tty_io: Use kzalloc
[linux-2.6-block.git] / drivers / char / tty_io.c
1 /*
2  *  linux/drivers/char/tty_io.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9  * or rs-channels. It also implements echoing, cooked mode etc.
10  *
11  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
12  *
13  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14  * tty_struct and tty_queue structures.  Previously there was an array
15  * of 256 tty_struct's which was statically allocated, and the
16  * tty_queue structures were allocated at boot time.  Both are now
17  * dynamically allocated only when the tty is open.
18  *
19  * Also restructured routines so that there is more of a separation
20  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21  * the low-level tty routines (serial.c, pty.c, console.c).  This
22  * makes for cleaner and more compact code.  -TYT, 9/17/92 
23  *
24  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25  * which can be dynamically activated and de-activated by the line
26  * discipline handling modules (like SLIP).
27  *
28  * NOTE: pay no attention to the line discipline code (yet); its
29  * interface is still subject to change in this version...
30  * -- TYT, 1/31/92
31  *
32  * Added functionality to the OPOST tty handling.  No delays, but all
33  * other bits should be there.
34  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
35  *
36  * Rewrote canonical mode and added more termios flags.
37  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
38  *
39  * Reorganized FASYNC support so mouse code can share it.
40  *      -- ctm@ardi.com, 9Sep95
41  *
42  * New TIOCLINUX variants added.
43  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
44  * 
45  * Restrict vt switching via ioctl()
46  *      -- grif@cs.ucr.edu, 5-Dec-95
47  *
48  * Move console and virtual terminal code to more appropriate files,
49  * implement CONFIG_VT and generalize console device interface.
50  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
51  *
52  * Rewrote init_dev and release_dev to eliminate races.
53  *      -- Bill Hawes <whawes@star.net>, June 97
54  *
55  * Added devfs support.
56  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
57  *
58  * Added support for a Unix98-style ptmx device.
59  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
60  *
61  * Reduced memory usage for older ARM systems
62  *      -- Russell King <rmk@arm.linux.org.uk>
63  *
64  * Move do_SAK() into process context.  Less stack use in devfs functions.
65  * alloc_tty_struct() always uses kmalloc() -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
66  */
67
68 #include <linux/types.h>
69 #include <linux/major.h>
70 #include <linux/errno.h>
71 #include <linux/signal.h>
72 #include <linux/fcntl.h>
73 #include <linux/sched.h>
74 #include <linux/interrupt.h>
75 #include <linux/tty.h>
76 #include <linux/tty_driver.h>
77 #include <linux/tty_flip.h>
78 #include <linux/devpts_fs.h>
79 #include <linux/file.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/smp_lock.h>
92 #include <linux/device.h>
93 #include <linux/idr.h>
94 #include <linux/wait.h>
95 #include <linux/bitops.h>
96 #include <linux/delay.h>
97
98 #include <asm/uaccess.h>
99 #include <asm/system.h>
100
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104
105 #include <linux/kmod.h>
106
107 #undef TTY_DEBUG_HANGUP
108
109 #define TTY_PARANOIA_CHECK 1
110 #define CHECK_TTY_COUNT 1
111
112 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
113         .c_iflag = ICRNL | IXON,
114         .c_oflag = OPOST | ONLCR,
115         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
116         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
117                    ECHOCTL | ECHOKE | IEXTEN,
118         .c_cc = INIT_C_CC,
119         .c_ispeed = 38400,
120         .c_ospeed = 38400
121 };
122
123 EXPORT_SYMBOL(tty_std_termios);
124
125 /* This list gets poked at by procfs and various bits of boot up code. This
126    could do with some rationalisation such as pulling the tty proc function
127    into this file */
128    
129 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
130
131 /* Mutex to protect creating and releasing a tty. This is shared with
132    vt.c for deeply disgusting hack reasons */
133 DEFINE_MUTEX(tty_mutex);
134 EXPORT_SYMBOL(tty_mutex);
135
136 #ifdef CONFIG_UNIX98_PTYS
137 extern struct tty_driver *ptm_driver;   /* Unix98 pty masters; for /dev/ptmx */
138 extern int pty_limit;           /* Config limit on Unix98 ptys */
139 static DEFINE_IDR(allocated_ptys);
140 static DECLARE_MUTEX(allocated_ptys_lock);
141 static int ptmx_open(struct inode *, struct file *);
142 #endif
143
144 static void initialize_tty_struct(struct tty_struct *tty);
145
146 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
147 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
148 ssize_t redirected_tty_write(struct file *, const char __user *, size_t, loff_t *);
149 static unsigned int tty_poll(struct file *, poll_table *);
150 static int tty_open(struct inode *, struct file *);
151 static int tty_release(struct inode *, struct file *);
152 int tty_ioctl(struct inode * inode, struct file * file,
153               unsigned int cmd, unsigned long arg);
154 #ifdef CONFIG_COMPAT
155 static long tty_compat_ioctl(struct file * file, unsigned int cmd,
156                                 unsigned long arg);
157 #else
158 #define tty_compat_ioctl NULL
159 #endif
160 static int tty_fasync(int fd, struct file * filp, int on);
161 static void release_tty(struct tty_struct *tty, int idx);
162 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
163 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
164
165 /**
166  *      alloc_tty_struct        -       allocate a tty object
167  *
168  *      Return a new empty tty structure. The data fields have not
169  *      been initialized in any way but has been zeroed
170  *
171  *      Locking: none
172  */
173
174 static struct tty_struct *alloc_tty_struct(void)
175 {
176         return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
177 }
178
179 static void tty_buffer_free_all(struct tty_struct *);
180
181 /**
182  *      free_tty_struct         -       free a disused tty
183  *      @tty: tty struct to free
184  *
185  *      Free the write buffers, tty queue and tty memory itself.
186  *
187  *      Locking: none. Must be called after tty is definitely unused
188  */
189
190 static inline void free_tty_struct(struct tty_struct *tty)
191 {
192         kfree(tty->write_buf);
193         tty_buffer_free_all(tty);
194         kfree(tty);
195 }
196
197 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
198
199 /**
200  *      tty_name        -       return tty naming
201  *      @tty: tty structure
202  *      @buf: buffer for output
203  *
204  *      Convert a tty structure into a name. The name reflects the kernel
205  *      naming policy and if udev is in use may not reflect user space
206  *
207  *      Locking: none
208  */
209
210 char *tty_name(struct tty_struct *tty, char *buf)
211 {
212         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
213                 strcpy(buf, "NULL tty");
214         else
215                 strcpy(buf, tty->name);
216         return buf;
217 }
218
219 EXPORT_SYMBOL(tty_name);
220
221 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
222                               const char *routine)
223 {
224 #ifdef TTY_PARANOIA_CHECK
225         if (!tty) {
226                 printk(KERN_WARNING
227                         "null TTY for (%d:%d) in %s\n",
228                         imajor(inode), iminor(inode), routine);
229                 return 1;
230         }
231         if (tty->magic != TTY_MAGIC) {
232                 printk(KERN_WARNING
233                         "bad magic number for tty struct (%d:%d) in %s\n",
234                         imajor(inode), iminor(inode), routine);
235                 return 1;
236         }
237 #endif
238         return 0;
239 }
240
241 static int check_tty_count(struct tty_struct *tty, const char *routine)
242 {
243 #ifdef CHECK_TTY_COUNT
244         struct list_head *p;
245         int count = 0;
246         
247         file_list_lock();
248         list_for_each(p, &tty->tty_files) {
249                 count++;
250         }
251         file_list_unlock();
252         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
253             tty->driver->subtype == PTY_TYPE_SLAVE &&
254             tty->link && tty->link->count)
255                 count++;
256         if (tty->count != count) {
257                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
258                                     "!= #fd's(%d) in %s\n",
259                        tty->name, tty->count, count, routine);
260                 return count;
261         }
262 #endif
263         return 0;
264 }
265
266 /*
267  * Tty buffer allocation management
268  */
269
270 /**
271  *      tty_buffer_free_all             -       free buffers used by a tty
272  *      @tty: tty to free from
273  *
274  *      Remove all the buffers pending on a tty whether queued with data
275  *      or in the free ring. Must be called when the tty is no longer in use
276  *
277  *      Locking: none
278  */
279
280 static void tty_buffer_free_all(struct tty_struct *tty)
281 {
282         struct tty_buffer *thead;
283         while((thead = tty->buf.head) != NULL) {
284                 tty->buf.head = thead->next;
285                 kfree(thead);
286         }
287         while((thead = tty->buf.free) != NULL) {
288                 tty->buf.free = thead->next;
289                 kfree(thead);
290         }
291         tty->buf.tail = NULL;
292         tty->buf.memory_used = 0;
293 }
294
295 /**
296  *      tty_buffer_init         -       prepare a tty buffer structure
297  *      @tty: tty to initialise
298  *
299  *      Set up the initial state of the buffer management for a tty device.
300  *      Must be called before the other tty buffer functions are used.
301  *
302  *      Locking: none
303  */
304
305 static void tty_buffer_init(struct tty_struct *tty)
306 {
307         spin_lock_init(&tty->buf.lock);
308         tty->buf.head = NULL;
309         tty->buf.tail = NULL;
310         tty->buf.free = NULL;
311         tty->buf.memory_used = 0;
312 }
313
314 /**
315  *      tty_buffer_alloc        -       allocate a tty buffer
316  *      @tty: tty device
317  *      @size: desired size (characters)
318  *
319  *      Allocate a new tty buffer to hold the desired number of characters.
320  *      Return NULL if out of memory or the allocation would exceed the
321  *      per device queue
322  *
323  *      Locking: Caller must hold tty->buf.lock
324  */
325
326 static struct tty_buffer *tty_buffer_alloc(struct tty_struct *tty, size_t size)
327 {
328         struct tty_buffer *p;
329
330         if (tty->buf.memory_used + size > 65536)
331                 return NULL;
332         p = kmalloc(sizeof(struct tty_buffer) + 2 * size, GFP_ATOMIC);
333         if(p == NULL)
334                 return NULL;
335         p->used = 0;
336         p->size = size;
337         p->next = NULL;
338         p->commit = 0;
339         p->read = 0;
340         p->char_buf_ptr = (char *)(p->data);
341         p->flag_buf_ptr = (unsigned char *)p->char_buf_ptr + size;
342         tty->buf.memory_used += size;
343         return p;
344 }
345
346 /**
347  *      tty_buffer_free         -       free a tty buffer
348  *      @tty: tty owning the buffer
349  *      @b: the buffer to free
350  *
351  *      Free a tty buffer, or add it to the free list according to our
352  *      internal strategy
353  *
354  *      Locking: Caller must hold tty->buf.lock
355  */
356
357 static void tty_buffer_free(struct tty_struct *tty, struct tty_buffer *b)
358 {
359         /* Dumb strategy for now - should keep some stats */
360         tty->buf.memory_used -= b->size;
361         WARN_ON(tty->buf.memory_used < 0);
362
363         if(b->size >= 512)
364                 kfree(b);
365         else {
366                 b->next = tty->buf.free;
367                 tty->buf.free = b;
368         }
369 }
370
371 /**
372  *      tty_buffer_flush                -       flush full tty buffers
373  *      @tty: tty to flush
374  *
375  *      flush all the buffers containing receive data
376  *
377  *      Locking: none
378  */
379
380 static void tty_buffer_flush(struct tty_struct *tty)
381 {
382         struct tty_buffer *thead;
383         unsigned long flags;
384
385         spin_lock_irqsave(&tty->buf.lock, flags);
386         while((thead = tty->buf.head) != NULL) {
387                 tty->buf.head = thead->next;
388                 tty_buffer_free(tty, thead);
389         }
390         tty->buf.tail = NULL;
391         spin_unlock_irqrestore(&tty->buf.lock, flags);
392 }
393
394 /**
395  *      tty_buffer_find         -       find a free tty buffer
396  *      @tty: tty owning the buffer
397  *      @size: characters wanted
398  *
399  *      Locate an existing suitable tty buffer or if we are lacking one then
400  *      allocate a new one. We round our buffers off in 256 character chunks
401  *      to get better allocation behaviour.
402  *
403  *      Locking: Caller must hold tty->buf.lock
404  */
405
406 static struct tty_buffer *tty_buffer_find(struct tty_struct *tty, size_t size)
407 {
408         struct tty_buffer **tbh = &tty->buf.free;
409         while((*tbh) != NULL) {
410                 struct tty_buffer *t = *tbh;
411                 if(t->size >= size) {
412                         *tbh = t->next;
413                         t->next = NULL;
414                         t->used = 0;
415                         t->commit = 0;
416                         t->read = 0;
417                         tty->buf.memory_used += t->size;
418                         return t;
419                 }
420                 tbh = &((*tbh)->next);
421         }
422         /* Round the buffer size out */
423         size = (size + 0xFF) & ~ 0xFF;
424         return tty_buffer_alloc(tty, size);
425         /* Should possibly check if this fails for the largest buffer we
426            have queued and recycle that ? */
427 }
428
429 /**
430  *      tty_buffer_request_room         -       grow tty buffer if needed
431  *      @tty: tty structure
432  *      @size: size desired
433  *
434  *      Make at least size bytes of linear space available for the tty
435  *      buffer. If we fail return the size we managed to find.
436  *
437  *      Locking: Takes tty->buf.lock
438  */
439 int tty_buffer_request_room(struct tty_struct *tty, size_t size)
440 {
441         struct tty_buffer *b, *n;
442         int left;
443         unsigned long flags;
444
445         spin_lock_irqsave(&tty->buf.lock, flags);
446
447         /* OPTIMISATION: We could keep a per tty "zero" sized buffer to
448            remove this conditional if its worth it. This would be invisible
449            to the callers */
450         if ((b = tty->buf.tail) != NULL)
451                 left = b->size - b->used;
452         else
453                 left = 0;
454
455         if (left < size) {
456                 /* This is the slow path - looking for new buffers to use */
457                 if ((n = tty_buffer_find(tty, size)) != NULL) {
458                         if (b != NULL) {
459                                 b->next = n;
460                                 b->commit = b->used;
461                         } else
462                                 tty->buf.head = n;
463                         tty->buf.tail = n;
464                 } else
465                         size = left;
466         }
467
468         spin_unlock_irqrestore(&tty->buf.lock, flags);
469         return size;
470 }
471 EXPORT_SYMBOL_GPL(tty_buffer_request_room);
472
473 /**
474  *      tty_insert_flip_string  -       Add characters to the tty buffer
475  *      @tty: tty structure
476  *      @chars: characters
477  *      @size: size
478  *
479  *      Queue a series of bytes to the tty buffering. All the characters
480  *      passed are marked as without error. Returns the number added.
481  *
482  *      Locking: Called functions may take tty->buf.lock
483  */
484
485 int tty_insert_flip_string(struct tty_struct *tty, const unsigned char *chars,
486                                 size_t size)
487 {
488         int copied = 0;
489         do {
490                 int space = tty_buffer_request_room(tty, size - copied);
491                 struct tty_buffer *tb = tty->buf.tail;
492                 /* If there is no space then tb may be NULL */
493                 if(unlikely(space == 0))
494                         break;
495                 memcpy(tb->char_buf_ptr + tb->used, chars, space);
496                 memset(tb->flag_buf_ptr + tb->used, TTY_NORMAL, space);
497                 tb->used += space;
498                 copied += space;
499                 chars += space;
500                 /* There is a small chance that we need to split the data over
501                    several buffers. If this is the case we must loop */
502         } while (unlikely(size > copied));
503         return copied;
504 }
505 EXPORT_SYMBOL(tty_insert_flip_string);
506
507 /**
508  *      tty_insert_flip_string_flags    -       Add characters to the tty buffer
509  *      @tty: tty structure
510  *      @chars: characters
511  *      @flags: flag bytes
512  *      @size: size
513  *
514  *      Queue a series of bytes to the tty buffering. For each character
515  *      the flags array indicates the status of the character. Returns the
516  *      number added.
517  *
518  *      Locking: Called functions may take tty->buf.lock
519  */
520
521 int tty_insert_flip_string_flags(struct tty_struct *tty,
522                 const unsigned char *chars, const char *flags, size_t size)
523 {
524         int copied = 0;
525         do {
526                 int space = tty_buffer_request_room(tty, size - copied);
527                 struct tty_buffer *tb = tty->buf.tail;
528                 /* If there is no space then tb may be NULL */
529                 if(unlikely(space == 0))
530                         break;
531                 memcpy(tb->char_buf_ptr + tb->used, chars, space);
532                 memcpy(tb->flag_buf_ptr + tb->used, flags, space);
533                 tb->used += space;
534                 copied += space;
535                 chars += space;
536                 flags += space;
537                 /* There is a small chance that we need to split the data over
538                    several buffers. If this is the case we must loop */
539         } while (unlikely(size > copied));
540         return copied;
541 }
542 EXPORT_SYMBOL(tty_insert_flip_string_flags);
543
544 /**
545  *      tty_schedule_flip       -       push characters to ldisc
546  *      @tty: tty to push from
547  *
548  *      Takes any pending buffers and transfers their ownership to the
549  *      ldisc side of the queue. It then schedules those characters for
550  *      processing by the line discipline.
