Merge branch 'x86-apic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / drivers / clocksource / sh_tmu.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SuperH Timer Support - TMU
4  *
5  *  Copyright (C) 2009 Magnus Damm
6  */
7
8 #include <linux/clk.h>
9 #include <linux/clockchips.h>
10 #include <linux/clocksource.h>
11 #include <linux/delay.h>
12 #include <linux/err.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/ioport.h>
17 #include <linux/irq.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_domain.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/sh_timer.h>
24 #include <linux/slab.h>
25 #include <linux/spinlock.h>
26
27 enum sh_tmu_model {
28         SH_TMU,
29         SH_TMU_SH3,
30 };
31
32 struct sh_tmu_device;
33
34 struct sh_tmu_channel {
35         struct sh_tmu_device *tmu;
36         unsigned int index;
37
38         void __iomem *base;
39         int irq;
40
41         unsigned long periodic;
42         struct clock_event_device ced;
43         struct clocksource cs;
44         bool cs_enabled;
45         unsigned int enable_count;
46 };
47
48 struct sh_tmu_device {
49         struct platform_device *pdev;
50
51         void __iomem *mapbase;
52         struct clk *clk;
53         unsigned long rate;
54
55         enum sh_tmu_model model;
56
57         raw_spinlock_t lock; /* Protect the shared start/stop register */
58
59         struct sh_tmu_channel *channels;
60         unsigned int num_channels;
61
62         bool has_clockevent;
63         bool has_clocksource;
64 };
65
66 #define TSTR -1 /* shared register */
67 #define TCOR  0 /* channel register */
68 #define TCNT 1 /* channel register */
69 #define TCR 2 /* channel register */
70
71 #define TCR_UNF                 (1 << 8)
72 #define TCR_UNIE                (1 << 5)
73 #define TCR_TPSC_CLK4           (0 << 0)
74 #define TCR_TPSC_CLK16          (1 << 0)
75 #define TCR_TPSC_CLK64          (2 << 0)
76 #define TCR_TPSC_CLK256         (3 << 0)
77 #define TCR_TPSC_CLK1024        (4 << 0)
78 #define TCR_TPSC_MASK           (7 << 0)
79
80 static inline unsigned long sh_tmu_read(struct sh_tmu_channel *ch, int reg_nr)
81 {
82         unsigned long offs;
83
84         if (reg_nr == TSTR) {
85                 switch (ch->tmu->model) {
86                 case SH_TMU_SH3:
87                         return ioread8(ch->tmu->mapbase + 2);
88                 case SH_TMU:
89                         return ioread8(ch->tmu->mapbase + 4);
90                 }
91         }
92
93         offs = reg_nr << 2;
94
95         if (reg_nr == TCR)
96                 return ioread16(ch->base + offs);
97         else
98                 return ioread32(ch->base + offs);
99 }
100
101 static inline void sh_tmu_write(struct sh_tmu_channel *ch, int reg_nr,
102                                 unsigned long value)
103 {
104         unsigned long offs;
105
106         if (reg_nr == TSTR) {
107                 switch (ch->tmu->model) {
108                 case SH_TMU_SH3:
109                         return iowrite8(value, ch->tmu->mapbase + 2);
110                 case SH_TMU:
111                         return iowrite8(value, ch->tmu->mapbase + 4);
112                 }
113         }
114
115         offs = reg_nr << 2;
116
117         if (reg_nr == TCR)
118                 iowrite16(value, ch->base + offs);
119         else
120                 iowrite32(value, ch->base + offs);
121 }
122
123 static void sh_tmu_start_stop_ch(struct sh_tmu_channel *ch, int start)
124 {
125         unsigned long flags, value;
126
127         /* start stop register shared by multiple timer channels */
128         raw_spin_lock_irqsave(&ch->tmu->lock, flags);
129         value = sh_tmu_read(ch, TSTR);
130
131         if (start)
132                 value |= 1 << ch->index;
133         else
134                 value &= ~(1 << ch->index);
135
136         sh_tmu_write(ch, TSTR, value);
137         raw_spin_unlock_irqrestore(&ch->tmu->lock, flags);
138 }
139
140 static int __sh_tmu_enable(struct sh_tmu_channel *ch)
141 {
142         int ret;
143
144         /* enable clock */
145         ret = clk_enable(ch->tmu->clk);
146         if (ret) {
147                 dev_err(&ch->tmu->pdev->dev, "ch%u: cannot enable clock\n",
148                         ch->index);
149                 return ret;
150         }
151
152         /* make sure channel is disabled */
153         sh_tmu_start_stop_ch(ch, 0);
154
155         /* maximum timeout */
156         sh_tmu_write(ch, TCOR, 0xffffffff);
157         sh_tmu_write(ch, TCNT, 0xffffffff);
158
