clocksource/drivers: Rename CLOCKSOURCE_OF_DECLARE to TIMER_OF_DECLARE
[linux-2.6-block.git] / drivers / clocksource / timer-fttmr010.c
1 /*
2  * Faraday Technology FTTMR010 timer driver
3  * Copyright (C) 2017 Linus Walleij <linus.walleij@linaro.org>
4  *
5  * Based on a rewrite of arch/arm/mach-gemini/timer.c:
6  * Copyright (C) 2001-2006 Storlink, Corp.
7  * Copyright (C) 2008-2009 Paulius Zaleckas <paulius.zaleckas@teltonika.lt>
8  */
9 #include <linux/interrupt.h>
10 #include <linux/io.h>
11 #include <linux/of.h>
12 #include <linux/of_address.h>
13 #include <linux/of_irq.h>
14 #include <linux/clockchips.h>
15 #include <linux/clocksource.h>
16 #include <linux/sched_clock.h>
17 #include <linux/clk.h>
18 #include <linux/slab.h>
19 #include <linux/bitops.h>
20
21 /*
22  * Register definitions for the timers
23  */
24 #define TIMER1_COUNT            (0x00)
25 #define TIMER1_LOAD             (0x04)
26 #define TIMER1_MATCH1           (0x08)
27 #define TIMER1_MATCH2           (0x0c)
28 #define TIMER2_COUNT            (0x10)
29 #define TIMER2_LOAD             (0x14)
30 #define TIMER2_MATCH1           (0x18)
31 #define TIMER2_MATCH2           (0x1c)
32 #define TIMER3_COUNT            (0x20)
33 #define TIMER3_LOAD             (0x24)
34 #define TIMER3_MATCH1           (0x28)
35 #define TIMER3_MATCH2           (0x2c)
36 #define TIMER_CR                (0x30)
37 #define TIMER_INTR_STATE        (0x34)
38 #define TIMER_INTR_MASK         (0x38)
39
40 #define TIMER_1_CR_ENABLE       BIT(0)
41 #define TIMER_1_CR_CLOCK        BIT(1)
42 #define TIMER_1_CR_INT          BIT(2)
43 #define TIMER_2_CR_ENABLE       BIT(3)
44 #define TIMER_2_CR_CLOCK        BIT(4)
45 #define TIMER_2_CR_INT          BIT(5)
46 #define TIMER_3_CR_ENABLE       BIT(6)
47 #define TIMER_3_CR_CLOCK        BIT(7)
48 #define TIMER_3_CR_INT          BIT(8)
49 #define TIMER_1_CR_UPDOWN       BIT(9)
50 #define TIMER_2_CR_UPDOWN       BIT(10)
51 #define TIMER_3_CR_UPDOWN       BIT(11)
52
53 /*
54  * The Aspeed AST2400 moves bits around in the control register
55  * and lacks bits for setting the timer to count upwards.
