4f7f9201598dc45c995b623097f202f75394f06f
[linux-2.6-block.git] / drivers / cpufreq / acpi-cpufreq.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * acpi-cpufreq.c - ACPI Processor P-States Driver
4  *
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
8  *  Copyright (C) 2006       Denis Sadykov <denis.m.sadykov@intel.com>
9  */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/sched.h>
18 #include <linux/cpufreq.h>
19 #include <linux/compiler.h>
20 #include <linux/dmi.h>
21 #include <linux/slab.h>
22 #include <linux/string_helpers.h>
23 #include <linux/platform_device.h>
24
25 #include <linux/acpi.h>
26 #include <linux/io.h>
27 #include <linux/delay.h>
28 #include <linux/uaccess.h>
29
30 #include <acpi/processor.h>
31 #include <acpi/cppc_acpi.h>
32
33 #include <asm/msr.h>
34 #include <asm/processor.h>
35 #include <asm/cpufeature.h>
36 #include <asm/cpu_device_id.h>
37
38 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
39 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
40 MODULE_LICENSE("GPL");
41
42 enum {
43         UNDEFINED_CAPABLE = 0,
44         SYSTEM_INTEL_MSR_CAPABLE,
45         SYSTEM_AMD_MSR_CAPABLE,
46         SYSTEM_IO_CAPABLE,
47 };
48
49 #define INTEL_MSR_RANGE         (0xffff)
50 #define AMD_MSR_RANGE           (0x7)
51 #define HYGON_MSR_RANGE         (0x7)
52
53 struct acpi_cpufreq_data {
54         unsigned int resume;
55         unsigned int cpu_feature;
56         unsigned int acpi_perf_cpu;
57         cpumask_var_t freqdomain_cpus;
58         void (*cpu_freq_write)(struct acpi_pct_register *reg, u32 val);
59         u32 (*cpu_freq_read)(struct acpi_pct_register *reg);
60 };
61
62 /* acpi_perf_data is a pointer to percpu data. */
63 static struct acpi_processor_performance __percpu *acpi_perf_data;
64
65 static inline struct acpi_processor_performance *to_perf_data(struct acpi_cpufreq_data *data)
66 {
67         return per_cpu_ptr(acpi_perf_data, data->acpi_perf_cpu);
68 }
69
70 static struct cpufreq_driver acpi_cpufreq_driver;
71
72 static unsigned int acpi_pstate_strict;
73
74 static bool boost_state(unsigned int cpu)
75 {
76         u64 msr;
77
78         switch (boot_cpu_data.x86_vendor) {
79         case X86_VENDOR_INTEL:
80         case X86_VENDOR_CENTAUR:
81         case X86_VENDOR_ZHAOXIN:
82                 rdmsrq_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &msr);
83                 return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
84         case X86_VENDOR_HYGON:
85         case X86_VENDOR_AMD:
86                 rdmsrq_on_cpu(cpu, MSR_K7_HWCR, &msr);
87                 return !(msr & MSR_K7_HWCR_CPB_DIS);
88         }
89         return false;
90 }
91
92 static int boost_set_msr(bool enable)
93 {
94         u32 msr_addr;
95         u64 msr_mask, val;
96
97         switch (boot_cpu_data.x86_vendor) {
98         case X86_VENDOR_INTEL:
99         case X86_VENDOR_CENTAUR:
100         case X86_VENDOR_ZHAOXIN:
101                 msr_addr = MSR_IA32_MISC_ENABLE;
102                 msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE;
103                 break;
104         case X86_VENDOR_HYGON:
105         case X86_VENDOR_AMD:
106                 msr_addr = MSR_K7_HWCR;
107                 msr_mask = MSR_K7_HWCR_CPB_DIS;
108                 break;
109         default:
110                 return -EINVAL;
111         }
112
113         rdmsrq(msr_addr, val);
114
115         if (enable)
116                 val &= ~msr_mask;
117         else
118                 val |= msr_mask;
119
120         wrmsrq(msr_addr, val);
121         return 0;
122 }
123
124 static void boost_set_msr_each(void *p_en)
125 {
126         bool enable = (bool) p_en;
127
128         boost_set_msr(enable);
129 }
130
131 static int set_boost(struct cpufreq_policy *policy, int val)
132 {
133         on_each_cpu_mask(policy->cpus, boost_set_msr_each,
134                          (void *)(long)val, 1);
135         pr_debug("CPU %*pbl: Core Boosting %s.\n",
136                  cpumask_pr_args(policy->cpus), str_enabled_disabled(val));
137
138         return 0;
139 }
140
141 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
142 {
143         struct acpi_cpufreq_data *data = policy->driver_data;
144
145         if (unlikely(!data))
146                 return -ENODEV;
147
148         return cpufreq_show_cpus(data->freqdomain_cpus, buf);
149 }
150
151 cpufreq_freq_attr_ro(freqdomain_cpus);
152
153 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
154 static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
155                          size_t count)
