cpufreq: governors: implement generic policy_is_shared
[linux-2.6-block.git] / drivers / cpufreq / cpufreq_conservative.c
1 /*
2  *  drivers/cpufreq/cpufreq_conservative.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *            (C)  2009 Alexander Clouter <alex@digriz.org.uk>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13
14 #include <linux/cpufreq.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/kobject.h>
19 #include <linux/module.h>
20 #include <linux/mutex.h>
21 #include <linux/notifier.h>
22 #include <linux/percpu-defs.h>
23 #include <linux/sysfs.h>
24 #include <linux/types.h>
25
26 #include "cpufreq_governor.h"
27
28 /* Conservative governor macors */
29 #define DEF_FREQUENCY_UP_THRESHOLD              (80)
30 #define DEF_FREQUENCY_DOWN_THRESHOLD            (20)
31 #define DEF_SAMPLING_DOWN_FACTOR                (1)
32 #define MAX_SAMPLING_DOWN_FACTOR                (10)
33
34 static struct dbs_data cs_dbs_data;
35 static DEFINE_PER_CPU(struct cs_cpu_dbs_info_s, cs_cpu_dbs_info);
36
37 static struct cs_dbs_tuners cs_tuners = {
38         .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
39         .down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
40         .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
41         .ignore_nice = 0,
42         .freq_step = 5,
43 };
44
45 /*
46  * Every sampling_rate, we check, if current idle time is less than 20%
47  * (default), then we try to increase frequency Every sampling_rate *
48  * sampling_down_factor, we check, if current idle time is more than 80%, then
49  * we try to decrease frequency
50  *
51  * Any frequency increase takes it to the maximum frequency. Frequency reduction
52  * happens at minimum steps of 5% (default) of maximum frequency
53  */
54 static void cs_check_cpu(int cpu, unsigned int load)
55 {
56         struct cs_cpu_dbs_info_s *dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
57         struct cpufreq_policy *policy = dbs_info->cdbs.cur_policy;
58         unsigned int freq_target;
59
60         /*
61          * break out if we 'cannot' reduce the speed as the user might
62          * want freq_step to be zero
63          */
64         if (cs_tuners.freq_step == 0)
65                 return;
66
67         /* Check for frequency increase */
68         if (load > cs_tuners.up_threshold) {
69                 dbs_info->down_skip = 0;
70
71                 /* if we are already at full speed then break out early */
72                 if (dbs_info->requested_freq == policy->max)
73                         return;
74
75                 freq_target = (cs_tuners.freq_step * policy->max) / 100;
76
77                 /* max freq cannot be less than 100. But who knows.... */
78                 if (unlikely(freq_target == 0))
79                         freq_target = 5;
80
81                 dbs_info->requested_freq += freq_target;
82                 if (dbs_info->requested_freq > policy->max)
83                         dbs_info->requested_freq = policy->max;
84
85                 __cpufreq_driver_target(policy, dbs_info->requested_freq,
86                         CPUFREQ_RELATION_H);
87                 return;
88         }
89
90         /*
91          * The optimal frequency is the frequency that is the lowest that can
92          * support the current CPU usage without triggering the up policy. To be
93          * safe, we focus 10 points under the threshold.