56  */
57 #define TIMER_1_CR_ASPEED_ENABLE        BIT(0)
58 #define TIMER_1_CR_ASPEED_CLOCK         BIT(1)
59 #define TIMER_1_CR_ASPEED_INT           BIT(2)
60 #define TIMER_2_CR_ASPEED_ENABLE        BIT(4)
61 #define TIMER_2_CR_ASPEED_CLOCK         BIT(5)
62 #define TIMER_2_CR_ASPEED_INT           BIT(6)
63 #define TIMER_3_CR_ASPEED_ENABLE        BIT(8)
64 #define TIMER_3_CR_ASPEED_CLOCK         BIT(9)
65 #define TIMER_3_CR_ASPEED_INT           BIT(10)
66
67 #define TIMER_1_INT_MATCH1      BIT(0)
68 #define TIMER_1_INT_MATCH2      BIT(1)
69 #define TIMER_1_INT_OVERFLOW    BIT(2)
70 #define TIMER_2_INT_MATCH1      BIT(3)
71 #define TIMER_2_INT_MATCH2      BIT(4)
72 #define TIMER_2_INT_OVERFLOW    BIT(5)
73 #define TIMER_3_INT_MATCH1      BIT(6)
74 #define TIMER_3_INT_MATCH2      BIT(7)
75 #define TIMER_3_INT_OVERFLOW    BIT(8)
76 #define TIMER_INT_ALL_MASK      0x1ff
77
78 struct fttmr010 {
79         void __iomem *base;
80         unsigned int tick_rate;
81         bool count_down;
82         u32 t1_enable_val;
83         struct clock_event_device clkevt;
84 };
85
86 /* A local singleton used by sched_clock, which is stateless */
87 static struct fttmr010 *local_fttmr;
88
89 static inline struct fttmr010 *to_fttmr010(struct clock_event_device *evt)
90 {
91         return container_of(evt, struct fttmr010, clkevt);
92 }
93
94 static u64 notrace fttmr010_read_sched_clock(void)
95 {
96         if (local_fttmr->count_down)
97                 return ~readl(local_fttmr->base + TIMER2_COUNT);
98         return readl(local_fttmr->base + TIMER2_COUNT);
99 }
100
101 static int fttmr010_timer_set_next_event(unsigned long cycles,
102                                        struct clock_event_device *evt)
103 {
104         struct fttmr010 *fttmr010 = to_fttmr010(evt);
105         u32 cr;
106
107         /* Stop */
108         cr = readl(fttmr010->base + TIMER_CR);
109         cr &= ~fttmr010->t1_enable_val;
110         writel(cr, fttmr010->base + TIMER_CR);
111
112         /* Setup the match register forward/backward in time */
113         cr = readl(fttmr010->base + TIMER1_COUNT);
114         if (fttmr010->count_down)
115                 cr -= cycles;
116         else
117                 cr += cycles;
118         writel(cr, fttmr010->base + TIMER1_MATCH1);
119
120         /* Start */
121         cr = readl(fttmr010->base + TIMER_CR);
122         cr |= fttmr010->t1_enable_val;
123         writel(cr, fttmr010->base + TIMER_CR);
124
125         return 0;
126 }
127
128 static int fttmr010_timer_shutdown(struct clock_event_device *evt)
129 {
130         struct fttmr010 *fttmr010 = to_fttmr010(evt);
131         u32 cr;
132
133         /* Stop */
134         cr = readl(fttmr010->base + TIMER_CR);
135         cr &= ~fttmr010->t1_enable_val;
136         writel(cr, fttmr010->base + TIMER_CR);
137
138         return 0;
139 }
140
141 static int fttmr010_timer_set_oneshot(struct clock_event_device *evt)
142 {
143         struct fttmr010 *fttmr010 = to_fttmr010(evt);
144         u32 cr;
145
146         /* Stop */
147         cr = readl(fttmr010->base + TIMER_CR);
148         cr &= ~fttmr010->t1_enable_val;
149         writel(cr, fttmr010->base + TIMER_CR);
150
151         /* Setup counter start from 0 or ~0 */
152         writel(0, fttmr010->base + TIMER1_COUNT);
153         if (fttmr010->count_down)
154                 writel(~0, fttmr010->base + TIMER1_LOAD);
155         else
156                 writel(0, fttmr010->base + TIMER1_LOAD);
157
158         /* Enable interrupt */
159         cr = readl(fttmr010->base + TIMER_INTR_MASK);
160         cr &= ~(TIMER_1_INT_OVERFLOW | TIMER_1_INT_MATCH2);
161         cr |= TIMER_1_INT_MATCH1;
162         writel(cr, fttmr010->base + TIMER_INTR_MASK);
163
164         return 0;
165 }
166
167 static int fttmr010_timer_set_periodic(struct clock_event_device *evt)
168 {
169         struct fttmr010 *fttmr010 = to_fttmr010(evt);
