Merge branch 'parisc-4.6-5' of git://git.kernel.org/pub/scm/linux/kernel/git/deller...
[linux-2.6-block.git] / drivers / cpufreq / intel_pstate.c
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12
13 #include <linux/kernel.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/module.h>
16 #include <linux/ktime.h>
17 #include <linux/hrtimer.h>
18 #include <linux/tick.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/list.h>
22 #include <linux/cpu.h>
23 #include <linux/cpufreq.h>
24 #include <linux/sysfs.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/debugfs.h>
28 #include <linux/acpi.h>
29 #include <linux/vmalloc.h>
30 #include <trace/events/power.h>
31
32 #include <asm/div64.h>
33 #include <asm/msr.h>
34 #include <asm/cpu_device_id.h>
35 #include <asm/cpufeature.h>
36
37 #define ATOM_RATIOS             0x66a
38 #define ATOM_VIDS               0x66b
39 #define ATOM_TURBO_RATIOS       0x66c
40 #define ATOM_TURBO_VIDS         0x66d
41
42 #define FRAC_BITS 8
43 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
44 #define fp_toint(X) ((X) >> FRAC_BITS)
45
46 static inline int32_t mul_fp(int32_t x, int32_t y)
47 {
48         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
49 }
50
51 static inline int32_t div_fp(s64 x, s64 y)
52 {
53         return div64_s64((int64_t)x << FRAC_BITS, y);
54 }
55
56 static inline int ceiling_fp(int32_t x)
57 {
58         int mask, ret;
59
60         ret = fp_toint(x);
61         mask = (1 << FRAC_BITS) - 1;
62         if (x & mask)
63                 ret += 1;
64         return ret;
65 }
66
67 /**
68  * struct sample -      Store performance sample
69  * @core_pct_busy:      Ratio of APERF/MPERF in percent, which is actual
70  *                      performance during last sample period
71  * @busy_scaled:        Scaled busy value which is used to calculate next
72  *                      P state. This can be different than core_pct_busy
73  *                      to account for cpu idle period
74  * @aperf:              Difference of actual performance frequency clock count
75  *                      read from APERF MSR between last and current sample
76  * @mperf:              Difference of maximum performance frequency clock count
77  *                      read from MPERF MSR between last and current sample
78  * @tsc:                Difference of time stamp counter between last and
79  *                      current sample
80  * @freq:               Effective frequency calculated from APERF/MPERF
81  * @time:               Current time from scheduler
82  *
83  * This structure is used in the cpudata structure to store performance sample
84  * data for choosing next P State.
85  */
86 struct sample {
87         int32_t core_pct_busy;
88         int32_t busy_scaled;
89         u64 aperf;
90         u64 mperf;
91         u64 tsc;
92         int freq;
93         u64 time;
94 };
95
96 /**
97  * struct pstate_data - Store P state data
98  * @current_pstate:     Current requested P state
99  * @min_pstate:         Min P state possible for this platform
100  * @max_pstate:         Max P state possible for this platform
101  * @max_pstate_physical:This is physical Max P state for a processor
102  *                      This can be higher than the max_pstate which can
103  *                      be limited by platform thermal design power limits
104  * @scaling:            Scaling factor to  convert frequency to cpufreq
105  *                      frequency units
106  * @turbo_pstate:       Max Turbo P state possible for this platform
107  *
108  * Stores the per cpu model P state limits and current P state.
109  */
110 struct pstate_data {
111         int     current_pstate;
112         int     min_pstate;
113         int     max_pstate;
114         int     max_pstate_physical;
115         int     scaling;
116         int     turbo_pstate;
117 };
118
119 /**
120  * struct vid_data -    Stores voltage information data
121  * @min:                VID data for this platform corresponding to
122  *                      the lowest P state
123  * @max:                VID data corresponding to the highest P State.
124  * @turbo:              VID data for turbo P state
125  * @ratio:              Ratio of (vid max - vid min) /
126  *                      (max P state - Min P State)
127  *
128  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
129  * This data is used in Atom platforms, where in addition to target P state,
130  * the voltage data needs to be specified to select next P State.
131  */
132 struct vid_data {
133         int min;
134         int max;
135         int turbo;
136         int32_t ratio;
137 };
138
139 /**
140  * struct _pid -        Stores PID data
141  * @setpoint:           Target set point for busyness or performance
142  * @integral:           Storage for accumulated error values
143  * @p_gain:             PID proportional gain
144  * @i_gain:             PID integral gain
145  * @d_gain:             PID derivative gain
146  * @deadband:           PID deadband
147  * @last_err:           Last error storage for integral part of PID calculation
148  *
149  * Stores PID coefficients and last error for PID controller.
150  */
151 struct _pid {
152         int setpoint;
153         int32_t integral;
154         int32_t p_gain;
155         int32_t i_gain;
156         int32_t d_gain;
157         int deadband;
158         int32_t last_err;
159 };
160
161 /**
162  * struct cpudata -     Per CPU instance data storage
163  * @cpu:                CPU number for this instance data
164  * @update_util:        CPUFreq utility callback information
165  * @pstate:             Stores P state limits for this CPU
166  * @vid:                Stores VID limits for this CPU
167  * @pid:                Stores PID parameters for this CPU
168  * @last_sample_time:   Last Sample time
169  * @prev_aperf:         Last APERF value read from APERF MSR
170  * @prev_mperf:         Last MPERF value read from MPERF MSR
171  * @prev_tsc:           Last timestamp counter (TSC) value
172  * @prev_cummulative_iowait: IO Wait time difference from last and
173  *                      current sample
174  * @sample:             Storage for storing last Sample data
175  *
176  * This structure stores per CPU instance data for all CPUs.
177  */
178 struct cpudata {
179         int cpu;
180
181         struct update_util_data update_util;
182
183         struct pstate_data pstate;
184         struct vid_data vid;
185         struct _pid pid;
186
187         u64     last_sample_time;
188         u64     prev_aperf;
189         u64     prev_mperf;
190         u64     prev_tsc;
191         u64     prev_cummulative_iowait;
192         struct sample sample;
193 };
194
195 static struct cpudata **all_cpu_data;
196
197 /**
198  * struct pid_adjust_policy - Stores static PID configuration data
199  * @sample_rate_ms:     PID calculation sample rate in ms
200  * @sample_rate_ns:     Sample rate calculation in ns
201  * @deadband:           PID deadband
202  * @setpoint:           PID Setpoint
203  * @p_gain_pct:         PID proportional gain
204  * @i_gain_pct:         PID integral gain
205  * @d_gain_pct:         PID derivative gain
206  *
207  * Stores per CPU model static PID configuration data.