551  *
552  *      Locking: Takes tty->buf.lock
553  */
554
555 void tty_schedule_flip(struct tty_struct *tty)
556 {
557         unsigned long flags;
558         spin_lock_irqsave(&tty->buf.lock, flags);
559         if (tty->buf.tail != NULL)
560                 tty->buf.tail->commit = tty->buf.tail->used;
561         spin_unlock_irqrestore(&tty->buf.lock, flags);
562         schedule_delayed_work(&tty->buf.work, 1);
563 }
564 EXPORT_SYMBOL(tty_schedule_flip);
565
566 /**
567  *      tty_prepare_flip_string         -       make room for characters
568  *      @tty: tty
569  *      @chars: return pointer for character write area
570  *      @size: desired size
571  *
572  *      Prepare a block of space in the buffer for data. Returns the length
573  *      available and buffer pointer to the space which is now allocated and
574  *      accounted for as ready for normal characters. This is used for drivers
575  *      that need their own block copy routines into the buffer. There is no
576  *      guarantee the buffer is a DMA target!
577  *
578  *      Locking: May call functions taking tty->buf.lock
579  */
580
581 int tty_prepare_flip_string(struct tty_struct *tty, unsigned char **chars, size_t size)
582 {
583         int space = tty_buffer_request_room(tty, size);
584         if (likely(space)) {
585                 struct tty_buffer *tb = tty->buf.tail;
586                 *chars = tb->char_buf_ptr + tb->used;
587                 memset(tb->flag_buf_ptr + tb->used, TTY_NORMAL, space);
588                 tb->used += space;
589         }
590         return space;
591 }
592
593 EXPORT_SYMBOL_GPL(tty_prepare_flip_string);
594
595 /**
596  *      tty_prepare_flip_string_flags   -       make room for characters
597  *      @tty: tty
598  *      @chars: return pointer for character write area
599  *      @flags: return pointer for status flag write area
600  *      @size: desired size
601  *
602  *      Prepare a block of space in the buffer for data. Returns the length
603  *      available and buffer pointer to the space which is now allocated and
604  *      accounted for as ready for characters. This is used for drivers
605  *      that need their own block copy routines into the buffer. There is no
606  *      guarantee the buffer is a DMA target!
607  *
608  *      Locking: May call functions taking tty->buf.lock
609  */
610
611 int tty_prepare_flip_string_flags(struct tty_struct *tty, unsigned char **chars, char **flags, size_t size)
612 {
613         int space = tty_buffer_request_room(tty, size);
614         if (likely(space)) {
615                 struct tty_buffer *tb = tty->buf.tail;
616                 *chars = tb->char_buf_ptr + tb->used;
617                 *flags = tb->flag_buf_ptr + tb->used;
618                 tb->used += space;
619         }
620         return space;
621 }
622
623 EXPORT_SYMBOL_GPL(tty_prepare_flip_string_flags);
624
625
626
627 /**
628  *      tty_set_termios_ldisc           -       set ldisc field
629  *      @tty: tty structure
630  *      @num: line discipline number
631  *
632  *      This is probably overkill for real world processors but
633  *      they are not on hot paths so a little discipline won't do 
634  *      any harm.
635  *
636  *      Locking: takes termios_mutex
637  */
638  
639 static void tty_set_termios_ldisc(struct tty_struct *tty, int num)
640 {
641         mutex_lock(&tty->termios_mutex);
642         tty->termios->c_line = num;
643         mutex_unlock(&tty->termios_mutex);
644 }
645
646 /*
647  *      This guards the refcounted line discipline lists. The lock
648  *      must be taken with irqs off because there are hangup path
649  *      callers who will do ldisc lookups and cannot sleep.
650  */
651  
652 static DEFINE_SPINLOCK(tty_ldisc_lock);
653 static DECLARE_WAIT_QUEUE_HEAD(tty_ldisc_wait);
654 static struct tty_ldisc tty_ldiscs[NR_LDISCS];  /* line disc dispatch table */
655
656 /**
657  *      tty_register_ldisc      -       install a line discipline
658  *      @disc: ldisc number
659  *      @new_ldisc: pointer to the ldisc object
660  *
661  *      Installs a new line discipline into the kernel. The discipline
662  *      is set up as unreferenced and then made available to the kernel
663  *      from this point onwards.
664  *
665  *      Locking:
666  *              takes tty_ldisc_lock to guard against ldisc races
667  */
668
669 int tty_register_ldisc(int disc, struct tty_ldisc *new_ldisc)
670 {
671         unsigned long flags;
672         int ret = 0;
673         
674         if (disc < N_TTY || disc >= NR_LDISCS)
675                 return -EINVAL;
676         
677         spin_lock_irqsave(&tty_ldisc_lock, flags);
678         tty_ldiscs[disc] = *new_ldisc;
679         tty_ldiscs[disc].num = disc;
680         tty_ldiscs[disc].flags |= LDISC_FLAG_DEFINED;
681         tty_ldiscs[disc].refcount = 0;
682         spin_unlock_irqrestore(&tty_ldisc_lock, flags);
683         
684         return ret;
685 }
686 EXPORT_SYMBOL(tty_register_ldisc);
687
688 /**
689  *      tty_unregister_ldisc    -       unload a line discipline
690  *      @disc: ldisc number
691  *      @new_ldisc: pointer to the ldisc object
692  *
693  *      Remove a line discipline from the kernel providing it is not
694  *      currently in use.
695  *
696  *      Locking:
697  *              takes tty_ldisc_lock to guard against ldisc races
698  */
699
700 int tty_unregister_ldisc(int disc)
701 {
702         unsigned long flags;
703         int ret = 0;
704
705         if (disc < N_TTY || disc >= NR_LDISCS)
706                 return -EINVAL;
707
708         spin_lock_irqsave(&tty_ldisc_lock, flags);
709         if (tty_ldiscs[disc].refcount)
710                 ret = -EBUSY;
711         else
712                 tty_ldiscs[disc].flags &= ~LDISC_FLAG_DEFINED;
713         spin_unlock_irqrestore(&tty_ldisc_lock, flags);
714
715         return ret;
716 }
717 EXPORT_SYMBOL(tty_unregister_ldisc);
718
719 /**
720  *      tty_ldisc_get           -       take a reference to an ldisc
721  *      @disc: ldisc number
722  *
723  *      Takes a reference to a line discipline. Deals with refcounts and
724  *      module locking counts. Returns NULL if the discipline is not available.
725  *      Returns a pointer to the discipline and bumps the ref count if it is
726  *      available
727  *
728  *      Locking:
729  *              takes tty_ldisc_lock to guard against ldisc races
730  */
731
732 struct tty_ldisc *tty_ldisc_get(int disc)
733 {
734         unsigned long flags;
735         struct tty_ldisc *ld;
736
737         if (disc < N_TTY || disc >= NR_LDISCS)
738                 return NULL;
739         
740         spin_lock_irqsave(&tty_ldisc_lock, flags);
741
742         ld = &tty_ldiscs[disc];
743         /* Check the entry is defined */
744         if(ld->flags & LDISC_FLAG_DEFINED)
745         {
746                 /* If the module is being unloaded we can't use it */
747                 if (!try_module_get(ld->owner))
748                         ld = NULL;
749                 else /* lock it */
750                         ld->refcount++;
751         }
752         else
753                 ld = NULL;
754         spin_unlock_irqrestore(&tty_ldisc_lock, flags);
755         return ld;
756 }
757
758 EXPORT_SYMBOL_GPL(tty_ldisc_get);
759
760 /**
761  *      tty_ldisc_put           -       drop ldisc reference
762  *      @disc: ldisc number
763  *
764  *      Drop a reference to a line discipline. Manage refcounts and
765  *      module usage counts
766  *
767  *      Locking:
768  *              takes tty_ldisc_lock to guard against ldisc races
769  */
770
771 void tty_ldisc_put(int disc)
772 {
773         struct tty_ldisc *ld;
774         unsigned long flags;
775         
776         BUG_ON(disc < N_TTY || disc >= NR_LDISCS);
777                 
778         spin_lock_irqsave(&tty_ldisc_lock, flags);
779         ld = &tty_ldiscs[disc];
780         BUG_ON(ld->refcount == 0);
781         ld->refcount--;
782         module_put(ld->owner);
783         spin_unlock_irqrestore(&tty_ldisc_lock, flags);
784 }
785         
786 EXPORT_SYMBOL_GPL(tty_ldisc_put);
787
788 /**
789  *      tty_ldisc_assign        -       set ldisc on a tty
790  *      @tty: tty to assign
791  *      @ld: line discipline
792  *
793  *      Install an instance of a line discipline into a tty structure. The
794  *      ldisc must have a reference count above zero to ensure it remains/
795  *      The tty instance refcount starts at zero.
796  *
797  *      Locking:
798  *              Caller must hold references
799  */
800
801 static void tty_ldisc_assign(struct tty_struct *tty, struct tty_ldisc *ld)
802 {
803         tty->ldisc = *ld;
804         tty->ldisc.refcount = 0;
805 }
806
807 /**
808  *      tty_ldisc_try           -       internal helper
809  *      @tty: the tty
810  *
811  *      Make a single attempt to grab and bump the refcount on
812  *      the tty ldisc. Return 0 on failure or 1 on success. This is
813  *      used to implement both the waiting and non waiting versions
814  *      of tty_ldisc_ref
815  *
816  *      Locking: takes tty_ldisc_lock
817  */
818
819 static int tty_ldisc_try(struct tty_struct *tty)
820 {
821         unsigned long flags;
822         struct tty_ldisc *ld;
823         int ret = 0;
824         
825         spin_lock_irqsave(&tty_ldisc_lock, flags);
826         ld = &tty->ldisc;
827         if(test_bit(TTY_LDISC, &tty->flags))
828         {
829                 ld->refcount++;
830                 ret = 1;
831         }
832         spin_unlock_irqrestore(&tty_ldisc_lock, flags);
833         return ret;
834 }
835
836 /**
837  *      tty_ldisc_ref_wait      -       wait for the tty ldisc
838  *      @tty: tty device
839  *
840  *      Dereference the line discipline for the terminal and take a 
841  *      reference to it. If the line discipline is in flux then 
842  *      wait patiently until it changes.
843  *
844  *      Note: Must not be called from an IRQ/timer context. The caller
845  *      must also be careful not to hold other locks that will deadlock
846  *      against a discipline change, such as an existing ldisc reference
847  *      (which we check for)
848  *
849  *      Locking: call functions take tty_ldisc_lock
850  */
851  
852 struct tty_ldisc *tty_ldisc_ref_wait(struct tty_struct *tty)
853 {
854         /* wait_event is a macro */
855         wait_event(tty_ldisc_wait, tty_ldisc_try(tty));
856         if(tty->ldisc.refcount == 0)
857                 printk(KERN_ERR "tty_ldisc_ref_wait\n");
858         return &tty->ldisc;
859 }
860
861 EXPORT_SYMBOL_GPL(tty_ldisc_ref_wait);
862
863 /**
864  *      tty_ldisc_ref           -       get the tty ldisc
865  *      @tty: tty device
866  *
867  *      Dereference the line discipline for the terminal and take a 
868  *      reference to it. If the line discipline is in flux then 
869  *      return NULL. Can be called from IRQ and timer functions.
870  *
871  *      Locking: called functions take tty_ldisc_lock
872  */
873  
874 struct tty_ldisc *tty_ldisc_ref(struct tty_struct *tty)
875 {
876         if(tty_ldisc_try(tty))
877                 return &tty->ldisc;
878         return NULL;
879 }
880
881 EXPORT_SYMBOL_GPL(tty_ldisc_ref);
882
883 /**
884  *      tty_ldisc_deref         -       free a tty ldisc reference
885  *      @ld: reference to free up
886  *
887  *      Undoes the effect of tty_ldisc_ref or tty_ldisc_ref_wait. May
888  *      be called in IRQ context.
889  *
890  *      Locking: takes tty_ldisc_lock
891  */
892  
893 void tty_ldisc_deref(struct tty_ldisc *ld)
894 {
895         unsigned long flags;
896
897         BUG_ON(ld == NULL);
898                 
899         spin_lock_irqsave(&tty_ldisc_lock, flags);
900         if(ld->refcount == 0)
901                 printk(KERN_ERR "tty_ldisc_deref: no references.\n");
902         else
903                 ld->refcount--;
904         if(ld->refcount == 0)
905                 wake_up(&tty_ldisc_wait);
906         spin_unlock_irqrestore(&tty_ldisc_lock, flags);
907 }
908
909 EXPORT_SYMBOL_GPL(tty_ldisc_deref);
910
911 /**
912  *      tty_ldisc_enable        -       allow ldisc use
913  *      @tty: terminal to activate ldisc on
914  *
915  *      Set the TTY_LDISC flag when the line discipline can be called
916  *      again. Do neccessary wakeups for existing sleepers.
917  *
918  *      Note: nobody should set this bit except via this function. Clearing
919  *      directly is allowed.
920  */
921
922 static void tty_ldisc_enable(struct tty_struct *tty)
923 {
924         set_bit(TTY_LDISC, &tty->flags);
925         wake_up(&tty_ldisc_wait);
926 }
927         
928 /**
929  *      tty_set_ldisc           -       set line discipline
930  *      @tty: the terminal to set
931  *      @ldisc: the line discipline
932  *
933  *      Set the discipline of a tty line. Must be called from a process
934  *      context.
935  *
936  *      Locking: takes tty_ldisc_lock.
937  *               called functions take termios_mutex
938  */
939  
940 static int tty_set_ldisc(struct tty_struct *tty, int ldisc)
941 {
942         int retval = 0;
943         struct tty_ldisc o_ldisc;
944         char buf[64];
945         int work;
946         unsigned long flags;
947         struct tty_ldisc *ld;
948         struct tty_struct *o_tty;
949
950         if ((ldisc < N_TTY) || (ldisc >= NR_LDISCS))
951                 return -EINVAL;
952
953 restart:
954
955         ld = tty_ldisc_get(ldisc);
956         /* Eduardo Blanco <ejbs@cs.cs.com.uy> */
957         /* Cyrus Durgin <cider@speakeasy.org> */
958         if (ld == NULL) {
959                 request_module("tty-ldisc-%d", ldisc);
960                 ld = tty_ldisc_get(ldisc);
961         }
962         if (ld == NULL)
963                 return -EINVAL;
964
965         /*
966          *      Problem: What do we do if this blocks ?
967          */
968
969         tty_wait_until_sent(tty, 0);
970
971         if (tty->ldisc.num == ldisc) {
972                 tty_ldisc_put(ldisc);
973                 return 0;
974         }
975
976         /*
977          *      No more input please, we are switching. The new ldisc
978          *      will update this value in the ldisc open function
979          */
980
981         tty->receive_room = 0;
982
983         o_ldisc = tty->ldisc;
984         o_tty = tty->link;
985
986         /*
987          *      Make sure we don't change while someone holds a
988          *      reference to the line discipline. The TTY_LDISC bit
989          *      prevents anyone taking a reference once it is clear.
990          *      We need the lock to avoid racing reference takers.
991          */
992
993         spin_lock_irqsave(&tty_ldisc_lock, flags);
994         if (tty->ldisc.refcount || (o_tty && o_tty->ldisc.refcount)) {
995                 if(tty->ldisc.refcount) {
996                         /* Free the new ldisc we grabbed. Must drop the lock
997                            first. */
998                         spin_unlock_irqrestore(&tty_ldisc_lock, flags);
999                         tty_ldisc_put(ldisc);
1000                         /*
1001                          * There are several reasons we may be busy, including
1002                          * random momentary I/O traffic. We must therefore
1003                          * retry. We could distinguish between blocking ops
1004                          * and retries if we made tty_ldisc_wait() smarter. That
1005                          * is up for discussion.
1006                          */
1007                         if (wait_event_interruptible(tty_ldisc_wait, tty->ldisc.refcount == 0) < 0)
1008                                 return -ERESTARTSYS;
1009                         goto restart;
1010                 }
1011                 if(o_tty && o_tty->ldisc.refcount) {
1012                         spin_unlock_irqrestore(&tty_ldisc_lock, flags);
1013                         tty_ldisc_put(ldisc);
1014                         if (wait_event_interruptible(tty_ldisc_wait, o_tty->ldisc.refcount == 0) < 0)
1015                                 return -ERESTARTSYS;
1016                         goto restart;
1017                 }
1018         }
1019
1020         /* if the TTY_LDISC bit is set, then we are racing against another ldisc change */
1021
1022         if (!test_bit(TTY_LDISC, &tty->flags)) {
1023                 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
1024                 tty_ldisc_put(ldisc);
1025                 ld = tty_ldisc_ref_wait(tty);
1026                 tty_ldisc_deref(ld);
1027                 goto restart;
1028         }
1029
1030         clear_bit(TTY_LDISC, &tty->flags);
1031         if (o_tty)
1032                 clear_bit(TTY_LDISC, &o_tty->flags);
1033         spin_unlock_irqrestore(&tty_ldisc_lock, flags);
1034
1035         /*
1036          *      From this point on we know nobody has an ldisc
1037          *      usage reference, nor can they obtain one until
1038          *      we say so later on.
