Merge tag 'media/v6.9-1' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[linux-block.git] / drivers / cpufreq / cpufreq_ondemand.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  drivers/cpufreq/cpufreq_ondemand.c
4  *
5  *  Copyright (C)  2001 Russell King
6  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
7  *                      Jun Nakajima <jun.nakajima@intel.com>
8  */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/cpu.h>
13 #include <linux/percpu-defs.h>
14 #include <linux/slab.h>
15 #include <linux/tick.h>
16 #include <linux/sched/cpufreq.h>
17
18 #include "cpufreq_ondemand.h"
19
20 /* On-demand governor macros */
21 #define DEF_FREQUENCY_UP_THRESHOLD              (80)
22 #define DEF_SAMPLING_DOWN_FACTOR                (1)
23 #define MAX_SAMPLING_DOWN_FACTOR                (100000)
24 #define MICRO_FREQUENCY_UP_THRESHOLD            (95)
25 #define MIN_FREQUENCY_UP_THRESHOLD              (1)
26 #define MAX_FREQUENCY_UP_THRESHOLD              (100)
27
28 static struct od_ops od_ops;
29
30 static unsigned int default_powersave_bias;
31
32 /*
33  * Not all CPUs want IO time to be accounted as busy; this depends on how
34  * efficient idling at a higher frequency/voltage is.
35  * Pavel Machek says this is not so for various generations of AMD and old
36  * Intel systems.
37  * Mike Chan (android.com) claims this is also not true for ARM.
38  * Because of this, whitelist specific known (series) of CPUs by default, and
39  * leave all others up to the user.
40  */
41 static int should_io_be_busy(void)
42 {
43 #if defined(CONFIG_X86)
44         /*
45          * For Intel, Core 2 (model 15) and later have an efficient idle.
46          */
47         if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
48                         boot_cpu_data.x86 == 6 &&
49                         boot_cpu_data.x86_model >= 15)
50                 return 1;
51 #endif
52         return 0;
53 }
54
55 /*
56  * Find right freq to be set now with powersave_bias on.
57  * Returns the freq_hi to be used right now and will set freq_hi_delay_us,
58  * freq_lo, and freq_lo_delay_us in percpu area for averaging freqs.
59  */
60 static unsigned int generic_powersave_bias_target(struct cpufreq_policy *policy,
61                 unsigned int freq_next, unsigned int relation)
62 {
63         unsigned int freq_req, freq_reduc, freq_avg;
64         unsigned int freq_hi, freq_lo;
65         unsigned int index;
66         unsigned int delay_hi_us;
67         struct policy_dbs_info *policy_dbs = policy->governor_data;
68         struct od_policy_dbs_info *dbs_info = to_dbs_info(policy_dbs);
69         struct dbs_data *dbs_data = policy_dbs->dbs_data;
70         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
71         struct cpufreq_frequency_table *freq_table = policy->freq_table;
72
73         if (!freq_table) {
74                 dbs_info->freq_lo = 0;
75                 dbs_info->freq_lo_delay_us = 0;
76                 return freq_next;
77         }
78
79         index = cpufreq_frequency_table_target(policy, freq_next, relation);
80         freq_req = freq_table[index].frequency;
81         freq_reduc = freq_req * od_tuners->powersave_bias / 1000;
82         freq_avg = freq_req - freq_reduc;
83
84         /* Find freq bounds for freq_avg in freq_table */
85         index = cpufreq_table_find_index_h(policy, freq_avg,
86                                            relation & CPUFREQ_RELATION_E);
87         freq_lo = freq_table[index].frequency;
88         index = cpufreq_table_find_index_l(policy, freq_avg,
89                                            relation & CPUFREQ_RELATION_E);
90         freq_hi = freq_table[index].frequency;
91
92         /* Find out how long we have to be in hi and lo freqs */
93         if (freq_hi == freq_lo) {
94                 dbs_info->freq_lo = 0;
95                 dbs_info->freq_lo_delay_us = 0;
96                 return freq_lo;
97         }
98         delay_hi_us = (freq_avg - freq_lo) * dbs_data->sampling_rate;
99         delay_hi_us += (freq_hi - freq_lo) / 2;
100         delay_hi_us /= freq_hi - freq_lo;
101         dbs_info->freq_hi_delay_us = delay_hi_us;
102         dbs_info->freq_lo = freq_lo;
103         dbs_info->freq_lo_delay_us = dbs_data->sampling_rate - delay_hi_us;
104         return freq_hi;
105 }
106
107 static void ondemand_powersave_bias_init(struct cpufreq_policy *policy)
108 {
109         struct od_policy_dbs_info *dbs_info = to_dbs_info(policy->governor_data);
110
111         dbs_info->freq_lo = 0;
112 }
113
114 static void dbs_freq_increase(struct cpufreq_policy *policy, unsigned int freq)
115 {
116         struct policy_dbs_info *policy_dbs = policy->governor_data;
117         struct dbs_data *dbs_data = policy_dbs->dbs_data;
118         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
119
120         if (od_tuners->powersave_bias)
121                 freq = od_ops.powersave_bias_target(policy, freq,
122                                                     CPUFREQ_RELATION_HE);
123         else if (policy->cur == policy->max)
124                 return;
125
126         __cpufreq_driver_target(policy, freq, od_tuners->powersave_bias ?