208  */
209 struct pstate_adjust_policy {
210         int sample_rate_ms;
211         s64 sample_rate_ns;
212         int deadband;
213         int setpoint;
214         int p_gain_pct;
215         int d_gain_pct;
216         int i_gain_pct;
217 };
218
219 /**
220  * struct pstate_funcs - Per CPU model specific callbacks
221  * @get_max:            Callback to get maximum non turbo effective P state
222  * @get_max_physical:   Callback to get maximum non turbo physical P state
223  * @get_min:            Callback to get minimum P state
224  * @get_turbo:          Callback to get turbo P state
225  * @get_scaling:        Callback to get frequency scaling factor
226  * @get_val:            Callback to convert P state to actual MSR write value
227  * @get_vid:            Callback to get VID data for Atom platforms
228  * @get_target_pstate:  Callback to a function to calculate next P state to use
229  *
230  * Core and Atom CPU models have different way to get P State limits. This
231  * structure is used to store those callbacks.
232  */
233 struct pstate_funcs {
234         int (*get_max)(void);
235         int (*get_max_physical)(void);
236         int (*get_min)(void);
237         int (*get_turbo)(void);
238         int (*get_scaling)(void);
239         u64 (*get_val)(struct cpudata*, int pstate);
240         void (*get_vid)(struct cpudata *);
241         int32_t (*get_target_pstate)(struct cpudata *);
242 };
243
244 /**
245  * struct cpu_defaults- Per CPU model default config data
246  * @pid_policy: PID config data
247  * @funcs:              Callback function data
248  */
249 struct cpu_defaults {
250         struct pstate_adjust_policy pid_policy;
251         struct pstate_funcs funcs;
252 };
253
254 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
255 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
256
257 static struct pstate_adjust_policy pid_params;
258 static struct pstate_funcs pstate_funcs;
259 static int hwp_active;
260
261
262 /**
263  * struct perf_limits - Store user and policy limits
264  * @no_turbo:           User requested turbo state from intel_pstate sysfs
265  * @turbo_disabled:     Platform turbo status either from msr
266  *                      MSR_IA32_MISC_ENABLE or when maximum available pstate
267  *                      matches the maximum turbo pstate
268  * @max_perf_pct:       Effective maximum performance limit in percentage, this
269  *                      is minimum of either limits enforced by cpufreq policy
270  *                      or limits from user set limits via intel_pstate sysfs
271  * @min_perf_pct:       Effective minimum performance limit in percentage, this
272  *                      is maximum of either limits enforced by cpufreq policy
273  *                      or limits from user set limits via intel_pstate sysfs
274  * @max_perf:           This is a scaled value between 0 to 255 for max_perf_pct
275  *                      This value is used to limit max pstate
276  * @min_perf:           This is a scaled value between 0 to 255 for min_perf_pct
277  *                      This value is used to limit min pstate
278  * @max_policy_pct:     The maximum performance in percentage enforced by
279  *                      cpufreq setpolicy interface
280  * @max_sysfs_pct:      The maximum performance in percentage enforced by
281  *                      intel pstate sysfs interface
282  * @min_policy_pct:     The minimum performance in percentage enforced by
283  *                      cpufreq setpolicy interface
284  * @min_sysfs_pct:      The minimum performance in percentage enforced by
285  *                      intel pstate sysfs interface
286  *
287  * Storage for user and policy defined limits.
288  */
289 struct perf_limits {
290         int no_turbo;
291         int turbo_disabled;
292         int max_perf_pct;
293         int min_perf_pct;
294         int32_t max_perf;
295         int32_t min_perf;
296         int max_policy_pct;
297         int max_sysfs_pct;
298         int min_policy_pct;
299         int min_sysfs_pct;
300 };
301
302 static struct perf_limits performance_limits = {
303         .no_turbo = 0,
304         .turbo_disabled = 0,
305         .max_perf_pct = 100,
306         .max_perf = int_tofp(1),
307         .min_perf_pct = 100,
308         .min_perf = int_tofp(1),
309         .max_policy_pct = 100,
310         .max_sysfs_pct = 100,
311         .min_policy_pct = 0,
312         .min_sysfs_pct = 0,
313 };
314
315 static struct perf_limits powersave_limits = {
316         .no_turbo = 0,
317         .turbo_disabled = 0,
318         .max_perf_pct = 100,
319         .max_perf = int_tofp(1),
320         .min_perf_pct = 0,
321         .min_perf = 0,
322         .max_policy_pct = 100,
323         .max_sysfs_pct = 100,
324         .min_policy_pct = 0,
325         .min_sysfs_pct = 0,
326 };
327
328 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
329 static struct perf_limits *limits = &performance_limits;
330 #else
331 static struct perf_limits *limits = &powersave_limits;
332 #endif
333
334 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
335                              int deadband, int integral) {
336         pid->setpoint = int_tofp(setpoint);
337         pid->deadband  = int_tofp(deadband);
338         pid->integral  = int_tofp(integral);
339         pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
340 }
341
342 static inline void pid_p_gain_set(struct _pid *pid, int percent)
343 {
344         pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
345 }
346
347 static inline void pid_i_gain_set(struct _pid *pid, int percent)
348 {
349         pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
350 }
351
352 static inline void pid_d_gain_set(struct _pid *pid, int percent)
353 {
354         pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
355 }
356
357 static signed int pid_calc(struct _pid *pid, int32_t busy)
358 {
359         signed int result;
360         int32_t pterm, dterm, fp_error;
361         int32_t integral_limit;
362
363         fp_error = pid->setpoint - busy;
364
365         if (abs(fp_error) <= pid->deadband)
366                 return 0;
367
368         pterm = mul_fp(pid->p_gain, fp_error);
369
370         pid->integral += fp_error;
371
372         /*
373          * We limit the integral here so that it will never
374          * get higher than 30.  This prevents it from becoming
375          * too large an input over long periods of time and allows
376          * it to get factored out sooner.
377          *
378          * The value of 30 was chosen through experimentation.