1039          */
1040
1041         work = cancel_delayed_work(&tty->buf.work);
1042         /*
1043          * Wait for ->hangup_work and ->buf.work handlers to terminate
1044          */
1045          
1046         flush_scheduled_work();
1047         /* Shutdown the current discipline. */
1048         if (tty->ldisc.close)
1049                 (tty->ldisc.close)(tty);
1050
1051         /* Now set up the new line discipline. */
1052         tty_ldisc_assign(tty, ld);
1053         tty_set_termios_ldisc(tty, ldisc);
1054         if (tty->ldisc.open)
1055                 retval = (tty->ldisc.open)(tty);
1056         if (retval < 0) {
1057                 tty_ldisc_put(ldisc);
1058                 /* There is an outstanding reference here so this is safe */
1059                 tty_ldisc_assign(tty, tty_ldisc_get(o_ldisc.num));
1060                 tty_set_termios_ldisc(tty, tty->ldisc.num);
1061                 if (tty->ldisc.open && (tty->ldisc.open(tty) < 0)) {
1062                         tty_ldisc_put(o_ldisc.num);
1063                         /* This driver is always present */
1064                         tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
1065                         tty_set_termios_ldisc(tty, N_TTY);
1066                         if (tty->ldisc.open) {
1067                                 int r = tty->ldisc.open(tty);
1068
1069                                 if (r < 0)
1070                                         panic("Couldn't open N_TTY ldisc for "
1071                                               "%s --- error %d.",
1072                                               tty_name(tty, buf), r);
1073                         }
1074                 }
1075         }
1076         /* At this point we hold a reference to the new ldisc and a
1077            a reference to the old ldisc. If we ended up flipping back
1078            to the existing ldisc we have two references to it */
1079         
1080         if (tty->ldisc.num != o_ldisc.num && tty->driver->set_ldisc)
1081                 tty->driver->set_ldisc(tty);
1082                 
1083         tty_ldisc_put(o_ldisc.num);
1084         
1085         /*
1086          *      Allow ldisc referencing to occur as soon as the driver
1087          *      ldisc callback completes.
1088          */
1089          
1090         tty_ldisc_enable(tty);
1091         if (o_tty)
1092                 tty_ldisc_enable(o_tty);
1093         
1094         /* Restart it in case no characters kick it off. Safe if
1095            already running */
1096         if (work)
1097                 schedule_delayed_work(&tty->buf.work, 1);
1098         return retval;
1099 }
1100
1101 /**
1102  *      get_tty_driver          -       find device of a tty
1103  *      @dev_t: device identifier
1104  *      @index: returns the index of the tty
1105  *
1106  *      This routine returns a tty driver structure, given a device number
1107  *      and also passes back the index number.
1108  *
1109  *      Locking: caller must hold tty_mutex
1110  */
1111
1112 static struct tty_driver *get_tty_driver(dev_t device, int *index)
1113 {
1114         struct tty_driver *p;
1115
1116         list_for_each_entry(p, &tty_drivers, tty_drivers) {
1117                 dev_t base = MKDEV(p->major, p->minor_start);
1118                 if (device < base || device >= base + p->num)
1119                         continue;
1120                 *index = device - base;
1121                 return p;
1122         }
1123         return NULL;
1124 }
1125
1126 /**
1127  *      tty_check_change        -       check for POSIX terminal changes
1128  *      @tty: tty to check
1129  *
1130  *      If we try to write to, or set the state of, a terminal and we're
1131  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
1132  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
1133  *
1134  *      Locking: none
1135  */
1136
1137 int tty_check_change(struct tty_struct * tty)
1138 {
1139         if (current->signal->tty != tty)
1140                 return 0;
1141         if (!tty->pgrp) {
1142                 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
1143                 return 0;
1144         }
1145         if (task_pgrp(current) == tty->pgrp)
1146                 return 0;
1147         if (is_ignored(SIGTTOU))
1148                 return 0;
1149         if (is_current_pgrp_orphaned())
1150                 return -EIO;
1151         kill_pgrp(task_pgrp(current), SIGTTOU, 1);
1152         set_thread_flag(TIF_SIGPENDING);
1153         return -ERESTARTSYS;
1154 }
1155
1156 EXPORT_SYMBOL(tty_check_change);
1157
1158 static ssize_t hung_up_tty_read(struct file * file, char __user * buf,
1159                                 size_t count, loff_t *ppos)
1160 {
1161         return 0;
1162 }
1163
1164 static ssize_t hung_up_tty_write(struct file * file, const char __user * buf,
1165                                  size_t count, loff_t *ppos)
1166 {
1167         return -EIO;
1168 }
1169
1170 /* No kernel lock held - none needed ;) */
1171 static unsigned int hung_up_tty_poll(struct file * filp, poll_table * wait)
1172 {
1173         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
1174 }
1175
1176 static int hung_up_tty_ioctl(struct inode * inode, struct file * file,
1177                              unsigned int cmd, unsigned long arg)
1178 {
1179         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
1180 }
1181
1182 static long hung_up_tty_compat_ioctl(struct file * file,
1183                                      unsigned int cmd, unsigned long arg)
1184 {
1185         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
1186 }
1187
1188 static const struct file_operations tty_fops = {
1189         .llseek         = no_llseek,
1190         .read           = tty_read,
1191         .write          = tty_write,
1192         .poll           = tty_poll,
1193         .ioctl          = tty_ioctl,
1194         .compat_ioctl   = tty_compat_ioctl,
1195         .open           = tty_open,
1196         .release        = tty_release,
1197         .fasync         = tty_fasync,
1198 };
1199
1200 #ifdef CONFIG_UNIX98_PTYS
1201 static const struct file_operations ptmx_fops = {
1202         .llseek         = no_llseek,
1203         .read           = tty_read,
1204         .write          = tty_write,
1205         .poll           = tty_poll,
1206         .ioctl          = tty_ioctl,
1207         .compat_ioctl   = tty_compat_ioctl,
1208         .open           = ptmx_open,
1209         .release        = tty_release,
1210         .fasync         = tty_fasync,
1211 };
1212 #endif
1213
1214 static const struct file_operations console_fops = {
1215         .llseek         = no_llseek,
1216         .read           = tty_read,
1217         .write          = redirected_tty_write,
1218         .poll           = tty_poll,
1219         .ioctl          = tty_ioctl,
1220         .compat_ioctl   = tty_compat_ioctl,
1221         .open           = tty_open,
1222         .release        = tty_release,
1223         .fasync         = tty_fasync,
1224 };
1225
1226 static const struct file_operations hung_up_tty_fops = {
1227         .llseek         = no_llseek,
1228         .read           = hung_up_tty_read,
1229         .write          = hung_up_tty_write,
1230         .poll           = hung_up_tty_poll,
1231         .ioctl          = hung_up_tty_ioctl,
1232         .compat_ioctl   = hung_up_tty_compat_ioctl,
1233         .release        = tty_release,
1234 };
1235
1236 static DEFINE_SPINLOCK(redirect_lock);
1237 static struct file *redirect;
1238
1239 /**
1240  *      tty_wakeup      -       request more data
1241  *      @tty: terminal
1242  *
1243  *      Internal and external helper for wakeups of tty. This function
1244  *      informs the line discipline if present that the driver is ready
1245  *      to receive more output data.
1246  */
1247  
1248 void tty_wakeup(struct tty_struct *tty)
1249 {
1250         struct tty_ldisc *ld;
1251         
1252         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
1253                 ld = tty_ldisc_ref(tty);
1254                 if(ld) {
1255                         if(ld->write_wakeup)
1256                                 ld->write_wakeup(tty);
1257                         tty_ldisc_deref(ld);
1258                 }
1259         }
1260         wake_up_interruptible(&tty->write_wait);
1261 }
1262
1263 EXPORT_SYMBOL_GPL(tty_wakeup);
1264
1265 /**
1266  *      tty_ldisc_flush -       flush line discipline queue
1267  *      @tty: tty
1268  *
1269  *      Flush the line discipline queue (if any) for this tty. If there
1270  *      is no line discipline active this is a no-op.
1271  */
1272  
1273 void tty_ldisc_flush(struct tty_struct *tty)
1274 {
1275         struct tty_ldisc *ld = tty_ldisc_ref(tty);
1276         if(ld) {
1277                 if(ld->flush_buffer)
1278                         ld->flush_buffer(tty);
1279                 tty_ldisc_deref(ld);
1280         }
1281         tty_buffer_flush(tty);
1282 }
1283
1284 EXPORT_SYMBOL_GPL(tty_ldisc_flush);
1285
1286 /**
1287  *      tty_reset_termios       -       reset terminal state
1288  *      @tty: tty to reset
1289  *
1290  *      Restore a terminal to the driver default state
1291  */
1292
1293 static void tty_reset_termios(struct tty_struct *tty)
1294 {
1295         mutex_lock(&tty->termios_mutex);
1296         *tty->termios = tty->driver->init_termios;
1297         tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1298         tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1299         mutex_unlock(&tty->termios_mutex);
1300 }
1301         
1302 /**
1303  *      do_tty_hangup           -       actual handler for hangup events
1304  *      @work: tty device
1305  *
1306  *      This can be called by the "eventd" kernel thread.  That is process
1307  *      synchronous but doesn't hold any locks, so we need to make sure we
1308  *      have the appropriate locks for what we're doing.
1309  *
1310  *      The hangup event clears any pending redirections onto the hung up
1311  *      device. It ensures future writes will error and it does the needed
1312  *      line discipline hangup and signal delivery. The tty object itself
1313  *      remains intact.
1314  *
1315  *      Locking:
1316  *              BKL
1317  *                redirect lock for undoing redirection
1318  *                file list lock for manipulating list of ttys
1319  *                tty_ldisc_lock from called functions
1320  *                termios_mutex resetting termios data
1321  *                tasklist_lock to walk task list for hangup event
1322  *                  ->siglock to protect ->signal/->sighand
1323  */
1324 static void do_tty_hangup(struct work_struct *work)
1325 {
1326         struct tty_struct *tty =
1327                 container_of(work, struct tty_struct, hangup_work);
1328         struct file * cons_filp = NULL;
1329         struct file *filp, *f = NULL;
1330         struct task_struct *p;
1331         struct tty_ldisc *ld;
1332         int    closecount = 0, n;
1333
1334         if (!tty)
1335                 return;
1336
1337         /* inuse_filps is protected by the single kernel lock */
1338         lock_kernel();
1339
1340         spin_lock(&redirect_lock);
1341         if (redirect && redirect->private_data == tty) {
1342                 f = redirect;
1343                 redirect = NULL;
1344         }
1345         spin_unlock(&redirect_lock);
1346         
1347         check_tty_count(tty, "do_tty_hangup");
1348         file_list_lock();
1349         /* This breaks for file handles being sent over AF_UNIX sockets ? */
1350         list_for_each_entry(filp, &tty->tty_files, f_u.fu_list) {
1351                 if (filp->f_op->write == redirected_tty_write)
1352                         cons_filp = filp;
1353                 if (filp->f_op->write != tty_write)
1354                         continue;
1355                 closecount++;
1356                 tty_fasync(-1, filp, 0);        /* can't block */
1357                 filp->f_op = &hung_up_tty_fops;
1358         }
1359         file_list_unlock();
1360         
1361         /* FIXME! What are the locking issues here? This may me overdoing things..
1362          * this question is especially important now that we've removed the irqlock. */
1363
1364         ld = tty_ldisc_ref(tty);
1365         if(ld != NULL)  /* We may have no line discipline at this point */
1366         {
1367                 if (ld->flush_buffer)
1368                         ld->flush_buffer(tty);
1369                 if (tty->driver->flush_buffer)
1370                         tty->driver->flush_buffer(tty);
1371                 if ((test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) &&
1372                     ld->write_wakeup)
1373                         ld->write_wakeup(tty);
1374                 if (ld->hangup)
1375                         ld->hangup(tty);
1376         }
1377
1378         /* FIXME: Once we trust the LDISC code better we can wait here for
1379            ldisc completion and fix the driver call race */
1380            
1381         wake_up_interruptible(&tty->write_wait);
1382         wake_up_interruptible(&tty->read_wait);
1383
1384         /*
1385          * Shutdown the current line discipline, and reset it to
1386          * N_TTY.
1387          */
1388         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1389                 tty_reset_termios(tty);
1390         
1391         /* Defer ldisc switch */
1392         /* tty_deferred_ldisc_switch(N_TTY);
1393         
1394           This should get done automatically when the port closes and
1395           tty_release is called */
1396         
1397         read_lock(&tasklist_lock);
1398         if (tty->session) {
1399                 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
1400                         spin_lock_irq(&p->sighand->siglock);
1401                         if (p->signal->tty == tty)
1402                                 p->signal->tty = NULL;
1403                         if (!p->signal->leader) {
1404                                 spin_unlock_irq(&p->sighand->siglock);
1405                                 continue;
1406                         }
1407                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
1408                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
1409                         put_pid(p->signal->tty_old_pgrp);  /* A noop */
1410                         if (tty->pgrp)
1411                                 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
1412                         spin_unlock_irq(&p->sighand->siglock);
1413                 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
1414         }
1415         read_unlock(&tasklist_lock);
1416
1417         tty->flags = 0;
1418         put_pid(tty->session);
1419         put_pid(tty->pgrp);
1420         tty->session = NULL;
1421         tty->pgrp = NULL;
1422         tty->ctrl_status = 0;
1423         /*
1424          *      If one of the devices matches a console pointer, we
1425          *      cannot just call hangup() because that will cause
1426          *      tty->count and state->count to go out of sync.
1427          *      So we just call close() the right number of times.
1428          */
1429         if (cons_filp) {
1430                 if (tty->driver->close)
1431                         for (n = 0; n < closecount; n++)
1432                                 tty->driver->close(tty, cons_filp);
1433         } else if (tty->driver->hangup)
1434                 (tty->driver->hangup)(tty);
1435                 
1436         /* We don't want to have driver/ldisc interactions beyond
1437            the ones we did here. The driver layer expects no
1438            calls after ->hangup() from the ldisc side. However we
1439            can't yet guarantee all that */
1440
1441         set_bit(TTY_HUPPED, &tty->flags);
1442         if (ld) {
1443                 tty_ldisc_enable(tty);
1444                 tty_ldisc_deref(ld);
1445         }
1446         unlock_kernel();
1447         if (f)
1448                 fput(f);
1449 }
1450
1451 /**
1452  *      tty_hangup              -       trigger a hangup event
1453  *      @tty: tty to hangup
1454  *
1455  *      A carrier loss (virtual or otherwise) has occurred on this like
1456  *      schedule a hangup sequence to run after this event.
1457  */
1458
1459 void tty_hangup(struct tty_struct * tty)
1460 {
1461 #ifdef TTY_DEBUG_HANGUP
1462         char    buf[64];
1463         
1464         printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
1465 #endif
1466         schedule_work(&tty->hangup_work);
1467 }
1468
1469 EXPORT_SYMBOL(tty_hangup);
1470
1471 /**
1472  *      tty_vhangup             -       process vhangup
1473  *      @tty: tty to hangup
1474  *
1475  *      The user has asked via system call for the terminal to be hung up.
1476  *      We do this synchronously so that when the syscall returns the process
1477  *      is complete. That guarantee is neccessary for security reasons.
1478  */
1479
1480 void tty_vhangup(struct tty_struct * tty)
1481 {
1482 #ifdef TTY_DEBUG_HANGUP
1483         char    buf[64];
1484
1485         printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
1486 #endif
1487         do_tty_hangup(&tty->hangup_work);
1488 }
1489 EXPORT_SYMBOL(tty_vhangup);
1490
1491 /**
1492  *      tty_hung_up_p           -       was tty hung up
1493  *      @filp: file pointer of tty
1494  *
1495  *      Return true if the tty has been subject to a vhangup or a carrier
1496  *      loss
1497  */
1498
1499 int tty_hung_up_p(struct file * filp)
1500 {
1501         return (filp->f_op == &hung_up_tty_fops);
1502 }
1503
1504 EXPORT_SYMBOL(tty_hung_up_p);
1505
1506 static void session_clear_tty(struct pid *session)
1507 {
1508         struct task_struct *p;
1509         do_each_pid_task(session, PIDTYPE_SID, p) {
1510                 proc_clear_tty(p);
1511         } while_each_pid_task(session, PIDTYPE_SID, p);
1512 }
1513
1514 /**
1515  *      disassociate_ctty       -       disconnect controlling tty
1516  *      @on_exit: true if exiting so need to "hang up" the session
1517  *
1518  *      This function is typically called only by the session leader, when
1519  *      it wants to disassociate itself from its controlling tty.
1520  *
1521  *      It performs the following functions:
1522  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
1523  *      (2)  Clears the tty from being controlling the session
1524  *      (3)  Clears the controlling tty for all processes in the
1525  *              session group.
