2 * (C) Copyright 2009 Intel Corporation
3 * Author: Jacob Pan (jacob.jun.pan@intel.com)
5 * Shared with ARM platforms, Jamie Iles, Picochip 2011
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 * Support for the Synopsys DesignWare APB Timers.
13 #include <linux/dw_apb_timer.h>
14 #include <linux/delay.h>
15 #include <linux/kernel.h>
16 #include <linux/interrupt.h>
17 #include <linux/irq.h>
19 #include <linux/slab.h>
21 #define APBT_MIN_PERIOD 4
22 #define APBT_MIN_DELTA_USEC 200
24 #define APBTMR_N_LOAD_COUNT 0x00
25 #define APBTMR_N_CURRENT_VALUE 0x04
26 #define APBTMR_N_CONTROL 0x08
27 #define APBTMR_N_EOI 0x0c
28 #define APBTMR_N_INT_STATUS 0x10
30 #define APBTMRS_INT_STATUS 0xa0
31 #define APBTMRS_EOI 0xa4
32 #define APBTMRS_RAW_INT_STATUS 0xa8
33 #define APBTMRS_COMP_VERSION 0xac
35 #define APBTMR_CONTROL_ENABLE (1 << 0)
36 /* 1: periodic, 0:free running. */
37 #define APBTMR_CONTROL_MODE_PERIODIC (1 << 1)
38 #define APBTMR_CONTROL_INT (1 << 2)
40 static inline struct dw_apb_clock_event_device *
41 ced_to_dw_apb_ced(struct clock_event_device *evt)
43 return container_of(evt, struct dw_apb_clock_event_device, ced);
46 static inline struct dw_apb_clocksource *
47 clocksource_to_dw_apb_clocksource(struct clocksource *cs)
49 return container_of(cs, struct dw_apb_clocksource, cs);
52 static inline u32 apbt_readl(struct dw_apb_timer *timer, unsigned long offs)
54 return readl(timer->base + offs);
57 static inline void apbt_writel(struct dw_apb_timer *timer, u32 val,
60 writel(val, timer->base + offs);
63 static inline u32 apbt_readl_relaxed(struct dw_apb_timer *timer, unsigned long offs)
65 return readl_relaxed(timer->base + offs);
68 static inline void apbt_writel_relaxed(struct dw_apb_timer *timer, u32 val,
71 writel_relaxed(val, timer->base + offs);
74 static void apbt_disable_int(struct dw_apb_timer *timer)
76 u32 ctrl = apbt_readl(timer, APBTMR_N_CONTROL);
78 ctrl |= APBTMR_CONTROL_INT;
79 apbt_writel(timer, ctrl, APBTMR_N_CONTROL);
83 * dw_apb_clockevent_pause() - stop the clock_event_device from running
85 * @dw_ced: The APB clock to stop generating events.
87 void dw_apb_clockevent_pause(struct dw_apb_clock_event_device *dw_ced)
89 disable_irq(dw_ced->timer.irq);
90 apbt_disable_int(&dw_ced->timer);
93 static void apbt_eoi(struct dw_apb_timer *timer)
95 apbt_readl_relaxed(timer, APBTMR_N_EOI);
98 static irqreturn_t dw_apb_clockevent_irq(int irq, void *data)
100 struct clock_event_device *evt = data;
101 struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
103 if (!evt->event_handler) {
104 pr_info("Spurious APBT timer interrupt %d", irq);
109 dw_ced->eoi(&dw_ced->timer);
111 evt->event_handler(evt);
115 static void apbt_enable_int(struct dw_apb_timer *timer)
117 u32 ctrl = apbt_readl(timer, APBTMR_N_CONTROL);
118 /* clear pending intr */
119 apbt_readl(timer, APBTMR_N_EOI);
120 ctrl &= ~APBTMR_CONTROL_INT;
121 apbt_writel(timer, ctrl, APBTMR_N_CONTROL);
124 static int apbt_shutdown(struct clock_event_device *evt)
126 struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
129 pr_debug("%s CPU %d state=shutdown\n", __func__,
130 cpumask_first(evt->cpumask));
132 ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
133 ctrl &= ~APBTMR_CONTROL_ENABLE;
134 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
138 static int apbt_set_oneshot(struct clock_event_device *evt)
140 struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
143 pr_debug("%s CPU %d state=oneshot\n", __func__,
144 cpumask_first(evt->cpumask));
146 ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
148 * set free running mode, this mode will let timer reload max
149 * timeout which will give time (3min on 25MHz clock) to rearm
150 * the next event, therefore emulate the one-shot mode.
