drm/i915: Move context management under GEM
[linux-2.6-block.git] / drivers / clocksource / arm_arch_timer.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/clocksource/arm_arch_timer.c
4  *
5  *  Copyright (C) 2011 ARM Ltd.
6  *  All Rights Reserved
7  */
8
9 #define pr_fmt(fmt)     "arch_timer: " fmt
10
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/interrupt.h>
20 #include <linux/of_irq.h>
21 #include <linux/of_address.h>
22 #include <linux/io.h>
23 #include <linux/slab.h>
24 #include <linux/sched/clock.h>
25 #include <linux/sched_clock.h>
26 #include <linux/acpi.h>
27
28 #include <asm/arch_timer.h>
29 #include <asm/virt.h>
30
31 #include <clocksource/arm_arch_timer.h>
32
33 #define CNTTIDR         0x08
34 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
35
36 #define CNTACR(n)       (0x40 + ((n) * 4))
37 #define CNTACR_RPCT     BIT(0)
38 #define CNTACR_RVCT     BIT(1)
39 #define CNTACR_RFRQ     BIT(2)
40 #define CNTACR_RVOFF    BIT(3)
41 #define CNTACR_RWVT     BIT(4)
42 #define CNTACR_RWPT     BIT(5)
43
44 #define CNTVCT_LO       0x08
45 #define CNTVCT_HI       0x0c
46 #define CNTFRQ          0x10
47 #define CNTP_TVAL       0x28
48 #define CNTP_CTL        0x2c
49 #define CNTV_TVAL       0x38
50 #define CNTV_CTL        0x3c
51
52 static unsigned arch_timers_present __initdata;
53
54 static void __iomem *arch_counter_base;
55
56 struct arch_timer {
57         void __iomem *base;
58         struct clock_event_device evt;
59 };
60
61 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
62
63 static u32 arch_timer_rate;
64 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI];
65
66 static struct clock_event_device __percpu *arch_timer_evt;
67
68 static enum arch_timer_ppi_nr arch_timer_uses_ppi = ARCH_TIMER_VIRT_PPI;
69 static bool arch_timer_c3stop;
70 static bool arch_timer_mem_use_virtual;
71 static bool arch_counter_suspend_stop;
72 static bool vdso_default = true;
73
74 static cpumask_t evtstrm_available = CPU_MASK_NONE;
75 static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
76
77 static int __init early_evtstrm_cfg(char *buf)
78 {
79         return strtobool(buf, &evtstrm_enable);
80 }
81 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
82
83 /*
84  * Architected system timer support.
85  */
86
87 static __always_inline
88 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
89                           struct clock_event_device *clk)
90 {
91         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
92                 struct arch_timer *timer = to_arch_timer(clk);
93                 switch (reg) {
94                 case ARCH_TIMER_REG_CTRL:
95                         writel_relaxed(val, timer->base + CNTP_CTL);
96                         break;
97                 case ARCH_TIMER_REG_TVAL:
98                         writel_relaxed(val, timer->base + CNTP_TVAL);
99                         break;
100                 }
101         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
102                 struct arch_timer *timer = to_arch_timer(clk);
103                 switch (reg) {
104                 case ARCH_TIMER_REG_CTRL:
105                         writel_relaxed(val, timer->base + CNTV_CTL);
106                         break;
107                 case ARCH_TIMER_REG_TVAL:
108                         writel_relaxed(val, timer->base + CNTV_TVAL);
109                         break;
110                 }
111         } else {
112                 arch_timer_reg_write_cp15(access, reg, val);
113         }
114 }
115
116 static __always_inline
117 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
118                         struct clock_event_device *clk)
119 {
120         u32 val;
121
122         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
123                 struct arch_timer *timer = to_arch_timer(clk);
124                 switch (reg) {
125                 case ARCH_TIMER_REG_CTRL:
126                         val = readl_relaxed(timer->base + CNTP_CTL);
127                         break;
128                 case ARCH_TIMER_REG_TVAL:
129                         val = readl_relaxed(timer->base + CNTP_TVAL);
130                         break;
131                 }
132         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
133                 struct arch_timer *timer = to_arch_timer(clk);
134                 switch (reg) {
135                 case ARCH_TIMER_REG_CTRL:
136                         val = readl_relaxed(timer->base + CNTV_CTL);
137                         break;
138                 case ARCH_TIMER_REG_TVAL:
139                         val = readl_relaxed(timer->base + CNTV_TVAL);
140                         break;
141                 }
142         } else {
143                 val = arch_timer_reg_read_cp15(access, reg);
144         }
145
146         return val;
147 }
148
149 static notrace u64 arch_counter_get_cntpct_stable(void)
150 {
151         return __arch_counter_get_cntpct_stable();
152 }
153
154 static notrace u64 arch_counter_get_cntpct(void)
155 {
156         return __arch_counter_get_cntpct();
157 }
158
159 static notrace u64 arch_counter_get_cntvct_stable(void)
160 {
161         return __arch_counter_get_cntvct_stable();
162 }
163
164 static notrace u64 arch_counter_get_cntvct(void)
165 {
166         return __arch_counter_get_cntvct();
167 }
168
169 /*
170  * Default to cp15 based access because arm64 uses this function for
171  * sched_clock() before DT is probed and the cp15 method is guaranteed
172  * to exist on arm64. arm doesn't use this before DT is probed so even
173  * if we don't have the cp15 accessors we won't have a problem.
