Merge branch 'linus' into sched/urgent, to pick up dependencies
[linux-2.6-block.git] / drivers / clocksource / arm_arch_timer.c
1 /*
2  *  linux/drivers/clocksource/arm_arch_timer.c
3  *
4  *  Copyright (C) 2011 ARM Ltd.
5  *  All Rights Reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/interrupt.h>
20 #include <linux/of_irq.h>
21 #include <linux/of_address.h>
22 #include <linux/io.h>
23 #include <linux/slab.h>
24 #include <linux/sched_clock.h>
25 #include <linux/acpi.h>
26
27 #include <asm/arch_timer.h>
28 #include <asm/virt.h>
29
30 #include <clocksource/arm_arch_timer.h>
31
32 #define CNTTIDR         0x08
33 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
34
35 #define CNTACR(n)       (0x40 + ((n) * 4))
36 #define CNTACR_RPCT     BIT(0)
37 #define CNTACR_RVCT     BIT(1)
38 #define CNTACR_RFRQ     BIT(2)
39 #define CNTACR_RVOFF    BIT(3)
40 #define CNTACR_RWVT     BIT(4)
41 #define CNTACR_RWPT     BIT(5)
42
43 #define CNTVCT_LO       0x08
44 #define CNTVCT_HI       0x0c
45 #define CNTFRQ          0x10
46 #define CNTP_TVAL       0x28
47 #define CNTP_CTL        0x2c
48 #define CNTV_TVAL       0x38
49 #define CNTV_CTL        0x3c
50
51 #define ARCH_CP15_TIMER BIT(0)
52 #define ARCH_MEM_TIMER  BIT(1)
53 static unsigned arch_timers_present __initdata;
54
55 static void __iomem *arch_counter_base;
56
57 struct arch_timer {
58         void __iomem *base;
59         struct clock_event_device evt;
60 };
61
62 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
63
64 static u32 arch_timer_rate;
65
66 enum ppi_nr {
67         PHYS_SECURE_PPI,
68         PHYS_NONSECURE_PPI,
69         VIRT_PPI,
70         HYP_PPI,
71         MAX_TIMER_PPI
72 };
73
74 static int arch_timer_ppi[MAX_TIMER_PPI];
75
76 static struct clock_event_device __percpu *arch_timer_evt;
77
78 static bool arch_timer_use_virtual = true;
79 static bool arch_timer_c3stop;
80 static bool arch_timer_mem_use_virtual;
81
82 /*
83  * Architected system timer support.
84  */
85
86 static __always_inline
87 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
88                           struct clock_event_device *clk)
89 {
90         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
91                 struct arch_timer *timer = to_arch_timer(clk);
92                 switch (reg) {
93                 case ARCH_TIMER_REG_CTRL:
94                         writel_relaxed(val, timer->base + CNTP_CTL);
95                         break;
96                 case ARCH_TIMER_REG_TVAL:
97                         writel_relaxed(val, timer->base + CNTP_TVAL);
98                         break;
99                 }
100         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
101                 struct arch_timer *timer = to_arch_timer(clk);
102                 switch (reg) {
103                 case ARCH_TIMER_REG_CTRL:
104                         writel_relaxed(val, timer->base + CNTV_CTL);
105                         break;
106                 case ARCH_TIMER_REG_TVAL:
107                         writel_relaxed(val, timer->base + CNTV_TVAL);
108                         break;
109                 }
110         } else {
111                 arch_timer_reg_write_cp15(access, reg, val);
112         }
113 }
114
115 static __always_inline
116 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
117                         struct clock_event_device *clk)
118 {
119         u32 val;
120
121         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
122                 struct arch_timer *timer = to_arch_timer(clk);
123                 switch (reg) {
124                 case ARCH_TIMER_REG_CTRL:
125                         val = readl_relaxed(timer->base + CNTP_CTL);
126                         break;
127                 case ARCH_TIMER_REG_TVAL:
128                         val = readl_relaxed(timer->base + CNTP_TVAL);
129                         break;
130                 }
131         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
132                 struct arch_timer *timer = to_arch_timer(clk);
133                 switch (reg) {
134                 case ARCH_TIMER_REG_CTRL:
135                         val = readl_relaxed(timer->base + CNTV_CTL);
136                         break;
137                 case ARCH_TIMER_REG_TVAL:
138                         val = readl_relaxed(timer->base + CNTV_TVAL);
139                         break;
140                 }
141         } else {
142                 val = arch_timer_reg_read_cp15(access, reg);
143         }
144
145         return val;
146 }
147
148 static __always_inline irqreturn_t timer_handler(const int access,
149                                         struct clock_event_device *evt)
150 {
151         unsigned long ctrl;
152
153         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
154         if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
155                 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
156                 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
157                 evt->event_handler(evt);
158                 return IRQ_HANDLED;
159         }
160
161         return IRQ_NONE;
162 }
163
164 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
165 {
166         struct clock_event_device *evt = dev_id;
167
168         return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
169 }
170
171 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
172 {
173         struct clock_event_device *evt = dev_id;
174
175         return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
176 }
177
178 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
179 {
180         struct clock_event_device *evt = dev_id;
181
182         return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
183 }
184
185 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
186 {