1526  *
1527  *      The argument on_exit is set to 1 if called when a process is
1528  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
1529  *
1530  *      Locking:
1531  *              BKL is taken for hysterical raisins
1532  *                tty_mutex is taken to protect tty
1533  *                ->siglock is taken to protect ->signal/->sighand
1534  *                tasklist_lock is taken to walk process list for sessions
1535  *                  ->siglock is taken to protect ->signal/->sighand
1536  */
1537
1538 void disassociate_ctty(int on_exit)
1539 {
1540         struct tty_struct *tty;
1541         struct pid *tty_pgrp = NULL;
1542
1543         lock_kernel();
1544
1545         mutex_lock(&tty_mutex);
1546         tty = get_current_tty();
1547         if (tty) {
1548                 tty_pgrp = get_pid(tty->pgrp);
1549                 mutex_unlock(&tty_mutex);
1550                 /* XXX: here we race, there is nothing protecting tty */
1551                 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY)
1552                         tty_vhangup(tty);
1553         } else if (on_exit) {
1554                 struct pid *old_pgrp;
1555                 spin_lock_irq(&current->sighand->siglock);
1556                 old_pgrp = current->signal->tty_old_pgrp;
1557                 current->signal->tty_old_pgrp = NULL;
1558                 spin_unlock_irq(&current->sighand->siglock);
1559                 if (old_pgrp) {
1560                         kill_pgrp(old_pgrp, SIGHUP, on_exit);
1561                         kill_pgrp(old_pgrp, SIGCONT, on_exit);
1562                         put_pid(old_pgrp);
1563                 }
1564                 mutex_unlock(&tty_mutex);
1565                 unlock_kernel();        
1566                 return;
1567         }
1568         if (tty_pgrp) {
1569                 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
1570                 if (!on_exit)
1571                         kill_pgrp(tty_pgrp, SIGCONT, on_exit);
1572                 put_pid(tty_pgrp);
1573         }
1574
1575         spin_lock_irq(&current->sighand->siglock);
1576         put_pid(current->signal->tty_old_pgrp);
1577         current->signal->tty_old_pgrp = NULL;
1578         spin_unlock_irq(&current->sighand->siglock);
1579
1580         mutex_lock(&tty_mutex);
1581         /* It is possible that do_tty_hangup has free'd this tty */
1582         tty = get_current_tty();
1583         if (tty) {
1584                 put_pid(tty->session);
1585                 put_pid(tty->pgrp);
1586                 tty->session = NULL;
1587                 tty->pgrp = NULL;
1588         } else {
1589 #ifdef TTY_DEBUG_HANGUP
1590                 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
1591                        " = NULL", tty);
1592 #endif
1593         }
1594         mutex_unlock(&tty_mutex);
1595
1596         /* Now clear signal->tty under the lock */
1597         read_lock(&tasklist_lock);
1598         session_clear_tty(task_session(current));
1599         read_unlock(&tasklist_lock);
1600         unlock_kernel();
1601 }
1602
1603 /**
1604  *
1605  *      no_tty  - Ensure the current process does not have a controlling tty
1606  */
1607 void no_tty(void)
1608 {
1609         struct task_struct *tsk = current;
1610         if (tsk->signal->leader)
1611                 disassociate_ctty(0);
1612         proc_clear_tty(tsk);
1613 }
1614
1615
1616 /**
1617  *      stop_tty        -       propagate flow control
1618  *      @tty: tty to stop
1619  *
1620  *      Perform flow control to the driver. For PTY/TTY pairs we
1621  *      must also propagate the TIOCKPKT status. May be called
1622  *      on an already stopped device and will not re-call the driver
1623  *      method.
1624  *
1625  *      This functionality is used by both the line disciplines for
1626  *      halting incoming flow and by the driver. It may therefore be
1627  *      called from any context, may be under the tty atomic_write_lock
1628  *      but not always.
1629  *
1630  *      Locking:
1631  *              Broken. Relies on BKL which is unsafe here.
1632  */
1633
1634 void stop_tty(struct tty_struct *tty)
1635 {
1636         if (tty->stopped)
1637                 return;
1638         tty->stopped = 1;
1639         if (tty->link && tty->link->packet) {
1640                 tty->ctrl_status &= ~TIOCPKT_START;
1641                 tty->ctrl_status |= TIOCPKT_STOP;
1642                 wake_up_interruptible(&tty->link->read_wait);
1643         }
1644         if (tty->driver->stop)
1645                 (tty->driver->stop)(tty);
1646 }
1647
1648 EXPORT_SYMBOL(stop_tty);
1649
1650 /**
1651  *      start_tty       -       propagate flow control
1652  *      @tty: tty to start
1653  *
1654  *      Start a tty that has been stopped if at all possible. Perform
1655  *      any neccessary wakeups and propagate the TIOCPKT status. If this
1656  *      is the tty was previous stopped and is being started then the
1657  *      driver start method is invoked and the line discipline woken.
1658  *
1659  *      Locking:
1660  *              Broken. Relies on BKL which is unsafe here.
1661  */
1662
1663 void start_tty(struct tty_struct *tty)
1664 {
1665         if (!tty->stopped || tty->flow_stopped)
1666                 return;
1667         tty->stopped = 0;
1668         if (tty->link && tty->link->packet) {
1669                 tty->ctrl_status &= ~TIOCPKT_STOP;
1670                 tty->ctrl_status |= TIOCPKT_START;
1671                 wake_up_interruptible(&tty->link->read_wait);
1672         }
1673         if (tty->driver->start)
1674                 (tty->driver->start)(tty);
1675
1676         /* If we have a running line discipline it may need kicking */
1677         tty_wakeup(tty);
1678 }
1679
1680 EXPORT_SYMBOL(start_tty);
1681
1682 /**
1683  *      tty_read        -       read method for tty device files
1684  *      @file: pointer to tty file
1685  *      @buf: user buffer
1686  *      @count: size of user buffer
1687  *      @ppos: unused
1688  *
1689  *      Perform the read system call function on this terminal device. Checks
1690  *      for hung up devices before calling the line discipline method.
1691  *
1692  *      Locking:
1693  *              Locks the line discipline internally while needed
1694  *              For historical reasons the line discipline read method is
1695  *      invoked under the BKL. This will go away in time so do not rely on it
1696  *      in new code. Multiple read calls may be outstanding in parallel.
1697  */
1698
1699 static ssize_t tty_read(struct file * file, char __user * buf, size_t count, 
1700                         loff_t *ppos)
1701 {
1702         int i;
1703         struct tty_struct * tty;
1704         struct inode *inode;
1705         struct tty_ldisc *ld;
1706
1707         tty = (struct tty_struct *)file->private_data;
1708         inode = file->f_path.dentry->d_inode;
1709         if (tty_paranoia_check(tty, inode, "tty_read"))
1710                 return -EIO;
1711         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1712                 return -EIO;
1713
1714         /* We want to wait for the line discipline to sort out in this
1715            situation */
1716         ld = tty_ldisc_ref_wait(tty);
1717         lock_kernel();
1718         if (ld->read)
1719                 i = (ld->read)(tty,file,buf,count);
1720         else
1721                 i = -EIO;
1722         tty_ldisc_deref(ld);
1723         unlock_kernel();
1724         if (i > 0)
1725                 inode->i_atime = current_fs_time(inode->i_sb);
1726         return i;
1727 }
1728
1729 void tty_write_unlock(struct tty_struct *tty)
1730 {
1731         mutex_unlock(&tty->atomic_write_lock);
1732         wake_up_interruptible(&tty->write_wait);
1733 }
1734
1735 int tty_write_lock(struct tty_struct *tty, int ndelay)
1736 {
1737         if (!mutex_trylock(&tty->atomic_write_lock)) {
1738                 if (ndelay)
1739                         return -EAGAIN;
1740                 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1741                         return -ERESTARTSYS;
1742         }
1743         return 0;
1744 }
1745
1746 /*
1747  * Split writes up in sane blocksizes to avoid
1748  * denial-of-service type attacks
1749  */
1750 static inline ssize_t do_tty_write(
1751         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1752         struct tty_struct *tty,
1753         struct file *file,
1754         const char __user *buf,
1755         size_t count)
1756 {
1757         ssize_t ret, written = 0;
1758         unsigned int chunk;
1759         
1760         ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1761         if (ret < 0)
1762                 return ret;
1763
1764         /*
1765          * We chunk up writes into a temporary buffer. This
1766          * simplifies low-level drivers immensely, since they
1767          * don't have locking issues and user mode accesses.
1768          *
1769          * But if TTY_NO_WRITE_SPLIT is set, we should use a
1770          * big chunk-size..
1771          *
1772          * The default chunk-size is 2kB, because the NTTY
1773          * layer has problems with bigger chunks. It will
1774          * claim to be able to handle more characters than
1775          * it actually does.
1776          *
1777          * FIXME: This can probably go away now except that 64K chunks
1778          * are too likely to fail unless switched to vmalloc...
1779          */
1780         chunk = 2048;
1781         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1782                 chunk = 65536;
1783         if (count < chunk)
1784                 chunk = count;
1785
1786         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1787         if (tty->write_cnt < chunk) {
1788                 unsigned char *buf;
1789
1790                 if (chunk < 1024)
1791                         chunk = 1024;
1792
1793                 buf = kmalloc(chunk, GFP_KERNEL);
1794                 if (!buf) {
1795                         ret = -ENOMEM;
1796                         goto out;
1797                 }
1798                 kfree(tty->write_buf);
1799                 tty->write_cnt = chunk;
1800                 tty->write_buf = buf;
1801         }
1802
1803         /* Do the write .. */
1804         for (;;) {
1805                 size_t size = count;
1806                 if (size > chunk)
1807                         size = chunk;
1808                 ret = -EFAULT;
1809                 if (copy_from_user(tty->write_buf, buf, size))
1810                         break;
1811                 lock_kernel();
1812                 ret = write(tty, file, tty->write_buf, size);
1813                 unlock_kernel();
1814                 if (ret <= 0)
1815                         break;
1816                 written += ret;
1817                 buf += ret;
1818                 count -= ret;
1819                 if (!count)
1820                         break;
1821                 ret = -ERESTARTSYS;
1822                 if (signal_pending(current))
1823                         break;
1824                 cond_resched();
1825         }
1826         if (written) {
1827                 struct inode *inode = file->f_path.dentry->d_inode;
1828                 inode->i_mtime = current_fs_time(inode->i_sb);
1829                 ret = written;
1830         }
1831 out:
1832         tty_write_unlock(tty);
1833         return ret;
1834 }
1835
1836
1837 /**
1838  *      tty_write               -       write method for tty device file
1839  *      @file: tty file pointer
1840  *      @buf: user data to write
1841  *      @count: bytes to write
1842  *      @ppos: unused
1843  *
1844  *      Write data to a tty device via the line discipline.
1845  *
1846  *      Locking:
1847  *              Locks the line discipline as required
1848  *              Writes to the tty driver are serialized by the atomic_write_lock
1849  *      and are then processed in chunks to the device. The line discipline
1850  *      write method will not be involked in parallel for each device
1851  *              The line discipline write method is called under the big
1852  *      kernel lock for historical reasons. New code should not rely on this.
1853  */
1854
1855 static ssize_t tty_write(struct file * file, const char __user * buf, size_t count,
1856                          loff_t *ppos)
1857 {
1858         struct tty_struct * tty;
1859         struct inode *inode = file->f_path.dentry->d_inode;
1860         ssize_t ret;
1861         struct tty_ldisc *ld;
1862         
1863         tty = (struct tty_struct *)file->private_data;
1864         if (tty_paranoia_check(tty, inode, "tty_write"))
1865                 return -EIO;
1866         if (!tty || !tty->driver->write || (test_bit(TTY_IO_ERROR, &tty->flags)))
1867                 return -EIO;
1868
1869         ld = tty_ldisc_ref_wait(tty);           
1870         if (!ld->write)
1871                 ret = -EIO;
1872         else
1873                 ret = do_tty_write(ld->write, tty, file, buf, count);
1874         tty_ldisc_deref(ld);
1875         return ret;
1876 }
1877
1878 ssize_t redirected_tty_write(struct file * file, const char __user * buf, size_t count,
1879                          loff_t *ppos)
1880 {
1881         struct file *p = NULL;
1882
1883         spin_lock(&redirect_lock);
1884         if (redirect) {
1885                 get_file(redirect);
1886                 p = redirect;
1887         }
1888         spin_unlock(&redirect_lock);
1889
1890         if (p) {
1891                 ssize_t res;
1892                 res = vfs_write(p, buf, count, &p->f_pos);
1893                 fput(p);
1894                 return res;
1895         }
1896
1897         return tty_write(file, buf, count, ppos);
1898 }
1899
1900 static char ptychar[] = "pqrstuvwxyzabcde";
1901
1902 /**
1903  *      pty_line_name   -       generate name for a pty
1904  *      @driver: the tty driver in use
1905  *      @index: the minor number
1906  *      @p: output buffer of at least 6 bytes
1907  *
1908  *      Generate a name from a driver reference and write it to the output
1909  *      buffer.
1910  *
1911  *      Locking: None
1912  */
1913 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1914 {
1915         int i = index + driver->name_base;
1916         /* ->name is initialized to "ttyp", but "tty" is expected */
1917         sprintf(p, "%s%c%x",
1918                         driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1919                         ptychar[i >> 4 & 0xf], i & 0xf);
1920 }
1921
1922 /**
1923  *      pty_line_name   -       generate name for a tty
1924  *      @driver: the tty driver in use
1925  *      @index: the minor number
1926  *      @p: output buffer of at least 7 bytes
1927  *
1928  *      Generate a name from a driver reference and write it to the output
1929  *      buffer.
1930  *
1931  *      Locking: None
1932  */
1933 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1934 {
1935         sprintf(p, "%s%d", driver->name, index + driver->name_base);
1936 }
1937
1938 /**
1939  *      init_dev                -       initialise a tty device
1940  *      @driver: tty driver we are opening a device on
1941  *      @idx: device index
1942  *      @tty: returned tty structure
1943  *
1944  *      Prepare a tty device. This may not be a "new" clean device but
1945  *      could also be an active device. The pty drivers require special
1946  *      handling because of this.
1947  *
1948  *      Locking:
1949  *              The function is called under the tty_mutex, which
1950  *      protects us from the tty struct or driver itself going away.
1951  *
1952  *      On exit the tty device has the line discipline attached and
1953  *      a reference count of 1. If a pair was created for pty/tty use
1954  *      and the other was a pty master then it too has a reference count of 1.
1955  *
1956  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1957  * failed open.  The new code protects the open with a mutex, so it's
1958  * really quite straightforward.  The mutex locking can probably be
1959  * relaxed for the (most common) case of reopening a tty.
1960  */
1961
1962 static int init_dev(struct tty_driver *driver, int idx,
1963         struct tty_struct **ret_tty)
1964 {
1965         struct tty_struct *tty, *o_tty;
1966         struct ktermios *tp, **tp_loc, *o_tp, **o_tp_loc;
1967         struct ktermios *ltp, **ltp_loc, *o_ltp, **o_ltp_loc;
1968         int retval = 0;
1969
1970         /* check whether we're reopening an existing tty */
1971         if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1972                 tty = devpts_get_tty(idx);
1973                 /*
1974                  * If we don't have a tty here on a slave open, it's because
1975                  * the master already started the close process and there's
1976                  * no relation between devpts file and tty anymore.
1977                  */
1978                 if (!tty && driver->subtype == PTY_TYPE_SLAVE) {
1979                         retval = -EIO;
1980                         goto end_init;
1981                 }
1982                 /*
1983                  * It's safe from now on because init_dev() is called with
1984                  * tty_mutex held and release_dev() won't change tty->count
1985                  * or tty->flags without having to grab tty_mutex
1986                  */
1987                 if (tty && driver->subtype == PTY_TYPE_MASTER)
1988                         tty = tty->link;
1989         } else {
1990                 tty = driver->ttys[idx];
1991         }
1992         if (tty) goto fast_track;
1993
1994         /*
1995          * First time open is complex, especially for PTY devices.
1996          * This code guarantees that either everything succeeds and the
1997          * TTY is ready for operation, or else the table slots are vacated
1998          * and the allocated memory released.  (Except that the termios 
1999          * and locked termios may be retained.)
2000          */
2001
2002         if (!try_module_get(driver->owner)) {
2003                 retval = -ENODEV;
2004                 goto end_init;
2005         }
2006
2007         o_tty = NULL;
2008         tp = o_tp = NULL;
2009         ltp = o_ltp = NULL;
2010
2011         tty = alloc_tty_struct();
2012         if(!tty)
2013                 goto fail_no_mem;
2014         initialize_tty_struct(tty);
2015         tty->driver = driver;
2016         tty->index = idx;
2017         tty_line_name(driver, idx, tty->name);
2018
2019         if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
2020                 tp_loc = &tty->termios;
2021                 ltp_loc = &tty->termios_locked;
2022         } else {
2023                 tp_loc = &driver->termios[idx];
2024                 ltp_loc = &driver->termios_locked[idx];
2025         }
2026
2027         if (!*tp_loc) {
2028                 tp = (struct ktermios *) kmalloc(sizeof(struct ktermios),
2029                                                 GFP_KERNEL);
2030                 if (!tp)
2031                         goto free_mem_out;
2032                 *tp = driver->init_termios;
2033         }
2034
2035         if (!*ltp_loc) {
2036                 ltp = kzalloc(sizeof(struct ktermios), GFP_KERNEL);
2037                 if (!ltp)
2038                         goto free_mem_out;
2039         }
2040
2041         if (driver->type == TTY_DRIVER_TYPE_PTY) {
2042                 o_tty = alloc_tty_struct();
2043                 if (!o_tty)
2044                         goto free_mem_out;
2045                 initialize_tty_struct(o_tty);
2046                 o_tty->driver = driver->other;
2047                 o_tty->index = idx;
2048                 tty_line_name(driver->other, idx, o_tty->name);
2049
2050                 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
2051                         o_tp_loc = &o_tty->termios;
2052                         o_ltp_loc = &o_tty->termios_locked;
2053                 } else {
2054                         o_tp_loc = &driver->other->termios[idx];
2055                         o_ltp_loc = &driver->other->termios_locked[idx];
2056                 }
2057
2058                 if (!*o_tp_loc) {
2059                         o_tp = (struct ktermios *)
2060                                 kmalloc(sizeof(struct ktermios), GFP_KERNEL);
2061                         if (!o_tp)
2062                                 goto free_mem_out;
2063                         *o_tp = driver->other->init_termios;
2064                 }
2065
2066                 if (!*o_ltp_loc) {
2067                         o_ltp = kzalloc(sizeof(struct ktermios), GFP_KERNEL);
2068                         if (!o_ltp)
2069                                 goto free_mem_out;
2070                 }
2071
2072                 /*
2073                  * Everything allocated ... set up the o_tty structure.
