tty: never hold BTM while getting tty_mutex
[linux-2.6-block.git] / drivers / char / tty_io.c
1 /*
2  *  linux/drivers/char/tty_io.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9  * or rs-channels. It also implements echoing, cooked mode etc.
10  *
11  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
12  *
13  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14  * tty_struct and tty_queue structures.  Previously there was an array
15  * of 256 tty_struct's which was statically allocated, and the
16  * tty_queue structures were allocated at boot time.  Both are now
17  * dynamically allocated only when the tty is open.
18  *
19  * Also restructured routines so that there is more of a separation
20  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21  * the low-level tty routines (serial.c, pty.c, console.c).  This
22  * makes for cleaner and more compact code.  -TYT, 9/17/92
23  *
24  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25  * which can be dynamically activated and de-activated by the line
26  * discipline handling modules (like SLIP).
27  *
28  * NOTE: pay no attention to the line discipline code (yet); its
29  * interface is still subject to change in this version...
30  * -- TYT, 1/31/92
31  *
32  * Added functionality to the OPOST tty handling.  No delays, but all
33  * other bits should be there.
34  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
35  *
36  * Rewrote canonical mode and added more termios flags.
37  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
38  *
39  * Reorganized FASYNC support so mouse code can share it.
40  *      -- ctm@ardi.com, 9Sep95
41  *
42  * New TIOCLINUX variants added.
43  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
44  *
45  * Restrict vt switching via ioctl()
46  *      -- grif@cs.ucr.edu, 5-Dec-95
47  *
48  * Move console and virtual terminal code to more appropriate files,
49  * implement CONFIG_VT and generalize console device interface.
50  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
51  *
52  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
53  *      -- Bill Hawes <whawes@star.net>, June 97
54  *
55  * Added devfs support.
56  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
57  *
58  * Added support for a Unix98-style ptmx device.
59  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
60  *
61  * Reduced memory usage for older ARM systems
62  *      -- Russell King <rmk@arm.linux.org.uk>
63  *
64  * Move do_SAK() into process context.  Less stack use in devfs functions.
65  * alloc_tty_struct() always uses kmalloc()
66  *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
67  */
68
69 #include <linux/types.h>
70 #include <linux/major.h>
71 #include <linux/errno.h>
72 #include <linux/signal.h>
73 #include <linux/fcntl.h>
74 #include <linux/sched.h>
75 #include <linux/interrupt.h>
76 #include <linux/tty.h>
77 #include <linux/tty_driver.h>
78 #include <linux/tty_flip.h>
79 #include <linux/devpts_fs.h>
80 #include <linux/file.h>
81 #include <linux/fdtable.h>
82 #include <linux/console.h>
83 #include <linux/timer.h>
84 #include <linux/ctype.h>
85 #include <linux/kd.h>
86 #include <linux/mm.h>
87 #include <linux/string.h>
88 #include <linux/slab.h>
89 #include <linux/poll.h>
90 #include <linux/proc_fs.h>
91 #include <linux/init.h>
92 #include <linux/module.h>
93 #include <linux/smp_lock.h>
94 #include <linux/device.h>
95 #include <linux/wait.h>
96 #include <linux/bitops.h>
97 #include <linux/delay.h>
98 #include <linux/seq_file.h>
99
100 #include <linux/uaccess.h>
101 #include <asm/system.h>
102
103 #include <linux/kbd_kern.h>
104 #include <linux/vt_kern.h>
105 #include <linux/selection.h>
106
107 #include <linux/kmod.h>
108 #include <linux/nsproxy.h>
109
110 #undef TTY_DEBUG_HANGUP
111
112 #define TTY_PARANOIA_CHECK 1
113 #define CHECK_TTY_COUNT 1
114
115 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
116         .c_iflag = ICRNL | IXON,
117         .c_oflag = OPOST | ONLCR,
118         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
119         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
120                    ECHOCTL | ECHOKE | IEXTEN,
121         .c_cc = INIT_C_CC,
122         .c_ispeed = 38400,
123         .c_ospeed = 38400
124 };
125
126 EXPORT_SYMBOL(tty_std_termios);
127
128 /* This list gets poked at by procfs and various bits of boot up code. This
129    could do with some rationalisation such as pulling the tty proc function
130    into this file */
131
132 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
133
134 /* Mutex to protect creating and releasing a tty. This is shared with
135    vt.c for deeply disgusting hack reasons */
136 DEFINE_MUTEX(tty_mutex);
137 EXPORT_SYMBOL(tty_mutex);
138
139 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
140 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
141 ssize_t redirected_tty_write(struct file *, const char __user *,
142                                                         size_t, loff_t *);
143 static unsigned int tty_poll(struct file *, poll_table *);
144 static int tty_open(struct inode *, struct file *);
145 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
146 #ifdef CONFIG_COMPAT
147 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
148                                 unsigned long arg);
149 #else
150 #define tty_compat_ioctl NULL
151 #endif
152 static int __tty_fasync(int fd, struct file *filp, int on);
153 static int tty_fasync(int fd, struct file *filp, int on);
154 static void release_tty(struct tty_struct *tty, int idx);
155 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
156 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157
158 /**
159  *      alloc_tty_struct        -       allocate a tty object
160  *
161  *      Return a new empty tty structure. The data fields have not
162  *      been initialized in any way but has been zeroed
163  *
164  *      Locking: none
165  */
166
167 struct tty_struct *alloc_tty_struct(void)
168 {
169         return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
170 }
171
172 /**
173  *      free_tty_struct         -       free a disused tty
174  *      @tty: tty struct to free
175  *
176  *      Free the write buffers, tty queue and tty memory itself.
177  *
178  *      Locking: none. Must be called after tty is definitely unused
179  */
180
181 void free_tty_struct(struct tty_struct *tty)
182 {
183         kfree(tty->write_buf);
184         tty_buffer_free_all(tty);
185         kfree(tty);
186 }
187
188 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
189
190 /**
191  *      tty_name        -       return tty naming
192  *      @tty: tty structure
193  *      @buf: buffer for output
194  *
195  *      Convert a tty structure into a name. The name reflects the kernel
196  *      naming policy and if udev is in use may not reflect user space
197  *
198  *      Locking: none
199  */
200
201 char *tty_name(struct tty_struct *tty, char *buf)
202 {
203         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
204                 strcpy(buf, "NULL tty");
205         else
206                 strcpy(buf, tty->name);
207         return buf;
208 }
209
210 EXPORT_SYMBOL(tty_name);
211
212 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
213                               const char *routine)
214 {
215 #ifdef TTY_PARANOIA_CHECK
216         if (!tty) {
217                 printk(KERN_WARNING
218                         "null TTY for (%d:%d) in %s\n",
219                         imajor(inode), iminor(inode), routine);
220                 return 1;
221         }
222         if (tty->magic != TTY_MAGIC) {
223                 printk(KERN_WARNING
224                         "bad magic number for tty struct (%d:%d) in %s\n",
225                         imajor(inode), iminor(inode), routine);
226                 return 1;
227         }
228 #endif
229         return 0;
230 }
231
232 static int check_tty_count(struct tty_struct *tty, const char *routine)
233 {
234 #ifdef CHECK_TTY_COUNT
235         struct list_head *p;
236         int count = 0;
237
238         file_list_lock();
239         list_for_each(p, &tty->tty_files) {
240                 count++;
241         }
242         file_list_unlock();
243         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
244             tty->driver->subtype == PTY_TYPE_SLAVE &&
245             tty->link && tty->link->count)
246                 count++;
247         if (tty->count != count) {
248                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
249                                     "!= #fd's(%d) in %s\n",
250                        tty->name, tty->count, count, routine);
251                 return count;
252         }
253 #endif
254         return 0;
255 }
256
257 /**
258  *      get_tty_driver          -       find device of a tty
259  *      @dev_t: device identifier
260  *      @index: returns the index of the tty
261  *
262  *      This routine returns a tty driver structure, given a device number
263  *      and also passes back the index number.
264  *
265  *      Locking: caller must hold tty_mutex
266  */
267
268 static struct tty_driver *get_tty_driver(dev_t device, int *index)
269 {
270         struct tty_driver *p;
271
272         list_for_each_entry(p, &tty_drivers, tty_drivers) {
273                 dev_t base = MKDEV(p->major, p->minor_start);
274                 if (device < base || device >= base + p->num)
275                         continue;
276                 *index = device - base;
277                 return tty_driver_kref_get(p);
278         }
279         return NULL;
280 }
281
282 #ifdef CONFIG_CONSOLE_POLL
283
284 /**
285  *      tty_find_polling_driver -       find device of a polled tty
286  *      @name: name string to match
287  *      @line: pointer to resulting tty line nr
288  *
289  *      This routine returns a tty driver structure, given a name
290  *      and the condition that the tty driver is capable of polled
291  *      operation.
292  */
293 struct tty_driver *tty_find_polling_driver(char *name, int *line)
294 {
295         struct tty_driver *p, *res = NULL;
296         int tty_line = 0;
297         int len;
298         char *str, *stp;
299
300         for (str = name; *str; str++)
301                 if ((*str >= '0' && *str <= '9') || *str == ',')
302                         break;
303         if (!*str)
304                 return NULL;
305
306         len = str - name;
307         tty_line = simple_strtoul(str, &str, 10);
308
309         mutex_lock(&tty_mutex);
310         /* Search through the tty devices to look for a match */
311         list_for_each_entry(p, &tty_drivers, tty_drivers) {
312                 if (strncmp(name, p->name, len) != 0)
313                         continue;
314                 stp = str;
315                 if (*stp == ',')
316                         stp++;
317                 if (*stp == '\0')
318                         stp = NULL;
319
320                 if (tty_line >= 0 && tty_line <= p->num && p->ops &&
321                     p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
322                         res = tty_driver_kref_get(p);
323                         *line = tty_line;
324                         break;
325                 }
326         }
327         mutex_unlock(&tty_mutex);
328
329         return res;
330 }
331 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
332 #endif
333
334 /**
335  *      tty_check_change        -       check for POSIX terminal changes
336  *      @tty: tty to check
337  *
338  *      If we try to write to, or set the state of, a terminal and we're
339  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
340  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
341  *
342  *      Locking: ctrl_lock
343  */
344
345 int tty_check_change(struct tty_struct *tty)
346 {
347         unsigned long flags;
348         int ret = 0;
349
350         if (current->signal->tty != tty)
351                 return 0;
352
353         spin_lock_irqsave(&tty->ctrl_lock, flags);
354
355         if (!tty->pgrp) {
356                 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
357                 goto out_unlock;
358         }
359         if (task_pgrp(current) == tty->pgrp)
360                 goto out_unlock;
361         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
362         if (is_ignored(SIGTTOU))
363                 goto out;
364         if (is_current_pgrp_orphaned()) {
365                 ret = -EIO;
366                 goto out;
367         }
368         kill_pgrp(task_pgrp(current), SIGTTOU, 1);
369         set_thread_flag(TIF_SIGPENDING);
370         ret = -ERESTARTSYS;
371 out:
372         return ret;
373 out_unlock:
374         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
375         return ret;
376 }
377
378 EXPORT_SYMBOL(tty_check_change);
379
380 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
381                                 size_t count, loff_t *ppos)
382 {
383         return 0;
384 }
385
386 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
387                                  size_t count, loff_t *ppos)
388 {
389         return -EIO;
390 }
391
392 /* No kernel lock held - none needed ;) */
393 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
394 {
395         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
396 }
397
398 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
399                 unsigned long arg)
400 {
401         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
402 }
403
404 static long hung_up_tty_compat_ioctl(struct file *file,
405                                      unsigned int cmd, unsigned long arg)
406 {
407         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
408 }
409
410 static const struct file_operations tty_fops = {
411         .llseek         = no_llseek,
412         .read           = tty_read,
413         .write          = tty_write,
414         .poll           = tty_poll,
415         .unlocked_ioctl = tty_ioctl,
416         .compat_ioctl   = tty_compat_ioctl,
417         .open           = tty_open,
418         .release        = tty_release,
419         .fasync         = tty_fasync,
420 };
421
422 static const struct file_operations console_fops = {
423         .llseek         = no_llseek,
424         .read           = tty_read,
425         .write          = redirected_tty_write,
426         .poll           = tty_poll,
427         .unlocked_ioctl = tty_ioctl,
428         .compat_ioctl   = tty_compat_ioctl,
429         .open           = tty_open,
430         .release        = tty_release,
431         .fasync         = tty_fasync,
432 };
433
434 static const struct file_operations hung_up_tty_fops = {
435         .llseek         = no_llseek,
436         .read           = hung_up_tty_read,
437         .write          = hung_up_tty_write,
438         .poll           = hung_up_tty_poll,
439         .unlocked_ioctl = hung_up_tty_ioctl,
440         .compat_ioctl   = hung_up_tty_compat_ioctl,
441         .release        = tty_release,
442 };
443
444 static DEFINE_SPINLOCK(redirect_lock);
445 static struct file *redirect;
446
447 /**
448  *      tty_wakeup      -       request more data
449  *      @tty: terminal
450  *
451  *      Internal and external helper for wakeups of tty. This function
452  *      informs the line discipline if present that the driver is ready
453  *      to receive more output data.
