Linux 6.10-rc6
[linux-2.6-block.git] / drivers / char / hw_random / n2-drv.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* n2-drv.c: Niagara-2 RNG driver.
3  *
4  * Copyright (C) 2008, 2011 David S. Miller <davem@davemloft.net>
5  */
6
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/types.h>
10 #include <linux/delay.h>
11 #include <linux/slab.h>
12 #include <linux/workqueue.h>
13 #include <linux/preempt.h>
14 #include <linux/hw_random.h>
15
16 #include <linux/of.h>
17 #include <linux/platform_device.h>
18 #include <linux/property.h>
19
20 #include <asm/hypervisor.h>
21
22 #include "n2rng.h"
23
24 #define DRV_MODULE_NAME         "n2rng"
25 #define PFX DRV_MODULE_NAME     ": "
26 #define DRV_MODULE_VERSION      "0.3"
27 #define DRV_MODULE_RELDATE      "Jan 7, 2017"
28
29 static char version[] =
30         DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
31
32 MODULE_AUTHOR("David S. Miller <davem@davemloft.net>");
33 MODULE_DESCRIPTION("Niagara2 RNG driver");
34 MODULE_LICENSE("GPL");
35 MODULE_VERSION(DRV_MODULE_VERSION);
36
37 /* The Niagara2 RNG provides a 64-bit read-only random number
38  * register, plus a control register.  Access to the RNG is
39  * virtualized through the hypervisor so that both guests and control
40  * nodes can access the device.
41  *
42  * The entropy source consists of raw entropy sources, each
43  * constructed from a voltage controlled oscillator whose phase is
44  * jittered by thermal noise sources.
45  *
46  * The oscillator in each of the three raw entropy sources run at
47  * different frequencies.  Normally, all three generator outputs are
48  * gathered, xored together, and fed into a CRC circuit, the output of
49  * which is the 64-bit read-only register.
50  *
51  * Some time is necessary for all the necessary entropy to build up
52  * such that a full 64-bits of entropy are available in the register.
53  * In normal operating mode (RNG_CTL_LFSR is set), the chip implements
54  * an interlock which blocks register reads until sufficient entropy
55  * is available.
56  *
57  * A control register is provided for adjusting various aspects of RNG
58  * operation, and to enable diagnostic modes.  Each of the three raw
59  * entropy sources has an enable bit (RNG_CTL_ES{1,2,3}).  Also
60  * provided are fields for controlling the minimum time in cycles
61  * between read accesses to the register (RNG_CTL_WAIT, this controls
62  * the interlock described in the previous paragraph).
63  *
64  * The standard setting is to have the mode bit (RNG_CTL_LFSR) set,
65  * all three entropy sources enabled, and the interlock time set
66  * appropriately.
67  *
68  * The CRC polynomial used by the chip is:
69  *
70  * P(X) = x64 + x61 + x57 + x56 + x52 + x51 + x50 + x48 + x47 + x46 +
71  *        x43 + x42 + x41 + x39 + x38 + x37 + x35 + x32 + x28 + x25 +
72  *        x22 + x21 + x17 + x15 + x13 + x12 + x11 + x7 + x5 + x + 1
73  *
74  * The RNG_CTL_VCO value of each noise cell must be programmed
75  * separately.  This is why 4 control register values must be provided
76  * to the hypervisor.  During a write, the hypervisor writes them all,
77  * one at a time, to the actual RNG_CTL register.  The first three
78  * values are used to setup the desired RNG_CTL_VCO for each entropy
79  * source, for example:
80  *
81  *      control 0: (1 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES1
82  *      control 1: (2 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES2
83  *      control 2: (3 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES3
84  *
85  * And then the fourth value sets the final chip state and enables
86  * desired.
