Merge tag 'ipsec-next-2023-07-19' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / drivers / bluetooth / hci_qca.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Bluetooth Software UART Qualcomm protocol
4  *
5  *  HCI_IBS (HCI In-Band Sleep) is Qualcomm's power management
6  *  protocol extension to H4.
7  *
8  *  Copyright (C) 2007 Texas Instruments, Inc.
9  *  Copyright (c) 2010, 2012, 2018 The Linux Foundation. All rights reserved.
10  *
11  *  Acknowledgements:
12  *  This file is based on hci_ll.c, which was...
13  *  Written by Ohad Ben-Cohen <ohad@bencohen.org>
14  *  which was in turn based on hci_h4.c, which was written
15  *  by Maxim Krasnyansky and Marcel Holtmann.
16  */
17
18 #include <linux/kernel.h>
19 #include <linux/clk.h>
20 #include <linux/completion.h>
21 #include <linux/debugfs.h>
22 #include <linux/delay.h>
23 #include <linux/devcoredump.h>
24 #include <linux/device.h>
25 #include <linux/gpio/consumer.h>
26 #include <linux/mod_devicetable.h>
27 #include <linux/module.h>
28 #include <linux/of_device.h>
29 #include <linux/acpi.h>
30 #include <linux/platform_device.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/serdev.h>
33 #include <linux/mutex.h>
34 #include <asm/unaligned.h>
35
36 #include <net/bluetooth/bluetooth.h>
37 #include <net/bluetooth/hci_core.h>
38
39 #include "hci_uart.h"
40 #include "btqca.h"
41
42 /* HCI_IBS protocol messages */
43 #define HCI_IBS_SLEEP_IND       0xFE
44 #define HCI_IBS_WAKE_IND        0xFD
45 #define HCI_IBS_WAKE_ACK        0xFC
46 #define HCI_MAX_IBS_SIZE        10
47
48 #define IBS_WAKE_RETRANS_TIMEOUT_MS     100
49 #define IBS_BTSOC_TX_IDLE_TIMEOUT_MS    200
50 #define IBS_HOST_TX_IDLE_TIMEOUT_MS     2000
51 #define CMD_TRANS_TIMEOUT_MS            100
52 #define MEMDUMP_TIMEOUT_MS              8000
53 #define IBS_DISABLE_SSR_TIMEOUT_MS \
54         (MEMDUMP_TIMEOUT_MS + FW_DOWNLOAD_TIMEOUT_MS)
55 #define FW_DOWNLOAD_TIMEOUT_MS          3000
56
57 /* susclk rate */
58 #define SUSCLK_RATE_32KHZ       32768
59
60 /* Controller debug log header */
61 #define QCA_DEBUG_HANDLE        0x2EDC
62
63 /* max retry count when init fails */
64 #define MAX_INIT_RETRIES 3
65
66 /* Controller dump header */
67 #define QCA_SSR_DUMP_HANDLE             0x0108
68 #define QCA_DUMP_PACKET_SIZE            255
69 #define QCA_LAST_SEQUENCE_NUM           0xFFFF
70 #define QCA_CRASHBYTE_PACKET_LEN        1096
71 #define QCA_MEMDUMP_BYTE                0xFB
72
73 enum qca_flags {
74         QCA_IBS_DISABLED,
75         QCA_DROP_VENDOR_EVENT,
76         QCA_SUSPENDING,
77         QCA_MEMDUMP_COLLECTION,
78         QCA_HW_ERROR_EVENT,
79         QCA_SSR_TRIGGERED,
80         QCA_BT_OFF,
81         QCA_ROM_FW,
82         QCA_DEBUGFS_CREATED,
83 };
84
85 enum qca_capabilities {
86         QCA_CAP_WIDEBAND_SPEECH = BIT(0),
87         QCA_CAP_VALID_LE_STATES = BIT(1),
88 };
89
90 /* HCI_IBS transmit side sleep protocol states */
91 enum tx_ibs_states {
92         HCI_IBS_TX_ASLEEP,
93         HCI_IBS_TX_WAKING,
94         HCI_IBS_TX_AWAKE,
95 };
96
97 /* HCI_IBS receive side sleep protocol states */
98 enum rx_states {
99         HCI_IBS_RX_ASLEEP,
100         HCI_IBS_RX_AWAKE,
101 };
102
103 /* HCI_IBS transmit and receive side clock state vote */
104 enum hci_ibs_clock_state_vote {
105         HCI_IBS_VOTE_STATS_UPDATE,
106         HCI_IBS_TX_VOTE_CLOCK_ON,
107         HCI_IBS_TX_VOTE_CLOCK_OFF,
108         HCI_IBS_RX_VOTE_CLOCK_ON,
109         HCI_IBS_RX_VOTE_CLOCK_OFF,
110 };
111
112 /* Controller memory dump states */
113 enum qca_memdump_states {
114         QCA_MEMDUMP_IDLE,
115         QCA_MEMDUMP_COLLECTING,
116         QCA_MEMDUMP_COLLECTED,
117         QCA_MEMDUMP_TIMEOUT,
118 };
119
120 struct qca_memdump_data {
121         char *memdump_buf_head;
122         char *memdump_buf_tail;
123         u32 current_seq_no;
124         u32 received_dump;
125         u32 ram_dump_size;
126 };
127
128 struct qca_memdump_event_hdr {
129         __u8    evt;
130         __u8    plen;
131         __u16   opcode;
132         __le16   seq_no;
133         __u8    reserved;
134 } __packed;
135
136
137 struct qca_dump_size {
138         __le32 dump_size;
139 } __packed;
140
141 struct qca_data {
142         struct hci_uart *hu;
143         struct sk_buff *rx_skb;
144         struct sk_buff_head txq;
145         struct sk_buff_head tx_wait_q;  /* HCI_IBS wait queue   */
146         struct sk_buff_head rx_memdump_q;       /* Memdump wait queue   */
147         spinlock_t hci_ibs_lock;        /* HCI_IBS state lock   */
148         u8 tx_ibs_state;        /* HCI_IBS transmit side power state*/
149         u8 rx_ibs_state;        /* HCI_IBS receive side power state */
150         bool tx_vote;           /* Clock must be on for TX */
151         bool rx_vote;           /* Clock must be on for RX */
152         struct timer_list tx_idle_timer;
153         u32 tx_idle_delay;
154         struct timer_list wake_retrans_timer;
155         u32 wake_retrans;
156         struct workqueue_struct *workqueue;
157         struct work_struct ws_awake_rx;
158         struct work_struct ws_awake_device;
159         struct work_struct ws_rx_vote_off;
160         struct work_struct ws_tx_vote_off;
161         struct work_struct ctrl_memdump_evt;
162         struct delayed_work ctrl_memdump_timeout;
163         struct qca_memdump_data *qca_memdump;
164         unsigned long flags;
165         struct completion drop_ev_comp;
166         wait_queue_head_t suspend_wait_q;
167         enum qca_memdump_states memdump_state;
168         struct mutex hci_memdump_lock;
