clocksource/drivers/fttmr010: Optimize sched_clock()
[linux-2.6-block.git] / drivers / clocksource / timer-fttmr010.c
1 /*
2  * Faraday Technology FTTMR010 timer driver
3  * Copyright (C) 2017 Linus Walleij <linus.walleij@linaro.org>
4  *
5  * Based on a rewrite of arch/arm/mach-gemini/timer.c:
6  * Copyright (C) 2001-2006 Storlink, Corp.
7  * Copyright (C) 2008-2009 Paulius Zaleckas <paulius.zaleckas@teltonika.lt>
8  */
9 #include <linux/interrupt.h>
10 #include <linux/io.h>
11 #include <linux/of.h>
12 #include <linux/of_address.h>
13 #include <linux/of_irq.h>
14 #include <linux/clockchips.h>
15 #include <linux/clocksource.h>
16 #include <linux/sched_clock.h>
17 #include <linux/clk.h>
18 #include <linux/slab.h>
19 #include <linux/bitops.h>
20
21 /*
22  * Register definitions for the timers
23  */
24 #define TIMER1_COUNT            (0x00)
25 #define TIMER1_LOAD             (0x04)
26 #define TIMER1_MATCH1           (0x08)
27 #define TIMER1_MATCH2           (0x0c)
28 #define TIMER2_COUNT            (0x10)
29 #define TIMER2_LOAD             (0x14)
30 #define TIMER2_MATCH1           (0x18)
31 #define TIMER2_MATCH2           (0x1c)
32 #define TIMER3_COUNT            (0x20)
33 #define TIMER3_LOAD             (0x24)
34 #define TIMER3_MATCH1           (0x28)
35 #define TIMER3_MATCH2           (0x2c)
36 #define TIMER_CR                (0x30)
37 #define TIMER_INTR_STATE        (0x34)
38 #define TIMER_INTR_MASK         (0x38)
39
40 #define TIMER_1_CR_ENABLE       BIT(0)
41 #define TIMER_1_CR_CLOCK        BIT(1)
42 #define TIMER_1_CR_INT          BIT(2)
43 #define TIMER_2_CR_ENABLE       BIT(3)
44 #define TIMER_2_CR_CLOCK        BIT(4)
45 #define TIMER_2_CR_INT          BIT(5)
46 #define TIMER_3_CR_ENABLE       BIT(6)
47 #define TIMER_3_CR_CLOCK        BIT(7)
48 #define TIMER_3_CR_INT          BIT(8)
49 #define TIMER_1_CR_UPDOWN       BIT(9)
50 #define TIMER_2_CR_UPDOWN       BIT(10)
51 #define TIMER_3_CR_UPDOWN       BIT(11)
52
53 /*
54  * The Aspeed AST2400 moves bits around in the control register
55  * and lacks bits for setting the timer to count upwards.
56  */
57 #define TIMER_1_CR_ASPEED_ENABLE        BIT(0)
58 #define TIMER_1_CR_ASPEED_CLOCK         BIT(1)
59 #define TIMER_1_CR_ASPEED_INT           BIT(2)
60 #define TIMER_2_CR_ASPEED_ENABLE        BIT(4)
61 #define TIMER_2_CR_ASPEED_CLOCK         BIT(5)
62 #define TIMER_2_CR_ASPEED_INT           BIT(6)
63 #define TIMER_3_CR_ASPEED_ENABLE        BIT(8)
64 #define TIMER_3_CR_ASPEED_CLOCK         BIT(9)
65 #define TIMER_3_CR_ASPEED_INT           BIT(10)
66
67 #define TIMER_1_INT_MATCH1      BIT(0)
68 #define TIMER_1_INT_MATCH2      BIT(1)
69 #define TIMER_1_INT_OVERFLOW    BIT(2)
70 #define TIMER_2_INT_MATCH1      BIT(3)
71 #define TIMER_2_INT_MATCH2      BIT(4)
72 #define TIMER_2_INT_OVERFLOW    BIT(5)
73 #define TIMER_3_INT_MATCH1      BIT(6)
74 #define TIMER_3_INT_MATCH2      BIT(7)
75 #define TIMER_3_INT_OVERFLOW    BIT(8)
76 #define TIMER_INT_ALL_MASK      0x1ff
77
78 struct fttmr010 {
79         void __iomem *base;
80         unsigned int tick_rate;
81         bool count_down;
82         u32 t1_enable_val;
83         struct clock_event_device clkevt;
84 };
85
86 /* A local singleton used by sched_clock, which is stateless */
87 static struct fttmr010 *local_fttmr;
88
89 static inline struct fttmr010 *to_fttmr010(struct clock_event_device *evt)
90 {
91         return container_of(evt, struct fttmr010, clkevt);
92 }
93