454  */
455
456 void tty_wakeup(struct tty_struct *tty)
457 {
458         struct tty_ldisc *ld;
459
460         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
461                 ld = tty_ldisc_ref(tty);
462                 if (ld) {
463                         if (ld->ops->write_wakeup)
464                                 ld->ops->write_wakeup(tty);
465                         tty_ldisc_deref(ld);
466                 }
467         }
468         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
469 }
470
471 EXPORT_SYMBOL_GPL(tty_wakeup);
472
473 /**
474  *      do_tty_hangup           -       actual handler for hangup events
475  *      @work: tty device
476  *
477  *      This can be called by the "eventd" kernel thread.  That is process
478  *      synchronous but doesn't hold any locks, so we need to make sure we
479  *      have the appropriate locks for what we're doing.
480  *
481  *      The hangup event clears any pending redirections onto the hung up
482  *      device. It ensures future writes will error and it does the needed
483  *      line discipline hangup and signal delivery. The tty object itself
484  *      remains intact.
485  *
486  *      Locking:
487  *              BTM
488  *                redirect lock for undoing redirection
489  *                file list lock for manipulating list of ttys
490  *                tty_ldisc_lock from called functions
491  *                termios_mutex resetting termios data
492  *                tasklist_lock to walk task list for hangup event
493  *                  ->siglock to protect ->signal/->sighand
494  */
495 static void do_tty_hangup(struct work_struct *work)
496 {
497         struct tty_struct *tty =
498                 container_of(work, struct tty_struct, hangup_work);
499         struct file *cons_filp = NULL;
500         struct file *filp, *f = NULL;
501         struct task_struct *p;
502         int    closecount = 0, n;
503         unsigned long flags;
504         int refs = 0;
505
506         if (!tty)
507                 return;
508
509
510         spin_lock(&redirect_lock);
511         if (redirect && redirect->private_data == tty) {
512                 f = redirect;
513                 redirect = NULL;
514         }
515         spin_unlock(&redirect_lock);
516
517         /* inuse_filps is protected by the single tty lock,
518            this really needs to change if we want to flush the
519            workqueue with the lock held */
520         tty_lock_nested(); /* called with BTM held from pty_close and
521                                 others */
522         check_tty_count(tty, "do_tty_hangup");
523
524         file_list_lock();
525         /* This breaks for file handles being sent over AF_UNIX sockets ? */
526         list_for_each_entry(filp, &tty->tty_files, f_u.fu_list) {
527                 if (filp->f_op->write == redirected_tty_write)
528                         cons_filp = filp;
529                 if (filp->f_op->write != tty_write)
530                         continue;
531                 closecount++;
532                 __tty_fasync(-1, filp, 0);      /* can't block */
533                 filp->f_op = &hung_up_tty_fops;
534         }
535         file_list_unlock();
536
537         tty_ldisc_hangup(tty);
538
539         read_lock(&tasklist_lock);
540         if (tty->session) {
541                 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
542                         spin_lock_irq(&p->sighand->siglock);
543                         if (p->signal->tty == tty) {
544                                 p->signal->tty = NULL;
545                                 /* We defer the dereferences outside fo
546                                    the tasklist lock */
547                                 refs++;
548                         }
549                         if (!p->signal->leader) {
550                                 spin_unlock_irq(&p->sighand->siglock);
551                                 continue;
552                         }
553                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
554                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
555                         put_pid(p->signal->tty_old_pgrp);  /* A noop */
556                         spin_lock_irqsave(&tty->ctrl_lock, flags);
557                         if (tty->pgrp)
558                                 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
559                         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
560                         spin_unlock_irq(&p->sighand->siglock);
561                 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
562         }
563         read_unlock(&tasklist_lock);
564
565         spin_lock_irqsave(&tty->ctrl_lock, flags);
566         clear_bit(TTY_THROTTLED, &tty->flags);
567         clear_bit(TTY_PUSH, &tty->flags);
568         clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
569         put_pid(tty->session);
570         put_pid(tty->pgrp);
571         tty->session = NULL;
572         tty->pgrp = NULL;
573         tty->ctrl_status = 0;
574         set_bit(TTY_HUPPED, &tty->flags);
575         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
576
577         /* Account for the p->signal references we killed */
578         while (refs--)
579                 tty_kref_put(tty);
580
581         /*
582          * If one of the devices matches a console pointer, we
583          * cannot just call hangup() because that will cause
584          * tty->count and state->count to go out of sync.
585          * So we just call close() the right number of times.
586          */
587         if (cons_filp) {
588                 if (tty->ops->close)
589                         for (n = 0; n < closecount; n++)
590                                 tty->ops->close(tty, cons_filp);
591         } else if (tty->ops->hangup)
592                 (tty->ops->hangup)(tty);
593         /*
594          * We don't want to have driver/ldisc interactions beyond
595          * the ones we did here. The driver layer expects no
596          * calls after ->hangup() from the ldisc side. However we
597          * can't yet guarantee all that.
598          */
599         set_bit(TTY_HUPPED, &tty->flags);
600         tty_ldisc_enable(tty);
601         tty_unlock();
602         if (f)
603                 fput(f);
604 }
605
606 /**
607  *      tty_hangup              -       trigger a hangup event
608  *      @tty: tty to hangup
609  *
610  *      A carrier loss (virtual or otherwise) has occurred on this like
611  *      schedule a hangup sequence to run after this event.
612  */
613
614 void tty_hangup(struct tty_struct *tty)
615 {
616 #ifdef TTY_DEBUG_HANGUP
617         char    buf[64];
618         printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
619 #endif
620         schedule_work(&tty->hangup_work);
621 }
622
623 EXPORT_SYMBOL(tty_hangup);
624
625 /**
626  *      tty_vhangup             -       process vhangup
627  *      @tty: tty to hangup
628  *
629  *      The user has asked via system call for the terminal to be hung up.
630  *      We do this synchronously so that when the syscall returns the process
631  *      is complete. That guarantee is necessary for security reasons.
632  */
633
634 void tty_vhangup(struct tty_struct *tty)
635 {
636 #ifdef TTY_DEBUG_HANGUP
637         char    buf[64];
638
639         printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
640 #endif
641         do_tty_hangup(&tty->hangup_work);
642 }
643
644 EXPORT_SYMBOL(tty_vhangup);
645
646 /**
647  *      tty_vhangup_self        -       process vhangup for own ctty
648  *
649  *      Perform a vhangup on the current controlling tty
650  */
651
652 void tty_vhangup_self(void)
653 {
654         struct tty_struct *tty;
655
656         tty = get_current_tty();
657         if (tty) {
658                 tty_vhangup(tty);
659                 tty_kref_put(tty);
660         }
661 }
662
663 /**
664  *      tty_hung_up_p           -       was tty hung up
665  *      @filp: file pointer of tty
666  *
667  *      Return true if the tty has been subject to a vhangup or a carrier
668  *      loss
669  */
670
671 int tty_hung_up_p(struct file *filp)
672 {
673         return (filp->f_op == &hung_up_tty_fops);
674 }
675
676 EXPORT_SYMBOL(tty_hung_up_p);
677
678 static void session_clear_tty(struct pid *session)
679 {
680         struct task_struct *p;
681         do_each_pid_task(session, PIDTYPE_SID, p) {
682                 proc_clear_tty(p);
683         } while_each_pid_task(session, PIDTYPE_SID, p);
684 }
685
686 /**
687  *      disassociate_ctty       -       disconnect controlling tty
688  *      @on_exit: true if exiting so need to "hang up" the session
689  *
690  *      This function is typically called only by the session leader, when
691  *      it wants to disassociate itself from its controlling tty.
692  *
693  *      It performs the following functions:
694  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
695  *      (2)  Clears the tty from being controlling the session
696  *      (3)  Clears the controlling tty for all processes in the
697  *              session group.
698  *
699  *      The argument on_exit is set to 1 if called when a process is
700  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
701  *
702  *      Locking:
703  *              BTM is taken for hysterical raisins, and held when
704  *                called from no_tty().
705  *                tty_mutex is taken to protect tty
706  *                ->siglock is taken to protect ->signal/->sighand
707  *                tasklist_lock is taken to walk process list for sessions
708  *                  ->siglock is taken to protect ->signal/->sighand
709  */
710
711 void disassociate_ctty(int on_exit)
712 {
713         struct tty_struct *tty;
714         struct pid *tty_pgrp = NULL;
715
716         if (!current->signal->leader)
717                 return;
718
719         tty = get_current_tty();
720         if (tty) {
721                 tty_pgrp = get_pid(tty->pgrp);
722                 tty_lock_nested(); /* see above */
723                 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY)
724                         tty_vhangup(tty);
725                 tty_unlock();
726                 tty_kref_put(tty);
727         } else if (on_exit) {
728                 struct pid *old_pgrp;
729                 spin_lock_irq(&current->sighand->siglock);
730                 old_pgrp = current->signal->tty_old_pgrp;
731                 current->signal->tty_old_pgrp = NULL;
732                 spin_unlock_irq(&current->sighand->siglock);
733                 if (old_pgrp) {
734                         kill_pgrp(old_pgrp, SIGHUP, on_exit);
735                         kill_pgrp(old_pgrp, SIGCONT, on_exit);
736                         put_pid(old_pgrp);
737                 }
738                 return;
739         }
740         if (tty_pgrp) {
741                 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
742                 if (!on_exit)
743                         kill_pgrp(tty_pgrp, SIGCONT, on_exit);
744                 put_pid(tty_pgrp);
745         }
746
747         spin_lock_irq(&current->sighand->siglock);
748         put_pid(current->signal->tty_old_pgrp);
749         current->signal->tty_old_pgrp = NULL;
750         spin_unlock_irq(&current->sighand->siglock);
751
752         tty = get_current_tty();
753         if (tty) {
754                 unsigned long flags;
755                 spin_lock_irqsave(&tty->ctrl_lock, flags);
756                 put_pid(tty->session);
757                 put_pid(tty->pgrp);
758                 tty->session = NULL;
759                 tty->pgrp = NULL;
760                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
761                 tty_kref_put(tty);
762         } else {
763 #ifdef TTY_DEBUG_HANGUP
764                 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
765                        " = NULL", tty);
766 #endif
767         }
768
769         /* Now clear signal->tty under the lock */
770         read_lock(&tasklist_lock);
771         session_clear_tty(task_session(current));
772         read_unlock(&tasklist_lock);
773 }
774
775 /**
776  *
777  *      no_tty  - Ensure the current process does not have a controlling tty
778  */
779 void no_tty(void)
780 {
781         struct task_struct *tsk = current;
782         tty_lock();
783         disassociate_ctty(0);
784         tty_unlock();
785         proc_clear_tty(tsk);
786 }
787
788
789 /**
790  *      stop_tty        -       propagate flow control
791  *      @tty: tty to stop
792  *
793  *      Perform flow control to the driver. For PTY/TTY pairs we
794  *      must also propagate the TIOCKPKT status. May be called
795  *      on an already stopped device and will not re-call the driver
796  *      method.
797  *
798  *      This functionality is used by both the line disciplines for
799  *      halting incoming flow and by the driver. It may therefore be
800  *      called from any context, may be under the tty atomic_write_lock
801  *      but not always.
802  *
803  *      Locking:
804  *              Uses the tty control lock internally
805  */
806
807 void stop_tty(struct tty_struct *tty)
808 {
809         unsigned long flags;
810         spin_lock_irqsave(&tty->ctrl_lock, flags);
811         if (tty->stopped) {
812                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
813                 return;
814         }
815         tty->stopped = 1;
816         if (tty->link && tty->link->packet) {
817                 tty->ctrl_status &= ~TIOCPKT_START;
818                 tty->ctrl_status |= TIOCPKT_STOP;
819                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
820         }
821         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
822         if (tty->ops->stop)
823                 (tty->ops->stop)(tty);
824 }
825
826 EXPORT_SYMBOL(stop_tty);
827
828 /**
829  *      start_tty       -       propagate flow control
830  *      @tty: tty to start
831  *
832  *      Start a tty that has been stopped if at all possible. Perform
833  *      any necessary wakeups and propagate the TIOCPKT status. If this
834  *      is the tty was previous stopped and is being started then the
835  *      driver start method is invoked and the line discipline woken.