187         struct clock_event_device *evt = dev_id;
188
189         return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
190 }
191
192 static __always_inline int timer_shutdown(const int access,
193                                           struct clock_event_device *clk)
194 {
195         unsigned long ctrl;
196
197         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
198         ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
199         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
200
201         return 0;
202 }
203
204 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
205 {
206         return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
207 }
208
209 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
210 {
211         return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
212 }
213
214 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
215 {
216         return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
217 }
218
219 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
220 {
221         return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
222 }
223
224 static __always_inline void set_next_event(const int access, unsigned long evt,
225                                            struct clock_event_device *clk)
226 {
227         unsigned long ctrl;
228         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
229         ctrl |= ARCH_TIMER_CTRL_ENABLE;
230         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
231         arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
232         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
233 }
234
235 static int arch_timer_set_next_event_virt(unsigned long evt,
236                                           struct clock_event_device *clk)
237 {
238         set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
239         return 0;
240 }
241
242 static int arch_timer_set_next_event_phys(unsigned long evt,
243                                           struct clock_event_device *clk)
244 {
245         set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
246         return 0;
247 }
248
249 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
250                                               struct clock_event_device *clk)
251 {
252         set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
253         return 0;
254 }
255
256 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
257                                               struct clock_event_device *clk)
258 {
259         set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
260         return 0;
261 }
262
263 static void __arch_timer_setup(unsigned type,
264                                struct clock_event_device *clk)
265 {
266         clk->features = CLOCK_EVT_FEAT_ONESHOT;
267
268         if (type == ARCH_CP15_TIMER) {
269                 if (arch_timer_c3stop)
270                         clk->features |= CLOCK_EVT_FEAT_C3STOP;
271                 clk->name = "arch_sys_timer";
272                 clk->rating = 450;
273                 clk->cpumask = cpumask_of(smp_processor_id());
274                 if (arch_timer_use_virtual) {
275                         clk->irq = arch_timer_ppi[VIRT_PPI];
276                         clk->set_state_shutdown = arch_timer_shutdown_virt;
277                         clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
278                         clk->set_next_event = arch_timer_set_next_event_virt;
279                 } else {
280                         clk->irq = arch_timer_ppi[PHYS_SECURE_PPI];
281                         clk->set_state_shutdown = arch_timer_shutdown_phys;
282                         clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
283                         clk->set_next_event = arch_timer_set_next_event_phys;
284                 }
285         } else {
286                 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
287                 clk->name = "arch_mem_timer";
288                 clk->rating = 400;
289                 clk->cpumask = cpu_all_mask;
290                 if (arch_timer_mem_use_virtual) {
291                         clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
292                         clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
293                         clk->set_next_event =
294                                 arch_timer_set_next_event_virt_mem;
295                 } else {
296                         clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
297                         clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
298                         clk->set_next_event =
299                                 arch_timer_set_next_event_phys_mem;
300                 }
301         }
302
303         clk->set_state_shutdown(clk);
304
305         clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
306 }
307
308 static void arch_timer_evtstrm_enable(int divider)
309 {
310         u32 cntkctl = arch_timer_get_cntkctl();
311
312         cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
313         /* Set the divider and enable virtual event stream */
314         cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
315                         | ARCH_TIMER_VIRT_EVT_EN;
316         arch_timer_set_cntkctl(cntkctl);
317         elf_hwcap |= HWCAP_EVTSTRM;
318 #ifdef CONFIG_COMPAT
319         compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
320 #endif
321 }
322
323 static void arch_timer_configure_evtstream(void)
324 {
325         int evt_stream_div, pos;
326
327         /* Find the closest power of two to the divisor */
328         evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
329         pos = fls(evt_stream_div);
330         if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