94 static u64 notrace fttmr010_read_sched_clock_up(void)
95 {
96         return readl(local_fttmr->base + TIMER2_COUNT);
97 }
98
99 static u64 notrace fttmr010_read_sched_clock_down(void)
100 {
101         return ~readl(local_fttmr->base + TIMER2_COUNT);
102 }
103
104 static int fttmr010_timer_set_next_event(unsigned long cycles,
105                                        struct clock_event_device *evt)
106 {
107         struct fttmr010 *fttmr010 = to_fttmr010(evt);
108         u32 cr;
109
110         /* Stop */
111         cr = readl(fttmr010->base + TIMER_CR);
112         cr &= ~fttmr010->t1_enable_val;
113         writel(cr, fttmr010->base + TIMER_CR);
114
115         /* Setup the match register forward/backward in time */
116         cr = readl(fttmr010->base + TIMER1_COUNT);
117         if (fttmr010->count_down)
118                 cr -= cycles;
119         else
120                 cr += cycles;
121         writel(cr, fttmr010->base + TIMER1_MATCH1);
122
123         /* Start */
124         cr = readl(fttmr010->base + TIMER_CR);
125         cr |= fttmr010->t1_enable_val;
126         writel(cr, fttmr010->base + TIMER_CR);
127
128         return 0;
129 }
130
131 static int fttmr010_timer_shutdown(struct clock_event_device *evt)
132 {
133         struct fttmr010 *fttmr010 = to_fttmr010(evt);
134         u32 cr;
135
136         /* Stop */
137         cr = readl(fttmr010->base + TIMER_CR);
138         cr &= ~fttmr010->t1_enable_val;
139         writel(cr, fttmr010->base + TIMER_CR);
140
141         return 0;
142 }
143
144 static int fttmr010_timer_set_oneshot(struct clock_event_device *evt)
145 {
146         struct fttmr010 *fttmr010 = to_fttmr010(evt);
147         u32 cr;
148
149         /* Stop */
150         cr = readl(fttmr010->base + TIMER_CR);
151         cr &= ~fttmr010->t1_enable_val;
152         writel(cr, fttmr010->base + TIMER_CR);
153
154         /* Setup counter start from 0 or ~0 */
155         writel(0, fttmr010->base + TIMER1_COUNT);
156         if (fttmr010->count_down)
157                 writel(~0, fttmr010->base + TIMER1_LOAD);
158         else
159                 writel(0, fttmr010->base + TIMER1_LOAD);
160
161         /* Enable interrupt */
162         cr = readl(fttmr010->base + TIMER_INTR_MASK);
163         cr &= ~(TIMER_1_INT_OVERFLOW | TIMER_1_INT_MATCH2);
164         cr |= TIMER_1_INT_MATCH1;
165         writel(cr, fttmr010->base + TIMER_INTR_MASK);
166
167         return 0;
168 }
169
170 static int fttmr010_timer_set_periodic(struct clock_event_device *evt)
171 {
172         struct fttmr010 *fttmr010 = to_fttmr010(evt);
173         u32 period = DIV_ROUND_CLOSEST(fttmr010->tick_rate, HZ);
174         u32 cr;
175
176         /* Stop */
177         cr = readl(fttmr010->base + TIMER_CR);
178         cr &= ~fttmr010->t1_enable_val;
179         writel(cr, fttmr010->base + TIMER_CR);
180
181         /* Setup timer to fire at 1/HZ intervals. */
182         if (fttmr010->count_down) {
183                 writel(period, fttmr010->base + TIMER1_LOAD);
184                 writel(0, fttmr010->base + TIMER1_MATCH1);
185         } else {
186                 cr = 0xffffffff - (period - 1);
187                 writel(cr, fttmr010->base + TIMER1_COUNT);
188                 writel(cr, fttmr010->base + TIMER1_LOAD);
189
190                 /* Enable interrupt on overflow */
191                 cr = readl(fttmr010->base + TIMER_INTR_MASK);
192                 cr &= ~(TIMER_1_INT_MATCH1 | TIMER_1_INT_MATCH2);
