clocksource: sh_cmt: Compute rate before registration again
[linux-2.6-block.git] / drivers / clocksource / sh_cmt.c
1 /*
2  * SuperH Timer Support - CMT
3  *
4  *  Copyright (C) 2008 Magnus Damm
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15
16 #include <linux/clk.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/delay.h>
20 #include <linux/err.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/ioport.h>
25 #include <linux/irq.h>
26 #include <linux/module.h>
27 #include <linux/of.h>
28 #include <linux/platform_device.h>
29 #include <linux/pm_domain.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/sh_timer.h>
32 #include <linux/slab.h>
33 #include <linux/spinlock.h>
34
35 struct sh_cmt_device;
36
37 /*
38  * The CMT comes in 5 different identified flavours, depending not only on the
39  * SoC but also on the particular instance. The following table lists the main
40  * characteristics of those flavours.
41  *
42  *                      16B     32B     32B-F   48B     48B-2
43  * -----------------------------------------------------------------------------
44  * Channels             2       1/4     1       6       2/8
45  * Control Width        16      16      16      16      32
46  * Counter Width        16      32      32      32/48   32/48
47  * Shared Start/Stop    Y       Y       Y       Y       N
48  *
49  * The 48-bit gen2 version has a per-channel start/stop register located in the
50  * channel registers block. All other versions have a shared start/stop register
51  * located in the global space.
52  *
53  * Channels are indexed from 0 to N-1 in the documentation. The channel index
54  * infers the start/stop bit position in the control register and the channel
55  * registers block address. Some CMT instances have a subset of channels
56  * available, in which case the index in the documentation doesn't match the
57  * "real" index as implemented in hardware. This is for instance the case with
58  * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
59  * in the documentation but using start/stop bit 5 and having its registers
60  * block at 0x60.
61  *
62  * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
63  * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
64  */
65
66 enum sh_cmt_model {
67         SH_CMT_16BIT,
68         SH_CMT_32BIT,
69         SH_CMT_32BIT_FAST,
70         SH_CMT_48BIT,
71         SH_CMT_48BIT_GEN2,
72 };
73
74 struct sh_cmt_info {
75         enum sh_cmt_model model;
76
77         unsigned long width; /* 16 or 32 bit version of hardware block */
78         unsigned long overflow_bit;
79         unsigned long clear_bits;
80
81         /* callbacks for CMSTR and CMCSR access */
82         unsigned long (*read_control)(void __iomem *base, unsigned long offs);
83         void (*write_control)(void __iomem *base, unsigned long offs,
84                               unsigned long value);
85
86         /* callbacks for CMCNT and CMCOR access */
87         unsigned long (*read_count)(void __iomem *base, unsigned long offs);
88         void (*write_count)(void __iomem *base, unsigned long offs,
89                             unsigned long value);
90 };
91
92 struct sh_cmt_channel {
93         struct sh_cmt_device *cmt;
94
95         unsigned int index;     /* Index in the documentation */
96         unsigned int hwidx;     /* Real hardware index */
97
98         void __iomem *iostart;
99         void __iomem *ioctrl;
100
101         unsigned int timer_bit;
102         unsigned long flags;
103         unsigned long match_value;
104         unsigned long next_match_value;
105         unsigned long max_match_value;
106         raw_spinlock_t lock;
107         struct clock_event_device ced;
108         struct clocksource cs;
109         unsigned long total_cycles;
110         bool cs_enabled;
111 };
112
113 struct sh_cmt_device {
114         struct platform_device *pdev;
115
116         const struct sh_cmt_info *info;
117
118         void __iomem *mapbase;
119         struct clk *clk;
120         unsigned long rate;
121
122         raw_spinlock_t lock; /* Protect the shared start/stop register */
123
124         struct sh_cmt_channel *channels;
125         unsigned int num_channels;
126         unsigned int hw_channels;
127
128         bool has_clockevent;
129         bool has_clocksource;
130 };
131
132 #define SH_CMT16_CMCSR_CMF              (1 << 7)
133 #define SH_CMT16_CMCSR_CMIE             (1 << 6)
134 #define SH_CMT16_CMCSR_CKS8             (0 << 0)
135 #define SH_CMT16_CMCSR_CKS32            (1 << 0)