174  */
175 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
176 EXPORT_SYMBOL_GPL(arch_timer_read_counter);
177
178 static u64 arch_counter_read(struct clocksource *cs)
179 {
180         return arch_timer_read_counter();
181 }
182
183 static u64 arch_counter_read_cc(const struct cyclecounter *cc)
184 {
185         return arch_timer_read_counter();
186 }
187
188 static struct clocksource clocksource_counter = {
189         .name   = "arch_sys_counter",
190         .rating = 400,
191         .read   = arch_counter_read,
192         .mask   = CLOCKSOURCE_MASK(56),
193         .flags  = CLOCK_SOURCE_IS_CONTINUOUS,
194 };
195
196 static struct cyclecounter cyclecounter __ro_after_init = {
197         .read   = arch_counter_read_cc,
198         .mask   = CLOCKSOURCE_MASK(56),
199 };
200
201 struct ate_acpi_oem_info {
202         char oem_id[ACPI_OEM_ID_SIZE + 1];
203         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
204         u32 oem_revision;
205 };
206
207 #ifdef CONFIG_FSL_ERRATUM_A008585
208 /*
209  * The number of retries is an arbitrary value well beyond the highest number
210  * of iterations the loop has been observed to take.
211  */
212 #define __fsl_a008585_read_reg(reg) ({                  \
213         u64 _old, _new;                                 \
214         int _retries = 200;                             \
215                                                         \
216         do {                                            \
217                 _old = read_sysreg(reg);                \
218                 _new = read_sysreg(reg);                \
219                 _retries--;                             \
220         } while (unlikely(_old != _new) && _retries);   \
221                                                         \
222         WARN_ON_ONCE(!_retries);                        \
223         _new;                                           \
224 })
225
226 static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
227 {
228         return __fsl_a008585_read_reg(cntp_tval_el0);
229 }
230
231 static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
232 {
233         return __fsl_a008585_read_reg(cntv_tval_el0);
234 }
235
236 static u64 notrace fsl_a008585_read_cntpct_el0(void)
237 {
238         return __fsl_a008585_read_reg(cntpct_el0);
239 }
240
241 static u64 notrace fsl_a008585_read_cntvct_el0(void)
242 {
243         return __fsl_a008585_read_reg(cntvct_el0);
244 }
245 #endif
246
247 #ifdef CONFIG_HISILICON_ERRATUM_161010101
248 /*
249  * Verify whether the value of the second read is larger than the first by
250  * less than 32 is the only way to confirm the value is correct, so clear the
251  * lower 5 bits to check whether the difference is greater than 32 or not.
252  * Theoretically the erratum should not occur more than twice in succession
253  * when reading the system counter, but it is possible that some interrupts
254  * may lead to more than twice read errors, triggering the warning, so setting
255  * the number of retries far beyond the number of iterations the loop has been
256  * observed to take.
257  */
258 #define __hisi_161010101_read_reg(reg) ({                               \
259         u64 _old, _new;                                         \
260         int _retries = 50;                                      \
261                                                                 \
262         do {                                                    \
263                 _old = read_sysreg(reg);                        \
264                 _new = read_sysreg(reg);                        \
265                 _retries--;                                     \
266         } while (unlikely((_new - _old) >> 5) && _retries);     \
267                                                                 \
268         WARN_ON_ONCE(!_retries);                                \
269         _new;                                                   \
270 })
271
272 static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
273 {
274         return __hisi_161010101_read_reg(cntp_tval_el0);
275 }
276
277 static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
278 {
279         return __hisi_161010101_read_reg(cntv_tval_el0);
280 }
281
282 static u64 notrace hisi_161010101_read_cntpct_el0(void)
283 {
284         return __hisi_161010101_read_reg(cntpct_el0);
285 }
286
287 static u64 notrace hisi_161010101_read_cntvct_el0(void)
288 {
289         return __hisi_161010101_read_reg(cntvct_el0);
290 }
291
292 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
293         /*
294          * Note that trailing spaces are required to properly match
295          * the OEM table information.
296          */
297         {
298                 .oem_id         = "HISI  ",
299                 .oem_table_id   = "HIP05   ",
300                 .oem_revision   = 0,
301         },
302         {
303                 .oem_id         = "HISI  ",
304                 .oem_table_id   = "HIP06   ",
305                 .oem_revision   = 0,
306         },
307         {
308                 .oem_id         = "HISI  ",
309                 .oem_table_id   = "HIP07   ",
310                 .oem_revision   = 0,
311         },
312         { /* Sentinel indicating the end of the OEM array */ },
313 };
314 #endif
315
316 #ifdef CONFIG_ARM64_ERRATUM_858921
317 static u64 notrace arm64_858921_read_cntpct_el0(void)
318 {
319         u64 old, new;
320
321         old = read_sysreg(cntpct_el0);
322         new = read_sysreg(cntpct_el0);
323         return (((old ^ new) >> 32) & 1) ? old : new;
324 }
325
326 static u64 notrace arm64_858921_read_cntvct_el0(void)
327 {
328         u64 old, new;
329
330         old = read_sysreg(cntvct_el0);
331         new = read_sysreg(cntvct_el0);
332         return (((old ^ new) >> 32) & 1) ? old : new;
333 }
334 #endif
335
336 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
337 /*
338  * The low bits of the counter registers are indeterminate while bit 10 or
339  * greater is rolling over. Since the counter value can jump both backward
340  * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
341  * with all ones or all zeros in the low bits. Bound the loop by the maximum
342  * number of CPU cycles in 3 consecutive 24 MHz counter periods.