87  */
88
89 static int n2rng_hv_err_trans(unsigned long hv_err)
90 {
91         switch (hv_err) {
92         case HV_EOK:
93                 return 0;
94         case HV_EWOULDBLOCK:
95                 return -EAGAIN;
96         case HV_ENOACCESS:
97                 return -EPERM;
98         case HV_EIO:
99                 return -EIO;
100         case HV_EBUSY:
101                 return -EBUSY;
102         case HV_EBADALIGN:
103         case HV_ENORADDR:
104                 return -EFAULT;
105         default:
106                 return -EINVAL;
107         }
108 }
109
110 static unsigned long n2rng_generic_read_control_v2(unsigned long ra,
111                                                    unsigned long unit)
112 {
113         unsigned long hv_err, state, ticks, watchdog_delta, watchdog_status;
114         int block = 0, busy = 0;
115
116         while (1) {
117                 hv_err = sun4v_rng_ctl_read_v2(ra, unit, &state,
118                                                &ticks,
119                                                &watchdog_delta,
120                                                &watchdog_status);
121                 if (hv_err == HV_EOK)
122                         break;
123
124                 if (hv_err == HV_EBUSY) {
125                         if (++busy >= N2RNG_BUSY_LIMIT)
126                                 break;
127
128                         udelay(1);
129                 } else if (hv_err == HV_EWOULDBLOCK) {
130                         if (++block >= N2RNG_BLOCK_LIMIT)
131                                 break;
132
133                         __delay(ticks);
134                 } else
135                         break;
136         }
137
138         return hv_err;
139 }
140
141 /* In multi-socket situations, the hypervisor might need to
142  * queue up the RNG control register write if it's for a unit
143  * that is on a cpu socket other than the one we are executing on.
144  *
145  * We poll here waiting for a successful read of that control
146  * register to make sure the write has been actually performed.
147  */
148 static unsigned long n2rng_control_settle_v2(struct n2rng *np, int unit)
149 {
150         unsigned long ra = __pa(&np->scratch_control[0]);
151
152         return n2rng_generic_read_control_v2(ra, unit);
153 }
154
155 static unsigned long n2rng_write_ctl_one(struct n2rng *np, int unit,
156                                          unsigned long state,
157                                          unsigned long control_ra,
158                                          unsigned long watchdog_timeout,
159                                          unsigned long *ticks)
160 {
161         unsigned long hv_err;
162
163         if (np->hvapi_major == 1) {
164                 hv_err = sun4v_rng_ctl_write_v1(control_ra, state,
165                                                 watchdog_timeout, ticks);
166         } else {
167                 hv_err = sun4v_rng_ctl_write_v2(control_ra, state,
168                                                 watchdog_timeout, unit);
169                 if (hv_err == HV_EOK)
170                         hv_err = n2rng_control_settle_v2(np, unit);
171                 *ticks = N2RNG_ACCUM_CYCLES_DEFAULT;
172         }
173
174         return hv_err;
175 }
176
177 static int n2rng_generic_read_data(unsigned long data_ra)
178 {
179         unsigned long ticks, hv_err;
180         int block = 0, hcheck = 0;
181
182         while (1) {
183                 hv_err = sun4v_rng_data_read(data_ra, &ticks);
184                 if (hv_err == HV_EOK)
185                         return 0;
186
187                 if (hv_err == HV_EWOULDBLOCK) {
188                         if (++block >= N2RNG_BLOCK_LIMIT)
189                                 return -EWOULDBLOCK;
190                         __delay(ticks);
191                 } else if (hv_err == HV_ENOACCESS) {
192                         return -EPERM;
193                 } else if (hv_err == HV_EIO) {
194                         if (++hcheck >= N2RNG_HCHECK_LIMIT)
195                                 return -EIO;
196                         udelay(10000);
197                 } else
198                         return -ENODEV;
199         }
200 }
201
202 static unsigned long n2rng_read_diag_data_one(struct n2rng *np,
203                                               unsigned long unit,
204                                               unsigned long data_ra,
205                                               unsigned long data_len,
206                                               unsigned long *ticks)
207 {