836  *
837  *      Locking:
838  *              ctrl_lock
839  */
840
841 void start_tty(struct tty_struct *tty)
842 {
843         unsigned long flags;
844         spin_lock_irqsave(&tty->ctrl_lock, flags);
845         if (!tty->stopped || tty->flow_stopped) {
846                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
847                 return;
848         }
849         tty->stopped = 0;
850         if (tty->link && tty->link->packet) {
851                 tty->ctrl_status &= ~TIOCPKT_STOP;
852                 tty->ctrl_status |= TIOCPKT_START;
853                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
854         }
855         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
856         if (tty->ops->start)
857                 (tty->ops->start)(tty);
858         /* If we have a running line discipline it may need kicking */
859         tty_wakeup(tty);
860 }
861
862 EXPORT_SYMBOL(start_tty);
863
864 /**
865  *      tty_read        -       read method for tty device files
866  *      @file: pointer to tty file
867  *      @buf: user buffer
868  *      @count: size of user buffer
869  *      @ppos: unused
870  *
871  *      Perform the read system call function on this terminal device. Checks
872  *      for hung up devices before calling the line discipline method.
873  *
874  *      Locking:
875  *              Locks the line discipline internally while needed. Multiple
876  *      read calls may be outstanding in parallel.
877  */
878
879 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
880                         loff_t *ppos)
881 {
882         int i;
883         struct tty_struct *tty;
884         struct inode *inode;
885         struct tty_ldisc *ld;
886
887         tty = (struct tty_struct *)file->private_data;
888         inode = file->f_path.dentry->d_inode;
889         if (tty_paranoia_check(tty, inode, "tty_read"))
890                 return -EIO;
891         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
892                 return -EIO;
893
894         /* We want to wait for the line discipline to sort out in this
895            situation */
896         ld = tty_ldisc_ref_wait(tty);
897         if (ld->ops->read)
898                 i = (ld->ops->read)(tty, file, buf, count);
899         else
900                 i = -EIO;
901         tty_ldisc_deref(ld);
902         if (i > 0)
903                 inode->i_atime = current_fs_time(inode->i_sb);
904         return i;
905 }
906
907 void tty_write_unlock(struct tty_struct *tty)
908 {
909         mutex_unlock(&tty->atomic_write_lock);
910         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
911 }
912
913 int tty_write_lock(struct tty_struct *tty, int ndelay)
914 {
915         if (!mutex_trylock(&tty->atomic_write_lock)) {
916                 if (ndelay)
917                         return -EAGAIN;
918                 if (mutex_lock_interruptible(&tty->atomic_write_lock))
919                         return -ERESTARTSYS;
920         }
921         return 0;
922 }
923
924 /*
925  * Split writes up in sane blocksizes to avoid
926  * denial-of-service type attacks
927  */
928 static inline ssize_t do_tty_write(
929         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
930         struct tty_struct *tty,
931         struct file *file,
932         const char __user *buf,
933         size_t count)
934 {
935         ssize_t ret, written = 0;
936         unsigned int chunk;
937
938         ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
939         if (ret < 0)
940                 return ret;
941
942         /*
943          * We chunk up writes into a temporary buffer. This
944          * simplifies low-level drivers immensely, since they
945          * don't have locking issues and user mode accesses.
946          *
947          * But if TTY_NO_WRITE_SPLIT is set, we should use a
948          * big chunk-size..
949          *
950          * The default chunk-size is 2kB, because the NTTY
951          * layer has problems with bigger chunks. It will
952          * claim to be able to handle more characters than
953          * it actually does.
954          *
955          * FIXME: This can probably go away now except that 64K chunks
956          * are too likely to fail unless switched to vmalloc...
957          */
958         chunk = 2048;
959         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
960                 chunk = 65536;
961         if (count < chunk)
962                 chunk = count;
963
964         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
965         if (tty->write_cnt < chunk) {
966                 unsigned char *buf_chunk;
967
968                 if (chunk < 1024)
969                         chunk = 1024;
970
971                 buf_chunk = kmalloc(chunk, GFP_KERNEL);
972                 if (!buf_chunk) {
973                         ret = -ENOMEM;
974                         goto out;
975                 }
976                 kfree(tty->write_buf);
977                 tty->write_cnt = chunk;
978                 tty->write_buf = buf_chunk;
979         }
980
981         /* Do the write .. */
982         for (;;) {
983                 size_t size = count;
984                 if (size > chunk)
985                         size = chunk;
986                 ret = -EFAULT;
987                 if (copy_from_user(tty->write_buf, buf, size))
988                         break;
989                 ret = write(tty, file, tty->write_buf, size);
990                 if (ret <= 0)
991                         break;
992                 written += ret;
993                 buf += ret;
994                 count -= ret;
995                 if (!count)
996                         break;
997                 ret = -ERESTARTSYS;
998                 if (signal_pending(current))
999                         break;
1000                 cond_resched();
1001         }
1002         if (written) {
1003                 struct inode *inode = file->f_path.dentry->d_inode;
1004                 inode->i_mtime = current_fs_time(inode->i_sb);
1005                 ret = written;
1006         }
1007 out:
1008         tty_write_unlock(tty);
1009         return ret;
1010 }
1011
1012 /**
1013  * tty_write_message - write a message to a certain tty, not just the console.
1014  * @tty: the destination tty_struct
1015  * @msg: the message to write
1016  *
1017  * This is used for messages that need to be redirected to a specific tty.
1018  * We don't put it into the syslog queue right now maybe in the future if
1019  * really needed.
1020  *
1021  * We must still hold the BTM and test the CLOSING flag for the moment.
1022  */
1023
1024 void tty_write_message(struct tty_struct *tty, char *msg)
1025 {
1026         if (tty) {
1027                 mutex_lock(&tty->atomic_write_lock);
1028                 tty_lock();
1029                 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1030                         tty_unlock();
1031                         tty->ops->write(tty, msg, strlen(msg));
1032                 } else
1033                         tty_unlock();
1034                 tty_write_unlock(tty);
1035         }
1036         return;
1037 }
1038
1039
1040 /**
1041  *      tty_write               -       write method for tty device file
1042  *      @file: tty file pointer
1043  *      @buf: user data to write
1044  *      @count: bytes to write
1045  *      @ppos: unused
1046  *
1047  *      Write data to a tty device via the line discipline.
1048  *
1049  *      Locking:
1050  *              Locks the line discipline as required
1051  *              Writes to the tty driver are serialized by the atomic_write_lock
1052  *      and are then processed in chunks to the device. The line discipline
1053  *      write method will not be invoked in parallel for each device.
1054  */
1055
1056 static ssize_t tty_write(struct file *file, const char __user *buf,
1057                                                 size_t count, loff_t *ppos)
1058 {
1059         struct tty_struct *tty;
1060         struct inode *inode = file->f_path.dentry->d_inode;
1061         ssize_t ret;
1062         struct tty_ldisc *ld;
1063
1064         tty = (struct tty_struct *)file->private_data;
1065         if (tty_paranoia_check(tty, inode, "tty_write"))
1066                 return -EIO;
1067         if (!tty || !tty->ops->write ||
1068                 (test_bit(TTY_IO_ERROR, &tty->flags)))
1069                         return -EIO;
1070         /* Short term debug to catch buggy drivers */
1071         if (tty->ops->write_room == NULL)
1072                 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1073                         tty->driver->name);
1074         ld = tty_ldisc_ref_wait(tty);
1075         if (!ld->ops->write)
1076                 ret = -EIO;
1077         else
1078                 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1079         tty_ldisc_deref(ld);
1080         return ret;
1081 }
1082
1083 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1084                                                 size_t count, loff_t *ppos)
1085 {
1086         struct file *p = NULL;
1087
1088         spin_lock(&redirect_lock);
1089         if (redirect) {
1090                 get_file(redirect);
1091                 p = redirect;
1092         }
1093         spin_unlock(&redirect_lock);
1094
1095         if (p) {
1096                 ssize_t res;
1097                 res = vfs_write(p, buf, count, &p->f_pos);
1098                 fput(p);
1099                 return res;
1100         }
1101         return tty_write(file, buf, count, ppos);
1102 }
1103
1104 static char ptychar[] = "pqrstuvwxyzabcde";
1105
1106 /**
1107  *      pty_line_name   -       generate name for a pty
1108  *      @driver: the tty driver in use
1109  *      @index: the minor number
1110  *      @p: output buffer of at least 6 bytes
1111  *
1112  *      Generate a name from a driver reference and write it to the output
1113  *      buffer.
1114  *
1115  *      Locking: None
1116  */
1117 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1118 {
1119         int i = index + driver->name_base;
1120         /* ->name is initialized to "ttyp", but "tty" is expected */
1121         sprintf(p, "%s%c%x",
1122                 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1123                 ptychar[i >> 4 & 0xf], i & 0xf);
1124 }
1125
1126 /**
1127  *      tty_line_name   -       generate name for a tty
1128  *      @driver: the tty driver in use
1129  *      @index: the minor number
1130  *      @p: output buffer of at least 7 bytes
1131  *
1132  *      Generate a name from a driver reference and write it to the output
1133  *      buffer.
1134  *
1135  *      Locking: None
1136  */
1137 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1138 {
1139         sprintf(p, "%s%d", driver->name, index + driver->name_base);
1140 }
1141
1142 /**
1143  *      tty_driver_lookup_tty() - find an existing tty, if any
1144  *      @driver: the driver for the tty
1145  *      @idx:    the minor number
1146  *
1147  *      Return the tty, if found or ERR_PTR() otherwise.
1148  *
1149  *      Locking: tty_mutex must be held. If tty is found, the mutex must
1150  *      be held until the 'fast-open' is also done. Will change once we
1151  *      have refcounting in the driver and per driver locking
1152  */
1153 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1154                 struct inode *inode, int idx)
1155 {
1156         struct tty_struct *tty;
1157
1158         if (driver->ops->lookup)
1159                 return driver->ops->lookup(driver, inode, idx);
1160
1161         tty = driver->ttys[idx];
1162         return tty;
1163 }
1164
1165 /**
1166  *      tty_init_termios        -  helper for termios setup
1167  *      @tty: the tty to set up
1168  *
1169  *      Initialise the termios structures for this tty. Thus runs under
1170  *      the tty_mutex currently so we can be relaxed about ordering.
1171  */
1172
1173 int tty_init_termios(struct tty_struct *tty)
1174 {
1175         struct ktermios *tp;
1176         int idx = tty->index;
1177
1178         tp = tty->driver->termios[idx];
1179         if (tp == NULL) {
1180                 tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1181                 if (tp == NULL)
1182                         return -ENOMEM;
1183                 memcpy(tp, &tty->driver->init_termios,
1184                                                 sizeof(struct ktermios));
1185                 tty->driver->termios[idx] = tp;
1186         }
1187         tty->termios = tp;
1188         tty->termios_locked = tp + 1;
1189
1190         /* Compatibility until drivers always set this */
1191         tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1192         tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1193         return 0;
1194 }
1195 EXPORT_SYMBOL_GPL(tty_init_termios);
1196
1197 /**
1198  *      tty_driver_install_tty() - install a tty entry in the driver
1199  *      @driver: the driver for the tty
1200  *      @tty: the tty
1201  *
1202  *      Install a tty object into the driver tables. The tty->index field
1203  *      will be set by the time this is called. This method is responsible
1204  *      for ensuring any need additional structures are allocated and
1205  *      configured.
1206  *
1207  *      Locking: tty_mutex for now
1208  */
1209 static int tty_driver_install_tty(struct tty_driver *driver,
1210                                                 struct tty_struct *tty)
1211 {
1212         int idx = tty->index;
1213         int ret;
1214
1215         if (driver->ops->install) {
1216                 tty_lock_nested(); /* already called with BTM held */
1217                 ret = driver->ops->install(driver, tty);
1218                 tty_unlock();
1219                 return ret;
1220         }
1221
1222         if (tty_init_termios(tty) == 0) {
1223                 tty_lock_nested();
1224                 tty_driver_kref_get(driver);
1225                 tty->count++;
1226                 driver->ttys[idx] = tty;
1227                 tty_unlock();
1228                 return 0;
1229         }
1230         return -ENOMEM;
1231 }
1232
1233 /**
1234  *      tty_driver_remove_tty() - remove a tty from the driver tables
1235  *      @driver: the driver for the tty
1236  *      @idx:    the minor number
1237  *
1238  *      Remvoe a tty object from the driver tables. The tty->index field
1239  *      will be set by the time this is called.