343  */
344 #define __sun50i_a64_read_reg(reg) ({                                   \
345         u64 _val;                                                       \
346         int _retries = 150;                                             \
347                                                                         \
348         do {                                                            \
349                 _val = read_sysreg(reg);                                \
350                 _retries--;                                             \
351         } while (((_val + 1) & GENMASK(9, 0)) <= 1 && _retries);        \
352                                                                         \
353         WARN_ON_ONCE(!_retries);                                        \
354         _val;                                                           \
355 })
356
357 static u64 notrace sun50i_a64_read_cntpct_el0(void)
358 {
359         return __sun50i_a64_read_reg(cntpct_el0);
360 }
361
362 static u64 notrace sun50i_a64_read_cntvct_el0(void)
363 {
364         return __sun50i_a64_read_reg(cntvct_el0);
365 }
366
367 static u32 notrace sun50i_a64_read_cntp_tval_el0(void)
368 {
369         return read_sysreg(cntp_cval_el0) - sun50i_a64_read_cntpct_el0();
370 }
371
372 static u32 notrace sun50i_a64_read_cntv_tval_el0(void)
373 {
374         return read_sysreg(cntv_cval_el0) - sun50i_a64_read_cntvct_el0();
375 }
376 #endif
377
378 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
379 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
380 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
381
382 static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0);
383
384 static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
385                                                 struct clock_event_device *clk)
386 {
387         unsigned long ctrl;
388         u64 cval;
389
390         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
391         ctrl |= ARCH_TIMER_CTRL_ENABLE;
392         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
393
394         if (access == ARCH_TIMER_PHYS_ACCESS) {
395                 cval = evt + arch_counter_get_cntpct();
396                 write_sysreg(cval, cntp_cval_el0);
397         } else {
398                 cval = evt + arch_counter_get_cntvct();
399                 write_sysreg(cval, cntv_cval_el0);
400         }
401
402         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
403 }
404
405 static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt,
406                                             struct clock_event_device *clk)
407 {
408         erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
409         return 0;
410 }
411
412 static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt,
413                                             struct clock_event_device *clk)
414 {
415         erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
416         return 0;
417 }
418
419 static const struct arch_timer_erratum_workaround ool_workarounds[] = {
420 #ifdef CONFIG_FSL_ERRATUM_A008585
421         {
422                 .match_type = ate_match_dt,
423                 .id = "fsl,erratum-a008585",
424                 .desc = "Freescale erratum a005858",
425                 .read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
426                 .read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
427                 .read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
428                 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
429                 .set_next_event_phys = erratum_set_next_event_tval_phys,
430                 .set_next_event_virt = erratum_set_next_event_tval_virt,
431         },
432 #endif
433 #ifdef CONFIG_HISILICON_ERRATUM_161010101
434         {
435                 .match_type = ate_match_dt,
436                 .id = "hisilicon,erratum-161010101",
437                 .desc = "HiSilicon erratum 161010101",
438                 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
439                 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
440                 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
441                 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
442                 .set_next_event_phys = erratum_set_next_event_tval_phys,
443                 .set_next_event_virt = erratum_set_next_event_tval_virt,
444         },
445         {
446                 .match_type = ate_match_acpi_oem_info,
447                 .id = hisi_161010101_oem_info,
448                 .desc = "HiSilicon erratum 161010101",
449                 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
450                 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
451                 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
452                 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
453                 .set_next_event_phys = erratum_set_next_event_tval_phys,
454                 .set_next_event_virt = erratum_set_next_event_tval_virt,
455         },
456 #endif
457 #ifdef CONFIG_ARM64_ERRATUM_858921
458         {
459                 .match_type = ate_match_local_cap_id,
460                 .id = (void *)ARM64_WORKAROUND_858921,
461                 .desc = "ARM erratum 858921",
462                 .read_cntpct_el0 = arm64_858921_read_cntpct_el0,
463                 .read_cntvct_el0 = arm64_858921_read_cntvct_el0,
464         },
465 #endif
466 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
467         {
468                 .match_type = ate_match_dt,
469                 .id = "allwinner,erratum-unknown1",
470                 .desc = "Allwinner erratum UNKNOWN1",
471                 .read_cntp_tval_el0 = sun50i_a64_read_cntp_tval_el0,
472                 .read_cntv_tval_el0 = sun50i_a64_read_cntv_tval_el0,
473                 .read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
474                 .read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
475                 .set_next_event_phys = erratum_set_next_event_tval_phys,
476                 .set_next_event_virt = erratum_set_next_event_tval_virt,
477         },
478 #endif
479 };
480
481 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
482                                const void *);
483
484 static
485 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
486                                  const void *arg)
487 {
488         const struct device_node *np = arg;
489
490         return of_property_read_bool(np, wa->id);
491 }
492
493 static
494 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
495                                         const void *arg)
496 {
497         return this_cpu_has_cap((uintptr_t)wa->id);
498 }
499
500
501 static
502 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
503                                        const void *arg)
504 {
505         static const struct ate_acpi_oem_info empty_oem_info = {};
506         const struct ate_acpi_oem_info *info = wa->id;
507         const struct acpi_table_header *table = arg;
508
509         /* Iterate over the ACPI OEM info array, looking for a match */
510         while (memcmp(info, &empty_oem_info, sizeof(*info))) {
511                 if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
512                     !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
513                     info->oem_revision == table->oem_revision)
514                         return true;
515
516                 info++;
517         }
518
519         return false;
520 }
521
522 static const struct arch_timer_erratum_workaround *
523 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
524                           ate_match_fn_t match_fn,
525                           void *arg)
526 {
527         int i;
528
529         for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
530                 if (ool_workarounds[i].match_type != type)
531                         continue;
532
533                 if (match_fn(&ool_workarounds[i], arg))
534                         return &ool_workarounds[i];
535         }
536
537         return NULL;
538 }
539
540 static
541 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
542                                   bool local)
543 {
544         int i;
545
546         if (local) {
547                 __this_cpu_write(timer_unstable_counter_workaround, wa);
548         } else {
549                 for_each_possible_cpu(i)
550                         per_cpu(timer_unstable_counter_workaround, i) = wa;
551         }
552
553         if (wa->read_cntvct_el0 || wa->read_cntpct_el0)
554                 atomic_set(&timer_unstable_counter_workaround_in_use, 1);
555
556         /*
557          * Don't use the vdso fastpath if errata require using the
558          * out-of-line counter accessor. We may change our mind pretty
559          * late in the game (with a per-CPU erratum, for example), so
560          * change both the default value and the vdso itself.