379          */
380         integral_limit = int_tofp(30);
381         if (pid->integral > integral_limit)
382                 pid->integral = integral_limit;
383         if (pid->integral < -integral_limit)
384                 pid->integral = -integral_limit;
385
386         dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
387         pid->last_err = fp_error;
388
389         result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
390         result = result + (1 << (FRAC_BITS-1));
391         return (signed int)fp_toint(result);
392 }
393
394 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
395 {
396         pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
397         pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
398         pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
399
400         pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
401 }
402
403 static inline void intel_pstate_reset_all_pid(void)
404 {
405         unsigned int cpu;
406
407         for_each_online_cpu(cpu) {
408                 if (all_cpu_data[cpu])
409                         intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
410         }
411 }
412
413 static inline void update_turbo_state(void)
414 {
415         u64 misc_en;
416         struct cpudata *cpu;
417
418         cpu = all_cpu_data[0];
419         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
420         limits->turbo_disabled =
421                 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
422                  cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
423 }
424
425 static void intel_pstate_hwp_set(const struct cpumask *cpumask)
426 {
427         int min, hw_min, max, hw_max, cpu, range, adj_range;
428         u64 value, cap;
429
430         rdmsrl(MSR_HWP_CAPABILITIES, cap);
431         hw_min = HWP_LOWEST_PERF(cap);
432         hw_max = HWP_HIGHEST_PERF(cap);
433         range = hw_max - hw_min;
434
435         for_each_cpu(cpu, cpumask) {
436                 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
437                 adj_range = limits->min_perf_pct * range / 100;
438                 min = hw_min + adj_range;
439                 value &= ~HWP_MIN_PERF(~0L);
440                 value |= HWP_MIN_PERF(min);
441
442                 adj_range = limits->max_perf_pct * range / 100;
443                 max = hw_min + adj_range;
444                 if (limits->no_turbo) {
445                         hw_max = HWP_GUARANTEED_PERF(cap);
446                         if (hw_max < max)
447                                 max = hw_max;
448                 }
449
450                 value &= ~HWP_MAX_PERF(~0L);
451                 value |= HWP_MAX_PERF(max);
452                 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
453         }
454 }
455
456 static void intel_pstate_hwp_set_online_cpus(void)
457 {
458         get_online_cpus();
459         intel_pstate_hwp_set(cpu_online_mask);
460         put_online_cpus();
461 }
462
463 /************************** debugfs begin ************************/
464 static int pid_param_set(void *data, u64 val)
465 {
466         *(u32 *)data = val;
467         intel_pstate_reset_all_pid();
468         return 0;
469 }
470
471 static int pid_param_get(void *data, u64 *val)
472 {
473         *val = *(u32 *)data;
474         return 0;
475 }
476 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
477
478 struct pid_param {
479         char *name;
480         void *value;
481 };
482
483 static struct pid_param pid_files[] = {
484         {"sample_rate_ms", &pid_params.sample_rate_ms},
485         {"d_gain_pct", &pid_params.d_gain_pct},
486         {"i_gain_pct", &pid_params.i_gain_pct},
487         {"deadband", &pid_params.deadband},
488         {"setpoint", &pid_params.setpoint},
489         {"p_gain_pct", &pid_params.p_gain_pct},
490         {NULL, NULL}
491 };
492
493 static void __init intel_pstate_debug_expose_params(void)
494 {
495         struct dentry *debugfs_parent;
496         int i = 0;
497
498         if (hwp_active)
499                 return;
500         debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
501         if (IS_ERR_OR_NULL(debugfs_parent))
502                 return;
503         while (pid_files[i].name) {
504                 debugfs_create_file(pid_files[i].name, 0660,
505                                     debugfs_parent, pid_files[i].value,
506                                     &fops_pid_param);
507                 i++;
508         }
509 }
510
511 /************************** debugfs end ************************/
512
513 /************************** sysfs begin ************************/
514 #define show_one(file_name, object)                                     \
515         static ssize_t show_##file_name                                 \
516         (struct kobject *kobj, struct attribute *attr, char *buf)       \
517         {                                                               \
518                 return sprintf(buf, "%u\n", limits->object);            \
519         }
520
521 static ssize_t show_turbo_pct(struct kobject *kobj,
522                                 struct attribute *attr, char *buf)
523 {
524         struct cpudata *cpu;
525         int total, no_turbo, turbo_pct;
526         uint32_t turbo_fp;
527
528         cpu = all_cpu_data[0];
529
530         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
531         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
532         turbo_fp = div_fp(int_tofp(no_turbo), int_tofp(total));
533         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
534         return sprintf(buf, "%u\n", turbo_pct);
535 }
536
537 static ssize_t show_num_pstates(struct kobject *kobj,
538                                 struct attribute *attr, char *buf)
539 {
540         struct cpudata *cpu;
541         int total;
542
543         cpu = all_cpu_data[0];
544         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
545         return sprintf(buf, "%u\n", total);
546 }
547
548 static ssize_t show_no_turbo(struct kobject *kobj,
549                              struct attribute *attr, char *buf)
550 {
551         ssize_t ret;
552
553         update_turbo_state();
554         if (limits->turbo_disabled)
555                 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
556         else
557                 ret = sprintf(buf, "%u\n", limits->no_turbo);
558
559         return ret;
560 }
561
562 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
563                               const char *buf, size_t count)
564 {
565         unsigned int input;
566         int ret;
567
568         ret = sscanf(buf, "%u", &input);
569         if (ret != 1)
570                 return -EINVAL;
571
572         update_turbo_state();
573         if (limits->turbo_disabled) {
574                 pr_warn("intel_pstate: Turbo disabled by BIOS or unavailable on processor\n");
575                 return -EPERM;
576         }
577
578         limits->no_turbo = clamp_t(int, input, 0, 1);
579
580         if (hwp_active)
581                 intel_pstate_hwp_set_online_cpus();
582
583         return count;
584 }
585
586 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
587                                   const char *buf, size_t count)
588 {
589         unsigned int input;
590         int ret;
591
592         ret = sscanf(buf, "%u", &input);
593         if (ret != 1)
594                 return -EINVAL;
595
596         limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
597         limits->max_perf_pct = min(limits->max_policy_pct,
598                                    limits->max_sysfs_pct);
599         limits->max_perf_pct = max(limits->min_policy_pct,
600                                    limits->max_perf_pct);