208         unsigned long hv_err;
209
210         if (np->hvapi_major == 1) {
211                 hv_err = sun4v_rng_data_read_diag_v1(data_ra, data_len, ticks);
212         } else {
213                 hv_err = sun4v_rng_data_read_diag_v2(data_ra, data_len,
214                                                      unit, ticks);
215                 if (!*ticks)
216                         *ticks = N2RNG_ACCUM_CYCLES_DEFAULT;
217         }
218         return hv_err;
219 }
220
221 static int n2rng_generic_read_diag_data(struct n2rng *np,
222                                         unsigned long unit,
223                                         unsigned long data_ra,
224                                         unsigned long data_len)
225 {
226         unsigned long ticks, hv_err;
227         int block = 0;
228
229         while (1) {
230                 hv_err = n2rng_read_diag_data_one(np, unit,
231                                                   data_ra, data_len,
232                                                   &ticks);
233                 if (hv_err == HV_EOK)
234                         return 0;
235
236                 if (hv_err == HV_EWOULDBLOCK) {
237                         if (++block >= N2RNG_BLOCK_LIMIT)
238                                 return -EWOULDBLOCK;
239                         __delay(ticks);
240                 } else if (hv_err == HV_ENOACCESS) {
241                         return -EPERM;
242                 } else if (hv_err == HV_EIO) {
243                         return -EIO;
244                 } else
245                         return -ENODEV;
246         }
247 }
248
249
250 static int n2rng_generic_write_control(struct n2rng *np,
251                                        unsigned long control_ra,
252                                        unsigned long unit,
253                                        unsigned long state)
254 {
255         unsigned long hv_err, ticks;
256         int block = 0, busy = 0;
257
258         while (1) {
259                 hv_err = n2rng_write_ctl_one(np, unit, state, control_ra,
260                                              np->wd_timeo, &ticks);
261                 if (hv_err == HV_EOK)
262                         return 0;
263
264                 if (hv_err == HV_EWOULDBLOCK) {
265                         if (++block >= N2RNG_BLOCK_LIMIT)
266                                 return -EWOULDBLOCK;
267                         __delay(ticks);
268                 } else if (hv_err == HV_EBUSY) {
269                         if (++busy >= N2RNG_BUSY_LIMIT)
270                                 return -EBUSY;
271                         udelay(1);
272                 } else
273                         return -ENODEV;
274         }
275 }
276
277 /* Just try to see if we can successfully access the control register
278  * of the RNG on the domain on which we are currently executing.
279  */
280 static int n2rng_try_read_ctl(struct n2rng *np)
281 {
282         unsigned long hv_err;
283         unsigned long x;
284
285         if (np->hvapi_major == 1) {
286                 hv_err = sun4v_rng_get_diag_ctl();
287         } else {
288                 /* We purposefully give invalid arguments, HV_NOACCESS
289                  * is higher priority than the errors we'd get from
290                  * these other cases, and that's the error we are
291                  * truly interested in.
292                  */
293                 hv_err = sun4v_rng_ctl_read_v2(0UL, ~0UL, &x, &x, &x, &x);
294                 switch (hv_err) {
295                 case HV_EWOULDBLOCK:
296                 case HV_ENOACCESS:
297                         break;
298                 default:
299                         hv_err = HV_EOK;
300                         break;
301                 }
302         }
303
304         return n2rng_hv_err_trans(hv_err);
305 }
306
307 static u64 n2rng_control_default(struct n2rng *np, int ctl)
308 {
309         u64 val = 0;
310
311         if (np->data->chip_version == 1) {
312                 val = ((2 << RNG_v1_CTL_ASEL_SHIFT) |
313                         (N2RNG_ACCUM_CYCLES_DEFAULT << RNG_v1_CTL_WAIT_SHIFT) |
314                          RNG_CTL_LFSR);
315
316                 switch (ctl) {
317                 case 0:
318                         val |= (1 << RNG_v1_CTL_VCO_SHIFT) | RNG_CTL_ES1;
319                         break;
320                 case 1:
321                         val |= (2 << RNG_v1_CTL_VCO_SHIFT) | RNG_CTL_ES2;
322                         break;
323                 case 2:
324                         val |= (3 << RNG_v1_CTL_VCO_SHIFT) | RNG_CTL_ES3;