561          */
562         if (wa->read_cntvct_el0) {
563                 clocksource_counter.archdata.vdso_direct = false;
564                 vdso_default = false;
565         }
566 }
567
568 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
569                                             void *arg)
570 {
571         const struct arch_timer_erratum_workaround *wa, *__wa;
572         ate_match_fn_t match_fn = NULL;
573         bool local = false;
574
575         switch (type) {
576         case ate_match_dt:
577                 match_fn = arch_timer_check_dt_erratum;
578                 break;
579         case ate_match_local_cap_id:
580                 match_fn = arch_timer_check_local_cap_erratum;
581                 local = true;
582                 break;
583         case ate_match_acpi_oem_info:
584                 match_fn = arch_timer_check_acpi_oem_erratum;
585                 break;
586         default:
587                 WARN_ON(1);
588                 return;
589         }
590
591         wa = arch_timer_iterate_errata(type, match_fn, arg);
592         if (!wa)
593                 return;
594
595         __wa = __this_cpu_read(timer_unstable_counter_workaround);
596         if (__wa && wa != __wa)
597                 pr_warn("Can't enable workaround for %s (clashes with %s\n)",
598                         wa->desc, __wa->desc);
599
600         if (__wa)
601                 return;
602
603         arch_timer_enable_workaround(wa, local);
604         pr_info("Enabling %s workaround for %s\n",
605                 local ? "local" : "global", wa->desc);
606 }
607
608 static bool arch_timer_this_cpu_has_cntvct_wa(void)
609 {
610         return has_erratum_handler(read_cntvct_el0);
611 }
612
613 static bool arch_timer_counter_has_wa(void)
614 {
615         return atomic_read(&timer_unstable_counter_workaround_in_use);
616 }
617 #else
618 #define arch_timer_check_ool_workaround(t,a)            do { } while(0)
619 #define arch_timer_this_cpu_has_cntvct_wa()             ({false;})
620 #define arch_timer_counter_has_wa()                     ({false;})
621 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
622
623 static __always_inline irqreturn_t timer_handler(const int access,
624                                         struct clock_event_device *evt)
625 {
626         unsigned long ctrl;
627
628         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
629         if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
630                 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
631                 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
632                 evt->event_handler(evt);
633                 return IRQ_HANDLED;
634         }
635
636         return IRQ_NONE;
637 }
638
639 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
640 {
641         struct clock_event_device *evt = dev_id;
642
643         return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
644 }
645
646 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
647 {
648         struct clock_event_device *evt = dev_id;
649
650         return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
651 }
652
653 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
654 {
655         struct clock_event_device *evt = dev_id;
656
657         return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
658 }
659
660 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
661 {
662         struct clock_event_device *evt = dev_id;
663
664         return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
665 }
666
667 static __always_inline int timer_shutdown(const int access,
668                                           struct clock_event_device *clk)
669 {
670         unsigned long ctrl;
671
672         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
673         ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
674         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
675
676         return 0;
677 }
678
679 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
680 {
681         return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
682 }
683
684 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
685 {
686         return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
687 }
688
689 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
690 {
691         return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
692 }
693
694 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
695 {
696         return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
697 }
698
699 static __always_inline void set_next_event(const int access, unsigned long evt,
700                                            struct clock_event_device *clk)
701 {
702         unsigned long ctrl;
703         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
704         ctrl |= ARCH_TIMER_CTRL_ENABLE;
705         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
706         arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
707         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
708 }
709
710 static int arch_timer_set_next_event_virt(unsigned long evt,
711                                           struct clock_event_device *clk)
712 {
713         set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
714         return 0;
715 }
716
717 static int arch_timer_set_next_event_phys(unsigned long evt,
718                                           struct clock_event_device *clk)
719 {
720         set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
721         return 0;
722 }
723
724 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
725                                               struct clock_event_device *clk)
726 {
727         set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
728         return 0;
729 }
730
731 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
732                                               struct clock_event_device *clk)
733 {
734         set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
735         return 0;
736 }
737
738 static void __arch_timer_setup(unsigned type,
739                                struct clock_event_device *clk)
740 {
741         clk->features = CLOCK_EVT_FEAT_ONESHOT;
742
743         if (type == ARCH_TIMER_TYPE_CP15) {
744                 typeof(clk->set_next_event) sne;
745
746                 arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
747
748                 if (arch_timer_c3stop)
749                         clk->features |= CLOCK_EVT_FEAT_C3STOP;
750                 clk->name = "arch_sys_timer";
751                 clk->rating = 450;
752                 clk->cpumask = cpumask_of(smp_processor_id());
753                 clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
754                 switch (arch_timer_uses_ppi) {
755                 case ARCH_TIMER_VIRT_PPI:
756                         clk->set_state_shutdown = arch_timer_shutdown_virt;
757                         clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
758                         sne = erratum_handler(set_next_event_virt);
759                         break;
760                 case ARCH_TIMER_PHYS_SECURE_PPI:
761                 case ARCH_TIMER_PHYS_NONSECURE_PPI:
762                 case ARCH_TIMER_HYP_PPI:
763                         clk->set_state_shutdown = arch_timer_shutdown_phys;
764                         clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
765                         sne = erratum_handler(set_next_event_phys);
766                         break;
767                 default:
768                         BUG();
769                 }
770
771                 clk->set_next_event = sne;
772         } else {
773                 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
774                 clk->name = "arch_mem_timer";
775                 clk->rating = 400;
776                 clk->cpumask = cpu_possible_mask;
777                 if (arch_timer_mem_use_virtual) {
778                         clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
779                         clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
780                         clk->set_next_event =
781                                 arch_timer_set_next_event_virt_mem;
782                 } else {
783                         clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
784                         clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
785                         clk->set_next_event =
786                                 arch_timer_set_next_event_phys_mem;
787                 }
788         }
789
790         clk->set_state_shutdown(clk);
791
792         clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
793 }
794
795 static void arch_timer_evtstrm_enable(int divider)
796 {
797         u32 cntkctl = arch_timer_get_cntkctl();
798
799         cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
800         /* Set the divider and enable virtual event stream */
801         cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
802                         | ARCH_TIMER_VIRT_EVT_EN;
803         arch_timer_set_cntkctl(cntkctl);
804         arch_timer_set_evtstrm_feature();
805         cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
806 }
807
808 static void arch_timer_configure_evtstream(void)
809 {
810         int evt_stream_div, pos;
811
812         /* Find the closest power of two to the divisor */
813         evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
814         pos = fls(evt_stream_div);
815         if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
816                 pos--;
817         /* enable event stream */
818         arch_timer_evtstrm_enable(min(pos, 15));
819 }
820
821 static void arch_counter_set_user_access(void)
822 {
823         u32 cntkctl = arch_timer_get_cntkctl();
824
825         /* Disable user access to the timers and both counters */
826         /* Also disable virtual event stream */
827         cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
828                         | ARCH_TIMER_USR_VT_ACCESS_EN
829                         | ARCH_TIMER_USR_VCT_ACCESS_EN
830                         | ARCH_TIMER_VIRT_EVT_EN
831                         | ARCH_TIMER_USR_PCT_ACCESS_EN);
832
833         /*
834          * Enable user access to the virtual counter if it doesn't
835          * need to be workaround. The vdso may have been already
836          * disabled though.