601         limits->max_perf_pct = max(limits->min_perf_pct,
602                                    limits->max_perf_pct);
603         limits->max_perf = div_fp(int_tofp(limits->max_perf_pct),
604                                   int_tofp(100));
605
606         if (hwp_active)
607                 intel_pstate_hwp_set_online_cpus();
608         return count;
609 }
610
611 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
612                                   const char *buf, size_t count)
613 {
614         unsigned int input;
615         int ret;
616
617         ret = sscanf(buf, "%u", &input);
618         if (ret != 1)
619                 return -EINVAL;
620
621         limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
622         limits->min_perf_pct = max(limits->min_policy_pct,
623                                    limits->min_sysfs_pct);
624         limits->min_perf_pct = min(limits->max_policy_pct,
625                                    limits->min_perf_pct);
626         limits->min_perf_pct = min(limits->max_perf_pct,
627                                    limits->min_perf_pct);
628         limits->min_perf = div_fp(int_tofp(limits->min_perf_pct),
629                                   int_tofp(100));
630
631         if (hwp_active)
632                 intel_pstate_hwp_set_online_cpus();
633         return count;
634 }
635
636 show_one(max_perf_pct, max_perf_pct);
637 show_one(min_perf_pct, min_perf_pct);
638
639 define_one_global_rw(no_turbo);
640 define_one_global_rw(max_perf_pct);
641 define_one_global_rw(min_perf_pct);
642 define_one_global_ro(turbo_pct);
643 define_one_global_ro(num_pstates);
644
645 static struct attribute *intel_pstate_attributes[] = {
646         &no_turbo.attr,
647         &max_perf_pct.attr,
648         &min_perf_pct.attr,
649         &turbo_pct.attr,
650         &num_pstates.attr,
651         NULL
652 };
653
654 static struct attribute_group intel_pstate_attr_group = {
655         .attrs = intel_pstate_attributes,
656 };
657
658 static void __init intel_pstate_sysfs_expose_params(void)
659 {
660         struct kobject *intel_pstate_kobject;
661         int rc;
662
663         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
664                                                 &cpu_subsys.dev_root->kobj);
665         BUG_ON(!intel_pstate_kobject);
666         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
667         BUG_ON(rc);
668 }
669 /************************** sysfs end ************************/
670
671 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
672 {
673         /* First disable HWP notification interrupt as we don't process them */
674         wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
675
676         wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
677 }
678
679 static int atom_get_min_pstate(void)
680 {
681         u64 value;
682
683         rdmsrl(ATOM_RATIOS, value);
684         return (value >> 8) & 0x7F;
685 }
686
687 static int atom_get_max_pstate(void)
688 {
689         u64 value;
690
691         rdmsrl(ATOM_RATIOS, value);
692         return (value >> 16) & 0x7F;
693 }
694
695 static int atom_get_turbo_pstate(void)
696 {
697         u64 value;
698
699         rdmsrl(ATOM_TURBO_RATIOS, value);
700         return value & 0x7F;
701 }
702
703 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
704 {
705         u64 val;
706         int32_t vid_fp;
707         u32 vid;
708
709         val = (u64)pstate << 8;
710         if (limits->no_turbo && !limits->turbo_disabled)
711                 val |= (u64)1 << 32;
712
713         vid_fp = cpudata->vid.min + mul_fp(
714                 int_tofp(pstate - cpudata->pstate.min_pstate),
715                 cpudata->vid.ratio);
716
717         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
718         vid = ceiling_fp(vid_fp);
719
720         if (pstate > cpudata->pstate.max_pstate)
721                 vid = cpudata->vid.turbo;
722
723         return val | vid;
724 }
725
726 static int silvermont_get_scaling(void)
727 {
728         u64 value;
729         int i;
730         /* Defined in Table 35-6 from SDM (Sept 2015) */
731         static int silvermont_freq_table[] = {
732                 83300, 100000, 133300, 116700, 80000};
733
734         rdmsrl(MSR_FSB_FREQ, value);
735         i = value & 0x7;
736         WARN_ON(i > 4);
737
738         return silvermont_freq_table[i];
739 }
740
741 static int airmont_get_scaling(void)
742 {
743         u64 value;
744         int i;
745         /* Defined in Table 35-10 from SDM (Sept 2015) */
746         static int airmont_freq_table[] = {
747                 83300, 100000, 133300, 116700, 80000,
748                 93300, 90000, 88900, 87500};
749
750         rdmsrl(MSR_FSB_FREQ, value);
751         i = value & 0xF;
752         WARN_ON(i > 8);
753
754         return airmont_freq_table[i];
755 }
756
757 static void atom_get_vid(struct cpudata *cpudata)
758 {
759         u64 value;
760
761         rdmsrl(ATOM_VIDS, value);
762         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
763         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
764         cpudata->vid.ratio = div_fp(
765                 cpudata->vid.max - cpudata->vid.min,
766                 int_tofp(cpudata->pstate.max_pstate -
767                         cpudata->pstate.min_pstate));
768
769         rdmsrl(ATOM_TURBO_VIDS, value);
770         cpudata->vid.turbo = value & 0x7f;
771 }
772
773 static int core_get_min_pstate(void)
774 {
775         u64 value;
776
777         rdmsrl(MSR_PLATFORM_INFO, value);
778         return (value >> 40) & 0xFF;
779 }
780
781 static int core_get_max_pstate_physical(void)
782 {
783         u64 value;
784
785         rdmsrl(MSR_PLATFORM_INFO, value);
786         return (value >> 8) & 0xFF;
787 }
788
789 static int core_get_max_pstate(void)
790 {
791         u64 tar;
792         u64 plat_info;
793         int max_pstate;
794         int err;
795
796         rdmsrl(MSR_PLATFORM_INFO, plat_info);
797         max_pstate = (plat_info >> 8) & 0xFF;
798
799         err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
800         if (!err) {
801                 /* Do some sanity checking for safety */
802                 if (plat_info & 0x600000000) {
803                         u64 tdp_ctrl;
804                         u64 tdp_ratio;
805                         int tdp_msr;
806
807                         err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
808                         if (err)
809                                 goto skip_tar;
810
811                         tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl;
812                         err = rdmsrl_safe(tdp_msr, &tdp_ratio);
813                         if (err)
814                                 goto skip_tar;
815
816                         /* For level 1 and 2, bits[23:16] contain the ratio */
817                         if (tdp_ctrl)
818                                 tdp_ratio >>= 16;
819
820                         tdp_ratio &= 0xff; /* ratios are only 8 bits long */
821                         if (tdp_ratio - 1 == tar) {
822                                 max_pstate = tar;
823                                 pr_debug("max_pstate=TAC %x\n", max_pstate);
824                         } else {
825                                 goto skip_tar;
826                         }
827                 }
828         }
829
830 skip_tar:
831         return max_pstate;
832 }
833
834 static int core_get_turbo_pstate(void)
835 {
836         u64 value;
837         int nont, ret;
838
839         rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
840         nont = core_get_max_pstate();
841         ret = (value) & 255;
842         if (ret <= nont)
843                 ret = nont;
844         return ret;