325                         break;
326                 case 3:
327                         val |= RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3;
328                         break;
329                 default:
330                         break;
331                 }
332
333         } else {
334                 val = ((2 << RNG_v2_CTL_ASEL_SHIFT) |
335                         (N2RNG_ACCUM_CYCLES_DEFAULT << RNG_v2_CTL_WAIT_SHIFT) |
336                          RNG_CTL_LFSR);
337
338                 switch (ctl) {
339                 case 0:
340                         val |= (1 << RNG_v2_CTL_VCO_SHIFT) | RNG_CTL_ES1;
341                         break;
342                 case 1:
343                         val |= (2 << RNG_v2_CTL_VCO_SHIFT) | RNG_CTL_ES2;
344                         break;
345                 case 2:
346                         val |= (3 << RNG_v2_CTL_VCO_SHIFT) | RNG_CTL_ES3;
347                         break;
348                 case 3:
349                         val |= RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3;
350                         break;
351                 default:
352                         break;
353                 }
354         }
355
356         return val;
357 }
358
359 static void n2rng_control_swstate_init(struct n2rng *np)
360 {
361         int i;
362
363         np->flags |= N2RNG_FLAG_CONTROL;
364
365         np->health_check_sec = N2RNG_HEALTH_CHECK_SEC_DEFAULT;
366         np->accum_cycles = N2RNG_ACCUM_CYCLES_DEFAULT;
367         np->wd_timeo = N2RNG_WD_TIMEO_DEFAULT;
368
369         for (i = 0; i < np->num_units; i++) {
370                 struct n2rng_unit *up = &np->units[i];
371
372                 up->control[0] = n2rng_control_default(np, 0);
373                 up->control[1] = n2rng_control_default(np, 1);
374                 up->control[2] = n2rng_control_default(np, 2);
375                 up->control[3] = n2rng_control_default(np, 3);
376         }
377
378         np->hv_state = HV_RNG_STATE_UNCONFIGURED;
379 }
380
381 static int n2rng_grab_diag_control(struct n2rng *np)
382 {
383         int i, busy_count, err = -ENODEV;
384
385         busy_count = 0;
386         for (i = 0; i < 100; i++) {
387                 err = n2rng_try_read_ctl(np);
388                 if (err != -EAGAIN)
389                         break;
390
391                 if (++busy_count > 100) {
392                         dev_err(&np->op->dev,
393                                 "Grab diag control timeout.\n");
394                         return -ENODEV;
395                 }
396
397                 udelay(1);
398         }
399
400         return err;
401 }
402
403 static int n2rng_init_control(struct n2rng *np)
404 {
405         int err = n2rng_grab_diag_control(np);
406
407         /* Not in the control domain, that's OK we are only a consumer
408          * of the RNG data, we don't setup and program it.
409          */
410         if (err == -EPERM)
411                 return 0;
412         if (err)
413                 return err;
414
415         n2rng_control_swstate_init(np);
416
417         return 0;
418 }
419
420 static int n2rng_data_read(struct hwrng *rng, u32 *data)
421 {
422         struct n2rng *np = (struct n2rng *) rng->priv;
423         unsigned long ra = __pa(&np->test_data);
424         int len;
425
426         if (!(np->flags & N2RNG_FLAG_READY)) {
427                 len = 0;
428         } else if (np->flags & N2RNG_FLAG_BUFFER_VALID) {
429                 np->flags &= ~N2RNG_FLAG_BUFFER_VALID;
430                 *data = np->buffer;
431                 len = 4;
432         } else {
433                 int err = n2rng_generic_read_data(ra);
434                 if (!err) {
435                         np->flags |= N2RNG_FLAG_BUFFER_VALID;
436                         np->buffer = np->test_data >> 32;
437                         *data = np->test_data & 0xffffffff;
438                         len = 4;
439                 } else {
440                         dev_err(&np->op->dev, "RNG error, retesting\n");
441                         np->flags &= ~N2RNG_FLAG_READY;
442                         if (!(np->flags & N2RNG_FLAG_SHUTDOWN))
443                                 schedule_delayed_work(&np->work, 0);
444                         len = 0;
445                 }
446         }
447
448         return len;
449 }
450
451 /* On a guest node, just make sure we can read random data properly.
452  * If a control node reboots or reloads it's n2rng driver, this won't
453  * work during that time.  So we have to keep probing until the device
454  * becomes usable.