837          */
838         if (arch_timer_this_cpu_has_cntvct_wa())
839                 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
840         else
841                 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
842
843         arch_timer_set_cntkctl(cntkctl);
844 }
845
846 static bool arch_timer_has_nonsecure_ppi(void)
847 {
848         return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
849                 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
850 }
851
852 static u32 check_ppi_trigger(int irq)
853 {
854         u32 flags = irq_get_trigger_type(irq);
855
856         if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
857                 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
858                 pr_warn("WARNING: Please fix your firmware\n");
859                 flags = IRQF_TRIGGER_LOW;
860         }
861
862         return flags;
863 }
864
865 static int arch_timer_starting_cpu(unsigned int cpu)
866 {
867         struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
868         u32 flags;
869
870         __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
871
872         flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
873         enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
874
875         if (arch_timer_has_nonsecure_ppi()) {
876                 flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
877                 enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
878                                   flags);
879         }
880
881         arch_counter_set_user_access();
882         if (evtstrm_enable)
883                 arch_timer_configure_evtstream();
884
885         return 0;
886 }
887
888 /*
889  * For historical reasons, when probing with DT we use whichever (non-zero)
890  * rate was probed first, and don't verify that others match. If the first node
891  * probed has a clock-frequency property, this overrides the HW register.
892  */
893 static void arch_timer_of_configure_rate(u32 rate, struct device_node *np)
894 {
895         /* Who has more than one independent system counter? */
896         if (arch_timer_rate)
897                 return;
898
899         if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
900                 arch_timer_rate = rate;
901
902         /* Check the timer frequency. */
903         if (arch_timer_rate == 0)
904                 pr_warn("frequency not available\n");
905 }
906
907 static void arch_timer_banner(unsigned type)
908 {
909         pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
910                 type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
911                 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
912                         " and " : "",
913                 type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
914                 (unsigned long)arch_timer_rate / 1000000,
915                 (unsigned long)(arch_timer_rate / 10000) % 100,
916                 type & ARCH_TIMER_TYPE_CP15 ?
917                         (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
918                         "",
919                 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
920                 type & ARCH_TIMER_TYPE_MEM ?
921                         arch_timer_mem_use_virtual ? "virt" : "phys" :
922                         "");
923 }
924
925 u32 arch_timer_get_rate(void)
926 {
927         return arch_timer_rate;
928 }
929
930 bool arch_timer_evtstrm_available(void)
931 {
932         /*
933          * We might get called from a preemptible context. This is fine
934          * because availability of the event stream should be always the same
935          * for a preemptible context and context where we might resume a task.
936          */
937         return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
938 }
939
940 static u64 arch_counter_get_cntvct_mem(void)
941 {
942         u32 vct_lo, vct_hi, tmp_hi;
943
944         do {
945                 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
946                 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
947                 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
948         } while (vct_hi != tmp_hi);
949
950         return ((u64) vct_hi << 32) | vct_lo;
951 }
952
953 static struct arch_timer_kvm_info arch_timer_kvm_info;
954
955 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
956 {
957         return &arch_timer_kvm_info;
958 }
959
960 static void __init arch_counter_register(unsigned type)
961 {
962         u64 start_count;
963
964         /* Register the CP15 based counter if we have one */
965         if (type & ARCH_TIMER_TYPE_CP15) {
966                 u64 (*rd)(void);
967
968                 if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
969                     arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) {
970                         if (arch_timer_counter_has_wa())
971                                 rd = arch_counter_get_cntvct_stable;
972                         else
973                                 rd = arch_counter_get_cntvct;
974                 } else {
975                         if (arch_timer_counter_has_wa())
976                                 rd = arch_counter_get_cntpct_stable;
977                         else
978                                 rd = arch_counter_get_cntpct;
979                 }
980
981                 arch_timer_read_counter = rd;
982                 clocksource_counter.archdata.vdso_direct = vdso_default;
983         } else {
984                 arch_timer_read_counter = arch_counter_get_cntvct_mem;
985         }
986
987         if (!arch_counter_suspend_stop)
988                 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
989         start_count = arch_timer_read_counter();
990         clocksource_register_hz(&clocksource_counter, arch_timer_rate);
991         cyclecounter.mult = clocksource_counter.mult;
992         cyclecounter.shift = clocksource_counter.shift;
993         timecounter_init(&arch_timer_kvm_info.timecounter,
994                          &cyclecounter, start_count);
995
996         /* 56 bits minimum, so we assume worst case rollover */
997         sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
998 }
999
1000 static void arch_timer_stop(struct clock_event_device *clk)
1001 {
1002         pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
1003
1004         disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
1005         if (arch_timer_has_nonsecure_ppi())
1006                 disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1007
1008         clk->set_state_shutdown(clk);
1009 }
1010
1011 static int arch_timer_dying_cpu(unsigned int cpu)
1012 {
1013         struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1014
1015         cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1016
1017         arch_timer_stop(clk);
1018         return 0;
1019 }
1020
1021 #ifdef CONFIG_CPU_PM
1022 static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