845 }
846
847 static inline int core_get_scaling(void)
848 {
849         return 100000;
850 }
851
852 static u64 core_get_val(struct cpudata *cpudata, int pstate)
853 {
854         u64 val;
855
856         val = (u64)pstate << 8;
857         if (limits->no_turbo && !limits->turbo_disabled)
858                 val |= (u64)1 << 32;
859
860         return val;
861 }
862
863 static int knl_get_turbo_pstate(void)
864 {
865         u64 value;
866         int nont, ret;
867
868         rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
869         nont = core_get_max_pstate();
870         ret = (((value) >> 8) & 0xFF);
871         if (ret <= nont)
872                 ret = nont;
873         return ret;
874 }
875
876 static struct cpu_defaults core_params = {
877         .pid_policy = {
878                 .sample_rate_ms = 10,
879                 .deadband = 0,
880                 .setpoint = 97,
881                 .p_gain_pct = 20,
882                 .d_gain_pct = 0,
883                 .i_gain_pct = 0,
884         },
885         .funcs = {
886                 .get_max = core_get_max_pstate,
887                 .get_max_physical = core_get_max_pstate_physical,
888                 .get_min = core_get_min_pstate,
889                 .get_turbo = core_get_turbo_pstate,
890                 .get_scaling = core_get_scaling,
891                 .get_val = core_get_val,
892                 .get_target_pstate = get_target_pstate_use_performance,
893         },
894 };
895
896 static struct cpu_defaults silvermont_params = {
897         .pid_policy = {
898                 .sample_rate_ms = 10,
899                 .deadband = 0,
900                 .setpoint = 60,
901                 .p_gain_pct = 14,
902                 .d_gain_pct = 0,
903                 .i_gain_pct = 4,
904         },
905         .funcs = {
906                 .get_max = atom_get_max_pstate,
907                 .get_max_physical = atom_get_max_pstate,
908                 .get_min = atom_get_min_pstate,
909                 .get_turbo = atom_get_turbo_pstate,
910                 .get_val = atom_get_val,
911                 .get_scaling = silvermont_get_scaling,
912                 .get_vid = atom_get_vid,
913                 .get_target_pstate = get_target_pstate_use_cpu_load,
914         },
915 };
916
917 static struct cpu_defaults airmont_params = {
918         .pid_policy = {
919                 .sample_rate_ms = 10,
920                 .deadband = 0,
921                 .setpoint = 60,
922                 .p_gain_pct = 14,
923                 .d_gain_pct = 0,
924                 .i_gain_pct = 4,
925         },
926         .funcs = {
927                 .get_max = atom_get_max_pstate,
928                 .get_max_physical = atom_get_max_pstate,
929                 .get_min = atom_get_min_pstate,
930                 .get_turbo = atom_get_turbo_pstate,
931                 .get_val = atom_get_val,
932                 .get_scaling = airmont_get_scaling,
933                 .get_vid = atom_get_vid,
934                 .get_target_pstate = get_target_pstate_use_cpu_load,
935         },
936 };
937
938 static struct cpu_defaults knl_params = {
939         .pid_policy = {
940                 .sample_rate_ms = 10,
941                 .deadband = 0,
942                 .setpoint = 97,
943                 .p_gain_pct = 20,
944                 .d_gain_pct = 0,
945                 .i_gain_pct = 0,
946         },
947         .funcs = {
948                 .get_max = core_get_max_pstate,
949                 .get_max_physical = core_get_max_pstate_physical,
950                 .get_min = core_get_min_pstate,
951                 .get_turbo = knl_get_turbo_pstate,
952                 .get_scaling = core_get_scaling,
953                 .get_val = core_get_val,
954                 .get_target_pstate = get_target_pstate_use_performance,
955         },
956 };
957
958 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
959 {
960         int max_perf = cpu->pstate.turbo_pstate;
961         int max_perf_adj;
962         int min_perf;
963
964         if (limits->no_turbo || limits->turbo_disabled)
965                 max_perf = cpu->pstate.max_pstate;
966
967         /*
968          * performance can be limited by user through sysfs, by cpufreq
969          * policy, or by cpu specific default values determined through
970          * experimentation.
971          */
972         max_perf_adj = fp_toint(max_perf * limits->max_perf);
973         *max = clamp_t(int, max_perf_adj,
974                         cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
975
976         min_perf = fp_toint(max_perf * limits->min_perf);
977         *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
978 }
979
980 static inline void intel_pstate_record_pstate(struct cpudata *cpu, int pstate)
981 {
982         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
983         cpu->pstate.current_pstate = pstate;
984 }
985
986 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
987 {
988         int pstate = cpu->pstate.min_pstate;
989
990         intel_pstate_record_pstate(cpu, pstate);
991         /*
992          * Generally, there is no guarantee that this code will always run on
993          * the CPU being updated, so force the register update to run on the
994          * right CPU.
995          */
996         wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
997                       pstate_funcs.get_val(cpu, pstate));
998 }
999
1000 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1001 {
1002         cpu->pstate.min_pstate = pstate_funcs.get_min();
1003         cpu->pstate.max_pstate = pstate_funcs.get_max();
1004         cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1005         cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1006         cpu->pstate.scaling = pstate_funcs.get_scaling();
1007
1008         if (pstate_funcs.get_vid)
1009                 pstate_funcs.get_vid(cpu);
1010
1011         intel_pstate_set_min_pstate(cpu);
1012 }
1013
1014 static inline void intel_pstate_calc_busy(struct cpudata *cpu)
1015 {
1016         struct sample *sample = &cpu->sample;
1017         int64_t core_pct;
1018
1019         core_pct = int_tofp(sample->aperf) * int_tofp(100);
1020         core_pct = div64_u64(core_pct, int_tofp(sample->mperf));
1021
1022         sample->core_pct_busy = (int32_t)core_pct;
1023 }
1024
1025 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1026 {
1027         u64 aperf, mperf;
1028         unsigned long flags;
1029         u64 tsc;
1030
1031         local_irq_save(flags);
1032         rdmsrl(MSR_IA32_APERF, aperf);
1033         rdmsrl(MSR_IA32_MPERF, mperf);
1034         tsc = rdtsc();
1035         if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1036                 local_irq_restore(flags);
1037                 return false;
1038         }
1039         local_irq_restore(flags);
1040
1041         cpu->last_sample_time = cpu->sample.time;
1042         cpu->sample.time = time;
1043         cpu->sample.aperf = aperf;
1044         cpu->sample.mperf = mperf;
1045         cpu->sample.tsc =  tsc;
1046         cpu->sample.aperf -= cpu->prev_aperf;
1047         cpu->sample.mperf -= cpu->prev_mperf;
1048         cpu->sample.tsc -= cpu->prev_tsc;
1049
1050         cpu->prev_aperf = aperf;
1051         cpu->prev_mperf = mperf;
1052         cpu->prev_tsc = tsc;
1053         /*
1054          * First time this function is invoked in a given cycle, all of the
1055          * previous sample data fields are equal to zero or stale and they must
1056          * be populated with meaningful numbers for things to work, so assume
1057          * that sample.time will always be reset before setting the utilization
1058          * update hook and make the caller skip the sample then.