127                         CPUFREQ_RELATION_LE : CPUFREQ_RELATION_HE);
128 }
129
130 /*
131  * Every sampling_rate, we check, if current idle time is less than 20%
132  * (default), then we try to increase frequency. Else, we adjust the frequency
133  * proportional to load.
134  */
135 static void od_update(struct cpufreq_policy *policy)
136 {
137         struct policy_dbs_info *policy_dbs = policy->governor_data;
138         struct od_policy_dbs_info *dbs_info = to_dbs_info(policy_dbs);
139         struct dbs_data *dbs_data = policy_dbs->dbs_data;
140         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
141         unsigned int load = dbs_update(policy);
142
143         dbs_info->freq_lo = 0;
144
145         /* Check for frequency increase */
146         if (load > dbs_data->up_threshold) {
147                 /* If switching to max speed, apply sampling_down_factor */
148                 if (policy->cur < policy->max)
149                         policy_dbs->rate_mult = dbs_data->sampling_down_factor;
150                 dbs_freq_increase(policy, policy->max);
151         } else {
152                 /* Calculate the next frequency proportional to load */
153                 unsigned int freq_next, min_f, max_f;
154
155                 min_f = policy->cpuinfo.min_freq;
156                 max_f = policy->cpuinfo.max_freq;
157                 freq_next = min_f + load * (max_f - min_f) / 100;
158
159                 /* No longer fully busy, reset rate_mult */
160                 policy_dbs->rate_mult = 1;
161
162                 if (od_tuners->powersave_bias)
163                         freq_next = od_ops.powersave_bias_target(policy,
164                                                                  freq_next,
165                                                                  CPUFREQ_RELATION_LE);
166
167                 __cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_CE);
168         }
169 }
170
171 static unsigned int od_dbs_update(struct cpufreq_policy *policy)
172 {
173         struct policy_dbs_info *policy_dbs = policy->governor_data;
174         struct dbs_data *dbs_data = policy_dbs->dbs_data;
175         struct od_policy_dbs_info *dbs_info = to_dbs_info(policy_dbs);
176         int sample_type = dbs_info->sample_type;
177
178         /* Common NORMAL_SAMPLE setup */
179         dbs_info->sample_type = OD_NORMAL_SAMPLE;
180         /*
181          * OD_SUB_SAMPLE doesn't make sense if sample_delay_ns is 0, so ignore
182          * it then.