169
170         /* For debugging purpose */
171         u64 ibs_sent_wacks;
172         u64 ibs_sent_slps;
173         u64 ibs_sent_wakes;
174         u64 ibs_recv_wacks;
175         u64 ibs_recv_slps;
176         u64 ibs_recv_wakes;
177         u64 vote_last_jif;
178         u32 vote_on_ms;
179         u32 vote_off_ms;
180         u64 tx_votes_on;
181         u64 rx_votes_on;
182         u64 tx_votes_off;
183         u64 rx_votes_off;
184         u64 votes_on;
185         u64 votes_off;
186 };
187
188 enum qca_speed_type {
189         QCA_INIT_SPEED = 1,
190         QCA_OPER_SPEED
191 };
192
193 /*
194  * Voltage regulator information required for configuring the
195  * QCA Bluetooth chipset
196  */
197 struct qca_vreg {
198         const char *name;
199         unsigned int load_uA;
200 };
201
202 struct qca_device_data {
203         enum qca_btsoc_type soc_type;
204         struct qca_vreg *vregs;
205         size_t num_vregs;
206         uint32_t capabilities;
207 };
208
209 /*
210  * Platform data for the QCA Bluetooth power driver.
211  */
212 struct qca_power {
213         struct device *dev;
214         struct regulator_bulk_data *vreg_bulk;
215         int num_vregs;
216         bool vregs_on;
217 };
218
219 struct qca_serdev {
220         struct hci_uart  serdev_hu;
221         struct gpio_desc *bt_en;
222         struct gpio_desc *sw_ctrl;
223         struct clk       *susclk;
224         enum qca_btsoc_type btsoc_type;
225         struct qca_power *bt_power;
226         u32 init_speed;
227         u32 oper_speed;
228         const char *firmware_name;
229 };
230
231 static int qca_regulator_enable(struct qca_serdev *qcadev);
232 static void qca_regulator_disable(struct qca_serdev *qcadev);
233 static void qca_power_shutdown(struct hci_uart *hu);
234 static int qca_power_off(struct hci_dev *hdev);
235 static void qca_controller_memdump(struct work_struct *work);
236
237 static enum qca_btsoc_type qca_soc_type(struct hci_uart *hu)
238 {
239         enum qca_btsoc_type soc_type;
240
241         if (hu->serdev) {
242                 struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev);
243
244                 soc_type = qsd->btsoc_type;
245         } else {
246                 soc_type = QCA_ROME;
247         }
248
249         return soc_type;
250 }
251
252 static const char *qca_get_firmware_name(struct hci_uart *hu)
253 {
254         if (hu->serdev) {
255                 struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev);
256
257                 return qsd->firmware_name;
258         } else {
259                 return NULL;
260         }
261 }
262
263 static void __serial_clock_on(struct tty_struct *tty)
264 {
265         /* TODO: Some chipset requires to enable UART clock on client
266          * side to save power consumption or manual work is required.
267          * Please put your code to control UART clock here if needed
268          */
269 }
270
271 static void __serial_clock_off(struct tty_struct *tty)
272 {
273         /* TODO: Some chipset requires to disable UART clock on client
274          * side to save power consumption or manual work is required.
275          * Please put your code to control UART clock off here if needed
276          */
277 }
278
279 /* serial_clock_vote needs to be called with the ibs lock held */
280 static void serial_clock_vote(unsigned long vote, struct hci_uart *hu)
281 {
282         struct qca_data *qca = hu->priv;
283         unsigned int diff;
284
285         bool old_vote = (qca->tx_vote | qca->rx_vote);
286         bool new_vote;
287
288         switch (vote) {
289         case HCI_IBS_VOTE_STATS_UPDATE:
290                 diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
291
292                 if (old_vote)
293                         qca->vote_off_ms += diff;
294                 else
295                         qca->vote_on_ms += diff;
296                 return;
297
298         case HCI_IBS_TX_VOTE_CLOCK_ON:
299                 qca->tx_vote = true;
300                 qca->tx_votes_on++;
301                 break;
302
303         case HCI_IBS_RX_VOTE_CLOCK_ON:
304                 qca->rx_vote = true;
305                 qca->rx_votes_on++;
306                 break;
307
308         case HCI_IBS_TX_VOTE_CLOCK_OFF:
309                 qca->tx_vote = false;
310                 qca->tx_votes_off++;
311                 break;
312
313         case HCI_IBS_RX_VOTE_CLOCK_OFF:
314                 qca->rx_vote = false;
315                 qca->rx_votes_off++;
316                 break;
317
318         default:
319                 BT_ERR("Voting irregularity");
320                 return;
321         }
322
323         new_vote = qca->rx_vote | qca->tx_vote;
324
325         if (new_vote != old_vote) {
326                 if (new_vote)
327                         __serial_clock_on(hu->tty);
328                 else
329                         __serial_clock_off(hu->tty);
330
331                 BT_DBG("Vote serial clock %s(%s)", new_vote ? "true" : "false",
332                        vote ? "true" : "false");
333
334                 diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
335
336                 if (new_vote) {
337                         qca->votes_on++;
338                         qca->vote_off_ms += diff;
339                 } else {
340                         qca->votes_off++;
341                         qca->vote_on_ms += diff;
342                 }
343                 qca->vote_last_jif = jiffies;
344         }
345 }
346
347 /* Builds and sends an HCI_IBS command packet.