156 {
157         int ret;
158         unsigned int val = 0;
159
160         if (!acpi_cpufreq_driver.set_boost)
161                 return -EINVAL;
162
163         ret = kstrtouint(buf, 10, &val);
164         if (ret || val > 1)
165                 return -EINVAL;
166
167         cpus_read_lock();
168         set_boost(policy, val);
169         cpus_read_unlock();
170
171         return count;
172 }
173
174 static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
175 {
176         return sprintf(buf, "%u\n", acpi_cpufreq_driver.boost_enabled);
177 }
178
179 cpufreq_freq_attr_rw(cpb);
180 #endif
181
182 static int check_est_cpu(unsigned int cpuid)
183 {
184         struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
185
186         return cpu_has(cpu, X86_FEATURE_EST);
187 }
188
189 static int check_amd_hwpstate_cpu(unsigned int cpuid)
190 {
191         struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
192
193         return cpu_has(cpu, X86_FEATURE_HW_PSTATE);
194 }
195
196 static unsigned extract_io(struct cpufreq_policy *policy, u32 value)
197 {
198         struct acpi_cpufreq_data *data = policy->driver_data;
199         struct acpi_processor_performance *perf;
200         int i;
201
202         perf = to_perf_data(data);
203
204         for (i = 0; i < perf->state_count; i++) {
205                 if (value == perf->states[i].status)
206                         return policy->freq_table[i].frequency;
207         }
208         return 0;
209 }
210
211 static unsigned extract_msr(struct cpufreq_policy *policy, u32 msr)
212 {
213         struct acpi_cpufreq_data *data = policy->driver_data;
214         struct cpufreq_frequency_table *pos;
215         struct acpi_processor_performance *perf;
216
217         if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
218                 msr &= AMD_MSR_RANGE;
219         else if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
220                 msr &= HYGON_MSR_RANGE;
221         else
222                 msr &= INTEL_MSR_RANGE;
223
224         perf = to_perf_data(data);
225
226         cpufreq_for_each_entry(pos, policy->freq_table)
227                 if (msr == perf->states[pos->driver_data].status)
228                         return pos->frequency;
229         return policy->freq_table[0].frequency;
230 }
231
232 static unsigned extract_freq(struct cpufreq_policy *policy, u32 val)
233 {
234         struct acpi_cpufreq_data *data = policy->driver_data;
235
236         switch (data->cpu_feature) {
237         case SYSTEM_INTEL_MSR_CAPABLE:
238         case SYSTEM_AMD_MSR_CAPABLE:
239                 return extract_msr(policy, val);
240         case SYSTEM_IO_CAPABLE:
241                 return extract_io(policy, val);
242         default:
243                 return 0;
244         }
245 }
246
247 static u32 cpu_freq_read_intel(struct acpi_pct_register *not_used)
248 {
249         u32 val, dummy __always_unused;
250
251         rdmsr(MSR_IA32_PERF_CTL, val, dummy);
252         return val;
253 }
254
255 static void cpu_freq_write_intel(struct acpi_pct_register *not_used, u32 val)
256 {
257         u32 lo, hi;
258
259         rdmsr(MSR_IA32_PERF_CTL, lo, hi);
260         lo = (lo & ~INTEL_MSR_RANGE) | (val & INTEL_MSR_RANGE);
261         wrmsr(MSR_IA32_PERF_CTL, lo, hi);
262 }
263
264 static u32 cpu_freq_read_amd(struct acpi_pct_register *not_used)
265 {
266         u32 val, dummy __always_unused;
267
268         rdmsr(MSR_AMD_PERF_CTL, val, dummy);
269         return val;
270 }
271
272 static void cpu_freq_write_amd(struct acpi_pct_register *not_used, u32 val)
273 {
274         wrmsr(MSR_AMD_PERF_CTL, val, 0);
275 }
276
277 static u32 cpu_freq_read_io(struct acpi_pct_register *reg)
278 {
279         u32 val;
280
281         acpi_os_read_port(reg->address, &val, reg->bit_width);
282         return val;
283 }
284
285 static void cpu_freq_write_io(struct acpi_pct_register *reg, u32 val)
286 {
287         acpi_os_write_port(reg->address, val, reg->bit_width);
288 }
289
290 struct drv_cmd {
291         struct acpi_pct_register *reg;
292         u32 val;
293         union {
294                 void (*write)(struct acpi_pct_register *reg, u32 val);
295                 u32 (*read)(struct acpi_pct_register *reg);
296         } func;
297 };
298
299 /* Called via smp_call_function_single(), on the target CPU */
300 static void do_drv_read(void *_cmd)
301 {
302         struct drv_cmd *cmd = _cmd;
303
304         cmd->val = cmd->func.read(cmd->reg);
305 }
306
307 static u32 drv_read(struct acpi_cpufreq_data *data, const struct cpumask *mask)