183          */
184         if (sample_type == OD_SUB_SAMPLE && policy_dbs->sample_delay_ns > 0) {
185                 __cpufreq_driver_target(policy, dbs_info->freq_lo,
186                                         CPUFREQ_RELATION_HE);
187                 return dbs_info->freq_lo_delay_us;
188         }
189
190         od_update(policy);
191
192         if (dbs_info->freq_lo) {
193                 /* Setup SUB_SAMPLE */
194                 dbs_info->sample_type = OD_SUB_SAMPLE;
195                 return dbs_info->freq_hi_delay_us;
196         }
197
198         return dbs_data->sampling_rate * policy_dbs->rate_mult;
199 }
200
201 /************************** sysfs interface ************************/
202 static struct dbs_governor od_dbs_gov;
203
204 static ssize_t io_is_busy_store(struct gov_attr_set *attr_set, const char *buf,
205                                 size_t count)
206 {
207         struct dbs_data *dbs_data = to_dbs_data(attr_set);
208         unsigned int input;
209         int ret;
210
211         ret = sscanf(buf, "%u", &input);
212         if (ret != 1)
213                 return -EINVAL;
214         dbs_data->io_is_busy = !!input;
215
216         /* we need to re-evaluate prev_cpu_idle */
217         gov_update_cpu_data(dbs_data);
218
219         return count;
220 }
221
222 static ssize_t up_threshold_store(struct gov_attr_set *attr_set,
223                                   const char *buf, size_t count)
224 {
225         struct dbs_data *dbs_data = to_dbs_data(attr_set);
226         unsigned int input;
227         int ret;
228         ret = sscanf(buf, "%u", &input);
229
230         if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
231                         input < MIN_FREQUENCY_UP_THRESHOLD) {
232                 return -EINVAL;
233         }
234
235         dbs_data->up_threshold = input;
236         return count;
237 }
238
239 static ssize_t sampling_down_factor_store(struct gov_attr_set *attr_set,
240                                           const char *buf, size_t count)
241 {
242         struct dbs_data *dbs_data = to_dbs_data(attr_set);
243         struct policy_dbs_info *policy_dbs;
244         unsigned int input;
245         int ret;
246         ret = sscanf(buf, "%u", &input);
247
248         if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
249                 return -EINVAL;
250
251         dbs_data->sampling_down_factor = input;
252
253         /* Reset down sampling multiplier in case it was active */
254         list_for_each_entry(policy_dbs, &attr_set->policy_list, list) {
255                 /*
256                  * Doing this without locking might lead to using different
257                  * rate_mult values in od_update() and od_dbs_update().
258                  */
259                 mutex_lock(&policy_dbs->update_mutex);
260                 policy_dbs->rate_mult = 1;
261                 mutex_unlock(&policy_dbs->update_mutex);
262         }
263
264         return count;
265 }
266
267 static ssize_t ignore_nice_load_store(struct gov_attr_set *attr_set,
268                                       const char *buf, size_t count)
269 {
270         struct dbs_data *dbs_data = to_dbs_data(attr_set);
271         unsigned int input;
272         int ret;
273
274         ret = sscanf(buf, "%u", &input);
275         if (ret != 1)
276                 return -EINVAL;
277
278         if (input > 1)
279                 input = 1;
280
281         if (input == dbs_data->ignore_nice_load) { /* nothing to do */
282                 return count;
283         }
284         dbs_data->ignore_nice_load = input;
285
286         /* we need to re-evaluate prev_cpu_idle */
287         gov_update_cpu_data(dbs_data);
288
289         return count;
290 }
291
292 static ssize_t powersave_bias_store(struct gov_attr_set *attr_set,
293                                     const char *buf, size_t count)
294 {
295         struct dbs_data *dbs_data = to_dbs_data(attr_set);
296         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
297         struct policy_dbs_info *policy_dbs;
298         unsigned int input;
299         int ret;
300         ret = sscanf(buf, "%u", &input);
301
302         if (ret != 1)
303                 return -EINVAL;
304
305         if (input > 1000)
306                 input = 1000;
307
308         od_tuners->powersave_bias = input;
309
310         list_for_each_entry(policy_dbs, &attr_set->policy_list, list)
311                 ondemand_powersave_bias_init(policy_dbs->policy);
312
313         return count;
314 }
315
316 gov_show_one_common(sampling_rate);
317 gov_show_one_common(up_threshold);
318 gov_show_one_common(sampling_down_factor);
319 gov_show_one_common(ignore_nice_load);
320 gov_show_one_common(io_is_busy);
321 gov_show_one(od, powersave_bias);
322
323 gov_attr_rw(sampling_rate);
324 gov_attr_rw(io_is_busy);
325 gov_attr_rw(up_threshold);
326 gov_attr_rw(sampling_down_factor);
327 gov_attr_rw(ignore_nice_load);
328 gov_attr_rw(powersave_bias);
329
330 static struct attribute *od_attrs[] = {
331         &sampling_rate.attr,