170         u32 period = DIV_ROUND_CLOSEST(fttmr010->tick_rate, HZ);
171         u32 cr;
172
173         /* Stop */
174         cr = readl(fttmr010->base + TIMER_CR);
175         cr &= ~fttmr010->t1_enable_val;
176         writel(cr, fttmr010->base + TIMER_CR);
177
178         /* Setup timer to fire at 1/HZ intervals. */
179         if (fttmr010->count_down) {
180                 writel(period, fttmr010->base + TIMER1_LOAD);
181                 writel(0, fttmr010->base + TIMER1_MATCH1);
182         } else {
183                 cr = 0xffffffff - (period - 1);
184                 writel(cr, fttmr010->base + TIMER1_COUNT);
185                 writel(cr, fttmr010->base + TIMER1_LOAD);
186
187                 /* Enable interrupt on overflow */
188                 cr = readl(fttmr010->base + TIMER_INTR_MASK);
189                 cr &= ~(TIMER_1_INT_MATCH1 | TIMER_1_INT_MATCH2);
190                 cr |= TIMER_1_INT_OVERFLOW;
191                 writel(cr, fttmr010->base + TIMER_INTR_MASK);
192         }
193
194         /* Start the timer */
195         cr = readl(fttmr010->base + TIMER_CR);
196         cr |= fttmr010->t1_enable_val;
197         writel(cr, fttmr010->base + TIMER_CR);
198
199         return 0;
200 }
201
202 /*
203  * IRQ handler for the timer
204  */
205 static irqreturn_t fttmr010_timer_interrupt(int irq, void *dev_id)
206 {
207         struct clock_event_device *evt = dev_id;
208
209         evt->event_handler(evt);
210         return IRQ_HANDLED;
211 }
212
213 static int __init fttmr010_common_init(struct device_node *np, bool is_aspeed)
214 {
215         struct fttmr010 *fttmr010;
216         int irq;
217         struct clk *clk;
218         int ret;
219         u32 val;
220
221         /*
222          * These implementations require a clock reference.
223          * FIXME: we currently only support clocking using PCLK
224          * and using EXTCLK is not supported in the driver.
225          */
226         clk = of_clk_get_by_name(np, "PCLK");
227         if (IS_ERR(clk)) {
228                 pr_err("could not get PCLK\n");
229                 return PTR_ERR(clk);
230         }
231         ret = clk_prepare_enable(clk);
232         if (ret) {
233                 pr_err("failed to enable PCLK\n");
234                 return ret;
235         }
236
237         fttmr010 = kzalloc(sizeof(*fttmr010), GFP_KERNEL);
238         if (!fttmr010) {
239                 ret = -ENOMEM;
240                 goto out_disable_clock;
241         }
242         fttmr010->tick_rate = clk_get_rate(clk);
243
244         fttmr010->base = of_iomap(np, 0);
245         if (!fttmr010->base) {
246                 pr_err("Can't remap registers");
247                 ret = -ENXIO;
248                 goto out_free;
249         }
250         /* IRQ for timer 1 */
251         irq = irq_of_parse_and_map(np, 0);
252         if (irq <= 0) {
253                 pr_err("Can't parse IRQ");
254                 ret = -EINVAL;
255                 goto out_unmap;
256         }
257
258         /*
259          * The Aspeed AST2400 moves bits around in the control register,
260          * otherwise it works the same.
261          */
262         if (is_aspeed) {
263                 fttmr010->t1_enable_val = TIMER_1_CR_ASPEED_ENABLE |
264                         TIMER_1_CR_ASPEED_INT;
265                 /* Downward not available */
266                 fttmr010->count_down = true;
267         } else {
268                 fttmr010->t1_enable_val = TIMER_1_CR_ENABLE | TIMER_1_CR_INT;
269         }
270
271         /*
272          * Reset the interrupt mask and status
273          */
274         writel(TIMER_INT_ALL_MASK, fttmr010->base + TIMER_INTR_MASK);
275         writel(0, fttmr010->base + TIMER_INTR_STATE);
276
277         /*
278          * Enable timer 1 count up, timer 2 count up, except on Aspeed,
279          * where everything just counts down.