308 {
309         struct acpi_processor_performance *perf = to_perf_data(data);
310         struct drv_cmd cmd = {
311                 .reg = &perf->control_register,
312                 .func.read = data->cpu_freq_read,
313         };
314         int err;
315
316         err = smp_call_function_any(mask, do_drv_read, &cmd, 1);
317         WARN_ON_ONCE(err);      /* smp_call_function_any() was buggy? */
318         return cmd.val;
319 }
320
321 /* Called via smp_call_function_many(), on the target CPUs */
322 static void do_drv_write(void *_cmd)
323 {
324         struct drv_cmd *cmd = _cmd;
325
326         cmd->func.write(cmd->reg, cmd->val);
327 }
328
329 static void drv_write(struct acpi_cpufreq_data *data,
330                       const struct cpumask *mask, u32 val)
331 {
332         struct acpi_processor_performance *perf = to_perf_data(data);
333         struct drv_cmd cmd = {
334                 .reg = &perf->control_register,
335                 .val = val,
336                 .func.write = data->cpu_freq_write,
337         };
338         int this_cpu;
339
340         this_cpu = get_cpu();
341         if (cpumask_test_cpu(this_cpu, mask))
342                 do_drv_write(&cmd);
343
344         smp_call_function_many(mask, do_drv_write, &cmd, 1);
345         put_cpu();
346 }
347
348 static u32 get_cur_val(const struct cpumask *mask, struct acpi_cpufreq_data *data)
349 {
350         u32 val;
351
352         if (unlikely(cpumask_empty(mask)))
353                 return 0;
354
355         val = drv_read(data, mask);
356
357         pr_debug("%s = %u\n", __func__, val);
358
359         return val;
360 }
361
362 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
363 {
364         struct acpi_cpufreq_data *data;
365         struct cpufreq_policy *policy;
366         unsigned int freq;
367         unsigned int cached_freq;
368
369         pr_debug("%s (%d)\n", __func__, cpu);
370
371         policy = cpufreq_cpu_get_raw(cpu);
372         if (unlikely(!policy))
373                 return 0;
374
375         data = policy->driver_data;
376         if (unlikely(!data || !policy->freq_table))
377                 return 0;
378
379         cached_freq = policy->freq_table[to_perf_data(data)->state].frequency;
380         freq = extract_freq(policy, get_cur_val(cpumask_of(cpu), data));
381         if (freq != cached_freq) {
382                 /*
383                  * The dreaded BIOS frequency change behind our back.
384                  * Force set the frequency on next target call.
385                  */
386                 data->resume = 1;
387         }
388
389         pr_debug("cur freq = %u\n", freq);
390
391         return freq;
392 }
393
394 static unsigned int check_freqs(struct cpufreq_policy *policy,
395                                 const struct cpumask *mask, unsigned int freq)
396 {
397         struct acpi_cpufreq_data *data = policy->driver_data;
398         unsigned int cur_freq;
399         unsigned int i;
400
401         for (i = 0; i < 100; i++) {
402                 cur_freq = extract_freq(policy, get_cur_val(mask, data));
403                 if (cur_freq == freq)
404                         return 1;
405                 udelay(10);
406         }
407         return 0;
408 }
409
410 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
411                                unsigned int index)
412 {
413         struct acpi_cpufreq_data *data = policy->driver_data;
414         struct acpi_processor_performance *perf;
415         const struct cpumask *mask;
416         unsigned int next_perf_state = 0; /* Index into perf table */
417         int result = 0;
418
419         if (unlikely(!data)) {
420                 return -ENODEV;
421         }
422
423         perf = to_perf_data(data);
424         next_perf_state = policy->freq_table[index].driver_data;
425         if (perf->state == next_perf_state) {
426                 if (unlikely(data->resume)) {
427                         pr_debug("Called after resume, resetting to P%d\n",
428                                 next_perf_state);
429                         data->resume = 0;
430                 } else {
431                         pr_debug("Already at target state (P%d)\n",
432                                 next_perf_state);
433                         return 0;
434                 }
435         }
436
437         /*
438          * The core won't allow CPUs to go away until the governor has been
439          * stopped, so we can rely on the stability of policy->cpus.