1240  *
1241  *      Locking: tty_mutex for now
1242  */
1243 static void tty_driver_remove_tty(struct tty_driver *driver,
1244                                                 struct tty_struct *tty)
1245 {
1246         if (driver->ops->remove)
1247                 driver->ops->remove(driver, tty);
1248         else
1249                 driver->ttys[tty->index] = NULL;
1250 }
1251
1252 /*
1253  *      tty_reopen()    - fast re-open of an open tty
1254  *      @tty    - the tty to open
1255  *
1256  *      Return 0 on success, -errno on error.
1257  *
1258  *      Locking: tty_mutex must be held from the time the tty was found
1259  *               till this open completes.
1260  */
1261 static int tty_reopen(struct tty_struct *tty)
1262 {
1263         struct tty_driver *driver = tty->driver;
1264
1265         if (test_bit(TTY_CLOSING, &tty->flags))
1266                 return -EIO;
1267
1268         if (driver->type == TTY_DRIVER_TYPE_PTY &&
1269             driver->subtype == PTY_TYPE_MASTER) {
1270                 /*
1271                  * special case for PTY masters: only one open permitted,
1272                  * and the slave side open count is incremented as well.
1273                  */
1274                 if (tty->count)
1275                         return -EIO;
1276
1277                 tty->link->count++;
1278         }
1279         tty->count++;
1280         tty->driver = driver; /* N.B. why do this every time?? */
1281
1282         mutex_lock(&tty->ldisc_mutex);
1283         WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1284         mutex_unlock(&tty->ldisc_mutex);
1285
1286         return 0;
1287 }
1288
1289 /**
1290  *      tty_init_dev            -       initialise a tty device
1291  *      @driver: tty driver we are opening a device on
1292  *      @idx: device index
1293  *      @ret_tty: returned tty structure
1294  *      @first_ok: ok to open a new device (used by ptmx)
1295  *
1296  *      Prepare a tty device. This may not be a "new" clean device but
1297  *      could also be an active device. The pty drivers require special
1298  *      handling because of this.
1299  *
1300  *      Locking:
1301  *              The function is called under the tty_mutex, which
1302  *      protects us from the tty struct or driver itself going away.
1303  *
1304  *      On exit the tty device has the line discipline attached and
1305  *      a reference count of 1. If a pair was created for pty/tty use
1306  *      and the other was a pty master then it too has a reference count of 1.
1307  *
1308  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1309  * failed open.  The new code protects the open with a mutex, so it's
1310  * really quite straightforward.  The mutex locking can probably be
1311  * relaxed for the (most common) case of reopening a tty.
1312  */
1313
1314 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx,
1315                                                                 int first_ok)
1316 {
1317         struct tty_struct *tty;
1318         int retval;
1319
1320         tty_lock_nested(); /* always called with tty lock held already */
1321
1322         /* Check if pty master is being opened multiple times */
1323         if (driver->subtype == PTY_TYPE_MASTER &&
1324                 (driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok) {
1325                 tty_unlock();
1326                 return ERR_PTR(-EIO);
1327         }
1328         tty_unlock();
1329
1330         /*
1331          * First time open is complex, especially for PTY devices.
1332          * This code guarantees that either everything succeeds and the
1333          * TTY is ready for operation, or else the table slots are vacated
1334          * and the allocated memory released.  (Except that the termios
1335          * and locked termios may be retained.)
1336          */
1337
1338         if (!try_module_get(driver->owner))
1339                 return ERR_PTR(-ENODEV);
1340
1341         tty = alloc_tty_struct();
1342         if (!tty)
1343                 goto fail_no_mem;
1344         initialize_tty_struct(tty, driver, idx);
1345
1346         retval = tty_driver_install_tty(driver, tty);
1347         if (retval < 0) {
1348                 free_tty_struct(tty);
1349                 module_put(driver->owner);
1350                 return ERR_PTR(retval);
1351         }
1352
1353         /*
1354          * Structures all installed ... call the ldisc open routines.
1355          * If we fail here just call release_tty to clean up.  No need
1356          * to decrement the use counts, as release_tty doesn't care.
1357          */
1358         retval = tty_ldisc_setup(tty, tty->link);
1359         if (retval)
1360                 goto release_mem_out;
1361         return tty;
1362
1363 fail_no_mem:
1364         module_put(driver->owner);
1365         return ERR_PTR(-ENOMEM);
1366
1367         /* call the tty release_tty routine to clean out this slot */
1368 release_mem_out:
1369         if (printk_ratelimit())
1370                 printk(KERN_INFO "tty_init_dev: ldisc open failed, "
1371                                  "clearing slot %d\n", idx);
1372         tty_lock_nested();
1373         release_tty(tty, idx);
1374         tty_unlock();
1375         return ERR_PTR(retval);
1376 }
1377
1378 void tty_free_termios(struct tty_struct *tty)
1379 {
1380         struct ktermios *tp;
1381         int idx = tty->index;
1382         /* Kill this flag and push into drivers for locking etc */
1383         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1384                 /* FIXME: Locking on ->termios array */
1385                 tp = tty->termios;
1386                 tty->driver->termios[idx] = NULL;
1387                 kfree(tp);
1388         }
1389 }
1390 EXPORT_SYMBOL(tty_free_termios);
1391
1392 void tty_shutdown(struct tty_struct *tty)
1393 {
1394         tty_driver_remove_tty(tty->driver, tty);
1395         tty_free_termios(tty);
1396 }
1397 EXPORT_SYMBOL(tty_shutdown);
1398
1399 /**
1400  *      release_one_tty         -       release tty structure memory
1401  *      @kref: kref of tty we are obliterating
1402  *
1403  *      Releases memory associated with a tty structure, and clears out the
1404  *      driver table slots. This function is called when a device is no longer
1405  *      in use. It also gets called when setup of a device fails.
1406  *
1407  *      Locking:
1408  *              tty_mutex - sometimes only
1409  *              takes the file list lock internally when working on the list
1410  *      of ttys that the driver keeps.
1411  *
1412  *      This method gets called from a work queue so that the driver private
1413  *      cleanup ops can sleep (needed for USB at least)
1414  */
1415 static void release_one_tty(struct work_struct *work)
1416 {
1417         struct tty_struct *tty =
1418                 container_of(work, struct tty_struct, hangup_work);
1419         struct tty_driver *driver = tty->driver;
1420
1421         if (tty->ops->cleanup)
1422                 tty->ops->cleanup(tty);
1423
1424         tty->magic = 0;
1425         tty_driver_kref_put(driver);
1426         module_put(driver->owner);
1427
1428         file_list_lock();
1429         list_del_init(&tty->tty_files);
1430         file_list_unlock();
1431
1432         put_pid(tty->pgrp);
1433         put_pid(tty->session);
1434         free_tty_struct(tty);
1435 }
1436
1437 static void queue_release_one_tty(struct kref *kref)
1438 {
1439         struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1440
1441         if (tty->ops->shutdown)
1442                 tty->ops->shutdown(tty);
1443         else
1444                 tty_shutdown(tty);
1445
1446         /* The hangup queue is now free so we can reuse it rather than
1447            waste a chunk of memory for each port */
1448         INIT_WORK(&tty->hangup_work, release_one_tty);
1449         schedule_work(&tty->hangup_work);
1450 }
1451
1452 /**
1453  *      tty_kref_put            -       release a tty kref
1454  *      @tty: tty device
1455  *
1456  *      Release a reference to a tty device and if need be let the kref
1457  *      layer destruct the object for us
1458  */
1459
1460 void tty_kref_put(struct tty_struct *tty)
1461 {
1462         if (tty)
1463                 kref_put(&tty->kref, queue_release_one_tty);
1464 }
1465 EXPORT_SYMBOL(tty_kref_put);
1466
1467 /**
1468  *      release_tty             -       release tty structure memory
1469  *
1470  *      Release both @tty and a possible linked partner (think pty pair),
1471  *      and decrement the refcount of the backing module.
1472  *
1473  *      Locking:
1474  *              tty_mutex - sometimes only
1475  *              takes the file list lock internally when working on the list
1476  *      of ttys that the driver keeps.
1477  *              FIXME: should we require tty_mutex is held here ??
1478  *
1479  */
1480 static void release_tty(struct tty_struct *tty, int idx)
1481 {
1482         /* This should always be true but check for the moment */
1483         WARN_ON(tty->index != idx);
1484
1485         if (tty->link)
1486                 tty_kref_put(tty->link);
1487         tty_kref_put(tty);
1488 }
1489
1490 /**
1491  *      tty_release             -       vfs callback for close
1492  *      @inode: inode of tty
1493  *      @filp: file pointer for handle to tty
1494  *
1495  *      Called the last time each file handle is closed that references
1496  *      this tty. There may however be several such references.
1497  *
1498  *      Locking:
1499  *              Takes bkl. See tty_release_dev
1500  *
1501  * Even releasing the tty structures is a tricky business.. We have
1502  * to be very careful that the structures are all released at the
1503  * same time, as interrupts might otherwise get the wrong pointers.
1504  *
1505  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1506  * lead to double frees or releasing memory still in use.
1507  */
1508
1509 int tty_release(struct inode *inode, struct file *filp)
1510 {
1511         struct tty_struct *tty, *o_tty;
1512         int     pty_master, tty_closing, o_tty_closing, do_sleep;
1513         int     devpts;
1514         int     idx;
1515         char    buf[64];
1516
1517         tty = (struct tty_struct *)filp->private_data;
1518         if (tty_paranoia_check(tty, inode, "tty_release_dev"))
1519                 return 0;
1520
1521         tty_lock();
1522         check_tty_count(tty, "tty_release_dev");
1523
1524         __tty_fasync(-1, filp, 0);
1525
1526         idx = tty->index;
1527         pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1528                       tty->driver->subtype == PTY_TYPE_MASTER);
1529         devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1530         o_tty = tty->link;
1531
1532 #ifdef TTY_PARANOIA_CHECK
1533         if (idx < 0 || idx >= tty->driver->num) {
1534                 printk(KERN_DEBUG "tty_release_dev: bad idx when trying to "
1535                                   "free (%s)\n", tty->name);
1536                 tty_unlock();
1537                 return 0;
1538         }
1539         if (!devpts) {
1540                 if (tty != tty->driver->ttys[idx]) {
1541                         tty_unlock();
1542                         printk(KERN_DEBUG "tty_release_dev: driver.table[%d] not tty "
1543                                "for (%s)\n", idx, tty->name);
1544                         return 0;
1545                 }
1546                 if (tty->termios != tty->driver->termios[idx]) {
1547                         tty_unlock();
1548                         printk(KERN_DEBUG "tty_release_dev: driver.termios[%d] not termios "
1549                                "for (%s)\n",
1550                                idx, tty->name);
1551                         return 0;
1552                 }
1553         }
1554 #endif
1555
1556 #ifdef TTY_DEBUG_HANGUP
1557         printk(KERN_DEBUG "tty_release_dev of %s (tty count=%d)...",
1558                tty_name(tty, buf), tty->count);
1559 #endif
1560
1561 #ifdef TTY_PARANOIA_CHECK
1562         if (tty->driver->other &&
1563              !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1564                 if (o_tty != tty->driver->other->ttys[idx]) {
1565                         tty_unlock();
1566                         printk(KERN_DEBUG "tty_release_dev: other->table[%d] "
1567                                           "not o_tty for (%s)\n",
1568                                idx, tty->name);
1569                         return 0 ;
1570                 }
1571                 if (o_tty->termios != tty->driver->other->termios[idx]) {
1572                         tty_unlock();
1573                         printk(KERN_DEBUG "tty_release_dev: other->termios[%d] "
1574                                           "not o_termios for (%s)\n",
1575                                idx, tty->name);
1576                         return 0;
1577                 }
1578                 if (o_tty->link != tty) {
1579                         tty_unlock();
1580                         printk(KERN_DEBUG "tty_release_dev: bad pty pointers\n");
1581                         return 0;
1582                 }
1583         }
1584 #endif
1585         if (tty->ops->close)
1586                 tty->ops->close(tty, filp);
1587
1588         tty_unlock();
1589         /*
1590          * Sanity check: if tty->count is going to zero, there shouldn't be
1591          * any waiters on tty->read_wait or tty->write_wait.  We test the
1592          * wait queues and kick everyone out _before_ actually starting to
1593          * close.  This ensures that we won't block while releasing the tty
1594          * structure.
1595          *
1596          * The test for the o_tty closing is necessary, since the master and
1597          * slave sides may close in any order.  If the slave side closes out
1598          * first, its count will be one, since the master side holds an open.
1599          * Thus this test wouldn't be triggered at the time the slave closes,
1600          * so we do it now.
1601          *
1602          * Note that it's possible for the tty to be opened again while we're
1603          * flushing out waiters.  By recalculating the closing flags before
1604          * each iteration we avoid any problems.