136 #define SH_CMT16_CMCSR_CKS128           (2 << 0)
137 #define SH_CMT16_CMCSR_CKS512           (3 << 0)
138 #define SH_CMT16_CMCSR_CKS_MASK         (3 << 0)
139
140 #define SH_CMT32_CMCSR_CMF              (1 << 15)
141 #define SH_CMT32_CMCSR_OVF              (1 << 14)
142 #define SH_CMT32_CMCSR_WRFLG            (1 << 13)
143 #define SH_CMT32_CMCSR_STTF             (1 << 12)
144 #define SH_CMT32_CMCSR_STPF             (1 << 11)
145 #define SH_CMT32_CMCSR_SSIE             (1 << 10)
146 #define SH_CMT32_CMCSR_CMS              (1 << 9)
147 #define SH_CMT32_CMCSR_CMM              (1 << 8)
148 #define SH_CMT32_CMCSR_CMTOUT_IE        (1 << 7)
149 #define SH_CMT32_CMCSR_CMR_NONE         (0 << 4)
150 #define SH_CMT32_CMCSR_CMR_DMA          (1 << 4)
151 #define SH_CMT32_CMCSR_CMR_IRQ          (2 << 4)
152 #define SH_CMT32_CMCSR_CMR_MASK         (3 << 4)
153 #define SH_CMT32_CMCSR_DBGIVD           (1 << 3)
154 #define SH_CMT32_CMCSR_CKS_RCLK8        (4 << 0)
155 #define SH_CMT32_CMCSR_CKS_RCLK32       (5 << 0)
156 #define SH_CMT32_CMCSR_CKS_RCLK128      (6 << 0)
157 #define SH_CMT32_CMCSR_CKS_RCLK1        (7 << 0)
158 #define SH_CMT32_CMCSR_CKS_MASK         (7 << 0)
159
160 static unsigned long sh_cmt_read16(void __iomem *base, unsigned long offs)
161 {
162         return ioread16(base + (offs << 1));
163 }
164
165 static unsigned long sh_cmt_read32(void __iomem *base, unsigned long offs)
166 {
167         return ioread32(base + (offs << 2));
168 }
169
170 static void sh_cmt_write16(void __iomem *base, unsigned long offs,
171                            unsigned long value)
172 {
173         iowrite16(value, base + (offs << 1));
174 }
175
176 static void sh_cmt_write32(void __iomem *base, unsigned long offs,
177                            unsigned long value)
178 {
179         iowrite32(value, base + (offs << 2));
180 }
181
182 static const struct sh_cmt_info sh_cmt_info[] = {
183         [SH_CMT_16BIT] = {
184                 .model = SH_CMT_16BIT,
185                 .width = 16,
186                 .overflow_bit = SH_CMT16_CMCSR_CMF,
187                 .clear_bits = ~SH_CMT16_CMCSR_CMF,
188                 .read_control = sh_cmt_read16,
189                 .write_control = sh_cmt_write16,
190                 .read_count = sh_cmt_read16,
191                 .write_count = sh_cmt_write16,
192         },
193         [SH_CMT_32BIT] = {
194                 .model = SH_CMT_32BIT,
195                 .width = 32,
196                 .overflow_bit = SH_CMT32_CMCSR_CMF,
197                 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
198                 .read_control = sh_cmt_read16,
199                 .write_control = sh_cmt_write16,
200                 .read_count = sh_cmt_read32,
201                 .write_count = sh_cmt_write32,
202         },
203         [SH_CMT_32BIT_FAST] = {
204                 .model = SH_CMT_32BIT_FAST,
205                 .width = 32,
206                 .overflow_bit = SH_CMT32_CMCSR_CMF,
207                 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
208                 .read_control = sh_cmt_read16,
209                 .write_control = sh_cmt_write16,
210                 .read_count = sh_cmt_read32,
211                 .write_count = sh_cmt_write32,
212         },
213         [SH_CMT_48BIT] = {
214                 .model = SH_CMT_48BIT,
215                 .width = 32,
216                 .overflow_bit = SH_CMT32_CMCSR_CMF,
217                 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
218                 .read_control = sh_cmt_read32,
219                 .write_control = sh_cmt_write32,
220                 .read_count = sh_cmt_read32,
221                 .write_count = sh_cmt_write32,
222         },
223         [SH_CMT_48BIT_GEN2] = {
224                 .model = SH_CMT_48BIT_GEN2,
225                 .width = 32,
226                 .overflow_bit = SH_CMT32_CMCSR_CMF,
227                 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
228                 .read_control = sh_cmt_read32,
229                 .write_control = sh_cmt_write32,
230                 .read_count = sh_cmt_read32,
231                 .write_count = sh_cmt_write32,
232         },
233 };
234
235 #define CMCSR 0 /* channel register */
236 #define CMCNT 1 /* channel register */
237 #define CMCOR 2 /* channel register */
238
239 static inline unsigned long sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
240 {
241         if (ch->iostart)
242                 return ch->cmt->info->read_control(ch->iostart, 0);
243         else
244                 return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