2074                  */
2075                 if (!(driver->other->flags & TTY_DRIVER_DEVPTS_MEM)) {
2076                         driver->other->ttys[idx] = o_tty;
2077                 }
2078                 if (!*o_tp_loc)
2079                         *o_tp_loc = o_tp;
2080                 if (!*o_ltp_loc)
2081                         *o_ltp_loc = o_ltp;
2082                 o_tty->termios = *o_tp_loc;
2083                 o_tty->termios_locked = *o_ltp_loc;
2084                 driver->other->refcount++;
2085                 if (driver->subtype == PTY_TYPE_MASTER)
2086                         o_tty->count++;
2087
2088                 /* Establish the links in both directions */
2089                 tty->link   = o_tty;
2090                 o_tty->link = tty;
2091         }
2092
2093         /* 
2094          * All structures have been allocated, so now we install them.
2095          * Failures after this point use release_tty to clean up, so
2096          * there's no need to null out the local pointers.
2097          */
2098         if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2099                 driver->ttys[idx] = tty;
2100         }
2101         
2102         if (!*tp_loc)
2103                 *tp_loc = tp;
2104         if (!*ltp_loc)
2105                 *ltp_loc = ltp;
2106         tty->termios = *tp_loc;
2107         tty->termios_locked = *ltp_loc;
2108         /* Compatibility until drivers always set this */
2109         tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
2110         tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
2111         driver->refcount++;
2112         tty->count++;
2113
2114         /* 
2115          * Structures all installed ... call the ldisc open routines.
2116          * If we fail here just call release_tty to clean up.  No need
2117          * to decrement the use counts, as release_tty doesn't care.
2118          */
2119
2120         if (tty->ldisc.open) {
2121                 retval = (tty->ldisc.open)(tty);
2122                 if (retval)
2123                         goto release_mem_out;
2124         }
2125         if (o_tty && o_tty->ldisc.open) {
2126                 retval = (o_tty->ldisc.open)(o_tty);
2127                 if (retval) {
2128                         if (tty->ldisc.close)
2129                                 (tty->ldisc.close)(tty);
2130                         goto release_mem_out;
2131                 }
2132                 tty_ldisc_enable(o_tty);
2133         }
2134         tty_ldisc_enable(tty);
2135         goto success;
2136
2137         /*
2138          * This fast open can be used if the tty is already open.
2139          * No memory is allocated, and the only failures are from
2140          * attempting to open a closing tty or attempting multiple
2141          * opens on a pty master.
2142          */
2143 fast_track:
2144         if (test_bit(TTY_CLOSING, &tty->flags)) {
2145                 retval = -EIO;
2146                 goto end_init;
2147         }
2148         if (driver->type == TTY_DRIVER_TYPE_PTY &&
2149             driver->subtype == PTY_TYPE_MASTER) {
2150                 /*
2151                  * special case for PTY masters: only one open permitted, 
2152                  * and the slave side open count is incremented as well.
2153                  */
2154                 if (tty->count) {
2155                         retval = -EIO;
2156                         goto end_init;
2157                 }
2158                 tty->link->count++;
2159         }
2160         tty->count++;
2161         tty->driver = driver; /* N.B. why do this every time?? */
2162
2163         /* FIXME */
2164         if(!test_bit(TTY_LDISC, &tty->flags))
2165                 printk(KERN_ERR "init_dev but no ldisc\n");
2166 success:
2167         *ret_tty = tty;
2168         
2169         /* All paths come through here to release the mutex */
2170 end_init:
2171         return retval;
2172
2173         /* Release locally allocated memory ... nothing placed in slots */
2174 free_mem_out:
2175         kfree(o_tp);
2176         if (o_tty)
2177                 free_tty_struct(o_tty);
2178         kfree(ltp);
2179         kfree(tp);
2180         free_tty_struct(tty);
2181
2182 fail_no_mem:
2183         module_put(driver->owner);
2184         retval = -ENOMEM;
2185         goto end_init;
2186
2187         /* call the tty release_tty routine to clean out this slot */
2188 release_mem_out:
2189         if (printk_ratelimit())
2190                 printk(KERN_INFO "init_dev: ldisc open failed, "
2191                                  "clearing slot %d\n", idx);
2192         release_tty(tty, idx);
2193         goto end_init;
2194 }
2195
2196 /**
2197  *      release_one_tty         -       release tty structure memory
2198  *
2199  *      Releases memory associated with a tty structure, and clears out the
2200  *      driver table slots. This function is called when a device is no longer
2201  *      in use. It also gets called when setup of a device fails.
2202  *
2203  *      Locking:
2204  *              tty_mutex - sometimes only
2205  *              takes the file list lock internally when working on the list
2206  *      of ttys that the driver keeps.
2207  *              FIXME: should we require tty_mutex is held here ??
2208  */
2209 static void release_one_tty(struct tty_struct *tty, int idx)
2210 {
2211         int devpts = tty->driver->flags & TTY_DRIVER_DEVPTS_MEM;
2212         struct ktermios *tp;
2213
2214         if (!devpts)
2215                 tty->driver->ttys[idx] = NULL;
2216
2217         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
2218                 tp = tty->termios;
2219                 if (!devpts)
2220                         tty->driver->termios[idx] = NULL;
2221                 kfree(tp);
2222
2223                 tp = tty->termios_locked;
2224                 if (!devpts)
2225                         tty->driver->termios_locked[idx] = NULL;
2226                 kfree(tp);
2227         }
2228
2229
2230         tty->magic = 0;
2231         tty->driver->refcount--;
2232
2233         file_list_lock();
2234         list_del_init(&tty->tty_files);
2235         file_list_unlock();
2236
2237         free_tty_struct(tty);
2238 }
2239
2240 /**
2241  *      release_tty             -       release tty structure memory
2242  *
2243  *      Release both @tty and a possible linked partner (think pty pair),
2244  *      and decrement the refcount of the backing module.
2245  *
2246  *      Locking:
2247  *              tty_mutex - sometimes only
2248  *              takes the file list lock internally when working on the list
2249  *      of ttys that the driver keeps.
2250  *              FIXME: should we require tty_mutex is held here ??
2251  */
2252 static void release_tty(struct tty_struct *tty, int idx)
2253 {
2254         struct tty_driver *driver = tty->driver;
2255
2256         if (tty->link)
2257                 release_one_tty(tty->link, idx);
2258         release_one_tty(tty, idx);
2259         module_put(driver->owner);
2260 }
2261
2262 /*
2263  * Even releasing the tty structures is a tricky business.. We have
2264  * to be very careful that the structures are all released at the
2265  * same time, as interrupts might otherwise get the wrong pointers.
2266  *
2267  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
2268  * lead to double frees or releasing memory still in use.
2269  */
2270 static void release_dev(struct file * filp)
2271 {
2272         struct tty_struct *tty, *o_tty;
2273         int     pty_master, tty_closing, o_tty_closing, do_sleep;
2274         int     devpts;
2275         int     idx;
2276         char    buf[64];
2277         unsigned long flags;
2278         
2279         tty = (struct tty_struct *)filp->private_data;
2280         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "release_dev"))
2281                 return;
2282
2283         check_tty_count(tty, "release_dev");
2284
2285         tty_fasync(-1, filp, 0);
2286
2287         idx = tty->index;
2288         pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2289                       tty->driver->subtype == PTY_TYPE_MASTER);
2290         devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
2291         o_tty = tty->link;
2292
2293 #ifdef TTY_PARANOIA_CHECK
2294         if (idx < 0 || idx >= tty->driver->num) {
2295                 printk(KERN_DEBUG "release_dev: bad idx when trying to "
2296                                   "free (%s)\n", tty->name);
2297                 return;
2298         }
2299         if (!(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2300                 if (tty != tty->driver->ttys[idx]) {
2301                         printk(KERN_DEBUG "release_dev: driver.table[%d] not tty "
2302                                "for (%s)\n", idx, tty->name);
2303                         return;
2304                 }
2305                 if (tty->termios != tty->driver->termios[idx]) {
2306                         printk(KERN_DEBUG "release_dev: driver.termios[%d] not termios "
2307                                "for (%s)\n",
2308                                idx, tty->name);
2309                         return;
2310                 }
2311                 if (tty->termios_locked != tty->driver->termios_locked[idx]) {
2312                         printk(KERN_DEBUG "release_dev: driver.termios_locked[%d] not "
2313                                "termios_locked for (%s)\n",
2314                                idx, tty->name);
2315                         return;
2316                 }
2317         }
2318 #endif
2319
2320 #ifdef TTY_DEBUG_HANGUP
2321         printk(KERN_DEBUG "release_dev of %s (tty count=%d)...",
2322                tty_name(tty, buf), tty->count);
2323 #endif
2324
2325 #ifdef TTY_PARANOIA_CHECK
2326         if (tty->driver->other &&
2327              !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2328                 if (o_tty != tty->driver->other->ttys[idx]) {
2329                         printk(KERN_DEBUG "release_dev: other->table[%d] "
2330                                           "not o_tty for (%s)\n",
2331                                idx, tty->name);
2332                         return;
2333                 }
2334                 if (o_tty->termios != tty->driver->other->termios[idx]) {
2335                         printk(KERN_DEBUG "release_dev: other->termios[%d] "
2336                                           "not o_termios for (%s)\n",
2337                                idx, tty->name);
2338                         return;
2339                 }
2340                 if (o_tty->termios_locked != 
2341                       tty->driver->other->termios_locked[idx]) {
2342                         printk(KERN_DEBUG "release_dev: other->termios_locked["
2343                                           "%d] not o_termios_locked for (%s)\n",
2344                                idx, tty->name);
2345                         return;
2346                 }
2347                 if (o_tty->link != tty) {
2348                         printk(KERN_DEBUG "release_dev: bad pty pointers\n");
2349                         return;
2350                 }
2351         }
2352 #endif
2353         if (tty->driver->close)
2354                 tty->driver->close(tty, filp);
2355
2356         /*
2357          * Sanity check: if tty->count is going to zero, there shouldn't be
2358          * any waiters on tty->read_wait or tty->write_wait.  We test the
2359          * wait queues and kick everyone out _before_ actually starting to
2360          * close.  This ensures that we won't block while releasing the tty
2361          * structure.
2362          *
2363          * The test for the o_tty closing is necessary, since the master and
2364          * slave sides may close in any order.  If the slave side closes out
2365          * first, its count will be one, since the master side holds an open.
2366          * Thus this test wouldn't be triggered at the time the slave closes,
2367          * so we do it now.
2368          *
2369          * Note that it's possible for the tty to be opened again while we're
2370          * flushing out waiters.  By recalculating the closing flags before
2371          * each iteration we avoid any problems.
2372          */
2373         while (1) {
2374                 /* Guard against races with tty->count changes elsewhere and
2375                    opens on /dev/tty */
2376                    
2377                 mutex_lock(&tty_mutex);
2378                 tty_closing = tty->count <= 1;
2379                 o_tty_closing = o_tty &&
2380                         (o_tty->count <= (pty_master ? 1 : 0));
2381                 do_sleep = 0;
2382
2383                 if (tty_closing) {
2384                         if (waitqueue_active(&tty->read_wait)) {
2385                                 wake_up(&tty->read_wait);
2386                                 do_sleep++;
2387                         }
2388                         if (waitqueue_active(&tty->write_wait)) {
2389                                 wake_up(&tty->write_wait);
2390                                 do_sleep++;
2391                         }
2392                 }
2393                 if (o_tty_closing) {
2394                         if (waitqueue_active(&o_tty->read_wait)) {
2395                                 wake_up(&o_tty->read_wait);
2396                                 do_sleep++;
2397                         }
2398                         if (waitqueue_active(&o_tty->write_wait)) {
2399                                 wake_up(&o_tty->write_wait);
2400                                 do_sleep++;
2401                         }
2402                 }
2403                 if (!do_sleep)
2404                         break;
2405
2406                 printk(KERN_WARNING "release_dev: %s: read/write wait queue "
2407                                     "active!\n", tty_name(tty, buf));
2408                 mutex_unlock(&tty_mutex);
2409                 schedule();
2410         }       
2411
2412         /*
2413          * The closing flags are now consistent with the open counts on 
2414          * both sides, and we've completed the last operation that could 
2415          * block, so it's safe to proceed with closing.
2416          */
2417         if (pty_master) {
2418                 if (--o_tty->count < 0) {
2419                         printk(KERN_WARNING "release_dev: bad pty slave count "
2420                                             "(%d) for %s\n",
2421                                o_tty->count, tty_name(o_tty, buf));
2422                         o_tty->count = 0;
2423                 }
2424         }
2425         if (--tty->count < 0) {
2426                 printk(KERN_WARNING "release_dev: bad tty->count (%d) for %s\n",
2427                        tty->count, tty_name(tty, buf));
2428                 tty->count = 0;
2429         }
2430         
2431         /*
2432          * We've decremented tty->count, so we need to remove this file
2433          * descriptor off the tty->tty_files list; this serves two
2434          * purposes:
2435          *  - check_tty_count sees the correct number of file descriptors
2436          *    associated with this tty.
2437          *  - do_tty_hangup no longer sees this file descriptor as
2438          *    something that needs to be handled for hangups.
2439          */
2440         file_kill(filp);
2441         filp->private_data = NULL;
2442
2443         /*
2444          * Perform some housekeeping before deciding whether to return.
2445          *
2446          * Set the TTY_CLOSING flag if this was the last open.  In the
2447          * case of a pty we may have to wait around for the other side
2448          * to close, and TTY_CLOSING makes sure we can't be reopened.
2449          */
2450         if(tty_closing)
2451                 set_bit(TTY_CLOSING, &tty->flags);
2452         if(o_tty_closing)
2453                 set_bit(TTY_CLOSING, &o_tty->flags);
2454
2455         /*
2456          * If _either_ side is closing, make sure there aren't any
2457          * processes that still think tty or o_tty is their controlling
2458          * tty.
2459          */
2460         if (tty_closing || o_tty_closing) {
2461                 read_lock(&tasklist_lock);
2462                 session_clear_tty(tty->session);
2463                 if (o_tty)
2464                         session_clear_tty(o_tty->session);
2465                 read_unlock(&tasklist_lock);
2466         }
2467
2468         mutex_unlock(&tty_mutex);
2469
2470         /* check whether both sides are closing ... */
2471         if (!tty_closing || (o_tty && !o_tty_closing))
2472                 return;
2473         
2474 #ifdef TTY_DEBUG_HANGUP
2475         printk(KERN_DEBUG "freeing tty structure...");
2476 #endif
2477         /*
2478          * Prevent flush_to_ldisc() from rescheduling the work for later.  Then
2479          * kill any delayed work. As this is the final close it does not
2480          * race with the set_ldisc code path.
2481          */
2482         clear_bit(TTY_LDISC, &tty->flags);
2483         cancel_delayed_work(&tty->buf.work);
2484
2485         /*
2486          * Wait for ->hangup_work and ->buf.work handlers to terminate
2487          */
2488          
2489         flush_scheduled_work();
2490         
2491         /*
2492          * Wait for any short term users (we know they are just driver
2493          * side waiters as the file is closing so user count on the file
2494          * side is zero.
2495          */
2496         spin_lock_irqsave(&tty_ldisc_lock, flags);
2497         while(tty->ldisc.refcount)
2498         {
2499                 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
2500                 wait_event(tty_ldisc_wait, tty->ldisc.refcount == 0);
2501                 spin_lock_irqsave(&tty_ldisc_lock, flags);
2502         }
2503         spin_unlock_irqrestore(&tty_ldisc_lock, flags);
2504         /*
2505          * Shutdown the current line discipline, and reset it to N_TTY.
2506          * N.B. why reset ldisc when we're releasing the memory??
2507          *
2508          * FIXME: this MUST get fixed for the new reflocking
2509          */
2510         if (tty->ldisc.close)
2511                 (tty->ldisc.close)(tty);
2512         tty_ldisc_put(tty->ldisc.num);
2513         
2514         /*
2515          *      Switch the line discipline back
2516          */
2517         tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
2518         tty_set_termios_ldisc(tty,N_TTY); 
2519         if (o_tty) {
2520                 /* FIXME: could o_tty be in setldisc here ? */
2521                 clear_bit(TTY_LDISC, &o_tty->flags);
2522                 if (o_tty->ldisc.close)
2523                         (o_tty->ldisc.close)(o_tty);
2524                 tty_ldisc_put(o_tty->ldisc.num);
2525                 tty_ldisc_assign(o_tty, tty_ldisc_get(N_TTY));
2526                 tty_set_termios_ldisc(o_tty,N_TTY); 
2527         }
2528         /*
2529          * The release_tty function takes care of the details of clearing
2530          * the slots and preserving the termios structure.