1605          */
1606         while (1) {
1607                 /* Guard against races with tty->count changes elsewhere and
1608                    opens on /dev/tty */
1609
1610                 mutex_lock(&tty_mutex);
1611                 tty_lock();
1612                 tty_closing = tty->count <= 1;
1613                 o_tty_closing = o_tty &&
1614                         (o_tty->count <= (pty_master ? 1 : 0));
1615                 do_sleep = 0;
1616
1617                 if (tty_closing) {
1618                         if (waitqueue_active(&tty->read_wait)) {
1619                                 wake_up_poll(&tty->read_wait, POLLIN);
1620                                 do_sleep++;
1621                         }
1622                         if (waitqueue_active(&tty->write_wait)) {
1623                                 wake_up_poll(&tty->write_wait, POLLOUT);
1624                                 do_sleep++;
1625                         }
1626                 }
1627                 if (o_tty_closing) {
1628                         if (waitqueue_active(&o_tty->read_wait)) {
1629                                 wake_up_poll(&o_tty->read_wait, POLLIN);
1630                                 do_sleep++;
1631                         }
1632                         if (waitqueue_active(&o_tty->write_wait)) {
1633                                 wake_up_poll(&o_tty->write_wait, POLLOUT);
1634                                 do_sleep++;
1635                         }
1636                 }
1637                 if (!do_sleep)
1638                         break;
1639
1640                 printk(KERN_WARNING "tty_release_dev: %s: read/write wait queue "
1641                                     "active!\n", tty_name(tty, buf));
1642                 tty_unlock();
1643                 mutex_unlock(&tty_mutex);
1644                 schedule();
1645         }
1646
1647         /*
1648          * The closing flags are now consistent with the open counts on
1649          * both sides, and we've completed the last operation that could
1650          * block, so it's safe to proceed with closing.
1651          */
1652         if (pty_master) {
1653                 if (--o_tty->count < 0) {
1654                         printk(KERN_WARNING "tty_release_dev: bad pty slave count "
1655                                             "(%d) for %s\n",
1656                                o_tty->count, tty_name(o_tty, buf));
1657                         o_tty->count = 0;
1658                 }
1659         }
1660         if (--tty->count < 0) {
1661                 printk(KERN_WARNING "tty_release_dev: bad tty->count (%d) for %s\n",
1662                        tty->count, tty_name(tty, buf));
1663                 tty->count = 0;
1664         }
1665
1666         /*
1667          * We've decremented tty->count, so we need to remove this file
1668          * descriptor off the tty->tty_files list; this serves two
1669          * purposes:
1670          *  - check_tty_count sees the correct number of file descriptors
1671          *    associated with this tty.
1672          *  - do_tty_hangup no longer sees this file descriptor as
1673          *    something that needs to be handled for hangups.
1674          */
1675         file_kill(filp);
1676         filp->private_data = NULL;
1677
1678         /*
1679          * Perform some housekeeping before deciding whether to return.
1680          *
1681          * Set the TTY_CLOSING flag if this was the last open.  In the
1682          * case of a pty we may have to wait around for the other side
1683          * to close, and TTY_CLOSING makes sure we can't be reopened.
1684          */
1685         if (tty_closing)
1686                 set_bit(TTY_CLOSING, &tty->flags);
1687         if (o_tty_closing)
1688                 set_bit(TTY_CLOSING, &o_tty->flags);
1689
1690         /*
1691          * If _either_ side is closing, make sure there aren't any
1692          * processes that still think tty or o_tty is their controlling
1693          * tty.
1694          */
1695         if (tty_closing || o_tty_closing) {
1696                 read_lock(&tasklist_lock);
1697                 session_clear_tty(tty->session);
1698                 if (o_tty)
1699                         session_clear_tty(o_tty->session);
1700                 read_unlock(&tasklist_lock);
1701         }
1702
1703         mutex_unlock(&tty_mutex);
1704
1705         /* check whether both sides are closing ... */
1706         if (!tty_closing || (o_tty && !o_tty_closing)) {
1707                 tty_unlock();
1708                 return 0;
1709         }
1710
1711 #ifdef TTY_DEBUG_HANGUP
1712         printk(KERN_DEBUG "freeing tty structure...");
1713 #endif
1714         /*
1715          * Ask the line discipline code to release its structures
1716          */
1717         tty_ldisc_release(tty, o_tty);
1718         /*
1719          * The release_tty function takes care of the details of clearing
1720          * the slots and preserving the termios structure.
1721          */
1722         release_tty(tty, idx);
1723
1724         /* Make this pty number available for reallocation */
1725         if (devpts)
1726                 devpts_kill_index(inode, idx);
1727         tty_unlock();
1728         return 0;
1729 }
1730
1731 /**
1732  *      tty_open                -       open a tty device
1733  *      @inode: inode of device file
1734  *      @filp: file pointer to tty
1735  *
1736  *      tty_open and tty_release keep up the tty count that contains the
1737  *      number of opens done on a tty. We cannot use the inode-count, as
1738  *      different inodes might point to the same tty.
1739  *
1740  *      Open-counting is needed for pty masters, as well as for keeping
1741  *      track of serial lines: DTR is dropped when the last close happens.
1742  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
1743  *
1744  *      The termios state of a pty is reset on first open so that
1745  *      settings don't persist across reuse.
1746  *
1747  *      Locking: tty_mutex protects tty, get_tty_driver and tty_init_dev work.
1748  *               tty->count should protect the rest.
1749  *               ->siglock protects ->signal/->sighand
1750  */
1751
1752 static int tty_open(struct inode *inode, struct file *filp)
1753 {
1754         struct tty_struct *tty = NULL;
1755         int noctty, retval;
1756         struct tty_driver *driver;
1757         int index;
1758         dev_t device = inode->i_rdev;
1759         unsigned saved_flags = filp->f_flags;
1760
1761         nonseekable_open(inode, filp);
1762
1763 retry_open:
1764         noctty = filp->f_flags & O_NOCTTY;
1765         index  = -1;
1766         retval = 0;
1767
1768         mutex_lock(&tty_mutex);
1769         tty_lock();
1770
1771         if (device == MKDEV(TTYAUX_MAJOR, 0)) {
1772                 tty = get_current_tty();
1773                 if (!tty) {
1774                         tty_unlock();
1775                         mutex_unlock(&tty_mutex);
1776                         return -ENXIO;
1777                 }
1778                 driver = tty_driver_kref_get(tty->driver);
1779                 index = tty->index;
1780                 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1781                 /* noctty = 1; */
1782                 /* FIXME: Should we take a driver reference ? */
1783                 tty_kref_put(tty);
1784                 goto got_driver;
1785         }
1786 #ifdef CONFIG_VT
1787         if (device == MKDEV(TTY_MAJOR, 0)) {
1788                 extern struct tty_driver *console_driver;
1789                 driver = tty_driver_kref_get(console_driver);
1790                 index = fg_console;
1791                 noctty = 1;
1792                 goto got_driver;
1793         }
1794 #endif
1795         if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1796                 struct tty_driver *console_driver = console_device(&index);
1797                 if (console_driver) {
1798                         driver = tty_driver_kref_get(console_driver);
1799                         if (driver) {
1800                                 /* Don't let /dev/console block */
1801                                 filp->f_flags |= O_NONBLOCK;
1802                                 noctty = 1;
1803                                 goto got_driver;
1804                         }
1805                 }
1806                 tty_unlock();
1807                 mutex_unlock(&tty_mutex);
1808                 return -ENODEV;
1809         }
1810
1811         driver = get_tty_driver(device, &index);
1812         if (!driver) {
1813                 tty_unlock();
1814                 mutex_unlock(&tty_mutex);
1815                 return -ENODEV;
1816         }
1817 got_driver:
1818         if (!tty) {
1819                 /* check whether we're reopening an existing tty */
1820                 tty = tty_driver_lookup_tty(driver, inode, index);
1821
1822                 if (IS_ERR(tty)) {
1823                         tty_unlock();
1824                         mutex_unlock(&tty_mutex);
1825                         return PTR_ERR(tty);
1826                 }
1827         }
1828
1829         if (tty) {
1830                 retval = tty_reopen(tty);
1831                 if (retval)
1832                         tty = ERR_PTR(retval);
1833         } else
1834                 tty = tty_init_dev(driver, index, 0);
1835
1836         mutex_unlock(&tty_mutex);
1837         tty_driver_kref_put(driver);
1838         if (IS_ERR(tty)) {
1839                 tty_unlock();
1840                 return PTR_ERR(tty);
1841         }
1842
1843         filp->private_data = tty;
1844         file_move(filp, &tty->tty_files);
1845         check_tty_count(tty, "tty_open");
1846         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1847             tty->driver->subtype == PTY_TYPE_MASTER)
1848                 noctty = 1;
1849 #ifdef TTY_DEBUG_HANGUP
1850         printk(KERN_DEBUG "opening %s...", tty->name);
1851 #endif
1852         if (!retval) {
1853                 if (tty->ops->open)
1854                         retval = tty->ops->open(tty, filp);
1855                 else
1856                         retval = -ENODEV;
1857         }
1858         filp->f_flags = saved_flags;
1859
1860         if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1861                                                 !capable(CAP_SYS_ADMIN))
1862                 retval = -EBUSY;
1863
1864         if (retval) {
1865 #ifdef TTY_DEBUG_HANGUP
1866                 printk(KERN_DEBUG "error %d in opening %s...", retval,
1867                        tty->name);
1868 #endif
1869                 tty_unlock(); /* need to call tty_release without BTM */
1870                 tty_release(inode, filp);
1871                 if (retval != -ERESTARTSYS)
1872                         return retval;
1873
1874                 if (signal_pending(current))
1875                         return retval;
1876
1877                 schedule();
1878                 /*
1879                  * Need to reset f_op in case a hangup happened.
1880                  */
1881                 tty_lock();
1882                 if (filp->f_op == &hung_up_tty_fops)
1883                         filp->f_op = &tty_fops;
1884                 tty_unlock();
1885                 goto retry_open;
1886         }
1887         tty_unlock();
1888
1889
1890         mutex_lock(&tty_mutex);
1891         tty_lock();
1892         spin_lock_irq(&current->sighand->siglock);
1893         if (!noctty &&
1894             current->signal->leader &&
1895             !current->signal->tty &&
1896             tty->session == NULL)
1897                 __proc_set_tty(current, tty);
1898         spin_unlock_irq(&current->sighand->siglock);
1899         tty_unlock();
1900         mutex_unlock(&tty_mutex);
1901         return 0;
1902 }
1903
1904
1905
1906 /**
1907  *      tty_poll        -       check tty status
1908  *      @filp: file being polled
1909  *      @wait: poll wait structures to update
1910  *
1911  *      Call the line discipline polling method to obtain the poll
1912  *      status of the device.
1913  *
1914  *      Locking: locks called line discipline but ldisc poll method
1915  *      may be re-entered freely by other callers.
1916  */
1917
1918 static unsigned int tty_poll(struct file *filp, poll_table *wait)
1919 {
1920         struct tty_struct *tty;
1921         struct tty_ldisc *ld;
1922         int ret = 0;
1923
1924         tty = (struct tty_struct *)filp->private_data;
1925         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
1926                 return 0;
1927
1928         ld = tty_ldisc_ref_wait(tty);
1929         if (ld->ops->poll)
1930                 ret = (ld->ops->poll)(tty, filp, wait);
1931         tty_ldisc_deref(ld);
1932         return ret;
1933 }
1934
1935 static int __tty_fasync(int fd, struct file *filp, int on)
1936 {
1937         struct tty_struct *tty;
1938         unsigned long flags;
1939         int retval = 0;
1940
1941         tty = (struct tty_struct *)filp->private_data;
1942         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
1943                 goto out;
1944
1945         retval = fasync_helper(fd, filp, on, &tty->fasync);
1946         if (retval <= 0)
1947                 goto out;
1948
1949         if (on) {
1950                 enum pid_type type;
1951                 struct pid *pid;
1952                 if (!waitqueue_active(&tty->read_wait))
1953                         tty->minimum_to_wake = 1;
1954                 spin_lock_irqsave(&tty->ctrl_lock, flags);
1955                 if (tty->pgrp) {
1956                         pid = tty->pgrp;
1957                         type = PIDTYPE_PGID;
1958                 } else {
1959                         pid = task_pid(current);
1960                         type = PIDTYPE_PID;
1961                 }
1962                 get_pid(pid);
1963                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
1964                 retval = __f_setown(filp, pid, type, 0);
1965                 put_pid(pid);
1966                 if (retval)
1967                         goto out;
1968         } else {
1969                 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
1970                         tty->minimum_to_wake = N_TTY_BUF_SIZE;
1971         }
1972         retval = 0;
1973 out:
1974         return retval;
1975 }
1976
1977 static int tty_fasync(int fd, struct file *filp, int on)
1978 {
1979         int retval;
1980         tty_lock();
1981         retval = __tty_fasync(fd, filp, on);
1982         tty_unlock();
1983         return retval;
1984 }
1985
1986 /**
1987  *      tiocsti                 -       fake input character
1988  *      @tty: tty to fake input into
1989  *      @p: pointer to character
1990  *
1991  *      Fake input to a tty device. Does the necessary locking and
1992  *      input management.