159         /* configure channel to parent clock / 4, irq off */
160         sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
161
162         /* enable channel */
163         sh_tmu_start_stop_ch(ch, 1);
164
165         return 0;
166 }
167
168 static int sh_tmu_enable(struct sh_tmu_channel *ch)
169 {
170         if (ch->enable_count++ > 0)
171                 return 0;
172
173         pm_runtime_get_sync(&ch->tmu->pdev->dev);
174         dev_pm_syscore_device(&ch->tmu->pdev->dev, true);
175
176         return __sh_tmu_enable(ch);
177 }
178
179 static void __sh_tmu_disable(struct sh_tmu_channel *ch)
180 {
181         /* disable channel */
182         sh_tmu_start_stop_ch(ch, 0);
183
184         /* disable interrupts in TMU block */
185         sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
186
187         /* stop clock */
188         clk_disable(ch->tmu->clk);
189 }
190
191 static void sh_tmu_disable(struct sh_tmu_channel *ch)
192 {
193         if (WARN_ON(ch->enable_count == 0))
194                 return;
195
196         if (--ch->enable_count > 0)
197                 return;
198
199         __sh_tmu_disable(ch);
200
201         dev_pm_syscore_device(&ch->tmu->pdev->dev, false);
202         pm_runtime_put(&ch->tmu->pdev->dev);
203 }
204
205 static void sh_tmu_set_next(struct sh_tmu_channel *ch, unsigned long delta,
206                             int periodic)
207 {
208         /* stop timer */
209         sh_tmu_start_stop_ch(ch, 0);
210
211         /* acknowledge interrupt */
212         sh_tmu_read(ch, TCR);
213
214         /* enable interrupt */
215         sh_tmu_write(ch, TCR, TCR_UNIE | TCR_TPSC_CLK4);
216
217         /* reload delta value in case of periodic timer */
218         if (periodic)
219                 sh_tmu_write(ch, TCOR, delta);
220         else
221                 sh_tmu_write(ch, TCOR, 0xffffffff);
222
223         sh_tmu_write(ch, TCNT, delta);
224
225         /* start timer */
226         sh_tmu_start_stop_ch(ch, 1);
227 }
228
229 static irqreturn_t sh_tmu_interrupt(int irq, void *dev_id)
230 {
231         struct sh_tmu_channel *ch = dev_id;
232
233         /* disable or acknowledge interrupt */
234         if (clockevent_state_oneshot(&ch->ced))
235                 sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
236         else
237                 sh_tmu_write(ch, TCR, TCR_UNIE | TCR_TPSC_CLK4);
238
239         /* notify clockevent layer */
240         ch->ced.event_handler(&ch->ced);
241         return IRQ_HANDLED;
242 }
243
244 static struct sh_tmu_channel *cs_to_sh_tmu(struct clocksource *cs)
245 {
246         return container_of(cs, struct sh_tmu_channel, cs);
247 }
248
249 static u64 sh_tmu_clocksource_read(struct clocksource *cs)
250 {
251         struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
252
253         return sh_tmu_read(ch, TCNT) ^ 0xffffffff;
254 }
255
256 static int sh_tmu_clocksource_enable(struct clocksource *cs)
257 {
258         struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
259         int ret;
260
261         if (WARN_ON(ch->cs_enabled))
262                 return 0;
263
264         ret = sh_tmu_enable(ch);
265         if (!ret)
266                 ch->cs_enabled = true;
267
268         return ret;
269 }
270
271 static void sh_tmu_clocksource_disable(struct clocksource *cs)
272 {
273         struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
274
275         if (WARN_ON(!ch->cs_enabled))
276                 return;
277
278         sh_tmu_disable(ch);
279         ch->cs_enabled = false;
280 }
281
282 static void sh_tmu_clocksource_suspend(struct clocksource *cs)
283 {
284         struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
285
286         if (!ch->cs_enabled)
287                 return;
288
289         if (--ch->enable_count == 0) {
290                 __sh_tmu_disable(ch);
291                 pm_genpd_syscore_poweroff(&ch->tmu->pdev->dev);
292         }
293 }
294
295 static void sh_tmu_clocksource_resume(struct clocksource *cs)
296 {
297         struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
298
299         if (!ch->cs_enabled)
300                 return;
301
302         if (ch->enable_count++ == 0) {
303                 pm_genpd_syscore_poweron(&ch->tmu->pdev->dev);
304                 __sh_tmu_enable(ch);
305         }
306 }
307
308 static int sh_tmu_register_clocksource(struct sh_tmu_channel *ch,
309                                        const char *name)
310 {
311         struct clocksource *cs = &ch->cs;
312
313         cs->name = name;
314         cs->rating = 200;