2531          */
2532         release_tty(tty, idx);
2533
2534 #ifdef CONFIG_UNIX98_PTYS
2535         /* Make this pty number available for reallocation */
2536         if (devpts) {
2537                 down(&allocated_ptys_lock);
2538                 idr_remove(&allocated_ptys, idx);
2539                 up(&allocated_ptys_lock);
2540         }
2541 #endif
2542
2543 }
2544
2545 /**
2546  *      tty_open                -       open a tty device
2547  *      @inode: inode of device file
2548  *      @filp: file pointer to tty
2549  *
2550  *      tty_open and tty_release keep up the tty count that contains the
2551  *      number of opens done on a tty. We cannot use the inode-count, as
2552  *      different inodes might point to the same tty.
2553  *
2554  *      Open-counting is needed for pty masters, as well as for keeping
2555  *      track of serial lines: DTR is dropped when the last close happens.
2556  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
2557  *
2558  *      The termios state of a pty is reset on first open so that
2559  *      settings don't persist across reuse.
2560  *
2561  *      Locking: tty_mutex protects tty, get_tty_driver and init_dev work.
2562  *               tty->count should protect the rest.
2563  *               ->siglock protects ->signal/->sighand
2564  */
2565
2566 static int tty_open(struct inode * inode, struct file * filp)
2567 {
2568         struct tty_struct *tty;
2569         int noctty, retval;
2570         struct tty_driver *driver;
2571         int index;
2572         dev_t device = inode->i_rdev;
2573         unsigned short saved_flags = filp->f_flags;
2574
2575         nonseekable_open(inode, filp);
2576         
2577 retry_open:
2578         noctty = filp->f_flags & O_NOCTTY;
2579         index  = -1;
2580         retval = 0;
2581         
2582         mutex_lock(&tty_mutex);
2583
2584         if (device == MKDEV(TTYAUX_MAJOR,0)) {
2585                 tty = get_current_tty();
2586                 if (!tty) {
2587                         mutex_unlock(&tty_mutex);
2588                         return -ENXIO;
2589                 }
2590                 driver = tty->driver;
2591                 index = tty->index;
2592                 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
2593                 /* noctty = 1; */
2594                 goto got_driver;
2595         }
2596 #ifdef CONFIG_VT
2597         if (device == MKDEV(TTY_MAJOR,0)) {
2598                 extern struct tty_driver *console_driver;
2599                 driver = console_driver;
2600                 index = fg_console;
2601                 noctty = 1;
2602                 goto got_driver;
2603         }
2604 #endif
2605         if (device == MKDEV(TTYAUX_MAJOR,1)) {
2606                 driver = console_device(&index);
2607                 if (driver) {
2608                         /* Don't let /dev/console block */
2609                         filp->f_flags |= O_NONBLOCK;
2610                         noctty = 1;
2611                         goto got_driver;
2612                 }
2613                 mutex_unlock(&tty_mutex);
2614                 return -ENODEV;
2615         }
2616
2617         driver = get_tty_driver(device, &index);
2618         if (!driver) {
2619                 mutex_unlock(&tty_mutex);
2620                 return -ENODEV;
2621         }
2622 got_driver:
2623         retval = init_dev(driver, index, &tty);
2624         mutex_unlock(&tty_mutex);
2625         if (retval)
2626                 return retval;
2627
2628         filp->private_data = tty;
2629         file_move(filp, &tty->tty_files);
2630         check_tty_count(tty, "tty_open");
2631         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2632             tty->driver->subtype == PTY_TYPE_MASTER)
2633                 noctty = 1;
2634 #ifdef TTY_DEBUG_HANGUP
2635         printk(KERN_DEBUG "opening %s...", tty->name);
2636 #endif
2637         if (!retval) {
2638                 if (tty->driver->open)
2639                         retval = tty->driver->open(tty, filp);
2640                 else
2641                         retval = -ENODEV;
2642         }
2643         filp->f_flags = saved_flags;
2644
2645         if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
2646                 retval = -EBUSY;
2647
2648         if (retval) {
2649 #ifdef TTY_DEBUG_HANGUP
2650                 printk(KERN_DEBUG "error %d in opening %s...", retval,
2651                        tty->name);
2652 #endif
2653                 release_dev(filp);
2654                 if (retval != -ERESTARTSYS)
2655                         return retval;
2656                 if (signal_pending(current))
2657                         return retval;
2658                 schedule();
2659                 /*
2660                  * Need to reset f_op in case a hangup happened.
2661                  */
2662                 if (filp->f_op == &hung_up_tty_fops)
2663                         filp->f_op = &tty_fops;
2664                 goto retry_open;
2665         }
2666
2667         mutex_lock(&tty_mutex);
2668         spin_lock_irq(&current->sighand->siglock);
2669         if (!noctty &&
2670             current->signal->leader &&
2671             !current->signal->tty &&
2672             tty->session == NULL)
2673                 __proc_set_tty(current, tty);
2674         spin_unlock_irq(&current->sighand->siglock);
2675         mutex_unlock(&tty_mutex);
2676         return 0;
2677 }
2678
2679 #ifdef CONFIG_UNIX98_PTYS
2680 /**
2681  *      ptmx_open               -       open a unix 98 pty master
2682  *      @inode: inode of device file
2683  *      @filp: file pointer to tty
2684  *
2685  *      Allocate a unix98 pty master device from the ptmx driver.
2686  *
2687  *      Locking: tty_mutex protects theinit_dev work. tty->count should
2688                 protect the rest.
2689  *              allocated_ptys_lock handles the list of free pty numbers
2690  */
2691
2692 static int ptmx_open(struct inode * inode, struct file * filp)
2693 {
2694         struct tty_struct *tty;
2695         int retval;
2696         int index;
2697         int idr_ret;
2698
2699         nonseekable_open(inode, filp);
2700
2701         /* find a device that is not in use. */
2702         down(&allocated_ptys_lock);
2703         if (!idr_pre_get(&allocated_ptys, GFP_KERNEL)) {
2704                 up(&allocated_ptys_lock);
2705                 return -ENOMEM;
2706         }
2707         idr_ret = idr_get_new(&allocated_ptys, NULL, &index);
2708         if (idr_ret < 0) {
2709                 up(&allocated_ptys_lock);
2710                 if (idr_ret == -EAGAIN)
2711                         return -ENOMEM;
2712                 return -EIO;
2713         }
2714         if (index >= pty_limit) {
2715                 idr_remove(&allocated_ptys, index);
2716                 up(&allocated_ptys_lock);
2717                 return -EIO;
2718         }
2719         up(&allocated_ptys_lock);
2720
2721         mutex_lock(&tty_mutex);
2722         retval = init_dev(ptm_driver, index, &tty);
2723         mutex_unlock(&tty_mutex);
2724         
2725         if (retval)
2726                 goto out;
2727
2728         set_bit(TTY_PTY_LOCK, &tty->flags); /* LOCK THE SLAVE */
2729         filp->private_data = tty;
2730         file_move(filp, &tty->tty_files);
2731
2732         retval = -ENOMEM;
2733         if (devpts_pty_new(tty->link))
2734                 goto out1;
2735
2736         check_tty_count(tty, "tty_open");
2737         retval = ptm_driver->open(tty, filp);
2738         if (!retval)
2739                 return 0;
2740 out1:
2741         release_dev(filp);
2742         return retval;
2743 out:
2744         down(&allocated_ptys_lock);
2745         idr_remove(&allocated_ptys, index);
2746         up(&allocated_ptys_lock);
2747         return retval;
2748 }
2749 #endif
2750
2751 /**
2752  *      tty_release             -       vfs callback for close
2753  *      @inode: inode of tty
2754  *      @filp: file pointer for handle to tty
2755  *
2756  *      Called the last time each file handle is closed that references
2757  *      this tty. There may however be several such references.
2758  *
2759  *      Locking:
2760  *              Takes bkl. See release_dev
2761  */
2762
2763 static int tty_release(struct inode * inode, struct file * filp)
2764 {
2765         lock_kernel();
2766         release_dev(filp);
2767         unlock_kernel();
2768         return 0;
2769 }
2770
2771 /**
2772  *      tty_poll        -       check tty status
2773  *      @filp: file being polled
2774  *      @wait: poll wait structures to update
2775  *
2776  *      Call the line discipline polling method to obtain the poll
2777  *      status of the device.
2778  *
2779  *      Locking: locks called line discipline but ldisc poll method
2780  *      may be re-entered freely by other callers.
2781  */
2782
2783 static unsigned int tty_poll(struct file * filp, poll_table * wait)
2784 {
2785         struct tty_struct * tty;
2786         struct tty_ldisc *ld;
2787         int ret = 0;
2788
2789         tty = (struct tty_struct *)filp->private_data;
2790         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2791                 return 0;
2792                 
2793         ld = tty_ldisc_ref_wait(tty);
2794         if (ld->poll)
2795                 ret = (ld->poll)(tty, filp, wait);
2796         tty_ldisc_deref(ld);
2797         return ret;
2798 }
2799
2800 static int tty_fasync(int fd, struct file * filp, int on)
2801 {
2802         struct tty_struct * tty;
2803         int retval;
2804
2805         tty = (struct tty_struct *)filp->private_data;
2806         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2807                 return 0;
2808         
2809         retval = fasync_helper(fd, filp, on, &tty->fasync);
2810         if (retval <= 0)
2811                 return retval;
2812
2813         if (on) {
2814                 enum pid_type type;
2815                 struct pid *pid;
2816                 if (!waitqueue_active(&tty->read_wait))
2817                         tty->minimum_to_wake = 1;
2818                 if (tty->pgrp) {
2819                         pid = tty->pgrp;
2820                         type = PIDTYPE_PGID;
2821                 } else {
2822                         pid = task_pid(current);
2823                         type = PIDTYPE_PID;
2824                 }
2825                 retval = __f_setown(filp, pid, type, 0);
2826                 if (retval)
2827                         return retval;
2828         } else {
2829                 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2830                         tty->minimum_to_wake = N_TTY_BUF_SIZE;
2831         }
2832         return 0;
2833 }
2834
2835 /**
2836  *      tiocsti                 -       fake input character
2837  *      @tty: tty to fake input into
2838  *      @p: pointer to character
2839  *
2840  *      Fake input to a tty device. Does the neccessary locking and
2841  *      input management.
2842  *
2843  *      FIXME: does not honour flow control ??
2844  *
2845  *      Locking:
2846  *              Called functions take tty_ldisc_lock
2847  *              current->signal->tty check is safe without locks
2848  *
2849  *      FIXME: may race normal receive processing
2850  */
2851
2852 static int tiocsti(struct tty_struct *tty, char __user *p)
2853 {
2854         char ch, mbz = 0;
2855         struct tty_ldisc *ld;
2856         
2857         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2858                 return -EPERM;
2859         if (get_user(ch, p))
2860                 return -EFAULT;
2861         ld = tty_ldisc_ref_wait(tty);
2862         ld->receive_buf(tty, &ch, &mbz, 1);
2863         tty_ldisc_deref(ld);
2864         return 0;
2865 }
2866
2867 /**
2868  *      tiocgwinsz              -       implement window query ioctl
2869  *      @tty; tty
2870  *      @arg: user buffer for result
2871  *
2872  *      Copies the kernel idea of the window size into the user buffer.
2873  *
2874  *      Locking: tty->termios_mutex is taken to ensure the winsize data
2875  *              is consistent.
2876  */
2877
2878 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user * arg)
2879 {
2880         int err;
2881
2882         mutex_lock(&tty->termios_mutex);
2883         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2884         mutex_unlock(&tty->termios_mutex);
2885
2886         return err ? -EFAULT: 0;
2887 }
2888
2889 /**
2890  *      tiocswinsz              -       implement window size set ioctl
2891  *      @tty; tty
2892  *      @arg: user buffer for result
2893  *
2894  *      Copies the user idea of the window size to the kernel. Traditionally
2895  *      this is just advisory information but for the Linux console it
2896  *      actually has driver level meaning and triggers a VC resize.
2897  *
2898  *      Locking:
2899  *              Called function use the console_sem is used to ensure we do
2900  *      not try and resize the console twice at once.
2901  *              The tty->termios_mutex is used to ensure we don't double
2902  *      resize and get confused. Lock order - tty->termios_mutex before
2903  *      console sem
2904  */
2905
2906 static int tiocswinsz(struct tty_struct *tty, struct tty_struct *real_tty,
2907         struct winsize __user * arg)
2908 {
2909         struct winsize tmp_ws;
2910
2911         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2912                 return -EFAULT;
2913
2914         mutex_lock(&tty->termios_mutex);
2915         if (!memcmp(&tmp_ws, &tty->winsize, sizeof(*arg)))
2916                 goto done;
2917
2918 #ifdef CONFIG_VT
2919         if (tty->driver->type == TTY_DRIVER_TYPE_CONSOLE) {
2920                 if (vc_lock_resize(tty->driver_data, tmp_ws.ws_col,
2921                                         tmp_ws.ws_row)) {
2922                         mutex_unlock(&tty->termios_mutex);
2923                         return -ENXIO;
2924                 }
2925         }
2926 #endif
2927         if (tty->pgrp)
2928                 kill_pgrp(tty->pgrp, SIGWINCH, 1);
2929         if ((real_tty->pgrp != tty->pgrp) && real_tty->pgrp)
2930                 kill_pgrp(real_tty->pgrp, SIGWINCH, 1);
2931         tty->winsize = tmp_ws;
2932         real_tty->winsize = tmp_ws;
2933 done:
2934         mutex_unlock(&tty->termios_mutex);
2935         return 0;
2936 }
2937
2938 /**
2939  *      tioccons        -       allow admin to move logical console
2940  *      @file: the file to become console
2941  *
2942  *      Allow the adminstrator to move the redirected console device
2943  *
2944  *      Locking: uses redirect_lock to guard the redirect information
2945  */
2946
2947 static int tioccons(struct file *file)
2948 {
2949         if (!capable(CAP_SYS_ADMIN))
2950                 return -EPERM;
2951         if (file->f_op->write == redirected_tty_write) {
2952                 struct file *f;
2953                 spin_lock(&redirect_lock);
2954                 f = redirect;
2955                 redirect = NULL;
2956                 spin_unlock(&redirect_lock);
2957                 if (f)
2958                         fput(f);
2959                 return 0;
2960         }
2961         spin_lock(&redirect_lock);
2962         if (redirect) {
2963                 spin_unlock(&redirect_lock);
2964                 return -EBUSY;
2965         }
2966         get_file(file);
2967         redirect = file;
2968         spin_unlock(&redirect_lock);
2969         return 0;
2970 }
2971
2972 /**
2973  *      fionbio         -       non blocking ioctl
2974  *      @file: file to set blocking value
2975  *      @p: user parameter
2976  *
2977  *      Historical tty interfaces had a blocking control ioctl before
2978  *      the generic functionality existed. This piece of history is preserved
2979  *      in the expected tty API of posix OS's.
2980  *
2981  *      Locking: none, the open fle handle ensures it won't go away.
2982  */
2983
2984 static int fionbio(struct file *file, int __user *p)
2985 {
2986         int nonblock;
2987
2988         if (get_user(nonblock, p))
2989                 return -EFAULT;
2990
2991         if (nonblock)
2992                 file->f_flags |= O_NONBLOCK;
2993         else
2994                 file->f_flags &= ~O_NONBLOCK;
2995         return 0;
2996 }
2997
2998 /**
2999  *      tiocsctty       -       set controlling tty
3000  *      @tty: tty structure
3001  *      @arg: user argument
3002  *
3003  *      This ioctl is used to manage job control. It permits a session
3004  *      leader to set this tty as the controlling tty for the session.
3005  *
3006  *      Locking:
3007  *              Takes tty_mutex() to protect tty instance
3008  *              Takes tasklist_lock internally to walk sessions
3009  *              Takes ->siglock() when updating signal->tty
3010  */
3011
3012 static int tiocsctty(struct tty_struct *tty, int arg)
3013 {
3014         int ret = 0;
3015         if (current->signal->leader && (task_session(current) == tty->session))
3016                 return ret;
3017
3018         mutex_lock(&tty_mutex);
3019         /*
3020          * The process must be a session leader and
3021          * not have a controlling tty already.
3022          */
3023         if (!current->signal->leader || current->signal->tty) {
3024                 ret = -EPERM;
3025                 goto unlock;
3026         }
3027
3028         if (tty->session) {
3029                 /*
3030                  * This tty is already the controlling
3031                  * tty for another session group!
3032                  */
3033                 if ((arg == 1) && capable(CAP_SYS_ADMIN)) {
3034                         /*
3035                          * Steal it away
3036                          */
3037                         read_lock(&tasklist_lock);
3038                         session_clear_tty(tty->session);
3039                         read_unlock(&tasklist_lock);
3040                 } else {
3041                         ret = -EPERM;
3042                         goto unlock;
3043                 }
3044         }
3045         proc_set_tty(current, tty);
3046 unlock:
3047         mutex_unlock(&tty_mutex);
3048         return ret;
3049 }
3050
3051 /**
3052  *      tiocgpgrp               -       get process group
3053  *      @tty: tty passed by user
3054  *      @real_tty: tty side of the tty pased by the user if a pty else the tty
3055  *      @p: returned pid
3056  *
3057  *      Obtain the process group of the tty. If there is no process group
3058  *      return an error.