152 ctrl &= ~APBTMR_CONTROL_ENABLE;
153 ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
155 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
156 /* write again to set free running mode */
157 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
160 * DW APB p. 46, load counter with all 1s before starting free
163 apbt_writel(&dw_ced->timer, ~0, APBTMR_N_LOAD_COUNT);
164 ctrl &= ~APBTMR_CONTROL_INT;
165 ctrl |= APBTMR_CONTROL_ENABLE;
166 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
170 static int apbt_set_periodic(struct clock_event_device *evt)
172 struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
173 unsigned long period = DIV_ROUND_UP(dw_ced->timer.freq, HZ);
176 pr_debug("%s CPU %d state=periodic\n", __func__,
177 cpumask_first(evt->cpumask));
179 ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
180 ctrl |= APBTMR_CONTROL_MODE_PERIODIC;
181 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
183 * DW APB p. 46, have to disable timer before load counter,
184 * may cause sync problem.
186 ctrl &= ~APBTMR_CONTROL_ENABLE;
187 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
189 pr_debug("Setting clock period %lu for HZ %d\n", period, HZ);
190 apbt_writel(&dw_ced->timer, period, APBTMR_N_LOAD_COUNT);
191 ctrl |= APBTMR_CONTROL_ENABLE;
192 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
196 static int apbt_resume(struct clock_event_device *evt)
198 struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
200 pr_debug("%s CPU %d state=resume\n", __func__,
201 cpumask_first(evt->cpumask));
203 apbt_enable_int(&dw_ced->timer);
207 static int apbt_next_event(unsigned long delta,
208 struct clock_event_device *evt)
211 struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
214 ctrl = apbt_readl_relaxed(&dw_ced->timer, APBTMR_N_CONTROL);
215 ctrl &= ~APBTMR_CONTROL_ENABLE;
216 apbt_writel_relaxed(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
217 /* write new count */
218 apbt_writel_relaxed(&dw_ced->timer, delta, APBTMR_N_LOAD_COUNT);
219 ctrl |= APBTMR_CONTROL_ENABLE;
220 apbt_writel_relaxed(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
226 * dw_apb_clockevent_init() - use an APB timer as a clock_event_device
228 * @cpu: The CPU the events will be targeted at.
229 * @name: The name used for the timer and the IRQ for it.
230 * @rating: The rating to give the timer.
231 * @base: I/O base for the timer registers.
232 * @irq: The interrupt number to use for the timer.
233 * @freq: The frequency that the timer counts at.
235 * This creates a clock_event_device for using with the generic clock layer
236 * but does not start and register it. This should be done with
237 * dw_apb_clockevent_register() as the next step. If this is the first time
238 * it has been called for a timer then the IRQ will be requested, if not it
239 * just be enabled to allow CPU hotplug to avoid repeatedly requesting and
242 struct dw_apb_clock_event_device *
243 dw_apb_clockevent_init(int cpu, const char *name, unsigned rating,
244 void __iomem *base, int irq, unsigned long freq)
246 struct dw_apb_clock_event_device *dw_ced =
247 kzalloc(sizeof(*dw_ced), GFP_KERNEL);
253 dw_ced->timer.base = base;
254 dw_ced->timer.irq = irq;
255 dw_ced->timer.freq = freq;
257 clockevents_calc_mult_shift(&dw_ced->ced, freq, APBT_MIN_PERIOD);
258 dw_ced->ced.max_delta_ns = clockevent_delta2ns(0x7fffffff,
260 dw_ced->ced.min_delta_ns = clockevent_delta2ns(5000, &dw_ced->ced);
261 dw_ced->ced.cpumask = cpumask_of(cpu);
262 dw_ced->ced.features = CLOCK_EVT_FEAT_PERIODIC |
263 CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_DYNIRQ;
264 dw_ced->ced.set_state_shutdown = apbt_shutdown;
265 dw_ced->ced.set_state_periodic = apbt_set_periodic;
266 dw_ced->ced.set_state_oneshot = apbt_set_oneshot;
267 dw_ced->ced.set_state_oneshot_stopped = apbt_shutdown;
268 dw_ced->ced.tick_resume = apbt_resume;
269 dw_ced->ced.set_next_event = apbt_next_event;
270 dw_ced->ced.irq = dw_ced->timer.irq;
271 dw_ced->ced.rating = rating;
272 dw_ced->ced.name = name;
274 dw_ced->irqaction.name = dw_ced->ced.name;
275 dw_ced->irqaction.handler = dw_apb_clockevent_irq;
276 dw_ced->irqaction.dev_id = &dw_ced->ced;
277 dw_ced->irqaction.irq = irq;
278 dw_ced->irqaction.flags = IRQF_TIMER | IRQF_IRQPOLL |
281 dw_ced->eoi = apbt_eoi;
282 err = setup_irq(irq, &dw_ced->irqaction);
284 pr_err("failed to request timer irq\n");
293 * dw_apb_clockevent_resume() - resume a clock that has been paused.