455  */
456 static int n2rng_guest_check(struct n2rng *np)
457 {
458         unsigned long ra = __pa(&np->test_data);
459
460         return n2rng_generic_read_data(ra);
461 }
462
463 static int n2rng_entropy_diag_read(struct n2rng *np, unsigned long unit,
464                                    u64 *pre_control, u64 pre_state,
465                                    u64 *buffer, unsigned long buf_len,
466                                    u64 *post_control, u64 post_state)
467 {
468         unsigned long post_ctl_ra = __pa(post_control);
469         unsigned long pre_ctl_ra = __pa(pre_control);
470         unsigned long buffer_ra = __pa(buffer);
471         int err;
472
473         err = n2rng_generic_write_control(np, pre_ctl_ra, unit, pre_state);
474         if (err)
475                 return err;
476
477         err = n2rng_generic_read_diag_data(np, unit,
478                                            buffer_ra, buf_len);
479
480         (void) n2rng_generic_write_control(np, post_ctl_ra, unit,
481                                            post_state);
482
483         return err;
484 }
485
486 static u64 advance_polynomial(u64 poly, u64 val, int count)
487 {
488         int i;
489
490         for (i = 0; i < count; i++) {
491                 int highbit_set = ((s64)val < 0);
492
493                 val <<= 1;
494                 if (highbit_set)
495                         val ^= poly;
496         }
497
498         return val;
499 }
500
501 static int n2rng_test_buffer_find(struct n2rng *np, u64 val)
502 {
503         int i, count = 0;
504
505         /* Purposefully skip over the first word.  */
506         for (i = 1; i < SELFTEST_BUFFER_WORDS; i++) {
507                 if (np->test_buffer[i] == val)
508                         count++;
509         }
510         return count;
511 }
512
513 static void n2rng_dump_test_buffer(struct n2rng *np)
514 {
515         int i;
516
517         for (i = 0; i < SELFTEST_BUFFER_WORDS; i++)
518                 dev_err(&np->op->dev, "Test buffer slot %d [0x%016llx]\n",
519                         i, np->test_buffer[i]);
520 }
521
522 static int n2rng_check_selftest_buffer(struct n2rng *np, unsigned long unit)
523 {
524         u64 val;
525         int err, matches, limit;
526
527         switch (np->data->id) {
528         case N2_n2_rng:
529         case N2_vf_rng:
530         case N2_kt_rng:
531         case N2_m4_rng:  /* yes, m4 uses the old value */
532                 val = RNG_v1_SELFTEST_VAL;
533                 break;
534         default:
535                 val = RNG_v2_SELFTEST_VAL;
536                 break;
537         }
538
539         matches = 0;
540         for (limit = 0; limit < SELFTEST_LOOPS_MAX; limit++) {
541                 matches += n2rng_test_buffer_find(np, val);
542                 if (matches >= SELFTEST_MATCH_GOAL)
543                         break;
544                 val = advance_polynomial(SELFTEST_POLY, val, 1);
545         }
546
547         err = 0;
548         if (limit >= SELFTEST_LOOPS_MAX) {
549                 err = -ENODEV;
550                 dev_err(&np->op->dev, "Selftest failed on unit %lu\n", unit);
551                 n2rng_dump_test_buffer(np);
552         } else
553                 dev_info(&np->op->dev, "Selftest passed on unit %lu\n", unit);
554
555         return err;
556 }
557
558 static int n2rng_control_selftest(struct n2rng *np, unsigned long unit)
559 {
560         int err;
561         u64 base, base3;
562
563         switch (np->data->id) {
564         case N2_n2_rng:
565         case N2_vf_rng:
566         case N2_kt_rng:
567                 base = RNG_v1_CTL_ASEL_NOOUT << RNG_v1_CTL_ASEL_SHIFT;
568                 base3 = base | RNG_CTL_LFSR |
569                         ((RNG_v1_SELFTEST_TICKS - 2) << RNG_v1_CTL_WAIT_SHIFT);
570                 break;
571         case N2_m4_rng:
572                 base = RNG_v2_CTL_ASEL_NOOUT << RNG_v2_CTL_ASEL_SHIFT;
573                 base3 = base | RNG_CTL_LFSR |
574                         ((RNG_v1_SELFTEST_TICKS - 2) << RNG_v2_CTL_WAIT_SHIFT);
575                 break;
576         default:
577                 base = RNG_v2_CTL_ASEL_NOOUT << RNG_v2_CTL_ASEL_SHIFT;
578                 base3 = base | RNG_CTL_LFSR |
579                         (RNG_v2_SELFTEST_TICKS << RNG_v2_CTL_WAIT_SHIFT);
580                 break;
581         }
582
583         np->test_control[0] = base;
584         np->test_control[1] = base;
585         np->test_control[2] = base;
586         np->test_control[3] = base3;
587
588         err = n2rng_entropy_diag_read(np, unit, np->test_control,
589                                       HV_RNG_STATE_HEALTHCHECK,
590                                       np->test_buffer,
591                                       sizeof(np->test_buffer),
592                                       &np->units[unit].control[0],
593                                       np->hv_state);
594         if (err)
595                 return err;
596
597         return n2rng_check_selftest_buffer(np, unit);
598 }
599
600 static int n2rng_control_check(struct n2rng *np)
601 {
602         int i;
603
604         for (i = 0; i < np->num_units; i++) {
605                 int err = n2rng_control_selftest(np, i);
606                 if (err)
607                         return err;
608         }
609         return 0;
610 }
611
612 /* The sanity checks passed, install the final configuration into the
613  * chip, it's ready to use.