348  * These are very simple packets with only 1 cmd byte.
349  */
350 static int send_hci_ibs_cmd(u8 cmd, struct hci_uart *hu)
351 {
352         int err = 0;
353         struct sk_buff *skb = NULL;
354         struct qca_data *qca = hu->priv;
355
356         BT_DBG("hu %p send hci ibs cmd 0x%x", hu, cmd);
357
358         skb = bt_skb_alloc(1, GFP_ATOMIC);
359         if (!skb) {
360                 BT_ERR("Failed to allocate memory for HCI_IBS packet");
361                 return -ENOMEM;
362         }
363
364         /* Assign HCI_IBS type */
365         skb_put_u8(skb, cmd);
366
367         skb_queue_tail(&qca->txq, skb);
368
369         return err;
370 }
371
372 static void qca_wq_awake_device(struct work_struct *work)
373 {
374         struct qca_data *qca = container_of(work, struct qca_data,
375                                             ws_awake_device);
376         struct hci_uart *hu = qca->hu;
377         unsigned long retrans_delay;
378         unsigned long flags;
379
380         BT_DBG("hu %p wq awake device", hu);
381
382         /* Vote for serial clock */
383         serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_ON, hu);
384
385         spin_lock_irqsave(&qca->hci_ibs_lock, flags);
386
387         /* Send wake indication to device */
388         if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0)
389                 BT_ERR("Failed to send WAKE to device");
390
391         qca->ibs_sent_wakes++;
392
393         /* Start retransmit timer */
394         retrans_delay = msecs_to_jiffies(qca->wake_retrans);
395         mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
396
397         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
398
399         /* Actually send the packets */
400         hci_uart_tx_wakeup(hu);
401 }
402
403 static void qca_wq_awake_rx(struct work_struct *work)
404 {
405         struct qca_data *qca = container_of(work, struct qca_data,
406                                             ws_awake_rx);
407         struct hci_uart *hu = qca->hu;
408         unsigned long flags;
409
410         BT_DBG("hu %p wq awake rx", hu);
411
412         serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_ON, hu);
413
414         spin_lock_irqsave(&qca->hci_ibs_lock, flags);
415         qca->rx_ibs_state = HCI_IBS_RX_AWAKE;
416
417         /* Always acknowledge device wake up,
418          * sending IBS message doesn't count as TX ON.
419          */
420         if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0)
421                 BT_ERR("Failed to acknowledge device wake up");
422
423         qca->ibs_sent_wacks++;
424
425         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
426
427         /* Actually send the packets */
428         hci_uart_tx_wakeup(hu);
429 }
430
431 static void qca_wq_serial_rx_clock_vote_off(struct work_struct *work)
432 {
433         struct qca_data *qca = container_of(work, struct qca_data,
434                                             ws_rx_vote_off);
435         struct hci_uart *hu = qca->hu;
436
437         BT_DBG("hu %p rx clock vote off", hu);
438
439         serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_OFF, hu);
440 }
441
442 static void qca_wq_serial_tx_clock_vote_off(struct work_struct *work)
443 {
444         struct qca_data *qca = container_of(work, struct qca_data,
445                                             ws_tx_vote_off);
446         struct hci_uart *hu = qca->hu;
447
448         BT_DBG("hu %p tx clock vote off", hu);
449
450         /* Run HCI tx handling unlocked */
451         hci_uart_tx_wakeup(hu);
452
453         /* Now that message queued to tty driver, vote for tty clocks off.
454          * It is up to the tty driver to pend the clocks off until tx done.
455          */
456         serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu);
457 }
458
459 static void hci_ibs_tx_idle_timeout(struct timer_list *t)
460 {
461         struct qca_data *qca = from_timer(qca, t, tx_idle_timer);
462         struct hci_uart *hu = qca->hu;
463         unsigned long flags;
464
465         BT_DBG("hu %p idle timeout in %d state", hu, qca->tx_ibs_state);
466
467         spin_lock_irqsave_nested(&qca->hci_ibs_lock,
468                                  flags, SINGLE_DEPTH_NESTING);
469
470         switch (qca->tx_ibs_state) {
471         case HCI_IBS_TX_AWAKE:
472                 /* TX_IDLE, go to SLEEP */
473                 if (send_hci_ibs_cmd(HCI_IBS_SLEEP_IND, hu) < 0) {
474                         BT_ERR("Failed to send SLEEP to device");
475                         break;
476                 }
477                 qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
478                 qca->ibs_sent_slps++;
479                 queue_work(qca->workqueue, &qca->ws_tx_vote_off);
480                 break;
481
482         case HCI_IBS_TX_ASLEEP:
483         case HCI_IBS_TX_WAKING:
484         default:
485                 BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
486                 break;
487         }
488
489         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
490 }
491
492 static void hci_ibs_wake_retrans_timeout(struct timer_list *t)
493 {
494         struct qca_data *qca = from_timer(qca, t, wake_retrans_timer);
495         struct hci_uart *hu = qca->hu;
496         unsigned long flags, retrans_delay;
497         bool retransmit = false;
498
499         BT_DBG("hu %p wake retransmit timeout in %d state",
500                 hu, qca->tx_ibs_state);
501
502         spin_lock_irqsave_nested(&qca->hci_ibs_lock,
503                                  flags, SINGLE_DEPTH_NESTING);
504
505         /* Don't retransmit the HCI_IBS_WAKE_IND when suspending. */
506         if (test_bit(QCA_SUSPENDING, &qca->flags)) {
507                 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
508                 return;
509         }
510
511         switch (qca->tx_ibs_state) {
512         case HCI_IBS_TX_WAKING:
513                 /* No WAKE_ACK, retransmit WAKE */
514                 retransmit = true;
515                 if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0) {
516                         BT_ERR("Failed to acknowledge device wake up");
517                         break;
518                 }
519                 qca->ibs_sent_wakes++;
520                 retrans_delay = msecs_to_jiffies(qca->wake_retrans);
521                 mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
522                 break;
523
524         case HCI_IBS_TX_ASLEEP:
525         case HCI_IBS_TX_AWAKE:
526         default:
527                 BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
528                 break;
529         }
530
531         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
532
533         if (retransmit)
534                 hci_uart_tx_wakeup(hu);
535 }
536
537
538 static void qca_controller_memdump_timeout(struct work_struct *work)
539 {
540         struct qca_data *qca = container_of(work, struct qca_data,
541                                         ctrl_memdump_timeout.work);
542         struct hci_uart *hu = qca->hu;
543
544         mutex_lock(&qca->hci_memdump_lock);
545         if (test_bit(QCA_MEMDUMP_COLLECTION, &qca->flags)) {
546                 qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
547                 if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) {
548                         /* Inject hw error event to reset the device
549                          * and driver.