440          */
441         mask = policy->shared_type == CPUFREQ_SHARED_TYPE_ANY ?
442                 cpumask_of(policy->cpu) : policy->cpus;
443
444         drv_write(data, mask, perf->states[next_perf_state].control);
445
446         if (acpi_pstate_strict) {
447                 if (!check_freqs(policy, mask,
448                                  policy->freq_table[index].frequency)) {
449                         pr_debug("%s (%d)\n", __func__, policy->cpu);
450                         result = -EAGAIN;
451                 }
452         }
453
454         if (!result)
455                 perf->state = next_perf_state;
456
457         return result;
458 }
459
460 static unsigned int acpi_cpufreq_fast_switch(struct cpufreq_policy *policy,
461                                              unsigned int target_freq)
462 {
463         struct acpi_cpufreq_data *data = policy->driver_data;
464         struct acpi_processor_performance *perf;
465         struct cpufreq_frequency_table *entry;
466         unsigned int next_perf_state, next_freq, index;
467
468         /*
469          * Find the closest frequency above target_freq.
470          */
471         if (policy->cached_target_freq == target_freq)
472                 index = policy->cached_resolved_idx;
473         else
474                 index = cpufreq_table_find_index_dl(policy, target_freq,
475                                                     false);
476
477         entry = &policy->freq_table[index];
478         next_freq = entry->frequency;
479         next_perf_state = entry->driver_data;
480
481         perf = to_perf_data(data);
482         if (perf->state == next_perf_state) {
483                 if (unlikely(data->resume))
484                         data->resume = 0;
485                 else
486                         return next_freq;
487         }
488
489         data->cpu_freq_write(&perf->control_register,
490                              perf->states[next_perf_state].control);
491         perf->state = next_perf_state;
492         return next_freq;
493 }
494
495 static unsigned long
496 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
497 {
498         struct acpi_processor_performance *perf;
499
500         perf = to_perf_data(data);
501         if (cpu_khz) {
502                 /* search the closest match to cpu_khz */
503                 unsigned int i;
504                 unsigned long freq;
505                 unsigned long freqn = perf->states[0].core_frequency * 1000;
506
507                 for (i = 0; i < (perf->state_count-1); i++) {
508                         freq = freqn;
509                         freqn = perf->states[i+1].core_frequency * 1000;
510                         if ((2 * cpu_khz) > (freqn + freq)) {
511                                 perf->state = i;
512                                 return freq;
513                         }
514                 }
515                 perf->state = perf->state_count-1;
516                 return freqn;
517         } else {
518                 /* assume CPU is at P0... */
519                 perf->state = 0;
520                 return perf->states[0].core_frequency * 1000;
521         }
522 }
523
524 static void free_acpi_perf_data(void)
525 {
526         unsigned int i;
527
528         /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
529         for_each_possible_cpu(i)
530                 free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
531                                  ->shared_cpu_map);
532         free_percpu(acpi_perf_data);
533 }
534
535 static int cpufreq_boost_down_prep(unsigned int cpu)
536 {
537         /*
538          * Clear the boost-disable bit on the CPU_DOWN path so that
539          * this cpu cannot block the remaining ones from boosting.
540          */
541         return boost_set_msr(1);
542 }
543
544 /*
545  * acpi_cpufreq_early_init - initialize ACPI P-States library
546  *
547  * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
548  * in order to determine correct frequency and voltage pairings. We can
549  * do _PDC and _PSD and find out the processor dependency for the
550  * actual init that will happen later...