245 }
246
247 static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch,
248                                       unsigned long value)
249 {
250         if (ch->iostart)
251                 ch->cmt->info->write_control(ch->iostart, 0, value);
252         else
253                 ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
254 }
255
256 static inline unsigned long sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
257 {
258         return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
259 }
260
261 static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch,
262                                       unsigned long value)
263 {
264         ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
265 }
266
267 static inline unsigned long sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
268 {
269         return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
270 }
271
272 static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch,
273                                       unsigned long value)
274 {
275         ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
276 }
277
278 static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch,
279                                       unsigned long value)
280 {
281         ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
282 }
283
284 static unsigned long sh_cmt_get_counter(struct sh_cmt_channel *ch,
285                                         int *has_wrapped)
286 {
287         unsigned long v1, v2, v3;
288         int o1, o2;
289
290         o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
291
292         /* Make sure the timer value is stable. Stolen from acpi_pm.c */
293         do {
294                 o2 = o1;
295                 v1 = sh_cmt_read_cmcnt(ch);
296                 v2 = sh_cmt_read_cmcnt(ch);
297                 v3 = sh_cmt_read_cmcnt(ch);
298                 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
299         } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
300                           || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
301
302         *has_wrapped = o1;
303         return v2;
304 }
305
306 static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
307 {
308         unsigned long flags, value;
309
310         /* start stop register shared by multiple timer channels */
311         raw_spin_lock_irqsave(&ch->cmt->lock, flags);
312         value = sh_cmt_read_cmstr(ch);
313
314         if (start)
315                 value |= 1 << ch->timer_bit;
316         else
317                 value &= ~(1 << ch->timer_bit);
318
319         sh_cmt_write_cmstr(ch, value);
320         raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
321 }
322
323 static int sh_cmt_enable(struct sh_cmt_channel *ch)
324 {
325         int k, ret;
326
327         pm_runtime_get_sync(&ch->cmt->pdev->dev);
328         dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
329
330         /* enable clock */
331         ret = clk_enable(ch->cmt->clk);
332         if (ret) {
333                 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
334                         ch->index);
335                 goto err0;
336         }
337
338         /* make sure channel is disabled */
339         sh_cmt_start_stop_ch(ch, 0);
340
341         /* configure channel, periodic mode and maximum timeout */
342         if (ch->cmt->info->width == 16) {
343                 sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
344                                    SH_CMT16_CMCSR_CKS512);
345         } else {
346                 sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
347                                    SH_CMT32_CMCSR_CMTOUT_IE |
348                                    SH_CMT32_CMCSR_CMR_IRQ |
349                                    SH_CMT32_CMCSR_CKS_RCLK8);
350         }
351
352         sh_cmt_write_cmcor(ch, 0xffffffff);
353         sh_cmt_write_cmcnt(ch, 0);
354
355         /*
356          * According to the sh73a0 user's manual, as CMCNT can be operated
357          * only by the RCLK (Pseudo 32 KHz), there's one restriction on
358          * modifying CMCNT register; two RCLK cycles are necessary before
359          * this register is either read or any modification of the value
360          * it holds is reflected in the LSI's actual operation.
361          *
362          * While at it, we're supposed to clear out the CMCNT as of this
363          * moment, so make sure it's processed properly here.  This will
364          * take RCLKx2 at maximum.