550                          */
551                         hci_reset_dev(hu->hdev);
552                 }
553         }
554
555         mutex_unlock(&qca->hci_memdump_lock);
556 }
557
558
559 /* Initialize protocol */
560 static int qca_open(struct hci_uart *hu)
561 {
562         struct qca_serdev *qcadev;
563         struct qca_data *qca;
564
565         BT_DBG("hu %p qca_open", hu);
566
567         if (!hci_uart_has_flow_control(hu))
568                 return -EOPNOTSUPP;
569
570         qca = kzalloc(sizeof(struct qca_data), GFP_KERNEL);
571         if (!qca)
572                 return -ENOMEM;
573
574         skb_queue_head_init(&qca->txq);
575         skb_queue_head_init(&qca->tx_wait_q);
576         skb_queue_head_init(&qca->rx_memdump_q);
577         spin_lock_init(&qca->hci_ibs_lock);
578         mutex_init(&qca->hci_memdump_lock);
579         qca->workqueue = alloc_ordered_workqueue("qca_wq", 0);
580         if (!qca->workqueue) {
581                 BT_ERR("QCA Workqueue not initialized properly");
582                 kfree(qca);
583                 return -ENOMEM;
584         }
585
586         INIT_WORK(&qca->ws_awake_rx, qca_wq_awake_rx);
587         INIT_WORK(&qca->ws_awake_device, qca_wq_awake_device);
588         INIT_WORK(&qca->ws_rx_vote_off, qca_wq_serial_rx_clock_vote_off);
589         INIT_WORK(&qca->ws_tx_vote_off, qca_wq_serial_tx_clock_vote_off);
590         INIT_WORK(&qca->ctrl_memdump_evt, qca_controller_memdump);
591         INIT_DELAYED_WORK(&qca->ctrl_memdump_timeout,
592                           qca_controller_memdump_timeout);
593         init_waitqueue_head(&qca->suspend_wait_q);
594
595         qca->hu = hu;
596         init_completion(&qca->drop_ev_comp);
597
598         /* Assume we start with both sides asleep -- extra wakes OK */
599         qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
600         qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
601
602         qca->vote_last_jif = jiffies;
603
604         hu->priv = qca;
605
606         if (hu->serdev) {
607                 qcadev = serdev_device_get_drvdata(hu->serdev);
608
609                 if (qca_is_wcn399x(qcadev->btsoc_type) ||
610                     qca_is_wcn6750(qcadev->btsoc_type))
611                         hu->init_speed = qcadev->init_speed;
612
613                 if (qcadev->oper_speed)
614                         hu->oper_speed = qcadev->oper_speed;
615         }
616
617         timer_setup(&qca->wake_retrans_timer, hci_ibs_wake_retrans_timeout, 0);
618         qca->wake_retrans = IBS_WAKE_RETRANS_TIMEOUT_MS;
619
620         timer_setup(&qca->tx_idle_timer, hci_ibs_tx_idle_timeout, 0);
621         qca->tx_idle_delay = IBS_HOST_TX_IDLE_TIMEOUT_MS;
622
623         BT_DBG("HCI_UART_QCA open, tx_idle_delay=%u, wake_retrans=%u",
624                qca->tx_idle_delay, qca->wake_retrans);
625
626         return 0;
627 }
628
629 static void qca_debugfs_init(struct hci_dev *hdev)
630 {
631         struct hci_uart *hu = hci_get_drvdata(hdev);
632         struct qca_data *qca = hu->priv;
633         struct dentry *ibs_dir;
634         umode_t mode;
635
636         if (!hdev->debugfs)
637                 return;
638
639         if (test_and_set_bit(QCA_DEBUGFS_CREATED, &qca->flags))
640                 return;
641
642         ibs_dir = debugfs_create_dir("ibs", hdev->debugfs);
643
644         /* read only */
645         mode = 0444;
646         debugfs_create_u8("tx_ibs_state", mode, ibs_dir, &qca->tx_ibs_state);
647         debugfs_create_u8("rx_ibs_state", mode, ibs_dir, &qca->rx_ibs_state);
648         debugfs_create_u64("ibs_sent_sleeps", mode, ibs_dir,
649                            &qca->ibs_sent_slps);
650         debugfs_create_u64("ibs_sent_wakes", mode, ibs_dir,
651                            &qca->ibs_sent_wakes);
652         debugfs_create_u64("ibs_sent_wake_acks", mode, ibs_dir,
653                            &qca->ibs_sent_wacks);
654         debugfs_create_u64("ibs_recv_sleeps", mode, ibs_dir,
655                            &qca->ibs_recv_slps);
656         debugfs_create_u64("ibs_recv_wakes", mode, ibs_dir,
657                            &qca->ibs_recv_wakes);
658         debugfs_create_u64("ibs_recv_wake_acks", mode, ibs_dir,
659                            &qca->ibs_recv_wacks);
660         debugfs_create_bool("tx_vote", mode, ibs_dir, &qca->tx_vote);
661         debugfs_create_u64("tx_votes_on", mode, ibs_dir, &qca->tx_votes_on);
662         debugfs_create_u64("tx_votes_off", mode, ibs_dir, &qca->tx_votes_off);
663         debugfs_create_bool("rx_vote", mode, ibs_dir, &qca->rx_vote);
664         debugfs_create_u64("rx_votes_on", mode, ibs_dir, &qca->rx_votes_on);
665         debugfs_create_u64("rx_votes_off", mode, ibs_dir, &qca->rx_votes_off);
666         debugfs_create_u64("votes_on", mode, ibs_dir, &qca->votes_on);
667         debugfs_create_u64("votes_off", mode, ibs_dir, &qca->votes_off);
668         debugfs_create_u32("vote_on_ms", mode, ibs_dir, &qca->vote_on_ms);
669         debugfs_create_u32("vote_off_ms", mode, ibs_dir, &qca->vote_off_ms);
670
671         /* read/write */
672         mode = 0644;
673         debugfs_create_u32("wake_retrans", mode, ibs_dir, &qca->wake_retrans);
674         debugfs_create_u32("tx_idle_delay", mode, ibs_dir,
675                            &qca->tx_idle_delay);
676 }
677
678 /* Flush protocol data */
679 static int qca_flush(struct hci_uart *hu)
680 {
681         struct qca_data *qca = hu->priv;
682
683         BT_DBG("hu %p qca flush", hu);
684
685         skb_queue_purge(&qca->tx_wait_q);
686         skb_queue_purge(&qca->txq);
687
688         return 0;
689 }
690
691 /* Close protocol */
692 static int qca_close(struct hci_uart *hu)
693 {
694         struct qca_data *qca = hu->priv;
695
696         BT_DBG("hu %p qca close", hu);
697
698         serial_clock_vote(HCI_IBS_VOTE_STATS_UPDATE, hu);
699
700         skb_queue_purge(&qca->tx_wait_q);
701         skb_queue_purge(&qca->txq);
702         skb_queue_purge(&qca->rx_memdump_q);
703         /*
704          * Shut the timers down so they can't be rearmed when
705          * destroy_workqueue() drains pending work which in turn might try
706          * to arm a timer.  After shutdown rearm attempts are silently
707          * ignored by the timer core code.