331                 pos--;
332         /* enable event stream */
333         arch_timer_evtstrm_enable(min(pos, 15));
334 }
335
336 static void arch_counter_set_user_access(void)
337 {
338         u32 cntkctl = arch_timer_get_cntkctl();
339
340         /* Disable user access to the timers and the physical counter */
341         /* Also disable virtual event stream */
342         cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
343                         | ARCH_TIMER_USR_VT_ACCESS_EN
344                         | ARCH_TIMER_VIRT_EVT_EN
345                         | ARCH_TIMER_USR_PCT_ACCESS_EN);
346
347         /* Enable user access to the virtual counter */
348         cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
349
350         arch_timer_set_cntkctl(cntkctl);
351 }
352
353 static int arch_timer_setup(struct clock_event_device *clk)
354 {
355         __arch_timer_setup(ARCH_CP15_TIMER, clk);
356
357         if (arch_timer_use_virtual)
358                 enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0);
359         else {
360                 enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0);
361                 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
362                         enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);
363         }
364
365         arch_counter_set_user_access();
366         if (IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM))
367                 arch_timer_configure_evtstream();
368
369         return 0;
370 }
371
372 static void
373 arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
374 {
375         /* Who has more than one independent system counter? */
376         if (arch_timer_rate)
377                 return;
378
379         /*
380          * Try to determine the frequency from the device tree or CNTFRQ,
381          * if ACPI is enabled, get the frequency from CNTFRQ ONLY.
382          */
383         if (!acpi_disabled ||
384             of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
385                 if (cntbase)
386                         arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
387                 else
388                         arch_timer_rate = arch_timer_get_cntfrq();
389         }
390
391         /* Check the timer frequency. */
392         if (arch_timer_rate == 0)
393                 pr_warn("Architected timer frequency not available\n");
394 }
395
396 static void arch_timer_banner(unsigned type)
397 {
398         pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
399                      type & ARCH_CP15_TIMER ? "cp15" : "",
400                      type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  " and " : "",
401                      type & ARCH_MEM_TIMER ? "mmio" : "",
402                      (unsigned long)arch_timer_rate / 1000000,
403                      (unsigned long)(arch_timer_rate / 10000) % 100,
404                      type & ARCH_CP15_TIMER ?
405                         arch_timer_use_virtual ? "virt" : "phys" :
406                         "",
407                      type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  "/" : "",
408                      type & ARCH_MEM_TIMER ?
409                         arch_timer_mem_use_virtual ? "virt" : "phys" :
410                         "");
411 }
412
413 u32 arch_timer_get_rate(void)
414 {
415         return arch_timer_rate;
416 }
417
418 static u64 arch_counter_get_cntvct_mem(void)
419 {
420         u32 vct_lo, vct_hi, tmp_hi;
421
422         do {
423                 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
424                 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
425                 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
426         } while (vct_hi != tmp_hi);
427
428         return ((u64) vct_hi << 32) | vct_lo;
429 }
430
431 /*
432  * Default to cp15 based access because arm64 uses this function for
433  * sched_clock() before DT is probed and the cp15 method is guaranteed
434  * to exist on arm64. arm doesn't use this before DT is probed so even
435  * if we don't have the cp15 accessors we won't have a problem.
436  */
437 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
438
439 static cycle_t arch_counter_read(struct clocksource *cs)
440 {
441         return arch_timer_read_counter();
442 }
443
444 static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
445 {
446         return arch_timer_read_counter();
447 }
448
449 static struct clocksource clocksource_counter = {
450         .name   = "arch_sys_counter",
451         .rating = 400,
452         .read   = arch_counter_read,
453         .mask   = CLOCKSOURCE_MASK(56),
454         .flags  = CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_SUSPEND_NONSTOP,
455 };
456
457 static struct cyclecounter cyclecounter = {
458         .read   = arch_counter_read_cc,
459         .mask   = CLOCKSOURCE_MASK(56),
460 };
461
462 static struct timecounter timecounter;
463
464 struct timecounter *arch_timer_get_timecounter(void)
465 {
466         return &timecounter;
467 }
468
469 static void __init arch_counter_register(unsigned type)
470 {
471         u64 start_count;
472
473         /* Register the CP15 based counter if we have one */
474         if (type & ARCH_CP15_TIMER) {
475                 if (IS_ENABLED(CONFIG_ARM64) || arch_timer_use_virtual)
476                         arch_timer_read_counter = arch_counter_get_cntvct;
477                 else
478                         arch_timer_read_counter = arch_counter_get_cntpct;
479         } else {
480                 arch_timer_read_counter = arch_counter_get_cntvct_mem;
481
482                 /* If the clocksource name is "arch_sys_counter" the
483                  * VDSO will attempt to read the CP15-based counter.