193                 cr |= TIMER_1_INT_OVERFLOW;
194                 writel(cr, fttmr010->base + TIMER_INTR_MASK);
195         }
196
197         /* Start the timer */
198         cr = readl(fttmr010->base + TIMER_CR);
199         cr |= fttmr010->t1_enable_val;
200         writel(cr, fttmr010->base + TIMER_CR);
201
202         return 0;
203 }
204
205 /*
206  * IRQ handler for the timer
207  */
208 static irqreturn_t fttmr010_timer_interrupt(int irq, void *dev_id)
209 {
210         struct clock_event_device *evt = dev_id;
211
212         evt->event_handler(evt);
213         return IRQ_HANDLED;
214 }
215
216 static int __init fttmr010_common_init(struct device_node *np, bool is_aspeed)
217 {
218         struct fttmr010 *fttmr010;
219         int irq;
220         struct clk *clk;
221         int ret;
222         u32 val;
223
224         /*
225          * These implementations require a clock reference.
226          * FIXME: we currently only support clocking using PCLK
227          * and using EXTCLK is not supported in the driver.
228          */
229         clk = of_clk_get_by_name(np, "PCLK");
230         if (IS_ERR(clk)) {
231                 pr_err("could not get PCLK\n");
232                 return PTR_ERR(clk);
233         }
234         ret = clk_prepare_enable(clk);
235         if (ret) {
236                 pr_err("failed to enable PCLK\n");
237                 return ret;
238         }
239
240         fttmr010 = kzalloc(sizeof(*fttmr010), GFP_KERNEL);
241         if (!fttmr010) {
242                 ret = -ENOMEM;
243                 goto out_disable_clock;
244         }
245         fttmr010->tick_rate = clk_get_rate(clk);
246
247         fttmr010->base = of_iomap(np, 0);
248         if (!fttmr010->base) {
249                 pr_err("Can't remap registers");
250                 ret = -ENXIO;
251                 goto out_free;
252         }
253         /* IRQ for timer 1 */
254         irq = irq_of_parse_and_map(np, 0);
255         if (irq <= 0) {
256                 pr_err("Can't parse IRQ");
257                 ret = -EINVAL;
258                 goto out_unmap;
259         }
260
261         /*
262          * The Aspeed AST2400 moves bits around in the control register,
263          * otherwise it works the same.
264          */
265         if (is_aspeed) {
266                 fttmr010->t1_enable_val = TIMER_1_CR_ASPEED_ENABLE |
267                         TIMER_1_CR_ASPEED_INT;
268                 /* Downward not available */
269                 fttmr010->count_down = true;
270         } else {
271                 fttmr010->t1_enable_val = TIMER_1_CR_ENABLE | TIMER_1_CR_INT;
272         }
273
274         /*
275          * Reset the interrupt mask and status
276          */
277         writel(TIMER_INT_ALL_MASK, fttmr010->base + TIMER_INTR_MASK);
278         writel(0, fttmr010->base + TIMER_INTR_STATE);
279
280         /*
281          * Enable timer 1 count up, timer 2 count up, except on Aspeed,
282          * where everything just counts down.
283          */
284         if (is_aspeed)
285                 val = TIMER_2_CR_ASPEED_ENABLE;
286         else {
287                 val = TIMER_2_CR_ENABLE;
288                 if (!fttmr010->count_down)
289                         val |= TIMER_1_CR_UPDOWN | TIMER_2_CR_UPDOWN;
290         }
291         writel(val, fttmr010->base + TIMER_CR);
292
293         /*
294          * Setup free-running clocksource timer (interrupts
295          * disabled.)