708          */
709         timer_shutdown_sync(&qca->tx_idle_timer);
710         timer_shutdown_sync(&qca->wake_retrans_timer);
711         destroy_workqueue(qca->workqueue);
712         qca->hu = NULL;
713
714         kfree_skb(qca->rx_skb);
715
716         hu->priv = NULL;
717
718         kfree(qca);
719
720         return 0;
721 }
722
723 /* Called upon a wake-up-indication from the device.
724  */
725 static void device_want_to_wakeup(struct hci_uart *hu)
726 {
727         unsigned long flags;
728         struct qca_data *qca = hu->priv;
729
730         BT_DBG("hu %p want to wake up", hu);
731
732         spin_lock_irqsave(&qca->hci_ibs_lock, flags);
733
734         qca->ibs_recv_wakes++;
735
736         /* Don't wake the rx up when suspending. */
737         if (test_bit(QCA_SUSPENDING, &qca->flags)) {
738                 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
739                 return;
740         }
741
742         switch (qca->rx_ibs_state) {
743         case HCI_IBS_RX_ASLEEP:
744                 /* Make sure clock is on - we may have turned clock off since
745                  * receiving the wake up indicator awake rx clock.
746                  */
747                 queue_work(qca->workqueue, &qca->ws_awake_rx);
748                 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
749                 return;
750
751         case HCI_IBS_RX_AWAKE:
752                 /* Always acknowledge device wake up,
753                  * sending IBS message doesn't count as TX ON.
754                  */
755                 if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0) {
756                         BT_ERR("Failed to acknowledge device wake up");
757                         break;
758                 }
759                 qca->ibs_sent_wacks++;
760                 break;
761
762         default:
763                 /* Any other state is illegal */
764                 BT_ERR("Received HCI_IBS_WAKE_IND in rx state %d",
765                        qca->rx_ibs_state);
766                 break;
767         }
768
769         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
770
771         /* Actually send the packets */
772         hci_uart_tx_wakeup(hu);
773 }
774
775 /* Called upon a sleep-indication from the device.
776  */
777 static void device_want_to_sleep(struct hci_uart *hu)
778 {
779         unsigned long flags;
780         struct qca_data *qca = hu->priv;
781
782         BT_DBG("hu %p want to sleep in %d state", hu, qca->rx_ibs_state);
783
784         spin_lock_irqsave(&qca->hci_ibs_lock, flags);
785
786         qca->ibs_recv_slps++;
787
788         switch (qca->rx_ibs_state) {
789         case HCI_IBS_RX_AWAKE:
790                 /* Update state */
791                 qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
792                 /* Vote off rx clock under workqueue */
793                 queue_work(qca->workqueue, &qca->ws_rx_vote_off);
794                 break;
795
796         case HCI_IBS_RX_ASLEEP:
797                 break;
798
799         default:
800                 /* Any other state is illegal */
801                 BT_ERR("Received HCI_IBS_SLEEP_IND in rx state %d",
802                        qca->rx_ibs_state);
803                 break;
804         }
805
806         wake_up_interruptible(&qca->suspend_wait_q);
807
808         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
809 }
810
811 /* Called upon wake-up-acknowledgement from the device
812  */
813 static void device_woke_up(struct hci_uart *hu)
814 {
815         unsigned long flags, idle_delay;
816         struct qca_data *qca = hu->priv;
817         struct sk_buff *skb = NULL;
818
819         BT_DBG("hu %p woke up", hu);
820
821         spin_lock_irqsave(&qca->hci_ibs_lock, flags);
822
823         qca->ibs_recv_wacks++;
824
825         /* Don't react to the wake-up-acknowledgment when suspending. */
826         if (test_bit(QCA_SUSPENDING, &qca->flags)) {
827                 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
828                 return;
829         }
830
831         switch (qca->tx_ibs_state) {
832         case HCI_IBS_TX_AWAKE:
833                 /* Expect one if we send 2 WAKEs */
834                 BT_DBG("Received HCI_IBS_WAKE_ACK in tx state %d",
835                        qca->tx_ibs_state);
836                 break;
837
838         case HCI_IBS_TX_WAKING:
839                 /* Send pending packets */
840                 while ((skb = skb_dequeue(&qca->tx_wait_q)))
841                         skb_queue_tail(&qca->txq, skb);
842
843                 /* Switch timers and change state to HCI_IBS_TX_AWAKE */
844                 del_timer(&qca->wake_retrans_timer);
845                 idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
846                 mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
847                 qca->tx_ibs_state = HCI_IBS_TX_AWAKE;
848                 break;
849
850         case HCI_IBS_TX_ASLEEP:
851         default:
852                 BT_ERR("Received HCI_IBS_WAKE_ACK in tx state %d",
853                        qca->tx_ibs_state);
854                 break;
855         }
856
857         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
858
859         /* Actually send the packets */
860         hci_uart_tx_wakeup(hu);
861 }
862
863 /* Enqueue frame for transmittion (padding, crc, etc) may be called from
864  * two simultaneous tasklets.