365          */
366         for (k = 0; k < 100; k++) {
367                 if (!sh_cmt_read_cmcnt(ch))
368                         break;
369                 udelay(1);
370         }
371
372         if (sh_cmt_read_cmcnt(ch)) {
373                 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
374                         ch->index);
375                 ret = -ETIMEDOUT;
376                 goto err1;
377         }
378
379         /* enable channel */
380         sh_cmt_start_stop_ch(ch, 1);
381         return 0;
382  err1:
383         /* stop clock */
384         clk_disable(ch->cmt->clk);
385
386  err0:
387         return ret;
388 }
389
390 static void sh_cmt_disable(struct sh_cmt_channel *ch)
391 {
392         /* disable channel */
393         sh_cmt_start_stop_ch(ch, 0);
394
395         /* disable interrupts in CMT block */
396         sh_cmt_write_cmcsr(ch, 0);
397
398         /* stop clock */
399         clk_disable(ch->cmt->clk);
400
401         dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
402         pm_runtime_put(&ch->cmt->pdev->dev);
403 }
404
405 /* private flags */
406 #define FLAG_CLOCKEVENT (1 << 0)
407 #define FLAG_CLOCKSOURCE (1 << 1)
408 #define FLAG_REPROGRAM (1 << 2)
409 #define FLAG_SKIPEVENT (1 << 3)
410 #define FLAG_IRQCONTEXT (1 << 4)
411
412 static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
413                                               int absolute)
414 {
415         unsigned long new_match;
416         unsigned long value = ch->next_match_value;
417         unsigned long delay = 0;
418         unsigned long now = 0;
419         int has_wrapped;
420
421         now = sh_cmt_get_counter(ch, &has_wrapped);
422         ch->flags |= FLAG_REPROGRAM; /* force reprogram */
423
424         if (has_wrapped) {
425                 /* we're competing with the interrupt handler.
426                  *  -> let the interrupt handler reprogram the timer.
427                  *  -> interrupt number two handles the event.
428                  */
429                 ch->flags |= FLAG_SKIPEVENT;
430                 return;
431         }
432
433         if (absolute)
434                 now = 0;
435
436         do {
437                 /* reprogram the timer hardware,
438                  * but don't save the new match value yet.
439                  */
440                 new_match = now + value + delay;
441                 if (new_match > ch->max_match_value)
442                         new_match = ch->max_match_value;
443
444                 sh_cmt_write_cmcor(ch, new_match);
445
446                 now = sh_cmt_get_counter(ch, &has_wrapped);
447                 if (has_wrapped && (new_match > ch->match_value)) {
448                         /* we are changing to a greater match value,
449                          * so this wrap must be caused by the counter
450                          * matching the old value.
451                          * -> first interrupt reprograms the timer.
452                          * -> interrupt number two handles the event.
453                          */
454                         ch->flags |= FLAG_SKIPEVENT;
455                         break;
456                 }
457
458                 if (has_wrapped) {
459                         /* we are changing to a smaller match value,
460                          * so the wrap must be caused by the counter
461                          * matching the new value.
462                          * -> save programmed match value.
463                          * -> let isr handle the event.
464                          */
465                         ch->match_value = new_match;
466                         break;
467                 }
468
469                 /* be safe: verify hardware settings */
470                 if (now < new_match) {
471                         /* timer value is below match value, all good.
472                          * this makes sure we won't miss any match events.
473                          * -> save programmed match value.
474                          * -> let isr handle the event.
475                          */
476                         ch->match_value = new_match;
477                         break;
478                 }
479
480                 /* the counter has reached a value greater
481                  * than our new match value. and since the
482                  * has_wrapped flag isn't set we must have
483                  * programmed a too close event.
484                  * -> increase delay and retry.
485                  */
486                 if (delay)
487                         delay <<= 1;
488                 else
489                         delay = 1;
490
491                 if (!delay)
492                         dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
493                                  ch->index);
494
495         } while (delay);
496 }
497
498 static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
499 {
500         if (delta > ch->max_match_value)
501                 dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
502                          ch->index);
503
504         ch->next_match_value = delta;
505         sh_cmt_clock_event_program_verify(ch, 0);
506 }
507
508 static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
509 {
510         unsigned long flags;
511
512         raw_spin_lock_irqsave(&ch->lock, flags);
513         __sh_cmt_set_next(ch, delta);
514         raw_spin_unlock_irqrestore(&ch->lock, flags);
515 }
516
517 static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
518 {
519         struct sh_cmt_channel *ch = dev_id;
520
521         /* clear flags */
522         sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
523                            ch->cmt->info->clear_bits);
524
525         /* update clock source counter to begin with if enabled
526          * the wrap flag should be cleared by the timer specific
527          * isr before we end up here.