1023 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
1024                                     unsigned long action, void *hcpu)
1025 {
1026         if (action == CPU_PM_ENTER) {
1027                 __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1028
1029                 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1030         } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1031                 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1032
1033                 if (arch_timer_have_evtstrm_feature())
1034                         cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
1035         }
1036         return NOTIFY_OK;
1037 }
1038
1039 static struct notifier_block arch_timer_cpu_pm_notifier = {
1040         .notifier_call = arch_timer_cpu_pm_notify,
1041 };
1042
1043 static int __init arch_timer_cpu_pm_init(void)
1044 {
1045         return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1046 }
1047
1048 static void __init arch_timer_cpu_pm_deinit(void)
1049 {
1050         WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1051 }
1052
1053 #else
1054 static int __init arch_timer_cpu_pm_init(void)
1055 {
1056         return 0;
1057 }
1058
1059 static void __init arch_timer_cpu_pm_deinit(void)
1060 {
1061 }
1062 #endif
1063
1064 static int __init arch_timer_register(void)
1065 {
1066         int err;
1067         int ppi;
1068
1069         arch_timer_evt = alloc_percpu(struct clock_event_device);
1070         if (!arch_timer_evt) {
1071                 err = -ENOMEM;
1072                 goto out;
1073         }
1074
1075         ppi = arch_timer_ppi[arch_timer_uses_ppi];
1076         switch (arch_timer_uses_ppi) {
1077         case ARCH_TIMER_VIRT_PPI:
1078                 err = request_percpu_irq(ppi, arch_timer_handler_virt,
1079                                          "arch_timer", arch_timer_evt);
1080                 break;
1081         case ARCH_TIMER_PHYS_SECURE_PPI:
1082         case ARCH_TIMER_PHYS_NONSECURE_PPI:
1083                 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1084                                          "arch_timer", arch_timer_evt);
1085                 if (!err && arch_timer_has_nonsecure_ppi()) {
1086                         ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1087                         err = request_percpu_irq(ppi, arch_timer_handler_phys,
1088                                                  "arch_timer", arch_timer_evt);
1089                         if (err)
1090                                 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1091                                                 arch_timer_evt);
1092                 }
1093                 break;
1094         case ARCH_TIMER_HYP_PPI:
1095                 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1096                                          "arch_timer", arch_timer_evt);
1097                 break;
1098         default:
1099                 BUG();
1100         }
1101
1102         if (err) {
1103                 pr_err("can't register interrupt %d (%d)\n", ppi, err);
1104                 goto out_free;
1105         }
1106
1107         err = arch_timer_cpu_pm_init();
1108         if (err)
1109                 goto out_unreg_notify;
1110
1111         /* Register and immediately configure the timer on the boot CPU */
1112         err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1113                                 "clockevents/arm/arch_timer:starting",
1114                                 arch_timer_starting_cpu, arch_timer_dying_cpu);
1115         if (err)
1116                 goto out_unreg_cpupm;
1117         return 0;
1118
1119 out_unreg_cpupm:
1120         arch_timer_cpu_pm_deinit();
1121
1122 out_unreg_notify:
1123         free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1124         if (arch_timer_has_nonsecure_ppi())
1125                 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1126                                 arch_timer_evt);
1127
1128 out_free:
1129         free_percpu(arch_timer_evt);
1130 out:
1131         return err;
1132 }
1133
1134 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1135 {
1136         int ret;
1137         irq_handler_t func;
1138         struct arch_timer *t;
1139
1140         t = kzalloc(sizeof(*t), GFP_KERNEL);
1141         if (!t)
1142                 return -ENOMEM;
1143
1144         t->base = base;
1145         t->evt.irq = irq;
1146         __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt);
1147
1148         if (arch_timer_mem_use_virtual)
1149                 func = arch_timer_handler_virt_mem;
1150         else
1151                 func = arch_timer_handler_phys_mem;
1152
1153         ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
1154         if (ret) {
1155                 pr_err("Failed to request mem timer irq\n");
1156                 kfree(t);
1157         }
1158
1159         return ret;
1160 }
1161
1162 static const struct of_device_id arch_timer_of_match[] __initconst = {
1163         { .compatible   = "arm,armv7-timer",    },
1164         { .compatible   = "arm,armv8-timer",    },
1165         {},
1166 };
1167
1168 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1169         { .compatible   = "arm,armv7-timer-mem", },
1170         {},
1171 };
1172
1173 static bool __init arch_timer_needs_of_probing(void)
1174 {
1175         struct device_node *dn;
1176         bool needs_probing = false;
1177         unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1178
1179         /* We have two timers, and both device-tree nodes are probed. */
1180         if ((arch_timers_present & mask) == mask)
1181                 return false;
1182
1183         /*
1184          * Only one type of timer is probed,
1185          * check if we have another type of timer node in device-tree.
1186          */
1187         if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1188                 dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1189         else
1190                 dn = of_find_matching_node(NULL, arch_timer_of_match);
1191
1192         if (dn && of_device_is_available(dn))
1193                 needs_probing = true;
1194
1195         of_node_put(dn);
1196
1197         return needs_probing;
1198 }
1199
1200 static int __init arch_timer_common_init(void)
1201 {
1202         arch_timer_banner(arch_timers_present);
1203         arch_counter_register(arch_timers_present);
1204         return arch_timer_arch_init();
1205 }
1206
1207 /**
1208  * arch_timer_select_ppi() - Select suitable PPI for the current system.
1209  *
1210  * If HYP mode is available, we know that the physical timer
1211  * has been configured to be accessible from PL1. Use it, so
1212  * that a guest can use the virtual timer instead.
1213  *
1214  * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1215  * accesses to CNTP_*_EL1 registers are silently redirected to
1216  * their CNTHP_*_EL2 counterparts, and use a different PPI
1217  * number.