1993  *
1994  *      FIXME: does not honour flow control ??
1995  *
1996  *      Locking:
1997  *              Called functions take tty_ldisc_lock
1998  *              current->signal->tty check is safe without locks
1999  *
2000  *      FIXME: may race normal receive processing
2001  */
2002
2003 static int tiocsti(struct tty_struct *tty, char __user *p)
2004 {
2005         char ch, mbz = 0;
2006         struct tty_ldisc *ld;
2007
2008         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2009                 return -EPERM;
2010         if (get_user(ch, p))
2011                 return -EFAULT;
2012         tty_audit_tiocsti(tty, ch);
2013         ld = tty_ldisc_ref_wait(tty);
2014         ld->ops->receive_buf(tty, &ch, &mbz, 1);
2015         tty_ldisc_deref(ld);
2016         return 0;
2017 }
2018
2019 /**
2020  *      tiocgwinsz              -       implement window query ioctl
2021  *      @tty; tty
2022  *      @arg: user buffer for result
2023  *
2024  *      Copies the kernel idea of the window size into the user buffer.
2025  *
2026  *      Locking: tty->termios_mutex is taken to ensure the winsize data
2027  *              is consistent.
2028  */
2029
2030 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2031 {
2032         int err;
2033
2034         mutex_lock(&tty->termios_mutex);
2035         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2036         mutex_unlock(&tty->termios_mutex);
2037
2038         return err ? -EFAULT: 0;
2039 }
2040
2041 /**
2042  *      tty_do_resize           -       resize event
2043  *      @tty: tty being resized
2044  *      @rows: rows (character)
2045  *      @cols: cols (character)
2046  *
2047  *      Update the termios variables and send the necessary signals to
2048  *      peform a terminal resize correctly
2049  */
2050
2051 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2052 {
2053         struct pid *pgrp;
2054         unsigned long flags;
2055
2056         /* Lock the tty */
2057         mutex_lock(&tty->termios_mutex);
2058         if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2059                 goto done;
2060         /* Get the PID values and reference them so we can
2061            avoid holding the tty ctrl lock while sending signals */
2062         spin_lock_irqsave(&tty->ctrl_lock, flags);
2063         pgrp = get_pid(tty->pgrp);
2064         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2065
2066         if (pgrp)
2067                 kill_pgrp(pgrp, SIGWINCH, 1);
2068         put_pid(pgrp);
2069
2070         tty->winsize = *ws;
2071 done:
2072         mutex_unlock(&tty->termios_mutex);
2073         return 0;
2074 }
2075
2076 /**
2077  *      tiocswinsz              -       implement window size set ioctl
2078  *      @tty; tty side of tty
2079  *      @arg: user buffer for result
2080  *
2081  *      Copies the user idea of the window size to the kernel. Traditionally
2082  *      this is just advisory information but for the Linux console it
2083  *      actually has driver level meaning and triggers a VC resize.
2084  *
2085  *      Locking:
2086  *              Driver dependant. The default do_resize method takes the
2087  *      tty termios mutex and ctrl_lock. The console takes its own lock
2088  *      then calls into the default method.
2089  */
2090
2091 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2092 {
2093         struct winsize tmp_ws;
2094         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2095                 return -EFAULT;
2096
2097         if (tty->ops->resize)
2098                 return tty->ops->resize(tty, &tmp_ws);
2099         else
2100                 return tty_do_resize(tty, &tmp_ws);
2101 }
2102
2103 /**
2104  *      tioccons        -       allow admin to move logical console
2105  *      @file: the file to become console
2106  *
2107  *      Allow the adminstrator to move the redirected console device
2108  *
2109  *      Locking: uses redirect_lock to guard the redirect information
2110  */
2111
2112 static int tioccons(struct file *file)
2113 {
2114         if (!capable(CAP_SYS_ADMIN))
2115                 return -EPERM;
2116         if (file->f_op->write == redirected_tty_write) {
2117                 struct file *f;
2118                 spin_lock(&redirect_lock);
2119                 f = redirect;
2120                 redirect = NULL;
2121                 spin_unlock(&redirect_lock);
2122                 if (f)
2123                         fput(f);
2124                 return 0;
2125         }
2126         spin_lock(&redirect_lock);
2127         if (redirect) {
2128                 spin_unlock(&redirect_lock);
2129                 return -EBUSY;
2130         }
2131         get_file(file);
2132         redirect = file;
2133         spin_unlock(&redirect_lock);
2134         return 0;
2135 }
2136
2137 /**
2138  *      fionbio         -       non blocking ioctl
2139  *      @file: file to set blocking value
2140  *      @p: user parameter
2141  *
2142  *      Historical tty interfaces had a blocking control ioctl before
2143  *      the generic functionality existed. This piece of history is preserved
2144  *      in the expected tty API of posix OS's.
2145  *
2146  *      Locking: none, the open file handle ensures it won't go away.
2147  */
2148
2149 static int fionbio(struct file *file, int __user *p)
2150 {
2151         int nonblock;
2152
2153         if (get_user(nonblock, p))
2154                 return -EFAULT;
2155
2156         spin_lock(&file->f_lock);
2157         if (nonblock)
2158                 file->f_flags |= O_NONBLOCK;
2159         else
2160                 file->f_flags &= ~O_NONBLOCK;
2161         spin_unlock(&file->f_lock);
2162         return 0;
2163 }
2164
2165 /**
2166  *      tiocsctty       -       set controlling tty
2167  *      @tty: tty structure
2168  *      @arg: user argument
2169  *
2170  *      This ioctl is used to manage job control. It permits a session
2171  *      leader to set this tty as the controlling tty for the session.
2172  *
2173  *      Locking:
2174  *              Takes tty_mutex() to protect tty instance
2175  *              Takes tasklist_lock internally to walk sessions
2176  *              Takes ->siglock() when updating signal->tty
2177  */
2178
2179 static int tiocsctty(struct tty_struct *tty, int arg)
2180 {
2181         int ret = 0;
2182         if (current->signal->leader && (task_session(current) == tty->session))
2183                 return ret;
2184
2185         mutex_lock(&tty_mutex);
2186         /*
2187          * The process must be a session leader and
2188          * not have a controlling tty already.
2189          */
2190         if (!current->signal->leader || current->signal->tty) {
2191                 ret = -EPERM;
2192                 goto unlock;
2193         }
2194
2195         if (tty->session) {
2196                 /*
2197                  * This tty is already the controlling
2198                  * tty for another session group!
2199                  */
2200                 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2201                         /*
2202                          * Steal it away
2203                          */
2204                         read_lock(&tasklist_lock);
2205                         session_clear_tty(tty->session);
2206                         read_unlock(&tasklist_lock);
2207                 } else {
2208                         ret = -EPERM;
2209                         goto unlock;
2210                 }
2211         }
2212         proc_set_tty(current, tty);
2213 unlock:
2214         mutex_unlock(&tty_mutex);
2215         return ret;
2216 }
2217
2218 /**
2219  *      tty_get_pgrp    -       return a ref counted pgrp pid
2220  *      @tty: tty to read
2221  *
2222  *      Returns a refcounted instance of the pid struct for the process
2223  *      group controlling the tty.
2224  */
2225
2226 struct pid *tty_get_pgrp(struct tty_struct *tty)
2227 {
2228         unsigned long flags;
2229         struct pid *pgrp;
2230
2231         spin_lock_irqsave(&tty->ctrl_lock, flags);
2232         pgrp = get_pid(tty->pgrp);
2233         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2234
2235         return pgrp;
2236 }
2237 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2238
2239 /**
2240  *      tiocgpgrp               -       get process group
2241  *      @tty: tty passed by user
2242  *      @real_tty: tty side of the tty pased by the user if a pty else the tty
2243  *      @p: returned pid
2244  *
2245  *      Obtain the process group of the tty. If there is no process group
2246  *      return an error.
2247  *
2248  *      Locking: none. Reference to current->signal->tty is safe.
2249  */
2250
2251 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2252 {
2253         struct pid *pid;
2254         int ret;
2255         /*
2256          * (tty == real_tty) is a cheap way of
2257          * testing if the tty is NOT a master pty.
2258          */
2259         if (tty == real_tty && current->signal->tty != real_tty)
2260                 return -ENOTTY;
2261         pid = tty_get_pgrp(real_tty);
2262         ret =  put_user(pid_vnr(pid), p);
2263         put_pid(pid);
2264         return ret;
2265 }
2266
2267 /**
2268  *      tiocspgrp               -       attempt to set process group
2269  *      @tty: tty passed by user
2270  *      @real_tty: tty side device matching tty passed by user
2271  *      @p: pid pointer
2272  *
2273  *      Set the process group of the tty to the session passed. Only
2274  *      permitted where the tty session is our session.
2275  *
2276  *      Locking: RCU, ctrl lock
2277  */
2278
2279 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2280 {
2281         struct pid *pgrp;
2282         pid_t pgrp_nr;
2283         int retval = tty_check_change(real_tty);
2284         unsigned long flags;
2285
2286         if (retval == -EIO)
2287                 return -ENOTTY;
2288         if (retval)
2289                 return retval;
2290         if (!current->signal->tty ||
2291             (current->signal->tty != real_tty) ||
2292             (real_tty->session != task_session(current)))
2293                 return -ENOTTY;
2294         if (get_user(pgrp_nr, p))
2295                 return -EFAULT;
2296         if (pgrp_nr < 0)
2297                 return -EINVAL;
2298         rcu_read_lock();
2299         pgrp = find_vpid(pgrp_nr);
2300         retval = -ESRCH;
2301         if (!pgrp)
2302                 goto out_unlock;
2303         retval = -EPERM;
2304         if (session_of_pgrp(pgrp) != task_session(current))
2305                 goto out_unlock;
2306         retval = 0;
2307         spin_lock_irqsave(&tty->ctrl_lock, flags);
2308         put_pid(real_tty->pgrp);
2309         real_tty->pgrp = get_pid(pgrp);
2310         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2311 out_unlock:
2312         rcu_read_unlock();
2313         return retval;
2314 }
2315
2316 /**
2317  *      tiocgsid                -       get session id
2318  *      @tty: tty passed by user
2319  *      @real_tty: tty side of the tty pased by the user if a pty else the tty
2320  *      @p: pointer to returned session id
2321  *
2322  *      Obtain the session id of the tty. If there is no session
2323  *      return an error.
2324  *
2325  *      Locking: none. Reference to current->signal->tty is safe.
2326  */
2327
2328 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2329 {
2330         /*
2331          * (tty == real_tty) is a cheap way of
2332          * testing if the tty is NOT a master pty.
2333         */
2334         if (tty == real_tty && current->signal->tty != real_tty)
2335                 return -ENOTTY;
2336         if (!real_tty->session)
2337                 return -ENOTTY;
2338         return put_user(pid_vnr(real_tty->session), p);
2339 }
2340
2341 /**
2342  *      tiocsetd        -       set line discipline
2343  *      @tty: tty device
2344  *      @p: pointer to user data
2345  *
2346  *      Set the line discipline according to user request.
2347  *
2348  *      Locking: see tty_set_ldisc, this function is just a helper
2349  */
2350
2351 static int tiocsetd(struct tty_struct *tty, int __user *p)
2352 {
2353         int ldisc;
2354         int ret;
2355
2356         if (get_user(ldisc, p))
2357                 return -EFAULT;
2358
2359         ret = tty_set_ldisc(tty, ldisc);
2360
2361         return ret;
2362 }
2363
2364 /**
2365  *      send_break      -       performed time break
2366  *      @tty: device to break on
2367  *      @duration: timeout in mS
2368  *
2369  *      Perform a timed break on hardware that lacks its own driver level
2370  *      timed break functionality.
2371  *
2372  *      Locking:
2373  *              atomic_write_lock serializes
2374  *
2375  */
2376
2377 static int send_break(struct tty_struct *tty, unsigned int duration)
2378 {
2379         int retval;
2380
2381         if (tty->ops->break_ctl == NULL)
2382                 return 0;
2383
2384         if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2385                 retval = tty->ops->break_ctl(tty, duration);
2386         else {
2387                 /* Do the work ourselves */
2388                 if (tty_write_lock(tty, 0) < 0)
2389                         return -EINTR;
2390                 retval = tty->ops->break_ctl(tty, -1);
2391                 if (retval)
2392                         goto out;
2393                 if (!signal_pending(current))
2394                         msleep_interruptible(duration);
2395                 retval = tty->ops->break_ctl(tty, 0);
2396 out:
2397                 tty_write_unlock(tty);
2398                 if (signal_pending(current))
2399                         retval = -EINTR;
2400         }
2401         return retval;
2402 }
2403
2404 /**
2405  *      tty_tiocmget            -       get modem status
2406  *      @tty: tty device
2407  *      @file: user file pointer
2408  *      @p: pointer to result
2409  *
2410  *      Obtain the modem status bits from the tty driver if the feature
2411  *      is supported. Return -EINVAL if it is not available.