315         cs->read = sh_tmu_clocksource_read;
316         cs->enable = sh_tmu_clocksource_enable;
317         cs->disable = sh_tmu_clocksource_disable;
318         cs->suspend = sh_tmu_clocksource_suspend;
319         cs->resume = sh_tmu_clocksource_resume;
320         cs->mask = CLOCKSOURCE_MASK(32);
321         cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
322
323         dev_info(&ch->tmu->pdev->dev, "ch%u: used as clock source\n",
324                  ch->index);
325
326         clocksource_register_hz(cs, ch->tmu->rate);
327         return 0;
328 }
329
330 static struct sh_tmu_channel *ced_to_sh_tmu(struct clock_event_device *ced)
331 {
332         return container_of(ced, struct sh_tmu_channel, ced);
333 }
334
335 static void sh_tmu_clock_event_start(struct sh_tmu_channel *ch, int periodic)
336 {
337         sh_tmu_enable(ch);
338
339         if (periodic) {
340                 ch->periodic = (ch->tmu->rate + HZ/2) / HZ;
341                 sh_tmu_set_next(ch, ch->periodic, 1);
342         }
343 }
344
345 static int sh_tmu_clock_event_shutdown(struct clock_event_device *ced)
346 {
347         struct sh_tmu_channel *ch = ced_to_sh_tmu(ced);
348
349         if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
350                 sh_tmu_disable(ch);
351         return 0;
352 }
353
354 static int sh_tmu_clock_event_set_state(struct clock_event_device *ced,
355                                         int periodic)
356 {
357         struct sh_tmu_channel *ch = ced_to_sh_tmu(ced);
358
359         /* deal with old setting first */
360         if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
361                 sh_tmu_disable(ch);
362
363         dev_info(&ch->tmu->pdev->dev, "ch%u: used for %s clock events\n",
364                  ch->index, periodic ? "periodic" : "oneshot");
365         sh_tmu_clock_event_start(ch, periodic);
366         return 0;
367 }
368
369 static int sh_tmu_clock_event_set_oneshot(struct clock_event_device *ced)
370 {
371         return sh_tmu_clock_event_set_state(ced, 0);
372 }
373
374 static int sh_tmu_clock_event_set_periodic(struct clock_event_device *ced)
375 {
376         return sh_tmu_clock_event_set_state(ced, 1);
377 }
378
379 static int sh_tmu_clock_event_next(unsigned long delta,
380                                    struct clock_event_device *ced)
381 {
382         struct sh_tmu_channel *ch = ced_to_sh_tmu(ced);
383
384         BUG_ON(!clockevent_state_oneshot(ced));
385
386         /* program new delta value */
387         sh_tmu_set_next(ch, delta, 0);
388         return 0;
389 }
390
391 static void sh_tmu_clock_event_suspend(struct clock_event_device *ced)
392 {
393         pm_genpd_syscore_poweroff(&ced_to_sh_tmu(ced)->tmu->pdev->dev);
394 }
395
396 static void sh_tmu_clock_event_resume(struct clock_event_device *ced)
397 {
398         pm_genpd_syscore_poweron(&ced_to_sh_tmu(ced)->tmu->pdev->dev);
399 }
400
401 static void sh_tmu_register_clockevent(struct sh_tmu_channel *ch,
402                                        const char *name)
403 {
404         struct clock_event_device *ced = &ch->ced;
405         int ret;
406
407         ced->name = name;
408         ced->features = CLOCK_EVT_FEAT_PERIODIC;
409         ced->features |= CLOCK_EVT_FEAT_ONESHOT;
410         ced->rating = 200;
411         ced->cpumask = cpu_possible_mask;
412         ced->set_next_event = sh_tmu_clock_event_next;
413         ced->set_state_shutdown = sh_tmu_clock_event_shutdown;
414         ced->set_state_periodic = sh_tmu_clock_event_set_periodic;
415         ced->set_state_oneshot = sh_tmu_clock_event_set_oneshot;
416         ced->suspend = sh_tmu_clock_event_suspend;
417         ced->resume = sh_tmu_clock_event_resume;
418
419         dev_info(&ch->tmu->pdev->dev, "ch%u: used for clock events\n",
420                  ch->index);
421
422         clockevents_config_and_register(ced, ch->tmu->rate, 0x300, 0xffffffff);
423
424         ret = request_irq(ch->irq, sh_tmu_interrupt,
425                           IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
426                           dev_name(&ch->tmu->pdev->dev), ch);
427         if (ret) {
428                 dev_err(&ch->tmu->pdev->dev, "ch%u: failed to request irq %d\n",
429                         ch->index, ch->irq);
430                 return;
431         }
432 }
433
434 static int sh_tmu_register(struct sh_tmu_channel *ch, const char *name,
435                            bool clockevent, bool clocksource)
436 {
437         if (clockevent) {
438                 ch->tmu->has_clockevent = true;