1218  *
1219  * If no interrupt provided for virtual timer, we'll have to
1220  * stick to the physical timer. It'd better be accessible...
1221  * For arm64 we never use the secure interrupt.
1222  *
1223  * Return: a suitable PPI type for the current system.
1224  */
1225 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1226 {
1227         if (is_kernel_in_hyp_mode())
1228                 return ARCH_TIMER_HYP_PPI;
1229
1230         if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1231                 return ARCH_TIMER_VIRT_PPI;
1232
1233         if (IS_ENABLED(CONFIG_ARM64))
1234                 return ARCH_TIMER_PHYS_NONSECURE_PPI;
1235
1236         return ARCH_TIMER_PHYS_SECURE_PPI;
1237 }
1238
1239 static void __init arch_timer_populate_kvm_info(void)
1240 {
1241         arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1242         if (is_kernel_in_hyp_mode())
1243                 arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1244 }
1245
1246 static int __init arch_timer_of_init(struct device_node *np)
1247 {
1248         int i, ret;
1249         u32 rate;
1250
1251         if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1252                 pr_warn("multiple nodes in dt, skipping\n");
1253                 return 0;
1254         }
1255
1256         arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1257         for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++)
1258                 arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
1259
1260         arch_timer_populate_kvm_info();
1261
1262         rate = arch_timer_get_cntfrq();
1263         arch_timer_of_configure_rate(rate, np);
1264
1265         arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1266
1267         /* Check for globally applicable workarounds */
1268         arch_timer_check_ool_workaround(ate_match_dt, np);
1269
1270         /*
1271          * If we cannot rely on firmware initializing the timer registers then
1272          * we should use the physical timers instead.
1273          */
1274         if (IS_ENABLED(CONFIG_ARM) &&
1275             of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1276                 arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1277         else
1278                 arch_timer_uses_ppi = arch_timer_select_ppi();
1279
1280         if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1281                 pr_err("No interrupt available, giving up\n");
1282                 return -EINVAL;
1283         }
1284
1285         /* On some systems, the counter stops ticking when in suspend. */
1286         arch_counter_suspend_stop = of_property_read_bool(np,
1287                                                          "arm,no-tick-in-suspend");
1288
1289         ret = arch_timer_register();
1290         if (ret)
1291                 return ret;
1292
1293         if (arch_timer_needs_of_probing())
1294                 return 0;
1295
1296         return arch_timer_common_init();
1297 }
1298 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1299 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1300
1301 static u32 __init
1302 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1303 {
1304         void __iomem *base;
1305         u32 rate;
1306
1307         base = ioremap(frame->cntbase, frame->size);
1308         if (!base) {
1309                 pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1310                 return 0;
1311         }
1312
1313         rate = readl_relaxed(base + CNTFRQ);
1314
1315         iounmap(base);
1316
1317         return rate;
1318 }
1319
1320 static struct arch_timer_mem_frame * __init
1321 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1322 {
1323         struct arch_timer_mem_frame *frame, *best_frame = NULL;
1324         void __iomem *cntctlbase;
1325         u32 cnttidr;
1326         int i;
1327
1328         cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1329         if (!cntctlbase) {
1330                 pr_err("Can't map CNTCTLBase @ %pa\n",
1331                         &timer_mem->cntctlbase);
1332                 return NULL;
1333         }
1334
1335         cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1336
1337         /*
1338          * Try to find a virtual capable frame. Otherwise fall back to a
1339          * physical capable frame.
1340          */
1341         for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1342                 u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1343                              CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1344
1345                 frame = &timer_mem->frame[i];
1346                 if (!frame->valid)
1347                         continue;
1348
1349                 /* Try enabling everything, and see what sticks */
1350                 writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1351                 cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1352
1353                 if ((cnttidr & CNTTIDR_VIRT(i)) &&
1354                     !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1355                         best_frame = frame;
1356                         arch_timer_mem_use_virtual = true;
1357                         break;
1358                 }
1359
1360                 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1361                         continue;
1362
1363                 best_frame = frame;
1364         }
1365
1366         iounmap(cntctlbase);
1367
1368         return best_frame;
1369 }
1370
1371 static int __init
1372 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1373 {
1374         void __iomem *base;
1375         int ret, irq = 0;
1376
1377         if (arch_timer_mem_use_virtual)
1378                 irq = frame->virt_irq;
1379         else
1380                 irq = frame->phys_irq;
1381
1382         if (!irq) {
1383                 pr_err("Frame missing %s irq.\n",
1384                        arch_timer_mem_use_virtual ? "virt" : "phys");
1385                 return -EINVAL;
1386         }
1387
1388         if (!request_mem_region(frame->cntbase, frame->size,
1389                                 "arch_mem_timer"))
1390                 return -EBUSY;
1391
1392         base = ioremap(frame->cntbase, frame->size);
1393         if (!base) {
1394                 pr_err("Can't map frame's registers\n");
1395                 return -ENXIO;
1396         }
1397
1398         ret = arch_timer_mem_register(base, irq);
1399         if (ret) {
1400                 iounmap(base);
1401                 return ret;
1402         }
1403
1404         arch_counter_base = base;
1405         arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1406
1407         return 0;
1408 }
1409
1410 static int __init arch_timer_mem_of_init(struct device_node *np)
1411 {
1412         struct arch_timer_mem *timer_mem;
1413         struct arch_timer_mem_frame *frame;
1414         struct device_node *frame_node;
1415         struct resource res;
1416         int ret = -EINVAL;
1417         u32 rate;
1418
1419         timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1420         if (!timer_mem)
1421                 return -ENOMEM;
1422
1423         if (of_address_to_resource(np, 0, &res))
1424                 goto out;
1425         timer_mem->cntctlbase = res.start;
1426         timer_mem->size = resource_size(&res);
1427
1428         for_each_available_child_of_node(np, frame_node) {
1429                 u32 n;
1430                 struct arch_timer_mem_frame *frame;
1431