94          */
95         if (load < (cs_tuners.down_threshold - 10)) {
96                 freq_target = (cs_tuners.freq_step * policy->max) / 100;
97
98                 dbs_info->requested_freq -= freq_target;
99                 if (dbs_info->requested_freq < policy->min)
100                         dbs_info->requested_freq = policy->min;
101
102                 /*
103                  * if we cannot reduce the frequency anymore, break out early
104                  */
105                 if (policy->cur == policy->min)
106                         return;
107
108                 __cpufreq_driver_target(policy, dbs_info->requested_freq,
109                                 CPUFREQ_RELATION_H);
110                 return;
111         }
112 }
113
114 static void cs_timer_update(struct cs_cpu_dbs_info_s *dbs_info, bool sample,
115                             struct delayed_work *dw)
116 {
117         unsigned int cpu = dbs_info->cdbs.cpu;
118         int delay = delay_for_sampling_rate(cs_tuners.sampling_rate);
119
120         if (sample)
121                 dbs_check_cpu(&cs_dbs_data, cpu);
122
123         schedule_delayed_work_on(smp_processor_id(), dw, delay);
124 }
125
126 static void cs_timer_coordinated(struct cs_cpu_dbs_info_s *dbs_info_local,
127                                  struct delayed_work *dw)
128 {
129         struct cs_cpu_dbs_info_s *dbs_info;
130         ktime_t time_now;
131         s64 delta_us;
132         bool sample = true;
133
134         /* use leader CPU's dbs_info */
135         dbs_info = &per_cpu(cs_cpu_dbs_info, dbs_info_local->cdbs.cpu);
136         mutex_lock(&dbs_info->cdbs.timer_mutex);
137
138         time_now = ktime_get();
139         delta_us = ktime_us_delta(time_now, dbs_info->cdbs.time_stamp);
140
141         /* Do nothing if we recently have sampled */
142         if (delta_us < (s64)(cs_tuners.sampling_rate / 2))
143                 sample = false;
144         else
145                 dbs_info->cdbs.time_stamp = time_now;
146
147         cs_timer_update(dbs_info, sample, dw);
148         mutex_unlock(&dbs_info->cdbs.timer_mutex);
149 }
150
151 static void cs_dbs_timer(struct work_struct *work)
152 {
153         struct delayed_work *dw = to_delayed_work(work);
154         struct cs_cpu_dbs_info_s *dbs_info = container_of(work,
155                         struct cs_cpu_dbs_info_s, cdbs.work.work);
156
157         if (policy_is_shared(dbs_info->cdbs.cur_policy)) {
158                 cs_timer_coordinated(dbs_info, dw);
159         } else {
160                 mutex_lock(&dbs_info->cdbs.timer_mutex);
161                 cs_timer_update(dbs_info, true, dw);
162                 mutex_unlock(&dbs_info->cdbs.timer_mutex);
163         }
164 }
165 static int dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
166                 void *data)
167 {
168         struct cpufreq_freqs *freq = data;
169         struct cs_cpu_dbs_info_s *dbs_info =
170                                         &per_cpu(cs_cpu_dbs_info, freq->cpu);
171         struct cpufreq_policy *policy;
172
173         if (!dbs_info->enable)
174                 return 0;
175
176         policy = dbs_info->cdbs.cur_policy;
177
178         /*
179          * we only care if our internally tracked freq moves outside the 'valid'
180          * ranges of freqency available to us otherwise we do not change it
181         */
182         if (dbs_info->requested_freq > policy->max
183                         || dbs_info->requested_freq < policy->min)
184                 dbs_info->requested_freq = freq->new;
185
186         return 0;
187 }
188
189 /************************** sysfs interface ************************/
190 static ssize_t show_sampling_rate_min(struct kobject *kobj,
191                                       struct attribute *attr, char *buf)
192 {
193         return sprintf(buf, "%u\n", cs_dbs_data.min_sampling_rate);
194 }
195
196 static ssize_t store_sampling_down_factor(struct kobject *a,
197                                           struct attribute *b,
198                                           const char *buf, size_t count)
199 {
200         unsigned int input;
201         int ret;
202         ret = sscanf(buf, "%u", &input);
203
204         if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
205                 return -EINVAL;
206
207         cs_tuners.sampling_down_factor = input;
208         return count;
209 }
210
211 static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
212                                    const char *buf, size_t count)
213 {
214         unsigned int input;
215         int ret;
216         ret = sscanf(buf, "%u", &input);
217
218         if (ret != 1)
219                 return -EINVAL;
220
221         cs_tuners.sampling_rate = max(input, cs_dbs_data.min_sampling_rate);
222         return count;
223 }
224
225 static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
226                                   const char *buf, size_t count)
227 {
228         unsigned int input;
229         int ret;
230         ret = sscanf(buf, "%u", &input);
231
232         if (ret != 1 || input > 100 || input <= cs_tuners.down_threshold)
233                 return -EINVAL;
234
235         cs_tuners.up_threshold = input;
236         return count;
237 }
238
239 static ssize_t store_down_threshold(struct kobject *a, struct attribute *b,
240                                     const char *buf, size_t count)