551  */
552 static int __init acpi_cpufreq_early_init(void)
553 {
554         unsigned int i;
555         pr_debug("%s\n", __func__);
556
557         acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
558         if (!acpi_perf_data) {
559                 pr_debug("Memory allocation error for acpi_perf_data.\n");
560                 return -ENOMEM;
561         }
562         for_each_possible_cpu(i) {
563                 if (!zalloc_cpumask_var_node(
564                         &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
565                         GFP_KERNEL, cpu_to_node(i))) {
566
567                         /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
568                         free_acpi_perf_data();
569                         return -ENOMEM;
570                 }
571         }
572
573         /* Do initialization in ACPI core */
574         acpi_processor_preregister_performance(acpi_perf_data);
575         return 0;
576 }
577
578 #ifdef CONFIG_SMP
579 /*
580  * Some BIOSes do SW_ANY coordination internally, either set it up in hw
581  * or do it in BIOS firmware and won't inform about it to OS. If not
582  * detected, this has a side effect of making CPU run at a different speed
583  * than OS intended it to run at. Detect it and handle it cleanly.
584  */
585 static int bios_with_sw_any_bug;
586
587 static int sw_any_bug_found(const struct dmi_system_id *d)
588 {
589         bios_with_sw_any_bug = 1;
590         return 0;
591 }
592
593 static const struct dmi_system_id sw_any_bug_dmi_table[] = {
594         {
595                 .callback = sw_any_bug_found,
596                 .ident = "Supermicro Server X6DLP",
597                 .matches = {
598                         DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
599                         DMI_MATCH(DMI_BIOS_VERSION, "080010"),
600                         DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
601                 },
602         },
603         { }
604 };
605
606 static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
607 {
608         /* Intel Xeon Processor 7100 Series Specification Update
609          * https://www.intel.com/Assets/PDF/specupdate/314554.pdf
610          * AL30: A Machine Check Exception (MCE) Occurring during an
611          * Enhanced Intel SpeedStep Technology Ratio Change May Cause
612          * Both Processor Cores to Lock Up. */
613         if (c->x86_vendor == X86_VENDOR_INTEL) {
614                 if ((c->x86 == 15) &&
615                     (c->x86_model == 6) &&
616                     (c->x86_stepping == 8)) {
617                         pr_info("Intel(R) Xeon(R) 7100 Errata AL30, processors may lock up on frequency changes: disabling acpi-cpufreq\n");
618                         return -ENODEV;
619                     }
620                 }
621         return 0;
622 }
623 #endif
624
625 #ifdef CONFIG_ACPI_CPPC_LIB
626 /*
627  * get_max_boost_ratio: Computes the max_boost_ratio as the ratio
628  * between the highest_perf and the nominal_perf.
629  *
630  * Returns the max_boost_ratio for @cpu. Returns the CPPC nominal
631  * frequency via @nominal_freq if it is non-NULL pointer.
632  */
633 static u64 get_max_boost_ratio(unsigned int cpu, u64 *nominal_freq)
634 {
635         struct cppc_perf_caps perf_caps;
636         u64 highest_perf, nominal_perf;
637         int ret;
638
639         if (acpi_pstate_strict)
640                 return 0;
641
642         ret = cppc_get_perf_caps(cpu, &perf_caps);
643         if (ret) {
644                 pr_debug("CPU%d: Unable to get performance capabilities (%d)\n",
645                          cpu, ret);
646                 return 0;
647         }
648
649         if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) {
650                 ret = amd_get_boost_ratio_numerator(cpu, &highest_perf);
651                 if (ret) {
652                         pr_debug("CPU%d: Unable to get boost ratio numerator (%d)\n",
653                                  cpu, ret);
654                         return 0;
655                 }
656         } else {
657                 highest_perf = perf_caps.highest_perf;
658         }
659
660         nominal_perf = perf_caps.nominal_perf;
661
662         if (nominal_freq)
663                 *nominal_freq = perf_caps.nominal_freq * 1000;
664
665         if (!highest_perf || !nominal_perf) {
666                 pr_debug("CPU%d: highest or nominal performance missing\n", cpu);
667                 return 0;
668         }
669
670         if (highest_perf < nominal_perf) {
671                 pr_debug("CPU%d: nominal performance above highest\n", cpu);
672                 return 0;
673         }
674
675         return div_u64(highest_perf << SCHED_CAPACITY_SHIFT, nominal_perf);
676 }
677
678 #else
679 static inline u64 get_max_boost_ratio(unsigned int cpu, u64 *nominal_freq)
680 {
681         return 0;
682 }
683 #endif
684
685 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
686 {
687         struct cpufreq_frequency_table *freq_table;
688         struct acpi_processor_performance *perf;
689         struct acpi_cpufreq_data *data;
690         unsigned int cpu = policy->cpu;
691         struct cpuinfo_x86 *c = &cpu_data(cpu);
692         u64 max_boost_ratio, nominal_freq = 0;
693         unsigned int valid_states = 0;
694         unsigned int result = 0;
695         unsigned int i;
696 #ifdef CONFIG_SMP
697         static int blacklisted;
698 #endif
699
700         pr_debug("%s\n", __func__);
701
702 #ifdef CONFIG_SMP
703         if (blacklisted)
704                 return blacklisted;
705         blacklisted = acpi_cpufreq_blacklist(c);
706         if (blacklisted)
707                 return blacklisted;
708 #endif
709
710         data = kzalloc(sizeof(*data), GFP_KERNEL);
711         if (!data)
712                 return -ENOMEM;
713
714         if (!zalloc_cpumask_var(&data->freqdomain_cpus, GFP_KERNEL)) {
715                 result = -ENOMEM;
716                 goto err_free;
717         }
718
719         perf = per_cpu_ptr(acpi_perf_data, cpu);
720         data->acpi_perf_cpu = cpu;
721         policy->driver_data = data;
722
723         if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
724                 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
725
726         result = acpi_processor_register_performance(perf, cpu);
727         if (result)
728                 goto err_free_mask;
729
730         policy->shared_type = perf->shared_type;
731
732         /*
733          * Will let policy->cpus know about dependency only when software
734          * coordination is required.