614  */
615 static int n2rng_control_configure_units(struct n2rng *np)
616 {
617         int unit, err;
618
619         err = 0;
620         for (unit = 0; unit < np->num_units; unit++) {
621                 struct n2rng_unit *up = &np->units[unit];
622                 unsigned long ctl_ra = __pa(&up->control[0]);
623                 int esrc;
624                 u64 base, shift;
625
626                 if (np->data->chip_version == 1) {
627                         base = ((np->accum_cycles << RNG_v1_CTL_WAIT_SHIFT) |
628                               (RNG_v1_CTL_ASEL_NOOUT << RNG_v1_CTL_ASEL_SHIFT) |
629                               RNG_CTL_LFSR);
630                         shift = RNG_v1_CTL_VCO_SHIFT;
631                 } else {
632                         base = ((np->accum_cycles << RNG_v2_CTL_WAIT_SHIFT) |
633                               (RNG_v2_CTL_ASEL_NOOUT << RNG_v2_CTL_ASEL_SHIFT) |
634                               RNG_CTL_LFSR);
635                         shift = RNG_v2_CTL_VCO_SHIFT;
636                 }
637
638                 /* XXX This isn't the best.  We should fetch a bunch
639                  * XXX of words using each entropy source combined XXX
640                  * with each VCO setting, and see which combinations
641                  * XXX give the best random data.
642                  */
643                 for (esrc = 0; esrc < 3; esrc++)
644                         up->control[esrc] = base |
645                                 (esrc << shift) |
646                                 (RNG_CTL_ES1 << esrc);
647
648                 up->control[3] = base |
649                         (RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3);
650
651                 err = n2rng_generic_write_control(np, ctl_ra, unit,
652                                                   HV_RNG_STATE_CONFIGURED);
653                 if (err)
654                         break;
655         }
656
657         return err;
658 }
659
660 static void n2rng_work(struct work_struct *work)
661 {
662         struct n2rng *np = container_of(work, struct n2rng, work.work);
663         int err = 0;
664         static int retries = 4;
665
666         if (!(np->flags & N2RNG_FLAG_CONTROL)) {
667                 err = n2rng_guest_check(np);
668         } else {
669                 preempt_disable();
670                 err = n2rng_control_check(np);
671                 preempt_enable();
672
673                 if (!err)
674                         err = n2rng_control_configure_units(np);
675         }
676
677         if (!err) {
678                 np->flags |= N2RNG_FLAG_READY;
679                 dev_info(&np->op->dev, "RNG ready\n");
680         }
681
682         if (--retries == 0)
683                 dev_err(&np->op->dev, "Self-test retries failed, RNG not ready\n");
684         else if (err && !(np->flags & N2RNG_FLAG_SHUTDOWN))
685                 schedule_delayed_work(&np->work, HZ * 2);
686 }
687
688 static void n2rng_driver_version(void)
689 {
690         static int n2rng_version_printed;
691
692         if (n2rng_version_printed++ == 0)
693                 pr_info("%s", version);
694 }
695
696 static const struct of_device_id n2rng_match[];
697 static int n2rng_probe(struct platform_device *op)
698 {
699         int err = -ENOMEM;
700         struct n2rng *np;
701
702         n2rng_driver_version();
703         np = devm_kzalloc(&op->dev, sizeof(*np), GFP_KERNEL);
704         if (!np)
705                 goto out;
706         np->op = op;
707         np->data = (struct n2rng_template *)device_get_match_data(&op->dev);
708
709         INIT_DELAYED_WORK(&np->work, n2rng_work);
710
711         if (np->data->multi_capable)
712                 np->flags |= N2RNG_FLAG_MULTI;
713
714         err = -ENODEV;
715         np->hvapi_major = 2;
716         if (sun4v_hvapi_register(HV_GRP_RNG,
717                                  np->hvapi_major,
718                                  &np->hvapi_minor)) {
719                 np->hvapi_major = 1;
720                 if (sun4v_hvapi_register(HV_GRP_RNG,
721                                          np->hvapi_major,
722                                          &np->hvapi_minor)) {
723                         dev_err(&op->dev, "Cannot register suitable "
724                                 "HVAPI version.\n");
725                         goto out;
726                 }
727         }
728
729         if (np->flags & N2RNG_FLAG_MULTI) {