3059  *
3060  *      Locking: none. Reference to current->signal->tty is safe.
3061  */
3062
3063 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
3064 {
3065         /*
3066          * (tty == real_tty) is a cheap way of
3067          * testing if the tty is NOT a master pty.
3068          */
3069         if (tty == real_tty && current->signal->tty != real_tty)
3070                 return -ENOTTY;
3071         return put_user(pid_nr(real_tty->pgrp), p);
3072 }
3073
3074 /**
3075  *      tiocspgrp               -       attempt to set process group
3076  *      @tty: tty passed by user
3077  *      @real_tty: tty side device matching tty passed by user
3078  *      @p: pid pointer
3079  *
3080  *      Set the process group of the tty to the session passed. Only
3081  *      permitted where the tty session is our session.
3082  *
3083  *      Locking: None
3084  */
3085
3086 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
3087 {
3088         struct pid *pgrp;
3089         pid_t pgrp_nr;
3090         int retval = tty_check_change(real_tty);
3091
3092         if (retval == -EIO)
3093                 return -ENOTTY;
3094         if (retval)
3095                 return retval;
3096         if (!current->signal->tty ||
3097             (current->signal->tty != real_tty) ||
3098             (real_tty->session != task_session(current)))
3099                 return -ENOTTY;
3100         if (get_user(pgrp_nr, p))
3101                 return -EFAULT;
3102         if (pgrp_nr < 0)
3103                 return -EINVAL;
3104         rcu_read_lock();
3105         pgrp = find_pid(pgrp_nr);
3106         retval = -ESRCH;
3107         if (!pgrp)
3108                 goto out_unlock;
3109         retval = -EPERM;
3110         if (session_of_pgrp(pgrp) != task_session(current))
3111                 goto out_unlock;
3112         retval = 0;
3113         put_pid(real_tty->pgrp);
3114         real_tty->pgrp = get_pid(pgrp);
3115 out_unlock:
3116         rcu_read_unlock();
3117         return retval;
3118 }
3119
3120 /**
3121  *      tiocgsid                -       get session id
3122  *      @tty: tty passed by user
3123  *      @real_tty: tty side of the tty pased by the user if a pty else the tty
3124  *      @p: pointer to returned session id
3125  *
3126  *      Obtain the session id of the tty. If there is no session
3127  *      return an error.
3128  *
3129  *      Locking: none. Reference to current->signal->tty is safe.
3130  */
3131
3132 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
3133 {
3134         /*
3135          * (tty == real_tty) is a cheap way of
3136          * testing if the tty is NOT a master pty.
3137         */
3138         if (tty == real_tty && current->signal->tty != real_tty)
3139                 return -ENOTTY;
3140         if (!real_tty->session)
3141                 return -ENOTTY;
3142         return put_user(pid_nr(real_tty->session), p);
3143 }
3144
3145 /**
3146  *      tiocsetd        -       set line discipline
3147  *      @tty: tty device
3148  *      @p: pointer to user data
3149  *
3150  *      Set the line discipline according to user request.
3151  *
3152  *      Locking: see tty_set_ldisc, this function is just a helper
3153  */
3154
3155 static int tiocsetd(struct tty_struct *tty, int __user *p)
3156 {
3157         int ldisc;
3158
3159         if (get_user(ldisc, p))
3160                 return -EFAULT;
3161         return tty_set_ldisc(tty, ldisc);
3162 }
3163
3164 /**
3165  *      send_break      -       performed time break
3166  *      @tty: device to break on
3167  *      @duration: timeout in mS
3168  *
3169  *      Perform a timed break on hardware that lacks its own driver level
3170  *      timed break functionality.
3171  *
3172  *      Locking:
3173  *              atomic_write_lock serializes
3174  *
3175  */
3176
3177 static int send_break(struct tty_struct *tty, unsigned int duration)
3178 {
3179         if (tty_write_lock(tty, 0) < 0)
3180                 return -EINTR;
3181         tty->driver->break_ctl(tty, -1);
3182         if (!signal_pending(current))
3183                 msleep_interruptible(duration);
3184         tty->driver->break_ctl(tty, 0);
3185         tty_write_unlock(tty);
3186         if (signal_pending(current))
3187                 return -EINTR;
3188         return 0;
3189 }
3190
3191 /**
3192  *      tiocmget                -       get modem status
3193  *      @tty: tty device
3194  *      @file: user file pointer
3195  *      @p: pointer to result
3196  *
3197  *      Obtain the modem status bits from the tty driver if the feature
3198  *      is supported. Return -EINVAL if it is not available.
3199  *
3200  *      Locking: none (up to the driver)
3201  */
3202
3203 static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
3204 {
3205         int retval = -EINVAL;
3206
3207         if (tty->driver->tiocmget) {
3208                 retval = tty->driver->tiocmget(tty, file);
3209
3210                 if (retval >= 0)
3211                         retval = put_user(retval, p);
3212         }
3213         return retval;
3214 }
3215
3216 /**
3217  *      tiocmset                -       set modem status
3218  *      @tty: tty device
3219  *      @file: user file pointer
3220  *      @cmd: command - clear bits, set bits or set all
3221  *      @p: pointer to desired bits
3222  *
3223  *      Set the modem status bits from the tty driver if the feature
3224  *      is supported. Return -EINVAL if it is not available.
3225  *
3226  *      Locking: none (up to the driver)
3227  */
3228
3229 static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
3230              unsigned __user *p)
3231 {
3232         int retval = -EINVAL;
3233
3234         if (tty->driver->tiocmset) {
3235                 unsigned int set, clear, val;
3236
3237                 retval = get_user(val, p);
3238                 if (retval)
3239                         return retval;
3240
3241                 set = clear = 0;
3242                 switch (cmd) {
3243                 case TIOCMBIS:
3244                         set = val;
3245                         break;
3246                 case TIOCMBIC:
3247                         clear = val;
3248                         break;
3249                 case TIOCMSET:
3250                         set = val;
3251                         clear = ~val;
3252                         break;
3253                 }
3254
3255                 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
3256                 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
3257
3258                 retval = tty->driver->tiocmset(tty, file, set, clear);
3259         }
3260         return retval;
3261 }
3262
3263 /*
3264  * Split this up, as gcc can choke on it otherwise..
3265  */
3266 int tty_ioctl(struct inode * inode, struct file * file,
3267               unsigned int cmd, unsigned long arg)
3268 {
3269         struct tty_struct *tty, *real_tty;
3270         void __user *p = (void __user *)arg;
3271         int retval;
3272         struct tty_ldisc *ld;
3273         
3274         tty = (struct tty_struct *)file->private_data;
3275         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
3276                 return -EINVAL;
3277
3278         /* CHECKME: is this safe as one end closes ? */
3279
3280         real_tty = tty;
3281         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
3282             tty->driver->subtype == PTY_TYPE_MASTER)
3283                 real_tty = tty->link;
3284
3285         /*
3286          * Break handling by driver
3287          */
3288         if (!tty->driver->break_ctl) {
3289                 switch(cmd) {
3290                 case TIOCSBRK:
3291                 case TIOCCBRK:
3292                         if (tty->driver->ioctl)
3293                                 return tty->driver->ioctl(tty, file, cmd, arg);
3294                         return -EINVAL;
3295                         
3296                 /* These two ioctl's always return success; even if */
3297                 /* the driver doesn't support them. */
3298                 case TCSBRK:
3299                 case TCSBRKP:
3300                         if (!tty->driver->ioctl)
3301                                 return 0;
3302                         retval = tty->driver->ioctl(tty, file, cmd, arg);
3303                         if (retval == -ENOIOCTLCMD)
3304                                 retval = 0;
3305                         return retval;
3306                 }
3307         }
3308
3309         /*
3310          * Factor out some common prep work
3311          */
3312         switch (cmd) {
3313         case TIOCSETD:
3314         case TIOCSBRK:
3315         case TIOCCBRK:
3316         case TCSBRK:
3317         case TCSBRKP:                   
3318                 retval = tty_check_change(tty);
3319                 if (retval)
3320                         return retval;
3321                 if (cmd != TIOCCBRK) {
3322                         tty_wait_until_sent(tty, 0);
3323                         if (signal_pending(current))
3324                                 return -EINTR;
3325                 }
3326                 break;
3327         }
3328
3329         switch (cmd) {
3330                 case TIOCSTI:
3331                         return tiocsti(tty, p);
3332                 case TIOCGWINSZ:
3333                         return tiocgwinsz(tty, p);
3334                 case TIOCSWINSZ:
3335                         return tiocswinsz(tty, real_tty, p);
3336                 case TIOCCONS:
3337                         return real_tty!=tty ? -EINVAL : tioccons(file);
3338                 case FIONBIO:
3339                         return fionbio(file, p);
3340                 case TIOCEXCL:
3341                         set_bit(TTY_EXCLUSIVE, &tty->flags);
3342                         return 0;
3343                 case TIOCNXCL:
3344                         clear_bit(TTY_EXCLUSIVE, &tty->flags);
3345                         return 0;
3346                 case TIOCNOTTY:
3347                         if (current->signal->tty != tty)
3348                                 return -ENOTTY;
3349                         no_tty();
3350                         return 0;
3351                 case TIOCSCTTY:
3352                         return tiocsctty(tty, arg);
3353                 case TIOCGPGRP:
3354                         return tiocgpgrp(tty, real_tty, p);
3355                 case TIOCSPGRP:
3356                         return tiocspgrp(tty, real_tty, p);
3357                 case TIOCGSID:
3358                         return tiocgsid(tty, real_tty, p);
3359                 case TIOCGETD:
3360                         /* FIXME: check this is ok */
3361                         return put_user(tty->ldisc.num, (int __user *)p);
3362                 case TIOCSETD:
3363                         return tiocsetd(tty, p);
3364 #ifdef CONFIG_VT
3365                 case TIOCLINUX:
3366                         return tioclinux(tty, arg);
3367 #endif
3368                 /*
3369                  * Break handling
3370                  */
3371                 case TIOCSBRK:  /* Turn break on, unconditionally */
3372                         tty->driver->break_ctl(tty, -1);
3373                         return 0;
3374                         
3375                 case TIOCCBRK:  /* Turn break off, unconditionally */
3376                         tty->driver->break_ctl(tty, 0);
3377                         return 0;
3378                 case TCSBRK:   /* SVID version: non-zero arg --> no break */
3379                         /* non-zero arg means wait for all output data
3380                          * to be sent (performed above) but don't send break.
3381                          * This is used by the tcdrain() termios function.
3382                          */
3383                         if (!arg)
3384                                 return send_break(tty, 250);
3385                         return 0;
3386                 case TCSBRKP:   /* support for POSIX tcsendbreak() */   
3387                         return send_break(tty, arg ? arg*100 : 250);
3388
3389                 case TIOCMGET:
3390                         return tty_tiocmget(tty, file, p);
3391
3392                 case TIOCMSET:
3393                 case TIOCMBIC:
3394                 case TIOCMBIS:
3395                         return tty_tiocmset(tty, file, cmd, p);
3396                 case TCFLSH:
3397                         switch (arg) {
3398                         case TCIFLUSH:
3399                         case TCIOFLUSH:
3400                                 /* flush tty buffer and allow ldisc to process ioctl */
3401                                 tty_buffer_flush(tty);
3402                                 break;
3403                         }
3404                         break;
3405         }
3406         if (tty->driver->ioctl) {
3407                 retval = (tty->driver->ioctl)(tty, file, cmd, arg);
3408                 if (retval != -ENOIOCTLCMD)
3409                         return retval;
3410         }
3411         ld = tty_ldisc_ref_wait(tty);
3412         retval = -EINVAL;
3413         if (ld->ioctl) {
3414                 retval = ld->ioctl(tty, file, cmd, arg);
3415                 if (retval == -ENOIOCTLCMD)
3416                         retval = -EINVAL;
3417         }
3418         tty_ldisc_deref(ld);
3419         return retval;
3420 }
3421
3422 #ifdef CONFIG_COMPAT
3423 static long tty_compat_ioctl(struct file * file, unsigned int cmd,
3424                                 unsigned long arg)
3425 {
3426         struct inode *inode = file->f_dentry->d_inode;
3427         struct tty_struct *tty = file->private_data;
3428         struct tty_ldisc *ld;
3429         int retval = -ENOIOCTLCMD;
3430
3431         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
3432                 return -EINVAL;
3433
3434         if (tty->driver->compat_ioctl) {
3435                 retval = (tty->driver->compat_ioctl)(tty, file, cmd, arg);
3436                 if (retval != -ENOIOCTLCMD)
3437                         return retval;
3438         }
3439
3440         ld = tty_ldisc_ref_wait(tty);
3441         if (ld->compat_ioctl)
3442                 retval = ld->compat_ioctl(tty, file, cmd, arg);
3443         tty_ldisc_deref(ld);
3444
3445         return retval;
3446 }
3447 #endif
3448
3449 /*
3450  * This implements the "Secure Attention Key" ---  the idea is to
3451  * prevent trojan horses by killing all processes associated with this
3452  * tty when the user hits the "Secure Attention Key".  Required for
3453  * super-paranoid applications --- see the Orange Book for more details.
3454  * 
3455  * This code could be nicer; ideally it should send a HUP, wait a few
3456  * seconds, then send a INT, and then a KILL signal.  But you then
3457  * have to coordinate with the init process, since all processes associated
3458  * with the current tty must be dead before the new getty is allowed
3459  * to spawn.
3460  *
3461  * Now, if it would be correct ;-/ The current code has a nasty hole -
3462  * it doesn't catch files in flight. We may send the descriptor to ourselves
3463  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3464  *
3465  * Nasty bug: do_SAK is being called in interrupt context.  This can
3466  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
3467  */
3468 void __do_SAK(struct tty_struct *tty)
3469 {
3470 #ifdef TTY_SOFT_SAK
3471         tty_hangup(tty);
3472 #else
3473         struct task_struct *g, *p;
3474         struct pid *session;
3475         int             i;
3476         struct file     *filp;
3477         struct fdtable *fdt;
3478         
3479         if (!tty)
3480                 return;
3481         session = tty->session;
3482         
3483         tty_ldisc_flush(tty);
3484
3485         if (tty->driver->flush_buffer)
3486                 tty->driver->flush_buffer(tty);
3487         
3488         read_lock(&tasklist_lock);
3489         /* Kill the entire session */
3490         do_each_pid_task(session, PIDTYPE_SID, p) {
3491                 printk(KERN_NOTICE "SAK: killed process %d"
3492                         " (%s): process_session(p)==tty->session\n",
3493                         p->pid, p->comm);
3494                 send_sig(SIGKILL, p, 1);
3495         } while_each_pid_task(session, PIDTYPE_SID, p);
3496         /* Now kill any processes that happen to have the
3497          * tty open.
3498          */
3499         do_each_thread(g, p) {
3500                 if (p->signal->tty == tty) {
3501                         printk(KERN_NOTICE "SAK: killed process %d"
3502                             " (%s): process_session(p)==tty->session\n",
3503                             p->pid, p->comm);
3504                         send_sig(SIGKILL, p, 1);
3505                         continue;
3506                 }
3507                 task_lock(p);
3508                 if (p->files) {
3509                         /*
3510                          * We don't take a ref to the file, so we must
3511                          * hold ->file_lock instead.
3512                          */
3513                         spin_lock(&p->files->file_lock);
3514                         fdt = files_fdtable(p->files);
3515                         for (i=0; i < fdt->max_fds; i++) {
3516                                 filp = fcheck_files(p->files, i);
3517                                 if (!filp)
3518                                         continue;
3519                                 if (filp->f_op->read == tty_read &&
3520                                     filp->private_data == tty) {
3521                                         printk(KERN_NOTICE "SAK: killed process %d"
3522                                             " (%s): fd#%d opened to the tty\n",
3523                                             p->pid, p->comm, i);
3524                                         force_sig(SIGKILL, p);
3525                                         break;
3526                                 }
3527                         }
3528                         spin_unlock(&p->files->file_lock);
3529                 }
3530                 task_unlock(p);
3531         } while_each_thread(g, p);
3532         read_unlock(&tasklist_lock);
3533 #endif
3534 }
3535
3536 static void do_SAK_work(struct work_struct *work)
3537 {
3538         struct tty_struct *tty =
3539                 container_of(work, struct tty_struct, SAK_work);
3540         __do_SAK(tty);
3541 }
3542
3543 /*
3544  * The tq handling here is a little racy - tty->SAK_work may already be queued.
3545  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3546  * the values which we write to it will be identical to the values which it
3547  * already has. --akpm
3548  */
3549 void do_SAK(struct tty_struct *tty)
3550 {
3551         if (!tty)
3552                 return;
3553         schedule_work(&tty->SAK_work);
3554 }
3555
3556 EXPORT_SYMBOL(do_SAK);
3557
3558 /**
3559  *      flush_to_ldisc
3560  *      @work: tty structure passed from work queue.
3561  *
3562  *      This routine is called out of the software interrupt to flush data
3563  *      from the buffer chain to the line discipline.
3564  *
3565  *      Locking: holds tty->buf.lock to guard buffer list. Drops the lock
3566  *      while invoking the line discipline receive_buf method. The
3567  *      receive_buf method is single threaded for each tty instance.