528          */
529         if (ch->flags & FLAG_CLOCKSOURCE)
530                 ch->total_cycles += ch->match_value + 1;
531
532         if (!(ch->flags & FLAG_REPROGRAM))
533                 ch->next_match_value = ch->max_match_value;
534
535         ch->flags |= FLAG_IRQCONTEXT;
536
537         if (ch->flags & FLAG_CLOCKEVENT) {
538                 if (!(ch->flags & FLAG_SKIPEVENT)) {
539                         if (clockevent_state_oneshot(&ch->ced)) {
540                                 ch->next_match_value = ch->max_match_value;
541                                 ch->flags |= FLAG_REPROGRAM;
542                         }
543
544                         ch->ced.event_handler(&ch->ced);
545                 }
546         }
547
548         ch->flags &= ~FLAG_SKIPEVENT;
549
550         if (ch->flags & FLAG_REPROGRAM) {
551                 ch->flags &= ~FLAG_REPROGRAM;
552                 sh_cmt_clock_event_program_verify(ch, 1);
553
554                 if (ch->flags & FLAG_CLOCKEVENT)
555                         if ((clockevent_state_shutdown(&ch->ced))
556                             || (ch->match_value == ch->next_match_value))
557                                 ch->flags &= ~FLAG_REPROGRAM;
558         }
559
560         ch->flags &= ~FLAG_IRQCONTEXT;
561
562         return IRQ_HANDLED;
563 }
564
565 static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
566 {
567         int ret = 0;
568         unsigned long flags;
569
570         raw_spin_lock_irqsave(&ch->lock, flags);
571
572         if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
573                 ret = sh_cmt_enable(ch);
574
575         if (ret)
576                 goto out;
577         ch->flags |= flag;
578
579         /* setup timeout if no clockevent */
580         if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT)))
581                 __sh_cmt_set_next(ch, ch->max_match_value);
582  out:
583         raw_spin_unlock_irqrestore(&ch->lock, flags);
584
585         return ret;
586 }
587
588 static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
589 {
590         unsigned long flags;
591         unsigned long f;
592
593         raw_spin_lock_irqsave(&ch->lock, flags);
594
595         f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
596         ch->flags &= ~flag;
597
598         if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
599                 sh_cmt_disable(ch);
600
601         /* adjust the timeout to maximum if only clocksource left */
602         if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
603                 __sh_cmt_set_next(ch, ch->max_match_value);
604
605         raw_spin_unlock_irqrestore(&ch->lock, flags);
606 }
607
608 static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
609 {
610         return container_of(cs, struct sh_cmt_channel, cs);
611 }
612
613 static u64 sh_cmt_clocksource_read(struct clocksource *cs)
614 {
615         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
616         unsigned long flags, raw;
617         unsigned long value;
618         int has_wrapped;
619
620         raw_spin_lock_irqsave(&ch->lock, flags);
621         value = ch->total_cycles;
622         raw = sh_cmt_get_counter(ch, &has_wrapped);
623
624         if (unlikely(has_wrapped))
625                 raw += ch->match_value + 1;
626         raw_spin_unlock_irqrestore(&ch->lock, flags);
627
628         return value + raw;
629 }
630
631 static int sh_cmt_clocksource_enable(struct clocksource *cs)
632 {
633         int ret;
634         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
635
636         WARN_ON(ch->cs_enabled);
637
638         ch->total_cycles = 0;
639
640         ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
641         if (!ret)
642                 ch->cs_enabled = true;
643
644         return ret;
645 }
646
647 static void sh_cmt_clocksource_disable(struct clocksource *cs)
648 {
649         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
650
651         WARN_ON(!ch->cs_enabled);
652
653         sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
654         ch->cs_enabled = false;
655 }
656
657 static void sh_cmt_clocksource_suspend(struct clocksource *cs)
658 {
659         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
660
661         if (!ch->cs_enabled)
662                 return;
663
664         sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
665         pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
666 }
667
668 static void sh_cmt_clocksource_resume(struct clocksource *cs)
669 {
670         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
671
672         if (!ch->cs_enabled)
673                 return;
674
675         pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
676         sh_cmt_start(ch, FLAG_CLOCKSOURCE);
677 }
678
679 static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
680                                        const char *name)
681 {
682         struct clocksource *cs = &ch->cs;
683
684         cs->name = name;
685         cs->rating = 125;
686         cs->read = sh_cmt_clocksource_read;
687         cs->enable = sh_cmt_clocksource_enable;
688         cs->disable = sh_cmt_clocksource_disable;
689         cs->suspend = sh_cmt_clocksource_suspend;
690         cs->resume = sh_cmt_clocksource_resume;
691         cs->mask = CLOCKSOURCE_MASK(sizeof(unsigned long) * 8);
692         cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
693
694         dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
695                  ch->index);
696
697         clocksource_register_hz(cs, ch->cmt->rate);
698         return 0;
699 }
700
701 static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