296          */
297         local_fttmr = fttmr010;
298         writel(0, fttmr010->base + TIMER2_COUNT);
299         writel(0, fttmr010->base + TIMER2_MATCH1);
300         writel(0, fttmr010->base + TIMER2_MATCH2);
301
302         if (fttmr010->count_down) {
303                 writel(~0, fttmr010->base + TIMER2_LOAD);
304                 clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
305                                       "FTTMR010-TIMER2",
306                                       fttmr010->tick_rate,
307                                       300, 32, clocksource_mmio_readl_down);
308                 sched_clock_register(fttmr010_read_sched_clock_down, 32,
309                                      fttmr010->tick_rate);
310         } else {
311                 writel(0, fttmr010->base + TIMER2_LOAD);
312                 clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
313                                       "FTTMR010-TIMER2",
314                                       fttmr010->tick_rate,
315                                       300, 32, clocksource_mmio_readl_up);
316                 sched_clock_register(fttmr010_read_sched_clock_up, 32,
317                                      fttmr010->tick_rate);
318         }
319
320         /*
321          * Setup clockevent timer (interrupt-driven) on timer 1.
322          */
323         writel(0, fttmr010->base + TIMER1_COUNT);
324         writel(0, fttmr010->base + TIMER1_LOAD);
325         writel(0, fttmr010->base + TIMER1_MATCH1);
326         writel(0, fttmr010->base + TIMER1_MATCH2);
327         ret = request_irq(irq, fttmr010_timer_interrupt, IRQF_TIMER,
328                           "FTTMR010-TIMER1", &fttmr010->clkevt);
329         if (ret) {
330                 pr_err("FTTMR010-TIMER1 no IRQ\n");
331                 goto out_unmap;
332         }
333
334         fttmr010->clkevt.name = "FTTMR010-TIMER1";
335         /* Reasonably fast and accurate clock event */
336         fttmr010->clkevt.rating = 300;
337         fttmr010->clkevt.features = CLOCK_EVT_FEAT_PERIODIC |
338                 CLOCK_EVT_FEAT_ONESHOT;
339         fttmr010->clkevt.set_next_event = fttmr010_timer_set_next_event;
340         fttmr010->clkevt.set_state_shutdown = fttmr010_timer_shutdown;
341         fttmr010->clkevt.set_state_periodic = fttmr010_timer_set_periodic;
342         fttmr010->clkevt.set_state_oneshot = fttmr010_timer_set_oneshot;
343         fttmr010->clkevt.tick_resume = fttmr010_timer_shutdown;
344         fttmr010->clkevt.cpumask = cpumask_of(0);
345         fttmr010->clkevt.irq = irq;
346         clockevents_config_and_register(&fttmr010->clkevt,
347                                         fttmr010->tick_rate,
348                                         1, 0xffffffff);
349
350         return 0;
351
352 out_unmap:
353         iounmap(fttmr010->base);
354 out_free:
355         kfree(fttmr010);
356 out_disable_clock:
357         clk_disable_unprepare(clk);
358
359         return ret;
360 }
361
362 static __init int aspeed_timer_init(struct device_node *np)
363 {
364         return fttmr010_common_init(np, true);
365 }
366
367 static __init int fttmr010_timer_init(struct device_node *np)
368 {
369         return fttmr010_common_init(np, false);
370 }
371
372 TIMER_OF_DECLARE(fttmr010, "faraday,fttmr010", fttmr010_timer_init);
373 TIMER_OF_DECLARE(gemini, "cortina,gemini-timer", fttmr010_timer_init);
374 TIMER_OF_DECLARE(moxart, "moxa,moxart-timer", fttmr010_timer_init);
375 TIMER_OF_DECLARE(ast2400, "aspeed,ast2400-timer", aspeed_timer_init);
376 TIMER_OF_DECLARE(ast2500, "aspeed,ast2500-timer", aspeed_timer_init);