439                 sh_tmu_register_clockevent(ch, name);
440         } else if (clocksource) {
441                 ch->tmu->has_clocksource = true;
442                 sh_tmu_register_clocksource(ch, name);
443         }
444
445         return 0;
446 }
447
448 static int sh_tmu_channel_setup(struct sh_tmu_channel *ch, unsigned int index,
449                                 bool clockevent, bool clocksource,
450                                 struct sh_tmu_device *tmu)
451 {
452         /* Skip unused channels. */
453         if (!clockevent && !clocksource)
454                 return 0;
455
456         ch->tmu = tmu;
457         ch->index = index;
458
459         if (tmu->model == SH_TMU_SH3)
460                 ch->base = tmu->mapbase + 4 + ch->index * 12;
461         else
462                 ch->base = tmu->mapbase + 8 + ch->index * 12;
463
464         ch->irq = platform_get_irq(tmu->pdev, index);
465         if (ch->irq < 0) {
466                 dev_err(&tmu->pdev->dev, "ch%u: failed to get irq\n",
467                         ch->index);
468                 return ch->irq;
469         }
470
471         ch->cs_enabled = false;
472         ch->enable_count = 0;
473
474         return sh_tmu_register(ch, dev_name(&tmu->pdev->dev),
475                                clockevent, clocksource);
476 }
477
478 static int sh_tmu_map_memory(struct sh_tmu_device *tmu)
479 {
480         struct resource *res;
481
482         res = platform_get_resource(tmu->pdev, IORESOURCE_MEM, 0);
483         if (!res) {
484                 dev_err(&tmu->pdev->dev, "failed to get I/O memory\n");
485                 return -ENXIO;
486         }
487
488         tmu->mapbase = ioremap_nocache(res->start, resource_size(res));
489         if (tmu->mapbase == NULL)
490                 return -ENXIO;
491
492         return 0;
493 }
494
495 static int sh_tmu_parse_dt(struct sh_tmu_device *tmu)
496 {
497         struct device_node *np = tmu->pdev->dev.of_node;
498
499         tmu->model = SH_TMU;
500         tmu->num_channels = 3;
501
502         of_property_read_u32(np, "#renesas,channels", &tmu->num_channels);
503
504         if (tmu->num_channels != 2 && tmu->num_channels != 3) {
505                 dev_err(&tmu->pdev->dev, "invalid number of channels %u\n",
506                         tmu->num_channels);
507                 return -EINVAL;
508         }
509
510         return 0;
511 }
512
513 static int sh_tmu_setup(struct sh_tmu_device *tmu, struct platform_device *pdev)
514 {
515         unsigned int i;
516         int ret;
517
518         tmu->pdev = pdev;
519
520         raw_spin_lock_init(&tmu->lock);
521
522         if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
523                 ret = sh_tmu_parse_dt(tmu);
524                 if (ret < 0)
525                         return ret;
526         } else if (pdev->dev.platform_data) {
527                 const struct platform_device_id *id = pdev->id_entry;
528                 struct sh_timer_config *cfg = pdev->dev.platform_data;
529
530                 tmu->model = id->driver_data;
531                 tmu->num_channels = hweight8(cfg->channels_mask);
532         } else {
533                 dev_err(&tmu->pdev->dev, "missing platform data\n");
534                 return -ENXIO;
535         }
536
537         /* Get hold of clock. */
538         tmu->clk = clk_get(&tmu->pdev->dev, "fck");
539         if (IS_ERR(tmu->clk)) {
540                 dev_err(&tmu->pdev->dev, "cannot get clock\n");
541                 return PTR_ERR(tmu->clk);
542         }
543
544         ret = clk_prepare(tmu->clk);
545         if (ret < 0)
546                 goto err_clk_put;
547
548         /* Determine clock rate. */
549         ret = clk_enable(tmu->clk);
550         if (ret < 0)
551                 goto err_clk_unprepare;
552
553         tmu->rate = clk_get_rate(tmu->clk) / 4;
554         clk_disable(tmu->clk);
555
556         /* Map the memory resource. */
557         ret = sh_tmu_map_memory(tmu);
558         if (ret < 0) {
559                 dev_err(&tmu->pdev->dev, "failed to remap I/O memory\n");
560                 goto err_clk_unprepare;
561         }
562
563         /* Allocate and setup the channels. */
564         tmu->channels = kcalloc(tmu->num_channels, sizeof(*tmu->channels),
565                                 GFP_KERNEL);
566         if (tmu->channels == NULL) {
567                 ret = -ENOMEM;
568                 goto err_unmap;
569         }
570
571         /*
572          * Use the first channel as a clock event device and the second channel
573          * as a clock source.