1432                 if (of_property_read_u32(frame_node, "frame-number", &n)) {
1433                         pr_err(FW_BUG "Missing frame-number.\n");
1434                         of_node_put(frame_node);
1435                         goto out;
1436                 }
1437                 if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1438                         pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1439                                ARCH_TIMER_MEM_MAX_FRAMES - 1);
1440                         of_node_put(frame_node);
1441                         goto out;
1442                 }
1443                 frame = &timer_mem->frame[n];
1444
1445                 if (frame->valid) {
1446                         pr_err(FW_BUG "Duplicated frame-number.\n");
1447                         of_node_put(frame_node);
1448                         goto out;
1449                 }
1450
1451                 if (of_address_to_resource(frame_node, 0, &res)) {
1452                         of_node_put(frame_node);
1453                         goto out;
1454                 }
1455                 frame->cntbase = res.start;
1456                 frame->size = resource_size(&res);
1457
1458                 frame->virt_irq = irq_of_parse_and_map(frame_node,
1459                                                        ARCH_TIMER_VIRT_SPI);
1460                 frame->phys_irq = irq_of_parse_and_map(frame_node,
1461                                                        ARCH_TIMER_PHYS_SPI);
1462
1463                 frame->valid = true;
1464         }
1465
1466         frame = arch_timer_mem_find_best_frame(timer_mem);
1467         if (!frame) {
1468                 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1469                         &timer_mem->cntctlbase);
1470                 ret = -EINVAL;
1471                 goto out;
1472         }
1473
1474         rate = arch_timer_mem_frame_get_cntfrq(frame);
1475         arch_timer_of_configure_rate(rate, np);
1476
1477         ret = arch_timer_mem_frame_register(frame);
1478         if (!ret && !arch_timer_needs_of_probing())
1479                 ret = arch_timer_common_init();
1480 out:
1481         kfree(timer_mem);
1482         return ret;
1483 }
1484 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1485                        arch_timer_mem_of_init);
1486
1487 #ifdef CONFIG_ACPI_GTDT
1488 static int __init
1489 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1490 {
1491         struct arch_timer_mem_frame *frame;
1492         u32 rate;
1493         int i;
1494
1495         for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1496                 frame = &timer_mem->frame[i];
1497
1498                 if (!frame->valid)
1499                         continue;
1500
1501                 rate = arch_timer_mem_frame_get_cntfrq(frame);
1502                 if (rate == arch_timer_rate)
1503                         continue;
1504
1505                 pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1506                         &frame->cntbase,
1507                         (unsigned long)rate, (unsigned long)arch_timer_rate);
1508
1509                 return -EINVAL;
1510         }
1511
1512         return 0;
1513 }
1514
1515 static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1516 {
1517         struct arch_timer_mem *timers, *timer;
1518         struct arch_timer_mem_frame *frame, *best_frame = NULL;
1519         int timer_count, i, ret = 0;
1520
1521         timers = kcalloc(platform_timer_count, sizeof(*timers),
1522                             GFP_KERNEL);
1523         if (!timers)
1524                 return -ENOMEM;
1525
1526         ret = acpi_arch_timer_mem_init(timers, &timer_count);
1527         if (ret || !timer_count)
1528                 goto out;
1529
1530         /*
1531          * While unlikely, it's theoretically possible that none of the frames
1532          * in a timer expose the combination of feature we want.
1533          */
1534         for (i = 0; i < timer_count; i++) {
1535                 timer = &timers[i];
1536
1537                 frame = arch_timer_mem_find_best_frame(timer);
1538                 if (!best_frame)
1539                         best_frame = frame;
1540
1541                 ret = arch_timer_mem_verify_cntfrq(timer);
1542                 if (ret) {
1543                         pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1544                         goto out;
1545                 }
1546
1547                 if (!best_frame) /* implies !frame */
1548                         /*
1549                          * Only complain about missing suitable frames if we
1550                          * haven't already found one in a previous iteration.
1551                          */
1552                         pr_err("Unable to find a suitable frame in timer @ %pa\n",
1553                                 &timer->cntctlbase);
1554         }
1555
1556         if (best_frame)
1557                 ret = arch_timer_mem_frame_register(best_frame);
1558 out:
1559         kfree(timers);
1560         return ret;
1561 }
1562
1563 /* Initialize per-processor generic timer and memory-mapped timer(if present) */
1564 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1565 {
1566         int ret, platform_timer_count;
1567
1568         if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1569                 pr_warn("already initialized, skipping\n");
1570                 return -EINVAL;
1571         }
1572
1573         arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1574
1575         ret = acpi_gtdt_init(table, &platform_timer_count);
1576         if (ret) {
1577                 pr_err("Failed to init GTDT table.\n");
1578                 return ret;
1579         }
1580
1581         arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1582                 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1583
1584         arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1585                 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1586
1587         arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1588                 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1589
1590         arch_timer_populate_kvm_info();
1591
1592         /*
1593          * When probing via ACPI, we have no mechanism to override the sysreg
1594          * CNTFRQ value. This *must* be correct.
1595          */
1596         arch_timer_rate = arch_timer_get_cntfrq();
1597         if (!arch_timer_rate) {
1598                 pr_err(FW_BUG "frequency not available.\n");
1599                 return -EINVAL;
1600         }
1601
1602         arch_timer_uses_ppi = arch_timer_select_ppi();
1603         if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1604                 pr_err("No interrupt available, giving up\n");
1605                 return -EINVAL;
1606         }
1607
1608         /* Always-on capability */
1609         arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1610
1611         /* Check for globally applicable workarounds */
1612         arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1613
1614         ret = arch_timer_register();
1615         if (ret)
1616                 return ret;
1617
1618         if (platform_timer_count &&
1619             arch_timer_mem_acpi_init(platform_timer_count))
1620                 pr_err("Failed to initialize memory-mapped timer.\n");
1621
1622         return arch_timer_common_init();
1623 }
1624 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1625 #endif