2412  *
2413  *      Locking: none (up to the driver)
2414  */
2415
2416 static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
2417 {
2418         int retval = -EINVAL;
2419
2420         if (tty->ops->tiocmget) {
2421                 retval = tty->ops->tiocmget(tty, file);
2422
2423                 if (retval >= 0)
2424                         retval = put_user(retval, p);
2425         }
2426         return retval;
2427 }
2428
2429 /**
2430  *      tty_tiocmset            -       set modem status
2431  *      @tty: tty device
2432  *      @file: user file pointer
2433  *      @cmd: command - clear bits, set bits or set all
2434  *      @p: pointer to desired bits
2435  *
2436  *      Set the modem status bits from the tty driver if the feature
2437  *      is supported. Return -EINVAL if it is not available.
2438  *
2439  *      Locking: none (up to the driver)
2440  */
2441
2442 static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
2443              unsigned __user *p)
2444 {
2445         int retval;
2446         unsigned int set, clear, val;
2447
2448         if (tty->ops->tiocmset == NULL)
2449                 return -EINVAL;
2450
2451         retval = get_user(val, p);
2452         if (retval)
2453                 return retval;
2454         set = clear = 0;
2455         switch (cmd) {
2456         case TIOCMBIS:
2457                 set = val;
2458                 break;
2459         case TIOCMBIC:
2460                 clear = val;
2461                 break;
2462         case TIOCMSET:
2463                 set = val;
2464                 clear = ~val;
2465                 break;
2466         }
2467         set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2468         clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2469         return tty->ops->tiocmset(tty, file, set, clear);
2470 }
2471
2472 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2473 {
2474         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2475             tty->driver->subtype == PTY_TYPE_MASTER)
2476                 tty = tty->link;
2477         return tty;
2478 }
2479 EXPORT_SYMBOL(tty_pair_get_tty);
2480
2481 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2482 {
2483         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2484             tty->driver->subtype == PTY_TYPE_MASTER)
2485             return tty;
2486         return tty->link;
2487 }
2488 EXPORT_SYMBOL(tty_pair_get_pty);
2489
2490 /*
2491  * Split this up, as gcc can choke on it otherwise..
2492  */
2493 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2494 {
2495         struct tty_struct *tty, *real_tty;
2496         void __user *p = (void __user *)arg;
2497         int retval;
2498         struct tty_ldisc *ld;
2499         struct inode *inode = file->f_dentry->d_inode;
2500
2501         tty = (struct tty_struct *)file->private_data;
2502         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2503                 return -EINVAL;
2504
2505         real_tty = tty_pair_get_tty(tty);
2506
2507         /*
2508          * Factor out some common prep work
2509          */
2510         switch (cmd) {
2511         case TIOCSETD:
2512         case TIOCSBRK:
2513         case TIOCCBRK:
2514         case TCSBRK:
2515         case TCSBRKP:
2516                 retval = tty_check_change(tty);
2517                 if (retval)
2518                         return retval;
2519                 if (cmd != TIOCCBRK) {
2520                         tty_wait_until_sent(tty, 0);
2521                         if (signal_pending(current))
2522                                 return -EINTR;
2523                 }
2524                 break;
2525         }
2526
2527         /*
2528          *      Now do the stuff.
2529          */
2530         switch (cmd) {
2531         case TIOCSTI:
2532                 return tiocsti(tty, p);
2533         case TIOCGWINSZ:
2534                 return tiocgwinsz(real_tty, p);
2535         case TIOCSWINSZ:
2536                 return tiocswinsz(real_tty, p);
2537         case TIOCCONS:
2538                 return real_tty != tty ? -EINVAL : tioccons(file);
2539         case FIONBIO:
2540                 return fionbio(file, p);
2541         case TIOCEXCL:
2542                 set_bit(TTY_EXCLUSIVE, &tty->flags);
2543                 return 0;
2544         case TIOCNXCL:
2545                 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2546                 return 0;
2547         case TIOCNOTTY:
2548                 if (current->signal->tty != tty)
2549                         return -ENOTTY;
2550                 no_tty();
2551                 return 0;
2552         case TIOCSCTTY:
2553                 return tiocsctty(tty, arg);
2554         case TIOCGPGRP:
2555                 return tiocgpgrp(tty, real_tty, p);
2556         case TIOCSPGRP:
2557                 return tiocspgrp(tty, real_tty, p);
2558         case TIOCGSID:
2559                 return tiocgsid(tty, real_tty, p);
2560         case TIOCGETD:
2561                 return put_user(tty->ldisc->ops->num, (int __user *)p);
2562         case TIOCSETD:
2563                 return tiocsetd(tty, p);
2564         /*
2565          * Break handling
2566          */
2567         case TIOCSBRK:  /* Turn break on, unconditionally */
2568                 if (tty->ops->break_ctl)
2569                         return tty->ops->break_ctl(tty, -1);
2570                 return 0;
2571         case TIOCCBRK:  /* Turn break off, unconditionally */
2572                 if (tty->ops->break_ctl)
2573                         return tty->ops->break_ctl(tty, 0);
2574                 return 0;
2575         case TCSBRK:   /* SVID version: non-zero arg --> no break */
2576                 /* non-zero arg means wait for all output data
2577                  * to be sent (performed above) but don't send break.
2578                  * This is used by the tcdrain() termios function.
2579                  */
2580                 if (!arg)
2581                         return send_break(tty, 250);
2582                 return 0;
2583         case TCSBRKP:   /* support for POSIX tcsendbreak() */
2584                 return send_break(tty, arg ? arg*100 : 250);
2585
2586         case TIOCMGET:
2587                 return tty_tiocmget(tty, file, p);
2588         case TIOCMSET:
2589         case TIOCMBIC:
2590         case TIOCMBIS:
2591                 return tty_tiocmset(tty, file, cmd, p);
2592         case TCFLSH:
2593                 switch (arg) {
2594                 case TCIFLUSH:
2595                 case TCIOFLUSH:
2596                 /* flush tty buffer and allow ldisc to process ioctl */
2597                         tty_buffer_flush(tty);
2598                         break;
2599                 }
2600                 break;
2601         }
2602         if (tty->ops->ioctl) {
2603                 retval = (tty->ops->ioctl)(tty, file, cmd, arg);
2604                 if (retval != -ENOIOCTLCMD)
2605                         return retval;
2606         }
2607         ld = tty_ldisc_ref_wait(tty);
2608         retval = -EINVAL;
2609         if (ld->ops->ioctl) {
2610                 retval = ld->ops->ioctl(tty, file, cmd, arg);
2611                 if (retval == -ENOIOCTLCMD)
2612                         retval = -EINVAL;
2613         }
2614         tty_ldisc_deref(ld);
2615         return retval;
2616 }
2617
2618 #ifdef CONFIG_COMPAT
2619 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2620                                 unsigned long arg)
2621 {
2622         struct inode *inode = file->f_dentry->d_inode;
2623         struct tty_struct *tty = file->private_data;
2624         struct tty_ldisc *ld;
2625         int retval = -ENOIOCTLCMD;
2626
2627         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2628                 return -EINVAL;
2629
2630         if (tty->ops->compat_ioctl) {
2631                 retval = (tty->ops->compat_ioctl)(tty, file, cmd, arg);
2632                 if (retval != -ENOIOCTLCMD)
2633                         return retval;
2634         }
2635
2636         ld = tty_ldisc_ref_wait(tty);
2637         if (ld->ops->compat_ioctl)
2638                 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2639         tty_ldisc_deref(ld);
2640
2641         return retval;
2642 }
2643 #endif
2644
2645 /*
2646  * This implements the "Secure Attention Key" ---  the idea is to
2647  * prevent trojan horses by killing all processes associated with this
2648  * tty when the user hits the "Secure Attention Key".  Required for
2649  * super-paranoid applications --- see the Orange Book for more details.
2650  *
2651  * This code could be nicer; ideally it should send a HUP, wait a few
2652  * seconds, then send a INT, and then a KILL signal.  But you then
2653  * have to coordinate with the init process, since all processes associated
2654  * with the current tty must be dead before the new getty is allowed
2655  * to spawn.
2656  *
2657  * Now, if it would be correct ;-/ The current code has a nasty hole -
2658  * it doesn't catch files in flight. We may send the descriptor to ourselves
2659  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2660  *
2661  * Nasty bug: do_SAK is being called in interrupt context.  This can
2662  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2663  */
2664 void __do_SAK(struct tty_struct *tty)
2665 {
2666 #ifdef TTY_SOFT_SAK
2667         tty_hangup(tty);
2668 #else
2669         struct task_struct *g, *p;
2670         struct pid *session;
2671         int             i;
2672         struct file     *filp;
2673         struct fdtable *fdt;
2674
2675         if (!tty)
2676                 return;
2677         session = tty->session;
2678
2679         tty_ldisc_flush(tty);
2680
2681         tty_driver_flush_buffer(tty);
2682
2683         read_lock(&tasklist_lock);
2684         /* Kill the entire session */
2685         do_each_pid_task(session, PIDTYPE_SID, p) {
2686                 printk(KERN_NOTICE "SAK: killed process %d"
2687                         " (%s): task_session(p)==tty->session\n",
2688                         task_pid_nr(p), p->comm);
2689                 send_sig(SIGKILL, p, 1);
2690         } while_each_pid_task(session, PIDTYPE_SID, p);
2691         /* Now kill any processes that happen to have the
2692          * tty open.
2693          */
2694         do_each_thread(g, p) {
2695                 if (p->signal->tty == tty) {
2696                         printk(KERN_NOTICE "SAK: killed process %d"
2697                             " (%s): task_session(p)==tty->session\n",
2698                             task_pid_nr(p), p->comm);
2699                         send_sig(SIGKILL, p, 1);
2700                         continue;
2701                 }
2702                 task_lock(p);
2703                 if (p->files) {
2704                         /*
2705                          * We don't take a ref to the file, so we must
2706                          * hold ->file_lock instead.
2707                          */
2708                         spin_lock(&p->files->file_lock);
2709                         fdt = files_fdtable(p->files);
2710                         for (i = 0; i < fdt->max_fds; i++) {
2711                                 filp = fcheck_files(p->files, i);
2712                                 if (!filp)
2713                                         continue;
2714                                 if (filp->f_op->read == tty_read &&
2715                                     filp->private_data == tty) {
2716                                         printk(KERN_NOTICE "SAK: killed process %d"
2717                                             " (%s): fd#%d opened to the tty\n",
2718                                             task_pid_nr(p), p->comm, i);
2719                                         force_sig(SIGKILL, p);
2720                                         break;
2721                                 }
2722                         }
2723                         spin_unlock(&p->files->file_lock);
2724                 }
2725                 task_unlock(p);
2726         } while_each_thread(g, p);
2727         read_unlock(&tasklist_lock);
2728 #endif
2729 }
2730
2731 static void do_SAK_work(struct work_struct *work)
2732 {
2733         struct tty_struct *tty =
2734                 container_of(work, struct tty_struct, SAK_work);
2735         __do_SAK(tty);
2736 }
2737
2738 /*
2739  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2740  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2741  * the values which we write to it will be identical to the values which it
2742  * already has. --akpm
2743  */
2744 void do_SAK(struct tty_struct *tty)
2745 {
2746         if (!tty)
2747                 return;
2748         schedule_work(&tty->SAK_work);
2749 }
2750
2751 EXPORT_SYMBOL(do_SAK);
2752
2753 /**
2754  *      initialize_tty_struct
2755  *      @tty: tty to initialize
2756  *
2757  *      This subroutine initializes a tty structure that has been newly
2758  *      allocated.