730                 if (np->hvapi_major < 2) {
731                         dev_err(&op->dev, "multi-unit-capable RNG requires "
732                                 "HVAPI major version 2 or later, got %lu\n",
733                                 np->hvapi_major);
734                         goto out_hvapi_unregister;
735                 }
736                 np->num_units = of_getintprop_default(op->dev.of_node,
737                                                       "rng-#units", 0);
738                 if (!np->num_units) {
739                         dev_err(&op->dev, "VF RNG lacks rng-#units property\n");
740                         goto out_hvapi_unregister;
741                 }
742         } else {
743                 np->num_units = 1;
744         }
745
746         dev_info(&op->dev, "Registered RNG HVAPI major %lu minor %lu\n",
747                  np->hvapi_major, np->hvapi_minor);
748         np->units = devm_kcalloc(&op->dev, np->num_units, sizeof(*np->units),
749                                  GFP_KERNEL);
750         err = -ENOMEM;
751         if (!np->units)
752                 goto out_hvapi_unregister;
753
754         err = n2rng_init_control(np);
755         if (err)
756                 goto out_hvapi_unregister;
757
758         dev_info(&op->dev, "Found %s RNG, units: %d\n",
759                  ((np->flags & N2RNG_FLAG_MULTI) ?
760                   "multi-unit-capable" : "single-unit"),
761                  np->num_units);
762
763         np->hwrng.name = DRV_MODULE_NAME;
764         np->hwrng.data_read = n2rng_data_read;
765         np->hwrng.priv = (unsigned long) np;
766
767         err = devm_hwrng_register(&op->dev, &np->hwrng);
768         if (err)
769                 goto out_hvapi_unregister;
770
771         platform_set_drvdata(op, np);
772
773         schedule_delayed_work(&np->work, 0);
774
775         return 0;
776
777 out_hvapi_unregister:
778         sun4v_hvapi_unregister(HV_GRP_RNG);
779
780 out:
781         return err;
782 }
783
784 static void n2rng_remove(struct platform_device *op)
785 {
786         struct n2rng *np = platform_get_drvdata(op);
787
788         np->flags |= N2RNG_FLAG_SHUTDOWN;
789
790         cancel_delayed_work_sync(&np->work);
791
792         sun4v_hvapi_unregister(HV_GRP_RNG);
793 }
794
795 static struct n2rng_template n2_template = {
796         .id = N2_n2_rng,
797         .multi_capable = 0,
798         .chip_version = 1,
799 };
800
801 static struct n2rng_template vf_template = {
802         .id = N2_vf_rng,
803         .multi_capable = 1,
804         .chip_version = 1,
805 };
806
807 static struct n2rng_template kt_template = {
808         .id = N2_kt_rng,
809         .multi_capable = 1,
810         .chip_version = 1,
811 };
812
813 static struct n2rng_template m4_template = {
814         .id = N2_m4_rng,
815         .multi_capable = 1,
816         .chip_version = 2,
817 };
818
819 static struct n2rng_template m7_template = {
820         .id = N2_m7_rng,
821         .multi_capable = 1,
822         .chip_version = 2,
823 };
824
825 static const struct of_device_id n2rng_match[] = {
826         {
827                 .name           = "random-number-generator",
828                 .compatible     = "SUNW,n2-rng",
829                 .data           = &n2_template,
830         },
831         {
832                 .name           = "random-number-generator",
833                 .compatible     = "SUNW,vf-rng",
834                 .data           = &vf_template,
835         },
836         {
837                 .name           = "random-number-generator",
838                 .compatible     = "SUNW,kt-rng",
839                 .data           = &kt_template,
840         },
841         {
842                 .name           = "random-number-generator",
843                 .compatible     = "ORCL,m4-rng",
844                 .data           = &m4_template,
845         },
846         {
847                 .name           = "random-number-generator",
848                 .compatible     = "ORCL,m7-rng",
849                 .data           = &m7_template,
850         },
851         {},
852 };
853 MODULE_DEVICE_TABLE(of, n2rng_match);
854
855 static struct platform_driver n2rng_driver = {
856         .driver = {
857                 .name = "n2rng",
858                 .of_match_table = n2rng_match,
859         },
860         .probe          = n2rng_probe,
861         .remove_new     = n2rng_remove,
862 };
863
864 module_platform_driver(n2rng_driver);