295 * @dw_ced: The APB clock to resume.
297 void dw_apb_clockevent_resume(struct dw_apb_clock_event_device *dw_ced)
299 enable_irq(dw_ced->timer.irq);
303 * dw_apb_clockevent_stop() - stop the clock_event_device and release the IRQ.
305 * @dw_ced: The APB clock to stop generating the events.
307 void dw_apb_clockevent_stop(struct dw_apb_clock_event_device *dw_ced)
309 free_irq(dw_ced->timer.irq, &dw_ced->ced);
313 * dw_apb_clockevent_register() - register the clock with the generic layer
315 * @dw_ced: The APB clock to register as a clock_event_device.
317 void dw_apb_clockevent_register(struct dw_apb_clock_event_device *dw_ced)
319 apbt_writel(&dw_ced->timer, 0, APBTMR_N_CONTROL);
320 clockevents_register_device(&dw_ced->ced);
321 apbt_enable_int(&dw_ced->timer);
325 * dw_apb_clocksource_start() - start the clocksource counting.
327 * @dw_cs: The clocksource to start.
329 * This is used to start the clocksource before registration and can be used
330 * to enable calibration of timers.
332 void dw_apb_clocksource_start(struct dw_apb_clocksource *dw_cs)
335 * start count down from 0xffff_ffff. this is done by toggling the
336 * enable bit then load initial load count to ~0.
338 u32 ctrl = apbt_readl(&dw_cs->timer, APBTMR_N_CONTROL);
340 ctrl &= ~APBTMR_CONTROL_ENABLE;
341 apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL);
342 apbt_writel(&dw_cs->timer, ~0, APBTMR_N_LOAD_COUNT);
343 /* enable, mask interrupt */
344 ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
345 ctrl |= (APBTMR_CONTROL_ENABLE | APBTMR_CONTROL_INT);
346 apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL);
347 /* read it once to get cached counter value initialized */
348 dw_apb_clocksource_read(dw_cs);
351 static cycle_t __apbt_read_clocksource(struct clocksource *cs)
354 struct dw_apb_clocksource *dw_cs =
355 clocksource_to_dw_apb_clocksource(cs);
357 current_count = apbt_readl_relaxed(&dw_cs->timer,
358 APBTMR_N_CURRENT_VALUE);
360 return (cycle_t)~current_count;
363 static void apbt_restart_clocksource(struct clocksource *cs)
365 struct dw_apb_clocksource *dw_cs =
366 clocksource_to_dw_apb_clocksource(cs);
368 dw_apb_clocksource_start(dw_cs);
372 * dw_apb_clocksource_init() - use an APB timer as a clocksource.
374 * @rating: The rating to give the clocksource.
375 * @name: The name for the clocksource.
376 * @base: The I/O base for the timer registers.
377 * @freq: The frequency that the timer counts at.
379 * This creates a clocksource using an APB timer but does not yet register it
380 * with the clocksource system. This should be done with
381 * dw_apb_clocksource_register() as the next step.
383 struct dw_apb_clocksource *
384 dw_apb_clocksource_init(unsigned rating, const char *name, void __iomem *base,
387 struct dw_apb_clocksource *dw_cs = kzalloc(sizeof(*dw_cs), GFP_KERNEL);
392 dw_cs->timer.base = base;
393 dw_cs->timer.freq = freq;
394 dw_cs->cs.name = name;
395 dw_cs->cs.rating = rating;
396 dw_cs->cs.read = __apbt_read_clocksource;
397 dw_cs->cs.mask = CLOCKSOURCE_MASK(32);
398 dw_cs->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS;
399 dw_cs->cs.resume = apbt_restart_clocksource;
405 * dw_apb_clocksource_register() - register the APB clocksource.
407 * @dw_cs: The clocksource to register.
409 void dw_apb_clocksource_register(struct dw_apb_clocksource *dw_cs)
411 clocksource_register_hz(&dw_cs->cs, dw_cs->timer.freq);
415 * dw_apb_clocksource_read() - read the current value of a clocksource.
417 * @dw_cs: The clocksource to read.
419 cycle_t dw_apb_clocksource_read(struct dw_apb_clocksource *dw_cs)
421 return (cycle_t)~apbt_readl(&dw_cs->timer, APBTMR_N_CURRENT_VALUE);