484                  * Ensure this does not happen when CP15-based
485                  * counter is not available.
486                  */
487                 clocksource_counter.name = "arch_mem_counter";
488         }
489
490         start_count = arch_timer_read_counter();
491         clocksource_register_hz(&clocksource_counter, arch_timer_rate);
492         cyclecounter.mult = clocksource_counter.mult;
493         cyclecounter.shift = clocksource_counter.shift;
494         timecounter_init(&timecounter, &cyclecounter, start_count);
495
496         /* 56 bits minimum, so we assume worst case rollover */
497         sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
498 }
499
500 static void arch_timer_stop(struct clock_event_device *clk)
501 {
502         pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
503                  clk->irq, smp_processor_id());
504
505         if (arch_timer_use_virtual)
506                 disable_percpu_irq(arch_timer_ppi[VIRT_PPI]);
507         else {
508                 disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]);
509                 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
510                         disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
511         }
512
513         clk->set_state_shutdown(clk);
514 }
515
516 static int arch_timer_cpu_notify(struct notifier_block *self,
517                                            unsigned long action, void *hcpu)
518 {
519         /*
520          * Grab cpu pointer in each case to avoid spurious
521          * preemptible warnings
522          */
523         switch (action & ~CPU_TASKS_FROZEN) {
524         case CPU_STARTING:
525                 arch_timer_setup(this_cpu_ptr(arch_timer_evt));
526                 break;
527         case CPU_DYING:
528                 arch_timer_stop(this_cpu_ptr(arch_timer_evt));
529                 break;
530         }
531
532         return NOTIFY_OK;
533 }
534
535 static struct notifier_block arch_timer_cpu_nb = {
536         .notifier_call = arch_timer_cpu_notify,
537 };
538
539 #ifdef CONFIG_CPU_PM
540 static unsigned int saved_cntkctl;
541 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
542                                     unsigned long action, void *hcpu)
543 {
544         if (action == CPU_PM_ENTER)
545                 saved_cntkctl = arch_timer_get_cntkctl();
546         else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
547                 arch_timer_set_cntkctl(saved_cntkctl);
548         return NOTIFY_OK;
549 }
550
551 static struct notifier_block arch_timer_cpu_pm_notifier = {
552         .notifier_call = arch_timer_cpu_pm_notify,
553 };
554
555 static int __init arch_timer_cpu_pm_init(void)
556 {
557         return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
558 }
559 #else
560 static int __init arch_timer_cpu_pm_init(void)
561 {
562         return 0;
563 }
564 #endif
565
566 static int __init arch_timer_register(void)
567 {
568         int err;
569         int ppi;
570
571         arch_timer_evt = alloc_percpu(struct clock_event_device);
572         if (!arch_timer_evt) {
573                 err = -ENOMEM;
574                 goto out;
575         }
576
577         if (arch_timer_use_virtual) {
578                 ppi = arch_timer_ppi[VIRT_PPI];
579                 err = request_percpu_irq(ppi, arch_timer_handler_virt,
580                                          "arch_timer", arch_timer_evt);
581         } else {
582                 ppi = arch_timer_ppi[PHYS_SECURE_PPI];
583                 err = request_percpu_irq(ppi, arch_timer_handler_phys,
584                                          "arch_timer", arch_timer_evt);
585                 if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
586                         ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
587                         err = request_percpu_irq(ppi, arch_timer_handler_phys,
588                                                  "arch_timer", arch_timer_evt);
589                         if (err)
590                                 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
591                                                 arch_timer_evt);
592                 }
593         }
594
595         if (err) {
596                 pr_err("arch_timer: can't register interrupt %d (%d)\n",
597                        ppi, err);
598                 goto out_free;
599         }
600
601         err = register_cpu_notifier(&arch_timer_cpu_nb);
602         if (err)
603                 goto out_free_irq;
604
605         err = arch_timer_cpu_pm_init();
606         if (err)
607                 goto out_unreg_notify;
608
609         /* Immediately configure the timer on the boot CPU */
610         arch_timer_setup(this_cpu_ptr(arch_timer_evt));
611
612         return 0;
613
614 out_unreg_notify:
615         unregister_cpu_notifier(&arch_timer_cpu_nb);
616 out_free_irq:
617         if (arch_timer_use_virtual)
618                 free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt);
619         else {
620                 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
621                                 arch_timer_evt);
622                 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