865  */
866 static int qca_enqueue(struct hci_uart *hu, struct sk_buff *skb)
867 {
868         unsigned long flags = 0, idle_delay;
869         struct qca_data *qca = hu->priv;
870
871         BT_DBG("hu %p qca enq skb %p tx_ibs_state %d", hu, skb,
872                qca->tx_ibs_state);
873
874         if (test_bit(QCA_SSR_TRIGGERED, &qca->flags)) {
875                 /* As SSR is in progress, ignore the packets */
876                 bt_dev_dbg(hu->hdev, "SSR is in progress");
877                 kfree_skb(skb);
878                 return 0;
879         }
880
881         /* Prepend skb with frame type */
882         memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
883
884         spin_lock_irqsave(&qca->hci_ibs_lock, flags);
885
886         /* Don't go to sleep in middle of patch download or
887          * Out-Of-Band(GPIOs control) sleep is selected.
888          * Don't wake the device up when suspending.
889          */
890         if (test_bit(QCA_IBS_DISABLED, &qca->flags) ||
891             test_bit(QCA_SUSPENDING, &qca->flags)) {
892                 skb_queue_tail(&qca->txq, skb);
893                 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
894                 return 0;
895         }
896
897         /* Act according to current state */
898         switch (qca->tx_ibs_state) {
899         case HCI_IBS_TX_AWAKE:
900                 BT_DBG("Device awake, sending normally");
901                 skb_queue_tail(&qca->txq, skb);
902                 idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
903                 mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
904                 break;
905
906         case HCI_IBS_TX_ASLEEP:
907                 BT_DBG("Device asleep, waking up and queueing packet");
908                 /* Save packet for later */
909                 skb_queue_tail(&qca->tx_wait_q, skb);
910
911                 qca->tx_ibs_state = HCI_IBS_TX_WAKING;
912                 /* Schedule a work queue to wake up device */
913                 queue_work(qca->workqueue, &qca->ws_awake_device);
914                 break;
915
916         case HCI_IBS_TX_WAKING:
917                 BT_DBG("Device waking up, queueing packet");
918                 /* Transient state; just keep packet for later */
919                 skb_queue_tail(&qca->tx_wait_q, skb);
920                 break;
921
922         default:
923                 BT_ERR("Illegal tx state: %d (losing packet)",
924                        qca->tx_ibs_state);
925                 dev_kfree_skb_irq(skb);
926                 break;
927         }
928
929         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
930
931         return 0;
932 }
933
934 static int qca_ibs_sleep_ind(struct hci_dev *hdev, struct sk_buff *skb)
935 {
936         struct hci_uart *hu = hci_get_drvdata(hdev);
937
938         BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_SLEEP_IND);
939
940         device_want_to_sleep(hu);
941
942         kfree_skb(skb);
943         return 0;
944 }
945
946 static int qca_ibs_wake_ind(struct hci_dev *hdev, struct sk_buff *skb)
947 {
948         struct hci_uart *hu = hci_get_drvdata(hdev);
949
950         BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_IND);
951
952         device_want_to_wakeup(hu);
953
954         kfree_skb(skb);
955         return 0;
956 }
957
958 static int qca_ibs_wake_ack(struct hci_dev *hdev, struct sk_buff *skb)
959 {
960         struct hci_uart *hu = hci_get_drvdata(hdev);
961
962         BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_ACK);
963
964         device_woke_up(hu);
965
966         kfree_skb(skb);
967         return 0;
968 }
969
970 static int qca_recv_acl_data(struct hci_dev *hdev, struct sk_buff *skb)
971 {
972         /* We receive debug logs from chip as an ACL packets.
973          * Instead of sending the data to ACL to decode the
974          * received data, we are pushing them to the above layers
975          * as a diagnostic packet.
976          */
977         if (get_unaligned_le16(skb->data) == QCA_DEBUG_HANDLE)
978                 return hci_recv_diag(hdev, skb);
979
980         return hci_recv_frame(hdev, skb);
981 }
982
983 static void qca_controller_memdump(struct work_struct *work)
984 {
985         struct qca_data *qca = container_of(work, struct qca_data,
986                                             ctrl_memdump_evt);
987         struct hci_uart *hu = qca->hu;
988         struct sk_buff *skb;
989         struct qca_memdump_event_hdr *cmd_hdr;
990         struct qca_memdump_data *qca_memdump = qca->qca_memdump;
991         struct qca_dump_size *dump;
992         char *memdump_buf;
993         char nullBuff[QCA_DUMP_PACKET_SIZE] = { 0 };
994         u16 seq_no;
995         u32 dump_size;
996         u32 rx_size;
997         enum qca_btsoc_type soc_type = qca_soc_type(hu);
998
999         while ((skb = skb_dequeue(&qca->rx_memdump_q))) {
1000
1001                 mutex_lock(&qca->hci_memdump_lock);
1002                 /* Skip processing the received packets if timeout detected
1003                  * or memdump collection completed.
1004                  */
1005                 if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT ||
1006                     qca->memdump_state == QCA_MEMDUMP_COLLECTED) {
1007                         mutex_unlock(&qca->hci_memdump_lock);
1008                         return;
1009                 }
1010
1011                 if (!qca_memdump) {
1012                         qca_memdump = kzalloc(sizeof(struct qca_memdump_data),
1013                                               GFP_ATOMIC);
1014                         if (!qca_memdump) {
1015                                 mutex_unlock(&qca->hci_memdump_lock);
1016                                 return;
1017                         }
1018
1019                         qca->qca_memdump = qca_memdump;
1020                 }
1021
1022                 qca->memdump_state = QCA_MEMDUMP_COLLECTING;
1023                 cmd_hdr = (void *) skb->data;
1024                 seq_no = __le16_to_cpu(cmd_hdr->seq_no);
1025                 skb_pull(skb, sizeof(struct qca_memdump_event_hdr));
1026
1027                 if (!seq_no) {
1028
1029                         /* This is the first frame of memdump packet from
1030                          * the controller, Disable IBS to recevie dump
1031                          * with out any interruption, ideally time required for
1032                          * the controller to send the dump is 8 seconds. let us
1033                          * start timer to handle this asynchronous activity.