241 {
242         unsigned int input;
243         int ret;
244         ret = sscanf(buf, "%u", &input);
245
246         /* cannot be lower than 11 otherwise freq will not fall */
247         if (ret != 1 || input < 11 || input > 100 ||
248                         input >= cs_tuners.up_threshold)
249                 return -EINVAL;
250
251         cs_tuners.down_threshold = input;
252         return count;
253 }
254
255 static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
256                                       const char *buf, size_t count)
257 {
258         unsigned int input, j;
259         int ret;
260
261         ret = sscanf(buf, "%u", &input);
262         if (ret != 1)
263                 return -EINVAL;
264
265         if (input > 1)
266                 input = 1;
267
268         if (input == cs_tuners.ignore_nice) /* nothing to do */
269                 return count;
270
271         cs_tuners.ignore_nice = input;
272
273         /* we need to re-evaluate prev_cpu_idle */
274         for_each_online_cpu(j) {
275                 struct cs_cpu_dbs_info_s *dbs_info;
276                 dbs_info = &per_cpu(cs_cpu_dbs_info, j);
277                 dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
278                                                 &dbs_info->cdbs.prev_cpu_wall);
279                 if (cs_tuners.ignore_nice)
280                         dbs_info->cdbs.prev_cpu_nice =
281                                 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
282         }
283         return count;
284 }
285
286 static ssize_t store_freq_step(struct kobject *a, struct attribute *b,
287                                const char *buf, size_t count)
288 {
289         unsigned int input;
290         int ret;
291         ret = sscanf(buf, "%u", &input);
292
293         if (ret != 1)
294                 return -EINVAL;
295
296         if (input > 100)
297                 input = 100;
298
299         /*
300          * no need to test here if freq_step is zero as the user might actually
301          * want this, they would be crazy though :)
302          */
303         cs_tuners.freq_step = input;
304         return count;
305 }
306
307 show_one(cs, sampling_rate, sampling_rate);
308 show_one(cs, sampling_down_factor, sampling_down_factor);
309 show_one(cs, up_threshold, up_threshold);
310 show_one(cs, down_threshold, down_threshold);
311 show_one(cs, ignore_nice_load, ignore_nice);
312 show_one(cs, freq_step, freq_step);
313
314 define_one_global_rw(sampling_rate);
315 define_one_global_rw(sampling_down_factor);
316 define_one_global_rw(up_threshold);
317 define_one_global_rw(down_threshold);
318 define_one_global_rw(ignore_nice_load);
319 define_one_global_rw(freq_step);
320 define_one_global_ro(sampling_rate_min);
321
322 static struct attribute *dbs_attributes[] = {
323         &sampling_rate_min.attr,
324         &sampling_rate.attr,
325         &sampling_down_factor.attr,
326         &up_threshold.attr,
327         &down_threshold.attr,
328         &ignore_nice_load.attr,
329         &freq_step.attr,
330         NULL
331 };
332
333 static struct attribute_group cs_attr_group = {
334         .attrs = dbs_attributes,
335         .name = "conservative",
336 };
337
338 /************************** sysfs end ************************/
339
340 define_get_cpu_dbs_routines(cs_cpu_dbs_info);
341
342 static struct notifier_block cs_cpufreq_notifier_block = {
343         .notifier_call = dbs_cpufreq_notifier,
344 };
345
346 static struct cs_ops cs_ops = {
347         .notifier_block = &cs_cpufreq_notifier_block,
348 };
349
350 static struct dbs_data cs_dbs_data = {
351         .governor = GOV_CONSERVATIVE,
352         .attr_group = &cs_attr_group,
353         .tuners = &cs_tuners,
354         .get_cpu_cdbs = get_cpu_cdbs,
355         .get_cpu_dbs_info_s = get_cpu_dbs_info_s,
356         .gov_dbs_timer = cs_dbs_timer,
357         .gov_check_cpu = cs_check_cpu,
358         .gov_ops = &cs_ops,
359 };
360
361 static int cs_cpufreq_governor_dbs(struct cpufreq_policy *policy,
362                                    unsigned int event)
363 {
364         return cpufreq_governor_dbs(&cs_dbs_data, policy, event);
365 }
366
367 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
368 static
369 #endif
370 struct cpufreq_governor cpufreq_gov_conservative = {
371         .name                   = "conservative",
372         .governor               = cs_cpufreq_governor_dbs,
373         .max_transition_latency = TRANSITION_LATENCY_LIMIT,
374         .owner                  = THIS_MODULE,
375 };
376
377 static int __init cpufreq_gov_dbs_init(void)
378 {
379         mutex_init(&cs_dbs_data.mutex);
380         return cpufreq_register_governor(&cpufreq_gov_conservative);
381 }
382
383 static void __exit cpufreq_gov_dbs_exit(void)
384 {
385         cpufreq_unregister_governor(&cpufreq_gov_conservative);
386 }
387
388 MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
389 MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
390                 "Low Latency Frequency Transition capable processors "
391                 "optimised for use in a battery environment");
392 MODULE_LICENSE("GPL");
393
394 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
395 fs_initcall(cpufreq_gov_dbs_init);
396 #else
397 module_init(cpufreq_gov_dbs_init);
398 #endif
399 module_exit(cpufreq_gov_dbs_exit);