735          */
736         if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
737             policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
738                 cpumask_copy(policy->cpus, perf->shared_cpu_map);
739         }
740         cpumask_copy(data->freqdomain_cpus, perf->shared_cpu_map);
741
742 #ifdef CONFIG_SMP
743         dmi_check_system(sw_any_bug_dmi_table);
744         if (bios_with_sw_any_bug && !policy_is_shared(policy)) {
745                 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
746                 cpumask_copy(policy->cpus, topology_core_cpumask(cpu));
747         }
748
749         if (check_amd_hwpstate_cpu(cpu) && boot_cpu_data.x86 < 0x19 &&
750             !acpi_pstate_strict) {
751                 cpumask_clear(policy->cpus);
752                 cpumask_set_cpu(cpu, policy->cpus);
753                 cpumask_copy(data->freqdomain_cpus,
754                              topology_sibling_cpumask(cpu));
755                 policy->shared_type = CPUFREQ_SHARED_TYPE_HW;
756                 pr_info_once("overriding BIOS provided _PSD data\n");
757         }
758 #endif
759
760         /* capability check */
761         if (perf->state_count <= 1) {
762                 pr_debug("No P-States\n");
763                 result = -ENODEV;
764                 goto err_unreg;
765         }
766
767         if (perf->control_register.space_id != perf->status_register.space_id) {
768                 result = -ENODEV;
769                 goto err_unreg;
770         }
771
772         switch (perf->control_register.space_id) {
773         case ACPI_ADR_SPACE_SYSTEM_IO:
774                 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
775                     boot_cpu_data.x86 == 0xf) {
776                         pr_debug("AMD K8 systems must use native drivers.\n");
777                         result = -ENODEV;
778                         goto err_unreg;
779                 }
780                 pr_debug("SYSTEM IO addr space\n");
781                 data->cpu_feature = SYSTEM_IO_CAPABLE;
782                 data->cpu_freq_read = cpu_freq_read_io;
783                 data->cpu_freq_write = cpu_freq_write_io;
784                 break;
785         case ACPI_ADR_SPACE_FIXED_HARDWARE:
786                 pr_debug("HARDWARE addr space\n");
787                 if (check_est_cpu(cpu)) {
788                         data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
789                         data->cpu_freq_read = cpu_freq_read_intel;
790                         data->cpu_freq_write = cpu_freq_write_intel;
791                         break;
792                 }
793                 if (check_amd_hwpstate_cpu(cpu)) {
794                         data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE;
795                         data->cpu_freq_read = cpu_freq_read_amd;
796                         data->cpu_freq_write = cpu_freq_write_amd;
797                         break;
798                 }
799                 result = -ENODEV;
800                 goto err_unreg;
801         default:
802                 pr_debug("Unknown addr space %d\n",
803                         (u32) (perf->control_register.space_id));
804                 result = -ENODEV;
805                 goto err_unreg;
806         }
807
808         freq_table = kcalloc(perf->state_count + 1, sizeof(*freq_table),
809                              GFP_KERNEL);
810         if (!freq_table) {
811                 result = -ENOMEM;
812                 goto err_unreg;
813         }
814
815         /* detect transition latency */
816         policy->cpuinfo.transition_latency = 0;
817         for (i = 0; i < perf->state_count; i++) {
818                 if ((perf->states[i].transition_latency * 1000) >
819                     policy->cpuinfo.transition_latency)
820                         policy->cpuinfo.transition_latency =
821                             perf->states[i].transition_latency * 1000;
822         }
823
824         /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
825         if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
826             policy->cpuinfo.transition_latency > 20 * 1000) {