280          */
281         if (is_aspeed)
282                 val = TIMER_2_CR_ASPEED_ENABLE;
283         else {
284                 val = TIMER_2_CR_ENABLE;
285                 if (!fttmr010->count_down)
286                         val |= TIMER_1_CR_UPDOWN | TIMER_2_CR_UPDOWN;
287         }
288         writel(val, fttmr010->base + TIMER_CR);
289
290         /*
291          * Setup free-running clocksource timer (interrupts
292          * disabled.)
293          */
294         local_fttmr = fttmr010;
295         writel(0, fttmr010->base + TIMER2_COUNT);
296         writel(0, fttmr010->base + TIMER2_MATCH1);
297         writel(0, fttmr010->base + TIMER2_MATCH2);
298
299         if (fttmr010->count_down) {
300                 writel(~0, fttmr010->base + TIMER2_LOAD);
301                 clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
302                                       "FTTMR010-TIMER2",
303                                       fttmr010->tick_rate,
304                                       300, 32, clocksource_mmio_readl_down);
305         } else {
306                 writel(0, fttmr010->base + TIMER2_LOAD);
307                 clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
308                                       "FTTMR010-TIMER2",
309                                       fttmr010->tick_rate,
310                                       300, 32, clocksource_mmio_readl_up);
311         }
312         sched_clock_register(fttmr010_read_sched_clock, 32,
313                              fttmr010->tick_rate);
314
315         /*
316          * Setup clockevent timer (interrupt-driven) on timer 1.
317          */
318         writel(0, fttmr010->base + TIMER1_COUNT);
319         writel(0, fttmr010->base + TIMER1_LOAD);
320         writel(0, fttmr010->base + TIMER1_MATCH1);
321         writel(0, fttmr010->base + TIMER1_MATCH2);
322         ret = request_irq(irq, fttmr010_timer_interrupt, IRQF_TIMER,
323                           "FTTMR010-TIMER1", &fttmr010->clkevt);
324         if (ret) {
325                 pr_err("FTTMR010-TIMER1 no IRQ\n");
326                 goto out_unmap;
327         }
328
329         fttmr010->clkevt.name = "FTTMR010-TIMER1";
330         /* Reasonably fast and accurate clock event */
331         fttmr010->clkevt.rating = 300;
332         fttmr010->clkevt.features = CLOCK_EVT_FEAT_PERIODIC |
333                 CLOCK_EVT_FEAT_ONESHOT;
334         fttmr010->clkevt.set_next_event = fttmr010_timer_set_next_event;
335         fttmr010->clkevt.set_state_shutdown = fttmr010_timer_shutdown;
336         fttmr010->clkevt.set_state_periodic = fttmr010_timer_set_periodic;
337         fttmr010->clkevt.set_state_oneshot = fttmr010_timer_set_oneshot;
338         fttmr010->clkevt.tick_resume = fttmr010_timer_shutdown;
339         fttmr010->clkevt.cpumask = cpumask_of(0);
340         fttmr010->clkevt.irq = irq;
341         clockevents_config_and_register(&fttmr010->clkevt,
342                                         fttmr010->tick_rate,
343                                         1, 0xffffffff);
344
345         return 0;
346
347 out_unmap:
348         iounmap(fttmr010->base);
349 out_free:
350         kfree(fttmr010);
351 out_disable_clock:
352         clk_disable_unprepare(clk);
353
354         return ret;
355 }
356
357 static __init int aspeed_timer_init(struct device_node *np)
358 {
359         return fttmr010_common_init(np, true);
360 }
361
362 static __init int fttmr010_timer_init(struct device_node *np)
363 {
364         return fttmr010_common_init(np, false);
365 }
366
367 TIMER_OF_DECLARE(fttmr010, "faraday,fttmr010", fttmr010_timer_init);
368 TIMER_OF_DECLARE(gemini, "cortina,gemini-timer", fttmr010_timer_init);
369 TIMER_OF_DECLARE(moxart, "moxa,moxart-timer", fttmr010_timer_init);
370 TIMER_OF_DECLARE(ast2400, "aspeed,ast2400-timer", aspeed_timer_init);
371 TIMER_OF_DECLARE(ast2500, "aspeed,ast2500-timer", aspeed_timer_init);