332         &up_threshold.attr,
333         &sampling_down_factor.attr,
334         &ignore_nice_load.attr,
335         &powersave_bias.attr,
336         &io_is_busy.attr,
337         NULL
338 };
339 ATTRIBUTE_GROUPS(od);
340
341 /************************** sysfs end ************************/
342
343 static struct policy_dbs_info *od_alloc(void)
344 {
345         struct od_policy_dbs_info *dbs_info;
346
347         dbs_info = kzalloc(sizeof(*dbs_info), GFP_KERNEL);
348         return dbs_info ? &dbs_info->policy_dbs : NULL;
349 }
350
351 static void od_free(struct policy_dbs_info *policy_dbs)
352 {
353         kfree(to_dbs_info(policy_dbs));
354 }
355
356 static int od_init(struct dbs_data *dbs_data)
357 {
358         struct od_dbs_tuners *tuners;
359         u64 idle_time;
360         int cpu;
361
362         tuners = kzalloc(sizeof(*tuners), GFP_KERNEL);
363         if (!tuners)
364                 return -ENOMEM;
365
366         cpu = get_cpu();
367         idle_time = get_cpu_idle_time_us(cpu, NULL);
368         put_cpu();
369         if (idle_time != -1ULL) {
370                 /* Idle micro accounting is supported. Use finer thresholds */
371                 dbs_data->up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
372         } else {
373                 dbs_data->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
374         }
375
376         dbs_data->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
377         dbs_data->ignore_nice_load = 0;
378         tuners->powersave_bias = default_powersave_bias;
379         dbs_data->io_is_busy = should_io_be_busy();
380
381         dbs_data->tuners = tuners;
382         return 0;
383 }
384
385 static void od_exit(struct dbs_data *dbs_data)
386 {
387         kfree(dbs_data->tuners);
388 }
389
390 static void od_start(struct cpufreq_policy *policy)
391 {
392         struct od_policy_dbs_info *dbs_info = to_dbs_info(policy->governor_data);
393
394         dbs_info->sample_type = OD_NORMAL_SAMPLE;
395         ondemand_powersave_bias_init(policy);
396 }
397
398 static struct od_ops od_ops = {
399         .powersave_bias_target = generic_powersave_bias_target,
400 };
401
402 static struct dbs_governor od_dbs_gov = {
403         .gov = CPUFREQ_DBS_GOVERNOR_INITIALIZER("ondemand"),
404         .kobj_type = { .default_groups = od_groups },
405         .gov_dbs_update = od_dbs_update,
406         .alloc = od_alloc,
407         .free = od_free,
408         .init = od_init,
409         .exit = od_exit,
410         .start = od_start,
411 };
412
413 #define CPU_FREQ_GOV_ONDEMAND   (od_dbs_gov.gov)
414
415 static void od_set_powersave_bias(unsigned int powersave_bias)
416 {
417         unsigned int cpu;
418         cpumask_var_t done;
419
420         if (!alloc_cpumask_var(&done, GFP_KERNEL))
421                 return;
422
423         default_powersave_bias = powersave_bias;
424         cpumask_clear(done);
425
426         cpus_read_lock();
427         for_each_online_cpu(cpu) {
428                 struct cpufreq_policy *policy;
429                 struct policy_dbs_info *policy_dbs;
430                 struct dbs_data *dbs_data;
431                 struct od_dbs_tuners *od_tuners;
432
433                 if (cpumask_test_cpu(cpu, done))
434                         continue;
435
436                 policy = cpufreq_cpu_get_raw(cpu);
437                 if (!policy || policy->governor != &CPU_FREQ_GOV_ONDEMAND)
438                         continue;
439
440                 policy_dbs = policy->governor_data;
441                 if (!policy_dbs)
442                         continue;
443
444                 cpumask_or(done, done, policy->cpus);
445
446                 dbs_data = policy_dbs->dbs_data;
447                 od_tuners = dbs_data->tuners;
448                 od_tuners->powersave_bias = default_powersave_bias;
449         }
450         cpus_read_unlock();
451
452         free_cpumask_var(done);
453 }
454
455 void od_register_powersave_bias_handler(unsigned int (*f)
456                 (struct cpufreq_policy *, unsigned int, unsigned int),
457                 unsigned int powersave_bias)
458 {
459         od_ops.powersave_bias_target = f;
460         od_set_powersave_bias(powersave_bias);
461 }
462 EXPORT_SYMBOL_GPL(od_register_powersave_bias_handler);
463
464 void od_unregister_powersave_bias_handler(void)
465 {
466         od_ops.powersave_bias_target = generic_powersave_bias_target;
467         od_set_powersave_bias(0);
468 }
469 EXPORT_SYMBOL_GPL(od_unregister_powersave_bias_handler);
470
471 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
472 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
473 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
474         "Low Latency Frequency Transition capable processors");
475 MODULE_LICENSE("GPL");
476
477 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
478 struct cpufreq_governor *cpufreq_default_governor(void)
479 {
480         return &CPU_FREQ_GOV_ONDEMAND;
481 }
482 #endif
483
484 cpufreq_governor_init(CPU_FREQ_GOV_ONDEMAND);
485 cpufreq_governor_exit(CPU_FREQ_GOV_ONDEMAND);