3568  */
3569  
3570 static void flush_to_ldisc(struct work_struct *work)
3571 {
3572         struct tty_struct *tty =
3573                 container_of(work, struct tty_struct, buf.work.work);
3574         unsigned long   flags;
3575         struct tty_ldisc *disc;
3576         struct tty_buffer *tbuf, *head;
3577         char *char_buf;
3578         unsigned char *flag_buf;
3579
3580         disc = tty_ldisc_ref(tty);
3581         if (disc == NULL)       /*  !TTY_LDISC */
3582                 return;
3583
3584         spin_lock_irqsave(&tty->buf.lock, flags);
3585         head = tty->buf.head;
3586         if (head != NULL) {
3587                 tty->buf.head = NULL;
3588                 for (;;) {
3589                         int count = head->commit - head->read;
3590                         if (!count) {
3591                                 if (head->next == NULL)
3592                                         break;
3593                                 tbuf = head;
3594                                 head = head->next;
3595                                 tty_buffer_free(tty, tbuf);
3596                                 continue;
3597                         }
3598                         if (!tty->receive_room) {
3599                                 schedule_delayed_work(&tty->buf.work, 1);
3600                                 break;
3601                         }
3602                         if (count > tty->receive_room)
3603                                 count = tty->receive_room;
3604                         char_buf = head->char_buf_ptr + head->read;
3605                         flag_buf = head->flag_buf_ptr + head->read;
3606                         head->read += count;
3607                         spin_unlock_irqrestore(&tty->buf.lock, flags);
3608                         disc->receive_buf(tty, char_buf, flag_buf, count);
3609                         spin_lock_irqsave(&tty->buf.lock, flags);
3610                 }
3611                 tty->buf.head = head;
3612         }
3613         spin_unlock_irqrestore(&tty->buf.lock, flags);
3614
3615         tty_ldisc_deref(disc);
3616 }
3617
3618 /**
3619  *      tty_flip_buffer_push    -       terminal
3620  *      @tty: tty to push
3621  *
3622  *      Queue a push of the terminal flip buffers to the line discipline. This
3623  *      function must not be called from IRQ context if tty->low_latency is set.
3624  *
3625  *      In the event of the queue being busy for flipping the work will be
3626  *      held off and retried later.
3627  *
3628  *      Locking: tty buffer lock. Driver locks in low latency mode.
3629  */
3630
3631 void tty_flip_buffer_push(struct tty_struct *tty)
3632 {
3633         unsigned long flags;
3634         spin_lock_irqsave(&tty->buf.lock, flags);
3635         if (tty->buf.tail != NULL)
3636                 tty->buf.tail->commit = tty->buf.tail->used;
3637         spin_unlock_irqrestore(&tty->buf.lock, flags);
3638
3639         if (tty->low_latency)
3640                 flush_to_ldisc(&tty->buf.work.work);
3641         else
3642                 schedule_delayed_work(&tty->buf.work, 1);
3643 }
3644
3645 EXPORT_SYMBOL(tty_flip_buffer_push);
3646
3647
3648 /**
3649  *      initialize_tty_struct
3650  *      @tty: tty to initialize
3651  *
3652  *      This subroutine initializes a tty structure that has been newly
3653  *      allocated.
3654  *
3655  *      Locking: none - tty in question must not be exposed at this point
3656  */
3657
3658 static void initialize_tty_struct(struct tty_struct *tty)
3659 {
3660         memset(tty, 0, sizeof(struct tty_struct));
3661         tty->magic = TTY_MAGIC;
3662         tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
3663         tty->session = NULL;
3664         tty->pgrp = NULL;
3665         tty->overrun_time = jiffies;
3666         tty->buf.head = tty->buf.tail = NULL;
3667         tty_buffer_init(tty);
3668         INIT_DELAYED_WORK(&tty->buf.work, flush_to_ldisc);
3669         init_MUTEX(&tty->buf.pty_sem);
3670         mutex_init(&tty->termios_mutex);
3671         init_waitqueue_head(&tty->write_wait);
3672         init_waitqueue_head(&tty->read_wait);
3673         INIT_WORK(&tty->hangup_work, do_tty_hangup);
3674         mutex_init(&tty->atomic_read_lock);
3675         mutex_init(&tty->atomic_write_lock);
3676         spin_lock_init(&tty->read_lock);
3677         INIT_LIST_HEAD(&tty->tty_files);
3678         INIT_WORK(&tty->SAK_work, do_SAK_work);
3679 }
3680
3681 /*
3682  * The default put_char routine if the driver did not define one.
3683  */
3684
3685 static void tty_default_put_char(struct tty_struct *tty, unsigned char ch)
3686 {
3687         tty->driver->write(tty, &ch, 1);
3688 }
3689
3690 static struct class *tty_class;
3691
3692 /**
3693  *      tty_register_device - register a tty device
3694  *      @driver: the tty driver that describes the tty device
3695  *      @index: the index in the tty driver for this tty device
3696  *      @device: a struct device that is associated with this tty device.
3697  *              This field is optional, if there is no known struct device
3698  *              for this tty device it can be set to NULL safely.
3699  *
3700  *      Returns a pointer to the struct device for this tty device
3701  *      (or ERR_PTR(-EFOO) on error).
3702  *
3703  *      This call is required to be made to register an individual tty device
3704  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3705  *      that bit is not set, this function should not be called by a tty
3706  *      driver.
3707  *
3708  *      Locking: ??
3709  */
3710
3711 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3712                                    struct device *device)
3713 {
3714         char name[64];
3715         dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
3716
3717         if (index >= driver->num) {
3718                 printk(KERN_ERR "Attempt to register invalid tty line number "
3719                        " (%d).\n", index);
3720                 return ERR_PTR(-EINVAL);
3721         }
3722
3723         if (driver->type == TTY_DRIVER_TYPE_PTY)
3724                 pty_line_name(driver, index, name);
3725         else
3726                 tty_line_name(driver, index, name);
3727
3728         return device_create(tty_class, device, dev, name);
3729 }
3730
3731 /**
3732  *      tty_unregister_device - unregister a tty device
3733  *      @driver: the tty driver that describes the tty device
3734  *      @index: the index in the tty driver for this tty device
3735  *
3736  *      If a tty device is registered with a call to tty_register_device() then
3737  *      this function must be called when the tty device is gone.
3738  *
3739  *      Locking: ??
3740  */
3741
3742 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3743 {
3744         device_destroy(tty_class, MKDEV(driver->major, driver->minor_start) + index);
3745 }
3746
3747 EXPORT_SYMBOL(tty_register_device);
3748 EXPORT_SYMBOL(tty_unregister_device);
3749
3750 struct tty_driver *alloc_tty_driver(int lines)
3751 {
3752         struct tty_driver *driver;
3753
3754         driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3755         if (driver) {
3756                 driver->magic = TTY_DRIVER_MAGIC;
3757                 driver->num = lines;
3758                 /* later we'll move allocation of tables here */
3759         }
3760         return driver;
3761 }
3762
3763 void put_tty_driver(struct tty_driver *driver)
3764 {
3765         kfree(driver);
3766 }
3767
3768 void tty_set_operations(struct tty_driver *driver,
3769                         const struct tty_operations *op)
3770 {
3771         driver->open = op->open;
3772         driver->close = op->close;
3773         driver->write = op->write;
3774         driver->put_char = op->put_char;
3775         driver->flush_chars = op->flush_chars;
3776         driver->write_room = op->write_room;
3777         driver->chars_in_buffer = op->chars_in_buffer;
3778         driver->ioctl = op->ioctl;
3779         driver->compat_ioctl = op->compat_ioctl;
3780         driver->set_termios = op->set_termios;
3781         driver->throttle = op->throttle;
3782         driver->unthrottle = op->unthrottle;
3783         driver->stop = op->stop;
3784         driver->start = op->start;
3785         driver->hangup = op->hangup;
3786         driver->break_ctl = op->break_ctl;
3787         driver->flush_buffer = op->flush_buffer;
3788         driver->set_ldisc = op->set_ldisc;
3789         driver->wait_until_sent = op->wait_until_sent;
3790         driver->send_xchar = op->send_xchar;
3791         driver->read_proc = op->read_proc;
3792         driver->write_proc = op->write_proc;
3793         driver->tiocmget = op->tiocmget;
3794         driver->tiocmset = op->tiocmset;
3795 }
3796
3797
3798 EXPORT_SYMBOL(alloc_tty_driver);
3799 EXPORT_SYMBOL(put_tty_driver);
3800 EXPORT_SYMBOL(tty_set_operations);
3801
3802 /*
3803  * Called by a tty driver to register itself.
3804  */
3805 int tty_register_driver(struct tty_driver *driver)
3806 {
3807         int error;
3808         int i;
3809         dev_t dev;
3810         void **p = NULL;
3811
3812         if (driver->flags & TTY_DRIVER_INSTALLED)
3813                 return 0;
3814
3815         if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3816                 p = kzalloc(driver->num * 3 * sizeof(void *), GFP_KERNEL);
3817                 if (!p)
3818                         return -ENOMEM;
3819         }
3820
3821         if (!driver->major) {
3822                 error = alloc_chrdev_region(&dev, driver->minor_start, driver->num,
3823                                                 driver->name);
3824                 if (!error) {
3825                         driver->major = MAJOR(dev);
3826                         driver->minor_start = MINOR(dev);
3827                 }
3828         } else {
3829                 dev = MKDEV(driver->major, driver->minor_start);
3830                 error = register_chrdev_region(dev, driver->num, driver->name);
3831         }
3832         if (error < 0) {
3833                 kfree(p);
3834                 return error;
3835         }
3836
3837         if (p) {
3838                 driver->ttys = (struct tty_struct **)p;
3839                 driver->termios = (struct ktermios **)(p + driver->num);
3840                 driver->termios_locked = (struct ktermios **)(p + driver->num * 2);
3841         } else {
3842                 driver->ttys = NULL;
3843                 driver->termios = NULL;
3844                 driver->termios_locked = NULL;
3845         }
3846
3847         cdev_init(&driver->cdev, &tty_fops);
3848         driver->cdev.owner = driver->owner;
3849         error = cdev_add(&driver->cdev, dev, driver->num);
3850         if (error) {
3851                 unregister_chrdev_region(dev, driver->num);
3852                 driver->ttys = NULL;
3853                 driver->termios = driver->termios_locked = NULL;
3854                 kfree(p);
3855                 return error;
3856         }
3857
3858         if (!driver->put_char)
3859                 driver->put_char = tty_default_put_char;
3860         
3861         mutex_lock(&tty_mutex);
3862         list_add(&driver->tty_drivers, &tty_drivers);
3863         mutex_unlock(&tty_mutex);
3864         
3865         if ( !(driver->flags & TTY_DRIVER_DYNAMIC_DEV) ) {
3866                 for(i = 0; i < driver->num; i++)
3867                     tty_register_device(driver, i, NULL);
3868         }
3869         proc_tty_register_driver(driver);
3870         return 0;
3871 }
3872
3873 EXPORT_SYMBOL(tty_register_driver);
3874
3875 /*
3876  * Called by a tty driver to unregister itself.
3877  */
3878 int tty_unregister_driver(struct tty_driver *driver)
3879 {
3880         int i;
3881         struct ktermios *tp;
3882         void *p;
3883
3884         if (driver->refcount)
3885                 return -EBUSY;
3886
3887         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3888                                 driver->num);
3889         mutex_lock(&tty_mutex);
3890         list_del(&driver->tty_drivers);
3891         mutex_unlock(&tty_mutex);
3892
3893         /*
3894          * Free the termios and termios_locked structures because
3895          * we don't want to get memory leaks when modular tty
3896          * drivers are removed from the kernel.
3897          */
3898         for (i = 0; i < driver->num; i++) {
3899                 tp = driver->termios[i];
3900                 if (tp) {
3901                         driver->termios[i] = NULL;
3902                         kfree(tp);
3903                 }
3904                 tp = driver->termios_locked[i];
3905                 if (tp) {
3906                         driver->termios_locked[i] = NULL;
3907                         kfree(tp);
3908                 }
3909                 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3910                         tty_unregister_device(driver, i);
3911         }
3912         p = driver->ttys;
3913         proc_tty_unregister_driver(driver);
3914         driver->ttys = NULL;
3915         driver->termios = driver->termios_locked = NULL;
3916         kfree(p);
3917         cdev_del(&driver->cdev);
3918         return 0;
3919 }
3920 EXPORT_SYMBOL(tty_unregister_driver);
3921
3922 dev_t tty_devnum(struct tty_struct *tty)
3923 {
3924         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3925 }
3926 EXPORT_SYMBOL(tty_devnum);
3927
3928 void proc_clear_tty(struct task_struct *p)
3929 {
3930         spin_lock_irq(&p->sighand->siglock);
3931         p->signal->tty = NULL;
3932         spin_unlock_irq(&p->sighand->siglock);
3933 }
3934 EXPORT_SYMBOL(proc_clear_tty);
3935
3936 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3937 {
3938         if (tty) {
3939                 /* We should not have a session or pgrp to here but.... */
3940                 put_pid(tty->session);
3941                 put_pid(tty->pgrp);
3942                 tty->session = get_pid(task_session(tsk));
3943                 tty->pgrp = get_pid(task_pgrp(tsk));
3944         }
3945         put_pid(tsk->signal->tty_old_pgrp);
3946         tsk->signal->tty = tty;
3947         tsk->signal->tty_old_pgrp = NULL;
3948 }
3949
3950 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3951 {
3952         spin_lock_irq(&tsk->sighand->siglock);
3953         __proc_set_tty(tsk, tty);
3954         spin_unlock_irq(&tsk->sighand->siglock);
3955 }
3956
3957 struct tty_struct *get_current_tty(void)
3958 {
3959         struct tty_struct *tty;
3960         WARN_ON_ONCE(!mutex_is_locked(&tty_mutex));
3961         tty = current->signal->tty;
3962         /*
3963          * session->tty can be changed/cleared from under us, make sure we
3964          * issue the load. The obtained pointer, when not NULL, is valid as
3965          * long as we hold tty_mutex.
3966          */
3967         barrier();
3968         return tty;
3969 }
3970 EXPORT_SYMBOL_GPL(get_current_tty);
3971
3972 /*
3973  * Initialize the console device. This is called *early*, so
3974  * we can't necessarily depend on lots of kernel help here.
3975  * Just do some early initializations, and do the complex setup
3976  * later.
3977  */
3978 void __init console_init(void)
3979 {
3980         initcall_t *call;
3981
3982         /* Setup the default TTY line discipline. */
3983         (void) tty_register_ldisc(N_TTY, &tty_ldisc_N_TTY);
3984
3985         /*
3986          * set up the console device so that later boot sequences can 
3987          * inform about problems etc..
3988          */
3989         call = __con_initcall_start;
3990         while (call < __con_initcall_end) {
3991                 (*call)();
3992                 call++;
3993         }
3994 }
3995
3996 #ifdef CONFIG_VT
3997 extern int vty_init(void);
3998 #endif
3999
4000 static int __init tty_class_init(void)
4001 {
4002         tty_class = class_create(THIS_MODULE, "tty");
4003         if (IS_ERR(tty_class))
4004                 return PTR_ERR(tty_class);
4005         return 0;
4006 }
4007
4008 postcore_initcall(tty_class_init);
4009
4010 /* 3/2004 jmc: why do these devices exist? */
4011
4012 static struct cdev tty_cdev, console_cdev;
4013 #ifdef CONFIG_UNIX98_PTYS
4014 static struct cdev ptmx_cdev;
4015 #endif
4016 #ifdef CONFIG_VT
4017 static struct cdev vc0_cdev;
4018 #endif
4019
4020 /*
4021  * Ok, now we can initialize the rest of the tty devices and can count
4022  * on memory allocations, interrupts etc..
4023  */
4024 static int __init tty_init(void)
4025 {
4026         cdev_init(&tty_cdev, &tty_fops);
4027         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
4028             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
4029                 panic("Couldn't register /dev/tty driver\n");
4030         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), "tty");
4031
4032         cdev_init(&console_cdev, &console_fops);
4033         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
4034             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
4035                 panic("Couldn't register /dev/console driver\n");
4036         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), "console");
4037
4038 #ifdef CONFIG_UNIX98_PTYS
4039         cdev_init(&ptmx_cdev, &ptmx_fops);
4040         if (cdev_add(&ptmx_cdev, MKDEV(TTYAUX_MAJOR, 2), 1) ||
4041             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 2), 1, "/dev/ptmx") < 0)
4042                 panic("Couldn't register /dev/ptmx driver\n");
4043         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 2), "ptmx");
4044 #endif
4045
4046 #ifdef CONFIG_VT
4047         cdev_init(&vc0_cdev, &console_fops);
4048         if (cdev_add(&vc0_cdev, MKDEV(TTY_MAJOR, 0), 1) ||
4049             register_chrdev_region(MKDEV(TTY_MAJOR, 0), 1, "/dev/vc/0") < 0)
4050                 panic("Couldn't register /dev/tty0 driver\n");
4051         device_create(tty_class, NULL, MKDEV(TTY_MAJOR, 0), "tty0");
4052
4053         vty_init();
4054 #endif
4055         return 0;
4056 }
4057 module_init(tty_init);