702 {
703         return container_of(ced, struct sh_cmt_channel, ced);
704 }
705
706 static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
707 {
708         sh_cmt_start(ch, FLAG_CLOCKEVENT);
709
710         if (periodic)
711                 sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
712         else
713                 sh_cmt_set_next(ch, ch->max_match_value);
714 }
715
716 static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
717 {
718         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
719
720         sh_cmt_stop(ch, FLAG_CLOCKEVENT);
721         return 0;
722 }
723
724 static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
725                                         int periodic)
726 {
727         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
728
729         /* deal with old setting first */
730         if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
731                 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
732
733         dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
734                  ch->index, periodic ? "periodic" : "oneshot");
735         sh_cmt_clock_event_start(ch, periodic);
736         return 0;
737 }
738
739 static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
740 {
741         return sh_cmt_clock_event_set_state(ced, 0);
742 }
743
744 static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
745 {
746         return sh_cmt_clock_event_set_state(ced, 1);
747 }
748
749 static int sh_cmt_clock_event_next(unsigned long delta,
750                                    struct clock_event_device *ced)
751 {
752         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
753
754         BUG_ON(!clockevent_state_oneshot(ced));
755         if (likely(ch->flags & FLAG_IRQCONTEXT))
756                 ch->next_match_value = delta - 1;
757         else
758                 sh_cmt_set_next(ch, delta - 1);
759
760         return 0;
761 }
762
763 static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
764 {
765         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
766
767         pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
768         clk_unprepare(ch->cmt->clk);
769 }
770
771 static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
772 {
773         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
774
775         clk_prepare(ch->cmt->clk);
776         pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
777 }
778
779 static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
780                                       const char *name)
781 {
782         struct clock_event_device *ced = &ch->ced;
783         int irq;
784         int ret;
785
786         irq = platform_get_irq(ch->cmt->pdev, ch->index);
787         if (irq < 0) {
788                 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to get irq\n",
789                         ch->index);
790                 return irq;
791         }
792
793         ret = request_irq(irq, sh_cmt_interrupt,
794                           IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
795                           dev_name(&ch->cmt->pdev->dev), ch);
796         if (ret) {
797                 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
798                         ch->index, irq);
799                 return ret;
800         }
801
802         ced->name = name;
803         ced->features = CLOCK_EVT_FEAT_PERIODIC;
804         ced->features |= CLOCK_EVT_FEAT_ONESHOT;
805         ced->rating = 125;
806         ced->cpumask = cpu_possible_mask;
807         ced->set_next_event = sh_cmt_clock_event_next;
808         ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
809         ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
810         ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
811         ced->suspend = sh_cmt_clock_event_suspend;
812         ced->resume = sh_cmt_clock_event_resume;
813
814         /* TODO: calculate good shift from rate and counter bit width */
815         ced->shift = 32;
816         ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
817         ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
818         ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
819
820         dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
821                  ch->index);
822         clockevents_register_device(ced);
823
824         return 0;
825 }
826
827 static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
828                            bool clockevent, bool clocksource)
829 {
830         int ret;
831
832         if (clockevent) {
833                 ch->cmt->has_clockevent = true;
834                 ret = sh_cmt_register_clockevent(ch, name);
835                 if (ret < 0)
836                         return ret;
837         }
838
839         if (clocksource) {
840                 ch->cmt->has_clocksource = true;
841                 sh_cmt_register_clocksource(ch, name);
842         }
843
844         return 0;
845 }
846
847 static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
848                                 unsigned int hwidx, bool clockevent,
849                                 bool clocksource, struct sh_cmt_device *cmt)
850 {
851         int ret;
852
853         /* Skip unused channels. */
854         if (!clockevent && !clocksource)
855                 return 0;
856
857         ch->cmt = cmt;
858         ch->index = index;
859         ch->hwidx = hwidx;
860
861         /*
862          * Compute the address of the channel control register block. For the
863          * timers with a per-channel start/stop register, compute its address
864          * as well.