1059          */
1060         return !!cpu->last_sample_time;
1061 }
1062
1063 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1064 {
1065         return div64_u64(cpu->pstate.max_pstate_physical * cpu->sample.aperf *
1066                 cpu->pstate.scaling, cpu->sample.mperf);
1067 }
1068
1069 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1070 {
1071         struct sample *sample = &cpu->sample;
1072         u64 cummulative_iowait, delta_iowait_us;
1073         u64 delta_iowait_mperf;
1074         u64 mperf, now;
1075         int32_t cpu_load;
1076
1077         cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now);
1078
1079         /*
1080          * Convert iowait time into number of IO cycles spent at max_freq.
1081          * IO is considered as busy only for the cpu_load algorithm. For
1082          * performance this is not needed since we always try to reach the
1083          * maximum P-State, so we are already boosting the IOs.
1084          */
1085         delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait;
1086         delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling *
1087                 cpu->pstate.max_pstate, MSEC_PER_SEC);
1088
1089         mperf = cpu->sample.mperf + delta_iowait_mperf;
1090         cpu->prev_cummulative_iowait = cummulative_iowait;
1091
1092         /*
1093          * The load can be estimated as the ratio of the mperf counter
1094          * running at a constant frequency during active periods
1095          * (C0) and the time stamp counter running at the same frequency
1096          * also during C-states.
1097          */
1098         cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc);
1099         cpu->sample.busy_scaled = cpu_load;
1100
1101         return cpu->pstate.current_pstate - pid_calc(&cpu->pid, cpu_load);
1102 }
1103
1104 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1105 {
1106         int32_t core_busy, max_pstate, current_pstate, sample_ratio;
1107         u64 duration_ns;
1108
1109         intel_pstate_calc_busy(cpu);
1110
1111         /*
1112          * core_busy is the ratio of actual performance to max
1113          * max_pstate is the max non turbo pstate available
1114          * current_pstate was the pstate that was requested during
1115          *      the last sample period.
1116          *
1117          * We normalize core_busy, which was our actual percent
1118          * performance to what we requested during the last sample
1119          * period. The result will be a percentage of busy at a
1120          * specified pstate.
1121          */
1122         core_busy = cpu->sample.core_pct_busy;
1123         max_pstate = int_tofp(cpu->pstate.max_pstate_physical);
1124         current_pstate = int_tofp(cpu->pstate.current_pstate);
1125         core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
1126
1127         /*
1128          * Since our utilization update callback will not run unless we are
1129          * in C0, check if the actual elapsed time is significantly greater (3x)
1130          * than our sample interval.  If it is, then we were idle for a long
1131          * enough period of time to adjust our busyness.
1132          */
1133         duration_ns = cpu->sample.time - cpu->last_sample_time;
1134         if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1135                 sample_ratio = div_fp(int_tofp(pid_params.sample_rate_ns),
1136                                       int_tofp(duration_ns));
1137                 core_busy = mul_fp(core_busy, sample_ratio);
1138         } else {
1139                 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1140                 if (sample_ratio < int_tofp(1))
1141                         core_busy = 0;
1142         }
1143
1144         cpu->sample.busy_scaled = core_busy;
1145         return cpu->pstate.current_pstate - pid_calc(&cpu->pid, core_busy);
1146 }
1147
1148 static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1149 {
1150         int max_perf, min_perf;
1151
1152         update_turbo_state();
1153
1154         intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1155         pstate = clamp_t(int, pstate, min_perf, max_perf);
1156         if (pstate == cpu->pstate.current_pstate)
1157                 return;
1158
1159         intel_pstate_record_pstate(cpu, pstate);
1160         wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1161 }
1162
1163 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1164 {
1165         int from, target_pstate;
1166         struct sample *sample;
1167
1168         from = cpu->pstate.current_pstate;
1169
1170         target_pstate = pstate_funcs.get_target_pstate(cpu);
1171
1172         intel_pstate_update_pstate(cpu, target_pstate);
1173
1174         sample = &cpu->sample;
1175         trace_pstate_sample(fp_toint(sample->core_pct_busy),
1176                 fp_toint(sample->busy_scaled),
1177                 from,
1178                 cpu->pstate.current_pstate,
1179                 sample->mperf,
1180                 sample->aperf,
1181                 sample->tsc,
1182                 get_avg_frequency(cpu));
1183 }
1184
1185 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1186                                      unsigned long util, unsigned long max)
1187 {
1188         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1189         u64 delta_ns = time - cpu->sample.time;
1190
1191         if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1192                 bool sample_taken = intel_pstate_sample(cpu, time);
1193
1194                 if (sample_taken && !hwp_active)
1195                         intel_pstate_adjust_busy_pstate(cpu);
1196         }
1197 }
1198
1199 #define ICPU(model, policy) \
1200         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1201                         (unsigned long)&policy }
1202
1203 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1204         ICPU(0x2a, core_params),
1205         ICPU(0x2d, core_params),
1206         ICPU(0x37, silvermont_params),
1207         ICPU(0x3a, core_params),
1208         ICPU(0x3c, core_params),
1209         ICPU(0x3d, core_params),
1210         ICPU(0x3e, core_params),
1211         ICPU(0x3f, core_params),
1212         ICPU(0x45, core_params),
1213         ICPU(0x46, core_params),
1214         ICPU(0x47, core_params),
1215         ICPU(0x4c, airmont_params),
1216         ICPU(0x4e, core_params),
1217         ICPU(0x4f, core_params),
1218         ICPU(0x5e, core_params),
1219         ICPU(0x56, core_params),
1220         ICPU(0x57, knl_params),
1221         {}
1222 };
1223 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1224
1225 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
1226         ICPU(0x56, core_params),
1227         {}
1228 };
1229
1230 static int intel_pstate_init_cpu(unsigned int cpunum)
1231 {
1232         struct cpudata *cpu;
1233
1234         if (!all_cpu_data[cpunum])
1235                 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
1236                                                GFP_KERNEL);
1237         if (!all_cpu_data[cpunum])
1238                 return -ENOMEM;
1239
1240         cpu = all_cpu_data[cpunum];
1241
1242         cpu->cpu = cpunum;
1243
1244         if (hwp_active) {
1245                 intel_pstate_hwp_enable(cpu);
1246                 pid_params.sample_rate_ms = 50;
1247                 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1248         }
1249