623                         free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
624                                         arch_timer_evt);
625         }
626
627 out_free:
628         free_percpu(arch_timer_evt);
629 out:
630         return err;
631 }
632
633 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
634 {
635         int ret;
636         irq_handler_t func;
637         struct arch_timer *t;
638
639         t = kzalloc(sizeof(*t), GFP_KERNEL);
640         if (!t)
641                 return -ENOMEM;
642
643         t->base = base;
644         t->evt.irq = irq;
645         __arch_timer_setup(ARCH_MEM_TIMER, &t->evt);
646
647         if (arch_timer_mem_use_virtual)
648                 func = arch_timer_handler_virt_mem;
649         else
650                 func = arch_timer_handler_phys_mem;
651
652         ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
653         if (ret) {
654                 pr_err("arch_timer: Failed to request mem timer irq\n");
655                 kfree(t);
656         }
657
658         return ret;
659 }
660
661 static const struct of_device_id arch_timer_of_match[] __initconst = {
662         { .compatible   = "arm,armv7-timer",    },
663         { .compatible   = "arm,armv8-timer",    },
664         {},
665 };
666
667 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
668         { .compatible   = "arm,armv7-timer-mem", },
669         {},
670 };
671
672 static bool __init
673 arch_timer_needs_probing(int type, const struct of_device_id *matches)
674 {
675         struct device_node *dn;
676         bool needs_probing = false;
677
678         dn = of_find_matching_node(NULL, matches);
679         if (dn && of_device_is_available(dn) && !(arch_timers_present & type))
680                 needs_probing = true;
681         of_node_put(dn);
682
683         return needs_probing;
684 }
685
686 static void __init arch_timer_common_init(void)
687 {
688         unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;
689
690         /* Wait until both nodes are probed if we have two timers */
691         if ((arch_timers_present & mask) != mask) {
692                 if (arch_timer_needs_probing(ARCH_MEM_TIMER, arch_timer_mem_of_match))
693                         return;
694                 if (arch_timer_needs_probing(ARCH_CP15_TIMER, arch_timer_of_match))
695                         return;
696         }
697
698         arch_timer_banner(arch_timers_present);
699         arch_counter_register(arch_timers_present);
700         arch_timer_arch_init();
701 }
702
703 static void __init arch_timer_init(void)
704 {
705         /*
706          * If HYP mode is available, we know that the physical timer
707          * has been configured to be accessible from PL1. Use it, so
708          * that a guest can use the virtual timer instead.
709          *
710          * If no interrupt provided for virtual timer, we'll have to
711          * stick to the physical timer. It'd better be accessible...
712          */
713         if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
714                 arch_timer_use_virtual = false;
715
716                 if (!arch_timer_ppi[PHYS_SECURE_PPI] ||
717                     !arch_timer_ppi[PHYS_NONSECURE_PPI]) {
718                         pr_warn("arch_timer: No interrupt available, giving up\n");
719                         return;
720                 }
721         }
722
723         arch_timer_register();
724         arch_timer_common_init();
725 }
726
727 static void __init arch_timer_of_init(struct device_node *np)
728 {
729         int i;
730
731         if (arch_timers_present & ARCH_CP15_TIMER) {
732                 pr_warn("arch_timer: multiple nodes in dt, skipping\n");
733                 return;
734         }
735
736         arch_timers_present |= ARCH_CP15_TIMER;
737         for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
738                 arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
739
740         arch_timer_detect_rate(NULL, np);
741
742         arch_timer_c3stop = !of_property_read_bool(np, "always-on");
743
744         /*
745          * If we cannot rely on firmware initializing the timer registers then
746          * we should use the physical timers instead.
747          */
748         if (IS_ENABLED(CONFIG_ARM) &&
749             of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
750                         arch_timer_use_virtual = false;
751
752         arch_timer_init();
753 }
754 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
755 CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
756
757 static void __init arch_timer_mem_init(struct device_node *np)
758 {
759         struct device_node *frame, *best_frame = NULL;
760         void __iomem *cntctlbase, *base;
761         unsigned int irq;
762         u32 cnttidr;
763
764         arch_timers_present |= ARCH_MEM_TIMER;
765         cntctlbase = of_iomap(np, 0);
766         if (!cntctlbase) {
767                 pr_err("arch_timer: Can't find CNTCTLBase\n");
768                 return;
769         }
770
771         cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
772
773         /*
774          * Try to find a virtual capable frame. Otherwise fall back to a
775          * physical capable frame.