1034                          */
1035                         set_bit(QCA_IBS_DISABLED, &qca->flags);
1036                         set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1037                         dump = (void *) skb->data;
1038                         dump_size = __le32_to_cpu(dump->dump_size);
1039                         if (!(dump_size)) {
1040                                 bt_dev_err(hu->hdev, "Rx invalid memdump size");
1041                                 kfree(qca_memdump);
1042                                 kfree_skb(skb);
1043                                 qca->qca_memdump = NULL;
1044                                 mutex_unlock(&qca->hci_memdump_lock);
1045                                 return;
1046                         }
1047
1048                         bt_dev_info(hu->hdev, "QCA collecting dump of size:%u",
1049                                     dump_size);
1050                         queue_delayed_work(qca->workqueue,
1051                                            &qca->ctrl_memdump_timeout,
1052                                            msecs_to_jiffies(MEMDUMP_TIMEOUT_MS)
1053                                           );
1054
1055                         skb_pull(skb, sizeof(dump_size));
1056                         memdump_buf = vmalloc(dump_size);
1057                         qca_memdump->ram_dump_size = dump_size;
1058                         qca_memdump->memdump_buf_head = memdump_buf;
1059                         qca_memdump->memdump_buf_tail = memdump_buf;
1060                 }
1061
1062                 memdump_buf = qca_memdump->memdump_buf_tail;
1063
1064                 /* If sequence no 0 is missed then there is no point in
1065                  * accepting the other sequences.
1066                  */
1067                 if (!memdump_buf) {
1068                         bt_dev_err(hu->hdev, "QCA: Discarding other packets");
1069                         kfree(qca_memdump);
1070                         kfree_skb(skb);
1071                         qca->qca_memdump = NULL;
1072                         mutex_unlock(&qca->hci_memdump_lock);
1073                         return;
1074                 }
1075
1076                 /* There could be chance of missing some packets from
1077                  * the controller. In such cases let us store the dummy
1078                  * packets in the buffer.
1079                  */
1080                 /* For QCA6390, controller does not lost packets but
1081                  * sequence number field of packet sometimes has error
1082                  * bits, so skip this checking for missing packet.
1083                  */
1084                 while ((seq_no > qca_memdump->current_seq_no + 1) &&
1085                        (soc_type != QCA_QCA6390) &&
1086                        seq_no != QCA_LAST_SEQUENCE_NUM) {
1087                         bt_dev_err(hu->hdev, "QCA controller missed packet:%d",
1088                                    qca_memdump->current_seq_no);
1089                         rx_size = qca_memdump->received_dump;
1090                         rx_size += QCA_DUMP_PACKET_SIZE;
1091                         if (rx_size > qca_memdump->ram_dump_size) {
1092                                 bt_dev_err(hu->hdev,
1093                                            "QCA memdump received %d, no space for missed packet",
1094                                            qca_memdump->received_dump);
1095                                 break;
1096                         }
1097                         memcpy(memdump_buf, nullBuff, QCA_DUMP_PACKET_SIZE);
1098                         memdump_buf = memdump_buf + QCA_DUMP_PACKET_SIZE;
1099                         qca_memdump->received_dump += QCA_DUMP_PACKET_SIZE;
1100                         qca_memdump->current_seq_no++;
1101                 }
1102
1103                 rx_size = qca_memdump->received_dump + skb->len;
1104                 if (rx_size <= qca_memdump->ram_dump_size) {
1105                         if ((seq_no != QCA_LAST_SEQUENCE_NUM) &&
1106                             (seq_no != qca_memdump->current_seq_no))
1107                                 bt_dev_err(hu->hdev,
1108                                            "QCA memdump unexpected packet %d",
1109                                            seq_no);
1110                         bt_dev_dbg(hu->hdev,
1111                                    "QCA memdump packet %d with length %d",
1112                                    seq_no, skb->len);
1113                         memcpy(memdump_buf, (unsigned char *)skb->data,
1114                                skb->len);
1115                         memdump_buf = memdump_buf + skb->len;
1116                         qca_memdump->memdump_buf_tail = memdump_buf;
1117                         qca_memdump->current_seq_no = seq_no + 1;
1118                         qca_memdump->received_dump += skb->len;
1119                 } else {
1120                         bt_dev_err(hu->hdev,
1121                                    "QCA memdump received %d, no space for packet %d",
1122                                    qca_memdump->received_dump, seq_no);
1123                 }
1124                 qca->qca_memdump = qca_memdump;
1125                 kfree_skb(skb);
1126                 if (seq_no == QCA_LAST_SEQUENCE_NUM) {
1127                         bt_dev_info(hu->hdev,
1128                                     "QCA memdump Done, received %d, total %d",
1129                                     qca_memdump->received_dump,
1130                                     qca_memdump->ram_dump_size);
1131                         memdump_buf = qca_memdump->memdump_buf_head;
1132                         dev_coredumpv(&hu->serdev->dev, memdump_buf,
1133                                       qca_memdump->received_dump, GFP_KERNEL);
1134                         cancel_delayed_work(&qca->ctrl_memdump_timeout);
1135                         kfree(qca->qca_memdump);
1136                         qca->qca_memdump = NULL;
1137                         qca->memdump_state = QCA_MEMDUMP_COLLECTED;
1138                         clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1139                 }
1140
1141                 mutex_unlock(&qca->hci_memdump_lock);
1142         }
1143
1144 }
1145
1146 static int qca_controller_memdump_event(struct hci_dev *hdev,
1147                                         struct sk_buff *skb)
1148 {
1149         struct hci_uart *hu = hci_get_drvdata(hdev);
1150         struct qca_data *qca = hu->priv;
1151
1152         set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1153         skb_queue_tail(&qca->rx_memdump_q, skb);
1154         queue_work(qca->workqueue, &qca->ctrl_memdump_evt);
1155
1156         return 0;
1157 }
1158
1159 static int qca_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
1160 {
1161         struct hci_uart *hu = hci_get_drvdata(hdev);
1162         struct qca_data *qca = hu->priv;
1163
1164         if (test_bit(QCA_DROP_VENDOR_EVENT, &qca->flags)) {
1165                 struct hci_event_hdr *hdr = (void *)skb->data;
1166
1167                 /* For the WCN3990 the vendor command for a baudrate change
1168                  * isn't sent as synchronous HCI command, because the
1169                  * controller sends the corresponding vendor event with the
1170                  * new baudrate. The event is received and properly decoded
1171                  * after changing the baudrate of the host port. It needs to
1172                  * be dropped, otherwise it can be misinterpreted as
1173                  * response to a later firmware download command (also a
1174                  * vendor command).