1250         intel_pstate_get_cpu_pstates(cpu);
1251
1252         intel_pstate_busy_pid_reset(cpu);
1253
1254         cpu->update_util.func = intel_pstate_update_util;
1255
1256         pr_debug("intel_pstate: controlling: cpu %d\n", cpunum);
1257
1258         return 0;
1259 }
1260
1261 static unsigned int intel_pstate_get(unsigned int cpu_num)
1262 {
1263         struct sample *sample;
1264         struct cpudata *cpu;
1265
1266         cpu = all_cpu_data[cpu_num];
1267         if (!cpu)
1268                 return 0;
1269         sample = &cpu->sample;
1270         return get_avg_frequency(cpu);
1271 }
1272
1273 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1274 {
1275         struct cpudata *cpu = all_cpu_data[cpu_num];
1276
1277         /* Prevent intel_pstate_update_util() from using stale data. */
1278         cpu->sample.time = 0;
1279         cpufreq_set_update_util_data(cpu_num, &cpu->update_util);
1280 }
1281
1282 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1283 {
1284         cpufreq_set_update_util_data(cpu, NULL);
1285         synchronize_sched();
1286 }
1287
1288 static void intel_pstate_set_performance_limits(struct perf_limits *limits)
1289 {
1290         limits->no_turbo = 0;
1291         limits->turbo_disabled = 0;
1292         limits->max_perf_pct = 100;
1293         limits->max_perf = int_tofp(1);
1294         limits->min_perf_pct = 100;
1295         limits->min_perf = int_tofp(1);
1296         limits->max_policy_pct = 100;
1297         limits->max_sysfs_pct = 100;
1298         limits->min_policy_pct = 0;
1299         limits->min_sysfs_pct = 0;
1300 }
1301
1302 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1303 {
1304         if (!policy->cpuinfo.max_freq)
1305                 return -ENODEV;
1306
1307         intel_pstate_clear_update_util_hook(policy->cpu);
1308
1309         if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
1310                 limits = &performance_limits;
1311                 if (policy->max >= policy->cpuinfo.max_freq) {
1312                         pr_debug("intel_pstate: set performance\n");
1313                         intel_pstate_set_performance_limits(limits);
1314                         goto out;
1315                 }
1316         } else {
1317                 pr_debug("intel_pstate: set powersave\n");
1318                 limits = &powersave_limits;
1319         }
1320
1321         limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
1322         limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
1323         limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1324                                               policy->cpuinfo.max_freq);
1325         limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1326
1327         /* Normalize user input to [min_policy_pct, max_policy_pct] */
1328         limits->min_perf_pct = max(limits->min_policy_pct,
1329                                    limits->min_sysfs_pct);
1330         limits->min_perf_pct = min(limits->max_policy_pct,
1331                                    limits->min_perf_pct);
1332         limits->max_perf_pct = min(limits->max_policy_pct,
1333                                    limits->max_sysfs_pct);
1334         limits->max_perf_pct = max(limits->min_policy_pct,
1335                                    limits->max_perf_pct);
1336         limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1337
1338         /* Make sure min_perf_pct <= max_perf_pct */
1339         limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1340
1341         limits->min_perf = div_fp(int_tofp(limits->min_perf_pct),
1342                                   int_tofp(100));
1343         limits->max_perf = div_fp(int_tofp(limits->max_perf_pct),
1344                                   int_tofp(100));
1345
1346  out:
1347         intel_pstate_set_update_util_hook(policy->cpu);
1348
1349         if (hwp_active)
1350                 intel_pstate_hwp_set(policy->cpus);
1351
1352         return 0;
1353 }
1354
1355 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1356 {
1357         cpufreq_verify_within_cpu_limits(policy);
1358
1359         if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1360             policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1361                 return -EINVAL;
1362
1363         return 0;
1364 }
1365
1366 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1367 {
1368         int cpu_num = policy->cpu;
1369         struct cpudata *cpu = all_cpu_data[cpu_num];
1370
1371         pr_debug("intel_pstate: CPU %d exiting\n", cpu_num);
1372
1373         intel_pstate_clear_update_util_hook(cpu_num);
1374
1375         if (hwp_active)
1376                 return;
1377
1378         intel_pstate_set_min_pstate(cpu);
1379 }
1380
1381 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1382 {
1383         struct cpudata *cpu;
1384         int rc;
1385
1386         rc = intel_pstate_init_cpu(policy->cpu);
1387         if (rc)
1388                 return rc;
1389
1390         cpu = all_cpu_data[policy->cpu];
1391
1392         if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1393                 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1394         else
1395                 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1396
1397         policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1398         policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1399
1400         /* cpuinfo and default policy values */
1401         policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1402         policy->cpuinfo.max_freq =
1403                 cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1404         policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1405         cpumask_set_cpu(policy->cpu, policy->cpus);
1406
1407         return 0;
1408 }
1409
1410 static struct cpufreq_driver intel_pstate_driver = {
1411         .flags          = CPUFREQ_CONST_LOOPS,
1412         .verify         = intel_pstate_verify_policy,
1413         .setpolicy      = intel_pstate_set_policy,
1414         .get            = intel_pstate_get,
1415         .init           = intel_pstate_cpu_init,
1416         .stop_cpu       = intel_pstate_stop_cpu,
1417         .name           = "intel_pstate",
1418 };
1419
1420 static int __initdata no_load;
1421 static int __initdata no_hwp;
1422 static int __initdata hwp_only;
1423 static unsigned int force_load;
1424
1425 static int intel_pstate_msrs_not_valid(void)
1426 {
1427         if (!pstate_funcs.get_max() ||
1428             !pstate_funcs.get_min() ||
1429             !pstate_funcs.get_turbo())
1430                 return -ENODEV;
1431
1432         return 0;
1433 }
1434
1435 static void copy_pid_params(struct pstate_adjust_policy *policy)
1436 {
1437         pid_params.sample_rate_ms = policy->sample_rate_ms;
1438         pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
1439         pid_params.p_gain_pct = policy->p_gain_pct;
1440         pid_params.i_gain_pct = policy->i_gain_pct;
1441         pid_params.d_gain_pct = policy->d_gain_pct;
1442         pid_params.deadband = policy->deadband;
1443         pid_params.setpoint = policy->setpoint;
1444 }
1445
1446 static void copy_cpu_funcs(struct pstate_funcs *funcs)
1447 {
1448         pstate_funcs.get_max   = funcs->get_max;
1449         pstate_funcs.get_max_physical = funcs->get_max_physical;
1450         pstate_funcs.get_min   = funcs->get_min;
1451         pstate_funcs.get_turbo = funcs->get_turbo;