865          */
866         switch (cmt->info->model) {
867         case SH_CMT_16BIT:
868                 ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
869                 break;
870         case SH_CMT_32BIT:
871         case SH_CMT_48BIT:
872                 ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
873                 break;
874         case SH_CMT_32BIT_FAST:
875                 /*
876                  * The 32-bit "fast" timer has a single channel at hwidx 5 but
877                  * is located at offset 0x40 instead of 0x60 for some reason.
878                  */
879                 ch->ioctrl = cmt->mapbase + 0x40;
880                 break;
881         case SH_CMT_48BIT_GEN2:
882                 ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
883                 ch->ioctrl = ch->iostart + 0x10;
884                 break;
885         }
886
887         if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
888                 ch->max_match_value = ~0;
889         else
890                 ch->max_match_value = (1 << cmt->info->width) - 1;
891
892         ch->match_value = ch->max_match_value;
893         raw_spin_lock_init(&ch->lock);
894
895         ch->timer_bit = cmt->info->model == SH_CMT_48BIT_GEN2 ? 0 : ch->hwidx;
896
897         ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
898                               clockevent, clocksource);
899         if (ret) {
900                 dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
901                         ch->index);
902                 return ret;
903         }
904         ch->cs_enabled = false;
905
906         return 0;
907 }
908
909 static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
910 {
911         struct resource *mem;
912
913         mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
914         if (!mem) {
915                 dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
916                 return -ENXIO;
917         }
918
919         cmt->mapbase = ioremap_nocache(mem->start, resource_size(mem));
920         if (cmt->mapbase == NULL) {
921                 dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
922                 return -ENXIO;
923         }
924
925         return 0;
926 }
927
928 static const struct platform_device_id sh_cmt_id_table[] = {
929         { "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
930         { "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
931         { }
932 };
933 MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
934
935 static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
936         { .compatible = "renesas,cmt-32", .data = &sh_cmt_info[SH_CMT_32BIT] },
937         { .compatible = "renesas,cmt-32-fast", .data = &sh_cmt_info[SH_CMT_32BIT_FAST] },
938         { .compatible = "renesas,cmt-48", .data = &sh_cmt_info[SH_CMT_48BIT] },
939         { .compatible = "renesas,cmt-48-gen2", .data = &sh_cmt_info[SH_CMT_48BIT_GEN2] },
940         { }
941 };
942 MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
943
944 static int sh_cmt_parse_dt(struct sh_cmt_device *cmt)
945 {
946         struct device_node *np = cmt->pdev->dev.of_node;
947
948         return of_property_read_u32(np, "renesas,channels-mask",
949                                     &cmt->hw_channels);
950 }
951
952 static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
953 {
954         unsigned int mask;
955         unsigned int i;
956         int ret;
957
958         cmt->pdev = pdev;
959         raw_spin_lock_init(&cmt->lock);
960
961         if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
962                 const struct of_device_id *id;
963
964                 id = of_match_node(sh_cmt_of_table, pdev->dev.of_node);
965                 cmt->info = id->data;
966
967                 ret = sh_cmt_parse_dt(cmt);
968                 if (ret < 0)
969                         return ret;
970         } else if (pdev->dev.platform_data) {
971                 struct sh_timer_config *cfg = pdev->dev.platform_data;
972                 const struct platform_device_id *id = pdev->id_entry;
973
974                 cmt->info = (const struct sh_cmt_info *)id->driver_data;
975                 cmt->hw_channels = cfg->channels_mask;
976         } else {
977                 dev_err(&cmt->pdev->dev, "missing platform data\n");
978                 return -ENXIO;
979         }
980
981         /* Get hold of clock. */
982         cmt->clk = clk_get(&cmt->pdev->dev, "fck");
983         if (IS_ERR(cmt->clk)) {
984                 dev_err(&cmt->pdev->dev, "cannot get clock\n");
985                 return PTR_ERR(cmt->clk);
986         }
987
988         ret = clk_prepare(cmt->clk);
989         if (ret < 0)
990                 goto err_clk_put;
991
992         /* Determine clock rate. */
993         ret = clk_enable(cmt->clk);
994         if (ret < 0)
995                 goto err_clk_unprepare;
996
997         if (cmt->info->width == 16)
998                 cmt->rate = clk_get_rate(cmt->clk) / 512;
999         else
1000                 cmt->rate = clk_get_rate(cmt->clk) / 8;
1001
1002         clk_disable(cmt->clk);
1003
1004         /* Map the memory resource(s). */
1005         ret = sh_cmt_map_memory(cmt);
1006         if (ret < 0)
1007                 goto err_clk_unprepare;
1008
1009         /* Allocate and setup the channels. */
1010         cmt->num_channels = hweight8(cmt->hw_channels);
1011         cmt->channels = kzalloc(cmt->num_channels * sizeof(*cmt->channels),
1012                                 GFP_KERNEL);
1013         if (cmt->channels == NULL) {
1014                 ret = -ENOMEM;
1015                 goto err_unmap;
1016         }
1017
1018         /*
1019          * Use the first channel as a clock event device and the second channel
1020          * as a clock source. If only one channel is available use it for both.
