC:
3348                 return intel_pstate_has_acpi_ppc() && !force_load;
3349         }
3350
3351         return false;
3352 }
3353
3354 static void intel_pstate_request_control_from_smm(void)
3355 {
3356         /*
3357          * It may be unsafe to request P-states control from SMM if _PPC support
3358          * has not been enabled.
3359          */
3360         if (acpi_ppc)
3361                 acpi_processor_pstate_control();
3362 }
3363 #else /* CONFIG_ACPI not enabled */
3364 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
3365 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
3366 static inline void intel_pstate_request_control_from_smm(void) {}
3367 #endif /* CONFIG_ACPI */
3368
3369 #define INTEL_PSTATE_HWP_BROADWELL      0x01
3370
3371 #define X86_MATCH_HWP(model, hwp_mode)                                  \
3372         X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
3373                                            X86_FEATURE_HWP, hwp_mode)
3374
3375 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
3376         X86_MATCH_HWP(BROADWELL_X,      INTEL_PSTATE_HWP_BROADWELL),
3377         X86_MATCH_HWP(BROADWELL_D,      INTEL_PSTATE_HWP_BROADWELL),
3378         X86_MATCH_HWP(ANY,              0),
3379         {}
3380 };
3381
3382 static bool intel_pstate_hwp_is_enabled(void)
3383 {
3384         u64 value;
3385
3386         rdmsrl(MSR_PM_ENABLE, value);
3387         return !!(value & 0x1);
3388 }
3389
3390 static const struct x86_cpu_id intel_epp_balance_perf[] = {
3391         /*
3392          * Set EPP value as 102, this is the max suggested EPP
3393          * which can result in one core turbo frequency for
3394          * AlderLake Mobile CPUs.
3395          */
3396         X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L, 102),
3397         X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, 32),
3398         {}
3399 };
3400
3401 static int __init intel_pstate_init(void)
3402 {
3403         static struct cpudata **_all_cpu_data;
3404         const struct x86_cpu_id *id;
3405         int rc;
3406
3407         if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
3408                 return -ENODEV;
3409
3410         id = x86_match_cpu(hwp_support_ids);
3411         if (id) {
3412                 hwp_forced = intel_pstate_hwp_is_enabled();
3413
3414                 if (hwp_forced)
3415                         pr_info("HWP enabled by BIOS\n");
3416                 else if (no_load)
3417                         return -ENODEV;
3418
3419                 copy_cpu_funcs(&core_funcs);
3420                 /*
3421                  * Avoid enabling HWP for processors without EPP support,
3422                  * because that means incomplete HWP implementation which is a
3423                  * corner case and supporting it is generally problematic.
3424                  *
3425                  * If HWP is enabled already, though, there is no choice but to
3426                  * deal with it.
3427                  */
3428                 if ((!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) || hwp_forced) {
3429                         WRITE_ONCE(hwp_active, 1);
3430                         hwp_mode_bdw = id->driver_data;
3431                         intel_pstate.attr = hwp_cpufreq_attrs;
3432                         intel_cpufreq.attr = hwp_cpufreq_attrs;
3433                         intel_cpufreq.flags |= CPUFREQ_NEED_UPDATE_LIMITS;
3434                         intel_cpufreq.adjust_perf = intel_cpufreq_adjust_perf;
3435                         if (!default_driver)
3436                                 default_driver = &intel_pstate;
3437
3438                         pstate_funcs.get_cpu_scaling = hwp_get_cpu_scaling;
3439
3440                         goto hwp_cpu_matched;
3441                 }
3442                 pr_info("HWP not enabled\n");
3443         } else {
3444                 if (no_load)
3445                         return -ENODEV;
3446
3447                 id = x86_match_cpu(intel_pstate_cpu_ids);
3448                 if (!id) {
3449                         pr_info("CPU model not supported\n");
3450                         return -ENODEV;
3451                 }
3452
3453                 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
3454         }
3455
3456         if (intel_pstate_msrs_not_valid()) {
3457                 pr_info("Invalid MSRs\n");
3458                 return -ENODEV;
3459         }
3460         /* Without HWP start in the passive mode. */
3461         if (!default_driver)
3462                 default_driver = &intel_cpufreq;
3463
3464 hwp_cpu_matched:
3465         /*
3466          * The Intel pstate driver will be ignored if the platform
3467          * firmware has its own power management modes.
3468          */
3469         if (intel_pstate_platform_pwr_mgmt_exists()) {
3470                 pr_info("P-states controlled by the platform\n");
3471                 return -ENODEV;
3472         }
3473
3474         if (!hwp_active && hwp_only)
3475                 return -ENOTSUPP;
3476
3477         pr_info("Intel P-state driver initializing\n");
3478
3479         _all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
3480         if (!_all_cpu_data)
3481                 return -ENOMEM;
3482
3483         WRITE_ONCE(all_cpu_data, _all_cpu_data);
3484
3485         intel_pstate_request_control_from_smm();
3486
3487         intel_pstate_sysfs_expose_params();
3488
3489         if (hwp_active) {
3490                 const struct x86_cpu_id *id = x86_match_cpu(intel_epp_balance_perf);
3491
3492                 if (id)
3493                         epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = id->driver_data;
3494         }
3495
3496         mutex_lock(&intel_pstate_driver_lock);
3497         rc = intel_pstate_register_driver(default_driver);
3498         mutex_unlock(&intel_pstate_driver_lock);
3499         if (rc) {
3500                 intel_pstate_sysfs_remove();
3501                 return rc;
3502         }
3503
3504         if (hwp_active) {
3505                 const struct x86_cpu_id *id;
3506
3507                 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
3508                 if (id) {
3509                         set_power_ctl_ee_state(false);
3510                         pr_info("Disabling energy efficiency optimization\n");
3511                 }
3512
3513                 pr_info("HWP enabled\n");
3514         } else if (boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
3515                 pr_warn("Problematic setup: Hybrid processor with disabled HWP\n");
3516         }
3517
3518         return 0;
3519 }
3520 device_initcall(intel_pstate_init);
3521
3522 static int __init intel_pstate_setup(char *str)
3523 {
3524         if (!str)
3525                 return -EINVAL;
3526
3527         if (!strcmp(str, "disable"))
3528                 no_load = 1;
3529         else if (!strcmp(str, "active"))
3530                 default_driver = &intel_pstate;
3531         else if (!strcmp(str, "passive"))
3532                 default_driver = &intel_cpufreq;
3533
3534         if (!strcmp(str, "no_hwp"))
3535                 no_hwp = 1;
3536
3537         if (!strcmp(str, "force"))
3538                 force_load = 1;
3539         if (!strcmp(str, "hwp_only"))
3540                 hwp_only = 1;
3541         if (!strcmp(str, "per_cpu_perf_limits"))
3542                 per_cpu_limits = true;
3543
3544 #ifdef CONFIG_ACPI
3545         if (!strcmp(str, "support_acpi_ppc"))
3546                 acpi_ppc = true;
3547 #endif
3548
3549         return 0;
3550 }
3551 early_param("intel_pstate", intel_pstate_setup);
3552
3553 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
3554 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");