2759  *
2760  *      Locking: none - tty in question must not be exposed at this point
2761  */
2762
2763 void initialize_tty_struct(struct tty_struct *tty,
2764                 struct tty_driver *driver, int idx)
2765 {
2766         memset(tty, 0, sizeof(struct tty_struct));
2767         kref_init(&tty->kref);
2768         tty->magic = TTY_MAGIC;
2769         tty_ldisc_init(tty);
2770         tty->session = NULL;
2771         tty->pgrp = NULL;
2772         tty->overrun_time = jiffies;
2773         tty->buf.head = tty->buf.tail = NULL;
2774         tty_buffer_init(tty);
2775         mutex_init(&tty->termios_mutex);
2776         mutex_init(&tty->ldisc_mutex);
2777         init_waitqueue_head(&tty->write_wait);
2778         init_waitqueue_head(&tty->read_wait);
2779         INIT_WORK(&tty->hangup_work, do_tty_hangup);
2780         mutex_init(&tty->atomic_read_lock);
2781         mutex_init(&tty->atomic_write_lock);
2782         mutex_init(&tty->output_lock);
2783         mutex_init(&tty->echo_lock);
2784         spin_lock_init(&tty->read_lock);
2785         spin_lock_init(&tty->ctrl_lock);
2786         INIT_LIST_HEAD(&tty->tty_files);
2787         INIT_WORK(&tty->SAK_work, do_SAK_work);
2788
2789         tty->driver = driver;
2790         tty->ops = driver->ops;
2791         tty->index = idx;
2792         tty_line_name(driver, idx, tty->name);
2793 }
2794
2795 /**
2796  *      tty_put_char    -       write one character to a tty
2797  *      @tty: tty
2798  *      @ch: character
2799  *
2800  *      Write one byte to the tty using the provided put_char method
2801  *      if present. Returns the number of characters successfully output.
2802  *
2803  *      Note: the specific put_char operation in the driver layer may go
2804  *      away soon. Don't call it directly, use this method
2805  */
2806
2807 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2808 {
2809         if (tty->ops->put_char)
2810                 return tty->ops->put_char(tty, ch);
2811         return tty->ops->write(tty, &ch, 1);
2812 }
2813 EXPORT_SYMBOL_GPL(tty_put_char);
2814
2815 struct class *tty_class;
2816
2817 /**
2818  *      tty_register_device - register a tty device
2819  *      @driver: the tty driver that describes the tty device
2820  *      @index: the index in the tty driver for this tty device
2821  *      @device: a struct device that is associated with this tty device.
2822  *              This field is optional, if there is no known struct device
2823  *              for this tty device it can be set to NULL safely.
2824  *
2825  *      Returns a pointer to the struct device for this tty device
2826  *      (or ERR_PTR(-EFOO) on error).
2827  *
2828  *      This call is required to be made to register an individual tty device
2829  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
2830  *      that bit is not set, this function should not be called by a tty
2831  *      driver.
2832  *
2833  *      Locking: ??
2834  */
2835
2836 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2837                                    struct device *device)
2838 {
2839         char name[64];
2840         dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
2841
2842         if (index >= driver->num) {
2843                 printk(KERN_ERR "Attempt to register invalid tty line number "
2844                        " (%d).\n", index);
2845                 return ERR_PTR(-EINVAL);
2846         }
2847
2848         if (driver->type == TTY_DRIVER_TYPE_PTY)
2849                 pty_line_name(driver, index, name);
2850         else
2851                 tty_line_name(driver, index, name);
2852
2853         return device_create(tty_class, device, dev, NULL, name);
2854 }
2855 EXPORT_SYMBOL(tty_register_device);
2856
2857 /**
2858  *      tty_unregister_device - unregister a tty device
2859  *      @driver: the tty driver that describes the tty device
2860  *      @index: the index in the tty driver for this tty device
2861  *
2862  *      If a tty device is registered with a call to tty_register_device() then
2863  *      this function must be called when the tty device is gone.
2864  *
2865  *      Locking: ??
2866  */
2867
2868 void tty_unregister_device(struct tty_driver *driver, unsigned index)
2869 {
2870         device_destroy(tty_class,
2871                 MKDEV(driver->major, driver->minor_start) + index);
2872 }
2873 EXPORT_SYMBOL(tty_unregister_device);
2874
2875 struct tty_driver *alloc_tty_driver(int lines)
2876 {
2877         struct tty_driver *driver;
2878
2879         driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
2880         if (driver) {
2881                 kref_init(&driver->kref);
2882                 driver->magic = TTY_DRIVER_MAGIC;
2883                 driver->num = lines;
2884                 /* later we'll move allocation of tables here */
2885         }
2886         return driver;
2887 }
2888 EXPORT_SYMBOL(alloc_tty_driver);
2889
2890 static void destruct_tty_driver(struct kref *kref)
2891 {
2892         struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
2893         int i;
2894         struct ktermios *tp;
2895         void *p;
2896
2897         if (driver->flags & TTY_DRIVER_INSTALLED) {
2898                 /*
2899                  * Free the termios and termios_locked structures because
2900                  * we don't want to get memory leaks when modular tty
2901                  * drivers are removed from the kernel.
2902                  */
2903                 for (i = 0; i < driver->num; i++) {
2904                         tp = driver->termios[i];
2905                         if (tp) {
2906                                 driver->termios[i] = NULL;
2907                                 kfree(tp);
2908                         }
2909                         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
2910                                 tty_unregister_device(driver, i);
2911                 }
2912                 p = driver->ttys;
2913                 proc_tty_unregister_driver(driver);
2914                 driver->ttys = NULL;
2915                 driver->termios = NULL;
2916                 kfree(p);
2917                 cdev_del(&driver->cdev);
2918         }
2919         kfree(driver);
2920 }
2921
2922 void tty_driver_kref_put(struct tty_driver *driver)
2923 {
2924         kref_put(&driver->kref, destruct_tty_driver);
2925 }
2926 EXPORT_SYMBOL(tty_driver_kref_put);
2927
2928 void tty_set_operations(struct tty_driver *driver,
2929                         const struct tty_operations *op)
2930 {
2931         driver->ops = op;
2932 };
2933 EXPORT_SYMBOL(tty_set_operations);
2934
2935 void put_tty_driver(struct tty_driver *d)
2936 {
2937         tty_driver_kref_put(d);
2938 }
2939 EXPORT_SYMBOL(put_tty_driver);
2940
2941 /*
2942  * Called by a tty driver to register itself.
2943  */
2944 int tty_register_driver(struct tty_driver *driver)
2945 {
2946         int error;
2947         int i;
2948         dev_t dev;
2949         void **p = NULL;
2950
2951         if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
2952                 p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
2953                 if (!p)
2954                         return -ENOMEM;
2955         }
2956
2957         if (!driver->major) {
2958                 error = alloc_chrdev_region(&dev, driver->minor_start,
2959                                                 driver->num, driver->name);
2960                 if (!error) {
2961                         driver->major = MAJOR(dev);
2962                         driver->minor_start = MINOR(dev);
2963                 }
2964         } else {
2965                 dev = MKDEV(driver->major, driver->minor_start);
2966                 error = register_chrdev_region(dev, driver->num, driver->name);
2967         }
2968         if (error < 0) {
2969                 kfree(p);
2970                 return error;
2971         }
2972
2973         if (p) {
2974                 driver->ttys = (struct tty_struct **)p;
2975                 driver->termios = (struct ktermios **)(p + driver->num);
2976         } else {
2977                 driver->ttys = NULL;
2978                 driver->termios = NULL;
2979         }
2980
2981         cdev_init(&driver->cdev, &tty_fops);
2982         driver->cdev.owner = driver->owner;
2983         error = cdev_add(&driver->cdev, dev, driver->num);
2984         if (error) {
2985                 unregister_chrdev_region(dev, driver->num);
2986                 driver->ttys = NULL;
2987                 driver->termios = NULL;
2988                 kfree(p);
2989                 return error;
2990         }
2991
2992         mutex_lock(&tty_mutex);
2993         list_add(&driver->tty_drivers, &tty_drivers);
2994         mutex_unlock(&tty_mutex);
2995
2996         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
2997                 for (i = 0; i < driver->num; i++)
2998                     tty_register_device(driver, i, NULL);
2999         }
3000         proc_tty_register_driver(driver);
3001         driver->flags |= TTY_DRIVER_INSTALLED;
3002         return 0;
3003 }
3004
3005 EXPORT_SYMBOL(tty_register_driver);
3006
3007 /*
3008  * Called by a tty driver to unregister itself.
3009  */
3010 int tty_unregister_driver(struct tty_driver *driver)
3011 {
3012 #if 0
3013         /* FIXME */
3014         if (driver->refcount)
3015                 return -EBUSY;
3016 #endif
3017         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3018                                 driver->num);
3019         mutex_lock(&tty_mutex);
3020         list_del(&driver->tty_drivers);
3021         mutex_unlock(&tty_mutex);
3022         return 0;
3023 }
3024
3025 EXPORT_SYMBOL(tty_unregister_driver);
3026
3027 dev_t tty_devnum(struct tty_struct *tty)
3028 {
3029         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3030 }
3031 EXPORT_SYMBOL(tty_devnum);
3032
3033 void proc_clear_tty(struct task_struct *p)
3034 {
3035         unsigned long flags;
3036         struct tty_struct *tty;
3037         spin_lock_irqsave(&p->sighand->siglock, flags);
3038         tty = p->signal->tty;
3039         p->signal->tty = NULL;
3040         spin_unlock_irqrestore(&p->sighand->siglock, flags);
3041         tty_kref_put(tty);
3042 }
3043
3044 /* Called under the sighand lock */
3045
3046 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3047 {
3048         if (tty) {
3049                 unsigned long flags;
3050                 /* We should not have a session or pgrp to put here but.... */
3051                 spin_lock_irqsave(&tty->ctrl_lock, flags);
3052                 put_pid(tty->session);
3053                 put_pid(tty->pgrp);
3054                 tty->pgrp = get_pid(task_pgrp(tsk));
3055                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3056                 tty->session = get_pid(task_session(tsk));
3057                 if (tsk->signal->tty) {
3058                         printk(KERN_DEBUG "tty not NULL!!\n");
3059                         tty_kref_put(tsk->signal->tty);
3060                 }
3061         }
3062         put_pid(tsk->signal->tty_old_pgrp);
3063         tsk->signal->tty = tty_kref_get(tty);
3064         tsk->signal->tty_old_pgrp = NULL;
3065 }
3066
3067 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3068 {
3069         spin_lock_irq(&tsk->sighand->siglock);
3070         __proc_set_tty(tsk, tty);
3071         spin_unlock_irq(&tsk->sighand->siglock);
3072 }
3073
3074 struct tty_struct *get_current_tty(void)
3075 {
3076         struct tty_struct *tty;
3077         unsigned long flags;
3078
3079         spin_lock_irqsave(&current->sighand->siglock, flags);
3080         tty = tty_kref_get(current->signal->tty);
3081         spin_unlock_irqrestore(&current->sighand->siglock, flags);
3082         return tty;
3083 }
3084 EXPORT_SYMBOL_GPL(get_current_tty);
3085
3086 void tty_default_fops(struct file_operations *fops)
3087 {
3088         *fops = tty_fops;
3089 }
3090
3091 /*
3092  * Initialize the console device. This is called *early*, so
3093  * we can't necessarily depend on lots of kernel help here.
3094  * Just do some early initializations, and do the complex setup
3095  * later.
3096  */
3097 void __init console_init(void)
3098 {
3099         initcall_t *call;
3100
3101         /* Setup the default TTY line discipline. */
3102         tty_ldisc_begin();
3103
3104         /*
3105          * set up the console device so that later boot sequences can
3106          * inform about problems etc..
3107          */
3108         call = __con_initcall_start;
3109         while (call < __con_initcall_end) {
3110                 (*call)();
3111                 call++;
3112         }
3113 }
3114
3115 static char *tty_devnode(struct device *dev, mode_t *mode)
3116 {
3117         if (!mode)
3118                 return NULL;
3119         if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3120             dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3121                 *mode = 0666;
3122         return NULL;
3123 }
3124
3125 static int __init tty_class_init(void)
3126 {
3127         tty_class = class_create(THIS_MODULE, "tty");
3128         if (IS_ERR(tty_class))
3129                 return PTR_ERR(tty_class);
3130         tty_class->devnode = tty_devnode;
3131         return 0;
3132 }
3133
3134 postcore_initcall(tty_class_init);
3135
3136 /* 3/2004 jmc: why do these devices exist? */
3137
3138 static struct cdev tty_cdev, console_cdev;
3139
3140 /*
3141  * Ok, now we can initialize the rest of the tty devices and can count
3142  * on memory allocations, interrupts etc..
3143  */
3144 int __init tty_init(void)
3145 {
3146         cdev_init(&tty_cdev, &tty_fops);
3147         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3148             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3149                 panic("Couldn't register /dev/tty driver\n");
3150         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL,
3151                               "tty");
3152
3153         cdev_init(&console_cdev, &console_fops);
3154         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3155             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3156                 panic("Couldn't register /dev/console driver\n");
3157         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3158                               "console");
3159
3160 #ifdef CONFIG_VT
3161         vty_init(&console_fops);
3162 #endif
3163         return 0;
3164 }
3165