574          */
575         for (i = 0; i < tmu->num_channels; ++i) {
576                 ret = sh_tmu_channel_setup(&tmu->channels[i], i,
577                                            i == 0, i == 1, tmu);
578                 if (ret < 0)
579                         goto err_unmap;
580         }
581
582         platform_set_drvdata(pdev, tmu);
583
584         return 0;
585
586 err_unmap:
587         kfree(tmu->channels);
588         iounmap(tmu->mapbase);
589 err_clk_unprepare:
590         clk_unprepare(tmu->clk);
591 err_clk_put:
592         clk_put(tmu->clk);
593         return ret;
594 }
595
596 static int sh_tmu_probe(struct platform_device *pdev)
597 {
598         struct sh_tmu_device *tmu = platform_get_drvdata(pdev);
599         int ret;
600
601         if (!is_early_platform_device(pdev)) {
602                 pm_runtime_set_active(&pdev->dev);
603                 pm_runtime_enable(&pdev->dev);
604         }
605
606         if (tmu) {
607                 dev_info(&pdev->dev, "kept as earlytimer\n");
608                 goto out;
609         }
610
611         tmu = kzalloc(sizeof(*tmu), GFP_KERNEL);
612         if (tmu == NULL)
613                 return -ENOMEM;
614
615         ret = sh_tmu_setup(tmu, pdev);
616         if (ret) {
617                 kfree(tmu);
618                 pm_runtime_idle(&pdev->dev);
619                 return ret;
620         }
621         if (is_early_platform_device(pdev))
622                 return 0;
623
624  out:
625         if (tmu->has_clockevent || tmu->has_clocksource)
626                 pm_runtime_irq_safe(&pdev->dev);
627         else
628                 pm_runtime_idle(&pdev->dev);
629
630         return 0;
631 }
632
633 static int sh_tmu_remove(struct platform_device *pdev)
634 {
635         return -EBUSY; /* cannot unregister clockevent and clocksource */
636 }
637
638 static const struct platform_device_id sh_tmu_id_table[] = {
639         { "sh-tmu", SH_TMU },
640         { "sh-tmu-sh3", SH_TMU_SH3 },
641         { }
642 };
643 MODULE_DEVICE_TABLE(platform, sh_tmu_id_table);
644
645 static const struct of_device_id sh_tmu_of_table[] __maybe_unused = {
646         { .compatible = "renesas,tmu" },
647         { }
648 };
649 MODULE_DEVICE_TABLE(of, sh_tmu_of_table);
650
651 static struct platform_driver sh_tmu_device_driver = {
652         .probe          = sh_tmu_probe,
653         .remove         = sh_tmu_remove,
654         .driver         = {
655                 .name   = "sh_tmu",
656                 .of_match_table = of_match_ptr(sh_tmu_of_table),
657         },
658         .id_table       = sh_tmu_id_table,
659 };
660
661 static int __init sh_tmu_init(void)
662 {
663         return platform_driver_register(&sh_tmu_device_driver);
664 }
665
666 static void __exit sh_tmu_exit(void)
667 {
668         platform_driver_unregister(&sh_tmu_device_driver);
669 }
670
671 early_platform_init("earlytimer", &sh_tmu_device_driver);
672 subsys_initcall(sh_tmu_init);
673 module_exit(sh_tmu_exit);
674
675 MODULE_AUTHOR("Magnus Damm");
676 MODULE_DESCRIPTION("SuperH TMU Timer Driver");
677 MODULE_LICENSE("GPL v2");