1452         pstate_funcs.get_scaling = funcs->get_scaling;
1453         pstate_funcs.get_val   = funcs->get_val;
1454         pstate_funcs.get_vid   = funcs->get_vid;
1455         pstate_funcs.get_target_pstate = funcs->get_target_pstate;
1456
1457 }
1458
1459 #if IS_ENABLED(CONFIG_ACPI)
1460 #include <acpi/processor.h>
1461
1462 static bool intel_pstate_no_acpi_pss(void)
1463 {
1464         int i;
1465
1466         for_each_possible_cpu(i) {
1467                 acpi_status status;
1468                 union acpi_object *pss;
1469                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1470                 struct acpi_processor *pr = per_cpu(processors, i);
1471
1472                 if (!pr)
1473                         continue;
1474
1475                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1476                 if (ACPI_FAILURE(status))
1477                         continue;
1478
1479                 pss = buffer.pointer;
1480                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1481                         kfree(pss);
1482                         return false;
1483                 }
1484
1485                 kfree(pss);
1486         }
1487
1488         return true;
1489 }
1490
1491 static bool intel_pstate_has_acpi_ppc(void)
1492 {
1493         int i;
1494
1495         for_each_possible_cpu(i) {
1496                 struct acpi_processor *pr = per_cpu(processors, i);
1497
1498                 if (!pr)
1499                         continue;
1500                 if (acpi_has_method(pr->handle, "_PPC"))
1501                         return true;
1502         }
1503         return false;
1504 }
1505
1506 enum {
1507         PSS,
1508         PPC,
1509 };
1510
1511 struct hw_vendor_info {
1512         u16  valid;
1513         char oem_id[ACPI_OEM_ID_SIZE];
1514         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1515         int  oem_pwr_table;
1516 };
1517
1518 /* Hardware vendor-specific info that has its own power management modes */
1519 static struct hw_vendor_info vendor_info[] = {
1520         {1, "HP    ", "ProLiant", PSS},
1521         {1, "ORACLE", "X4-2    ", PPC},
1522         {1, "ORACLE", "X4-2L   ", PPC},
1523         {1, "ORACLE", "X4-2B   ", PPC},
1524         {1, "ORACLE", "X3-2    ", PPC},
1525         {1, "ORACLE", "X3-2L   ", PPC},
1526         {1, "ORACLE", "X3-2B   ", PPC},
1527         {1, "ORACLE", "X4470M2 ", PPC},
1528         {1, "ORACLE", "X4270M3 ", PPC},
1529         {1, "ORACLE", "X4270M2 ", PPC},
1530         {1, "ORACLE", "X4170M2 ", PPC},
1531         {1, "ORACLE", "X4170 M3", PPC},
1532         {1, "ORACLE", "X4275 M3", PPC},
1533         {1, "ORACLE", "X6-2    ", PPC},
1534         {1, "ORACLE", "Sudbury ", PPC},
1535         {0, "", ""},
1536 };
1537
1538 static bool intel_pstate_platform_pwr_mgmt_exists(void)
1539 {
1540         struct acpi_table_header hdr;
1541         struct hw_vendor_info *v_info;
1542         const struct x86_cpu_id *id;
1543         u64 misc_pwr;
1544
1545         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1546         if (id) {
1547                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1548                 if ( misc_pwr & (1 << 8))
1549                         return true;
1550         }
1551
1552         if (acpi_disabled ||
1553             ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1554                 return false;
1555
1556         for (v_info = vendor_info; v_info->valid; v_info++) {
1557                 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1558                         !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1559                                                 ACPI_OEM_TABLE_ID_SIZE))
1560                         switch (v_info->oem_pwr_table) {
1561                         case PSS:
1562                                 return intel_pstate_no_acpi_pss();
1563                         case PPC:
1564                                 return intel_pstate_has_acpi_ppc() &&
1565                                         (!force_load);
1566                         }
1567         }
1568
1569         return false;
1570 }
1571 #else /* CONFIG_ACPI not enabled */
1572 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1573 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1574 #endif /* CONFIG_ACPI */
1575
1576 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
1577         { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
1578         {}
1579 };
1580
1581 static int __init intel_pstate_init(void)
1582 {
1583         int cpu, rc = 0;
1584         const struct x86_cpu_id *id;
1585         struct cpu_defaults *cpu_def;
1586
1587         if (no_load)
1588                 return -ENODEV;
1589
1590         if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
1591                 copy_cpu_funcs(&core_params.funcs);
1592                 hwp_active++;
1593                 goto hwp_cpu_matched;
1594         }
1595
1596         id = x86_match_cpu(intel_pstate_cpu_ids);
1597         if (!id)
1598                 return -ENODEV;
1599
1600         cpu_def = (struct cpu_defaults *)id->driver_data;
1601
1602         copy_pid_params(&cpu_def->pid_policy);
1603         copy_cpu_funcs(&cpu_def->funcs);
1604
1605         if (intel_pstate_msrs_not_valid())
1606                 return -ENODEV;
1607
1608 hwp_cpu_matched:
1609         /*
1610          * The Intel pstate driver will be ignored if the platform
1611          * firmware has its own power management modes.
1612          */
1613         if (intel_pstate_platform_pwr_mgmt_exists())
1614                 return -ENODEV;
1615
1616         pr_info("Intel P-state driver initializing.\n");
1617
1618         all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1619         if (!all_cpu_data)
1620                 return -ENOMEM;
1621
1622         if (!hwp_active && hwp_only)
1623                 goto out;
1624
1625         rc = cpufreq_register_driver(&intel_pstate_driver);
1626         if (rc)
1627                 goto out;
1628
1629         intel_pstate_debug_expose_params();
1630         intel_pstate_sysfs_expose_params();
1631
1632         if (hwp_active)
1633                 pr_info("intel_pstate: HWP enabled\n");
1634
1635         return rc;
1636 out:
1637         get_online_cpus();
1638         for_each_online_cpu(cpu) {
1639                 if (all_cpu_data[cpu]) {
1640                         intel_pstate_clear_update_util_hook(cpu);
1641                         kfree(all_cpu_data[cpu]);
1642                 }
1643         }
1644
1645         put_online_cpus();
1646         vfree(all_cpu_data);
1647         return -ENODEV;
1648 }
1649 device_initcall(intel_pstate_init);
1650
1651 static int __init intel_pstate_setup(char *str)
1652 {
1653         if (!str)
1654                 return -EINVAL;
1655
1656         if (!strcmp(str, "disable"))
1657                 no_load = 1;
1658         if (!strcmp(str, "no_hwp")) {
1659                 pr_info("intel_pstate: HWP disabled\n");
1660                 no_hwp = 1;
1661         }
1662         if (!strcmp(str, "force"))
1663                 force_load = 1;
1664         if (!strcmp(str, "hwp_only"))
1665                 hwp_only = 1;
1666         return 0;
1667 }
1668 early_param("intel_pstate", intel_pstate_setup);
1669
1670 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1671 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1672 MODULE_LICENSE("GPL");