827                 policy->cpuinfo.transition_latency = 20 * 1000;
828                 pr_info_once("P-state transition latency capped at 20 uS\n");
829         }
830
831         /* table init */
832         for (i = 0; i < perf->state_count; i++) {
833                 if (i > 0 && perf->states[i].core_frequency >=
834                     freq_table[valid_states-1].frequency / 1000)
835                         continue;
836
837                 freq_table[valid_states].driver_data = i;
838                 freq_table[valid_states].frequency =
839                     perf->states[i].core_frequency * 1000;
840                 valid_states++;
841         }
842         freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
843
844         max_boost_ratio = get_max_boost_ratio(cpu, &nominal_freq);
845         if (max_boost_ratio) {
846                 unsigned int freq = nominal_freq;
847
848                 /*
849                  * The loop above sorts the freq_table entries in the
850                  * descending order. If ACPI CPPC has not advertised
851                  * the nominal frequency (this is possible in CPPC
852                  * revisions prior to 3), then use the first entry in
853                  * the pstate table as a proxy for nominal frequency.
854                  */
855                 if (!freq)
856                         freq = freq_table[0].frequency;
857
858                 policy->cpuinfo.max_freq = freq * max_boost_ratio >> SCHED_CAPACITY_SHIFT;
859         } else {
860                 /*
861                  * If the maximum "boost" frequency is unknown, ask the arch
862                  * scale-invariance code to use the "nominal" performance for
863                  * CPU utilization scaling so as to prevent the schedutil
864                  * governor from selecting inadequate CPU frequencies.
865                  */
866                 arch_set_max_freq_ratio(true);
867         }
868
869         policy->freq_table = freq_table;
870         perf->state = 0;
871
872         switch (perf->control_register.space_id) {
873         case ACPI_ADR_SPACE_SYSTEM_IO:
874                 /*
875                  * The core will not set policy->cur, because
876                  * cpufreq_driver->get is NULL, so we need to set it here.
877                  * However, we have to guess it, because the current speed is
878                  * unknown and not detectable via IO ports.
879                  */
880                 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
881                 break;
882         case ACPI_ADR_SPACE_FIXED_HARDWARE:
883                 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
884                 break;
885         default:
886                 break;
887         }
888
889         /* notify BIOS that we exist */
890         acpi_processor_notify_smm(THIS_MODULE);
891
892         pr_debug("CPU%u - ACPI performance management activated.\n", cpu);
893         for (i = 0; i < perf->state_count; i++)
894                 pr_debug("     %cP%d: %d MHz, %d mW, %d uS\n",
895                         (i == perf->state ? '*' : ' '), i,
896                         (u32) perf->states[i].core_frequency,
897                         (u32) perf->states[i].power,
898                         (u32) perf->states[i].transition_latency);
899
900         /*
901          * the first call to ->target() should result in us actually
902          * writing something to the appropriate registers.
903          */
904         data->resume = 1;
905
906         policy->fast_switch_possible = !acpi_pstate_strict &&
907                 !(policy_is_shared(policy) && policy->shared_type != CPUFREQ_SHARED_TYPE_ANY);
908
909         if (perf->states[0].core_frequency * 1000 != freq_table[0].frequency)
910                 pr_warn(FW_WARN "P-state 0 is not max freq\n");
911
912         if (acpi_cpufreq_driver.set_boost) {
913                 if (policy->boost_supported) {
914                         /*
915                          * The firmware may have altered boost state while the
916                          * CPU was offline (for example during a suspend-resume
917                          * cycle).