776          */
777         for_each_available_child_of_node(np, frame) {
778                 int n;
779                 u32 cntacr;
780
781                 if (of_property_read_u32(frame, "frame-number", &n)) {
782                         pr_err("arch_timer: Missing frame-number\n");
783                         of_node_put(frame);
784                         goto out;
785                 }
786
787                 /* Try enabling everything, and see what sticks */
788                 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
789                          CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
790                 writel_relaxed(cntacr, cntctlbase + CNTACR(n));
791                 cntacr = readl_relaxed(cntctlbase + CNTACR(n));
792
793                 if ((cnttidr & CNTTIDR_VIRT(n)) &&
794                     !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
795                         of_node_put(best_frame);
796                         best_frame = frame;
797                         arch_timer_mem_use_virtual = true;
798                         break;
799                 }
800
801                 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
802                         continue;
803
804                 of_node_put(best_frame);
805                 best_frame = of_node_get(frame);
806         }
807
808         base = arch_counter_base = of_iomap(best_frame, 0);
809         if (!base) {
810                 pr_err("arch_timer: Can't map frame's registers\n");
811                 goto out;
812         }
813
814         if (arch_timer_mem_use_virtual)
815                 irq = irq_of_parse_and_map(best_frame, 1);
816         else
817                 irq = irq_of_parse_and_map(best_frame, 0);
818
819         if (!irq) {
820                 pr_err("arch_timer: Frame missing %s irq",
821                        arch_timer_mem_use_virtual ? "virt" : "phys");
822                 goto out;
823         }
824
825         arch_timer_detect_rate(base, np);
826         arch_timer_mem_register(base, irq);
827         arch_timer_common_init();
828 out:
829         iounmap(cntctlbase);
830         of_node_put(best_frame);
831 }
832 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
833                        arch_timer_mem_init);
834
835 #ifdef CONFIG_ACPI
836 static int __init map_generic_timer_interrupt(u32 interrupt, u32 flags)
837 {
838         int trigger, polarity;
839
840         if (!interrupt)
841                 return 0;
842
843         trigger = (flags & ACPI_GTDT_INTERRUPT_MODE) ? ACPI_EDGE_SENSITIVE
844                         : ACPI_LEVEL_SENSITIVE;
845
846         polarity = (flags & ACPI_GTDT_INTERRUPT_POLARITY) ? ACPI_ACTIVE_LOW
847                         : ACPI_ACTIVE_HIGH;
848
849         return acpi_register_gsi(NULL, interrupt, trigger, polarity);
850 }
851
852 /* Initialize per-processor generic timer */
853 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
854 {
855         struct acpi_table_gtdt *gtdt;
856
857         if (arch_timers_present & ARCH_CP15_TIMER) {
858                 pr_warn("arch_timer: already initialized, skipping\n");
859                 return -EINVAL;
860         }
861
862         gtdt = container_of(table, struct acpi_table_gtdt, header);
863
864         arch_timers_present |= ARCH_CP15_TIMER;
865
866         arch_timer_ppi[PHYS_SECURE_PPI] =
867                 map_generic_timer_interrupt(gtdt->secure_el1_interrupt,
868                 gtdt->secure_el1_flags);
869
870         arch_timer_ppi[PHYS_NONSECURE_PPI] =
871                 map_generic_timer_interrupt(gtdt->non_secure_el1_interrupt,
872                 gtdt->non_secure_el1_flags);
873
874         arch_timer_ppi[VIRT_PPI] =
875                 map_generic_timer_interrupt(gtdt->virtual_timer_interrupt,
876                 gtdt->virtual_timer_flags);
877
878         arch_timer_ppi[HYP_PPI] =
879                 map_generic_timer_interrupt(gtdt->non_secure_el2_interrupt,
880                 gtdt->non_secure_el2_flags);
881
882         /* Get the frequency from CNTFRQ */
883         arch_timer_detect_rate(NULL, NULL);
884
885         /* Always-on capability */
886         arch_timer_c3stop = !(gtdt->non_secure_el1_flags & ACPI_GTDT_ALWAYS_ON);
887
888         arch_timer_init();
889         return 0;
890 }
891 CLOCKSOURCE_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
892 #endif