1021          */
1022         for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1023                 unsigned int hwidx = ffs(mask) - 1;
1024                 bool clocksource = i == 1 || cmt->num_channels == 1;
1025                 bool clockevent = i == 0;
1026
1027                 ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1028                                            clockevent, clocksource, cmt);
1029                 if (ret < 0)
1030                         goto err_unmap;
1031
1032                 mask &= ~(1 << hwidx);
1033         }
1034
1035         platform_set_drvdata(pdev, cmt);
1036
1037         return 0;
1038
1039 err_unmap:
1040         kfree(cmt->channels);
1041         iounmap(cmt->mapbase);
1042 err_clk_unprepare:
1043         clk_unprepare(cmt->clk);
1044 err_clk_put:
1045         clk_put(cmt->clk);
1046         return ret;
1047 }
1048
1049 static int sh_cmt_probe(struct platform_device *pdev)
1050 {
1051         struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1052         int ret;
1053
1054         if (!is_early_platform_device(pdev)) {
1055                 pm_runtime_set_active(&pdev->dev);
1056                 pm_runtime_enable(&pdev->dev);
1057         }
1058
1059         if (cmt) {
1060                 dev_info(&pdev->dev, "kept as earlytimer\n");
1061                 goto out;
1062         }
1063
1064         cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1065         if (cmt == NULL)
1066                 return -ENOMEM;
1067
1068         ret = sh_cmt_setup(cmt, pdev);
1069         if (ret) {
1070                 kfree(cmt);
1071                 pm_runtime_idle(&pdev->dev);
1072                 return ret;
1073         }
1074         if (is_early_platform_device(pdev))
1075                 return 0;
1076
1077  out:
1078         if (cmt->has_clockevent || cmt->has_clocksource)
1079                 pm_runtime_irq_safe(&pdev->dev);
1080         else
1081                 pm_runtime_idle(&pdev->dev);
1082
1083         return 0;
1084 }
1085
1086 static int sh_cmt_remove(struct platform_device *pdev)
1087 {
1088         return -EBUSY; /* cannot unregister clockevent and clocksource */
1089 }
1090
1091 static struct platform_driver sh_cmt_device_driver = {
1092         .probe          = sh_cmt_probe,
1093         .remove         = sh_cmt_remove,
1094         .driver         = {
1095                 .name   = "sh_cmt",
1096                 .of_match_table = of_match_ptr(sh_cmt_of_table),
1097         },
1098         .id_table       = sh_cmt_id_table,
1099 };
1100
1101 static int __init sh_cmt_init(void)
1102 {
1103         return platform_driver_register(&sh_cmt_device_driver);
1104 }
1105
1106 static void __exit sh_cmt_exit(void)
1107 {
1108         platform_driver_unregister(&sh_cmt_device_driver);
1109 }
1110
1111 early_platform_init("earlytimer", &sh_cmt_device_driver);
1112 subsys_initcall(sh_cmt_init);
1113 module_exit(sh_cmt_exit);
1114
1115 MODULE_AUTHOR("Magnus Damm");
1116 MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1117 MODULE_LICENSE("GPL v2");