918                          */
919                         if (policy->boost_enabled != boost_state(cpu))
920                                 set_boost(policy, policy->boost_enabled);
921                 } else {
922                         policy->boost_supported = true;
923                 }
924         }
925
926         return result;
927
928 err_unreg:
929         acpi_processor_unregister_performance(cpu);
930 err_free_mask:
931         free_cpumask_var(data->freqdomain_cpus);
932 err_free:
933         kfree(data);
934         policy->driver_data = NULL;
935
936         return result;
937 }
938
939 static void acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
940 {
941         struct acpi_cpufreq_data *data = policy->driver_data;
942
943         pr_debug("%s\n", __func__);
944
945         cpufreq_boost_down_prep(policy->cpu);
946         policy->fast_switch_possible = false;
947         policy->driver_data = NULL;
948         acpi_processor_unregister_performance(data->acpi_perf_cpu);
949         free_cpumask_var(data->freqdomain_cpus);
950         kfree(policy->freq_table);
951         kfree(data);
952 }
953
954 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
955 {
956         struct acpi_cpufreq_data *data = policy->driver_data;
957
958         pr_debug("%s\n", __func__);
959
960         data->resume = 1;
961
962         return 0;
963 }
964
965 static struct freq_attr *acpi_cpufreq_attr[] = {
966         &freqdomain_cpus,
967 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
968         &cpb,
969 #endif
970         NULL,
971 };
972
973 static struct cpufreq_driver acpi_cpufreq_driver = {
974         .verify         = cpufreq_generic_frequency_table_verify,
975         .target_index   = acpi_cpufreq_target,
976         .fast_switch    = acpi_cpufreq_fast_switch,
977         .bios_limit     = acpi_processor_get_bios_limit,
978         .init           = acpi_cpufreq_cpu_init,
979         .exit           = acpi_cpufreq_cpu_exit,
980         .resume         = acpi_cpufreq_resume,
981         .name           = "acpi-cpufreq",
982         .attr           = acpi_cpufreq_attr,
983 };
984
985 static void __init acpi_cpufreq_boost_init(void)
986 {
987         if (!(boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA))) {
988                 pr_debug("Boost capabilities not present in the processor\n");
989                 return;
990         }
991
992         acpi_cpufreq_driver.set_boost = set_boost;
993         acpi_cpufreq_driver.boost_enabled = boost_state(0);
994 }
995
996 static int __init acpi_cpufreq_probe(struct platform_device *pdev)
997 {
998         int ret;
999
1000         if (acpi_disabled)
1001                 return -ENODEV;
1002
1003         /* don't keep reloading if cpufreq_driver exists */
1004         if (cpufreq_get_current_driver())
1005                 return -ENODEV;
1006
1007         pr_debug("%s\n", __func__);
1008
1009         ret = acpi_cpufreq_early_init();
1010         if (ret)
1011                 return ret;
1012
1013 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
1014         /* this is a sysfs file with a strange name and an even stranger
1015          * semantic - per CPU instantiation, but system global effect.
1016          * Lets enable it only on AMD CPUs for compatibility reasons and
1017          * only if configured. This is considered legacy code, which
1018          * will probably be removed at some point in the future.
1019          */
1020         if (!check_amd_hwpstate_cpu(0)) {
1021                 struct freq_attr **attr;
1022
1023                 pr_debug("CPB unsupported, do not expose it\n");
1024
1025                 for (attr = acpi_cpufreq_attr; *attr; attr++)
1026                         if (*attr == &cpb) {
1027                                 *attr = NULL;
1028                                 break;
1029                         }
1030         }
1031 #endif
1032         acpi_cpufreq_boost_init();
1033
1034         ret = cpufreq_register_driver(&acpi_cpufreq_driver);
1035         if (ret) {
1036                 free_acpi_perf_data();
1037         }
1038         return ret;
1039 }
1040
1041 static void acpi_cpufreq_remove(struct platform_device *pdev)
1042 {
1043         pr_debug("%s\n", __func__);
1044
1045         cpufreq_unregister_driver(&acpi_cpufreq_driver);
1046
1047         free_acpi_perf_data();
1048 }
1049
1050 static struct platform_driver acpi_cpufreq_platdrv = {
1051         .driver = {
1052                 .name   = "acpi-cpufreq",
1053         },
1054         .remove = acpi_cpufreq_remove,
1055 };
1056
1057 static int __init acpi_cpufreq_init(void)
1058 {
1059         return platform_driver_probe(&acpi_cpufreq_platdrv, acpi_cpufreq_probe);
1060 }
1061
1062 static void __exit acpi_cpufreq_exit(void)
1063 {
1064         platform_driver_unregister(&acpi_cpufreq_platdrv);
1065 }
1066
1067 module_param(acpi_pstate_strict, uint, 0644);
1068 MODULE_PARM_DESC(acpi_pstate_strict,
1069         "value 0 or non-zero. non-zero -> strict ACPI checks are "
1070         "performed during frequency changes.");
1071
1072 late_initcall(acpi_cpufreq_init);
1073 module_exit(acpi_cpufreq_exit);
1074
1075 MODULE_ALIAS("platform:acpi-cpufreq");