1175                  */
1176
1177                 if (hdr->evt == HCI_EV_VENDOR)
1178                         complete(&qca->drop_ev_comp);
1179
1180                 kfree_skb(skb);
1181
1182                 return 0;
1183         }
1184         /* We receive chip memory dump as an event packet, With a dedicated
1185          * handler followed by a hardware error event. When this event is
1186          * received we store dump into a file before closing hci. This
1187          * dump will help in triaging the issues.
1188          */
1189         if ((skb->data[0] == HCI_VENDOR_PKT) &&
1190             (get_unaligned_be16(skb->data + 2) == QCA_SSR_DUMP_HANDLE))
1191                 return qca_controller_memdump_event(hdev, skb);
1192
1193         return hci_recv_frame(hdev, skb);
1194 }
1195
1196 #define QCA_IBS_SLEEP_IND_EVENT \
1197         .type = HCI_IBS_SLEEP_IND, \
1198         .hlen = 0, \
1199         .loff = 0, \
1200         .lsize = 0, \
1201         .maxlen = HCI_MAX_IBS_SIZE
1202
1203 #define QCA_IBS_WAKE_IND_EVENT \
1204         .type = HCI_IBS_WAKE_IND, \
1205         .hlen = 0, \
1206         .loff = 0, \
1207         .lsize = 0, \
1208         .maxlen = HCI_MAX_IBS_SIZE
1209
1210 #define QCA_IBS_WAKE_ACK_EVENT \
1211         .type = HCI_IBS_WAKE_ACK, \
1212         .hlen = 0, \
1213         .loff = 0, \
1214         .lsize = 0, \
1215         .maxlen = HCI_MAX_IBS_SIZE
1216
1217 static const struct h4_recv_pkt qca_recv_pkts[] = {
1218         { H4_RECV_ACL,             .recv = qca_recv_acl_data },
1219         { H4_RECV_SCO,             .recv = hci_recv_frame    },
1220         { H4_RECV_EVENT,           .recv = qca_recv_event    },
1221         { QCA_IBS_WAKE_IND_EVENT,  .recv = qca_ibs_wake_ind  },
1222         { QCA_IBS_WAKE_ACK_EVENT,  .recv = qca_ibs_wake_ack  },
1223         { QCA_IBS_SLEEP_IND_EVENT, .recv = qca_ibs_sleep_ind },
1224 };
1225
1226 static int qca_recv(struct hci_uart *hu, const void *data, int count)
1227 {
1228         struct qca_data *qca = hu->priv;
1229
1230         if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
1231                 return -EUNATCH;
1232
1233         qca->rx_skb = h4_recv_buf(hu->hdev, qca->rx_skb, data, count,
1234                                   qca_recv_pkts, ARRAY_SIZE(qca_recv_pkts));
1235         if (IS_ERR(qca->rx_skb)) {
1236                 int err = PTR_ERR(qca->rx_skb);
1237                 bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
1238                 qca->rx_skb = NULL;
1239                 return err;
1240         }
1241
1242         return count;
1243 }
1244
1245 static struct sk_buff *qca_dequeue(struct hci_uart *hu)
1246 {
1247         struct qca_data *qca = hu->priv;
1248
1249         return skb_dequeue(&qca->txq);
1250 }
1251
1252 static uint8_t qca_get_baudrate_value(int speed)
1253 {
1254         switch (speed) {
1255         case 9600:
1256                 return QCA_BAUDRATE_9600;
1257         case 19200:
1258                 return QCA_BAUDRATE_19200;
1259         case 38400:
1260                 return QCA_BAUDRATE_38400;
1261         case 57600:
1262                 return QCA_BAUDRATE_57600;
1263         case 115200:
1264                 return QCA_BAUDRATE_115200;
1265         case 230400:
1266                 return QCA_BAUDRATE_230400;
1267         case 460800:
1268                 return QCA_BAUDRATE_460800;
1269         case 500000:
1270                 return QCA_BAUDRATE_500000;
1271         case 921600:
1272                 return QCA_BAUDRATE_921600;
1273         case 1000000:
1274                 return QCA_BAUDRATE_1000000;
1275         case 2000000:
1276                 return QCA_BAUDRATE_2000000;
1277         case 3000000:
1278                 return QCA_BAUDRATE_3000000;
1279         case 3200000:
1280                 return QCA_BAUDRATE_3200000;
1281         case 3500000:
1282                 return QCA_BAUDRATE_3500000;
1283         default:
1284                 return QCA_BAUDRATE_115200;
1285         }
1286 }
1287
1288 static int qca_set_baudrate(struct hci_dev *hdev, uint8_t baudrate)
1289 {
1290         struct hci_uart *hu = hci_get_drvdata(hdev);
1291         struct qca_data *qca = hu->priv;
1292         struct sk_buff *skb;
1293         u8 cmd[] = { 0x01, 0x48, 0xFC, 0x01, 0x00 };
1294
1295         if (baudrate > QCA_BAUDRATE_3200000)
1296                 return -EINVAL;
1297
1298         cmd[4] = baudrate;
1299
1300         skb = bt_skb_alloc(sizeof(cmd), GFP_KERNEL);
1301         if (!skb) {
1302                 bt_dev_err(hdev, "Failed to allocate baudrate packet");
1303                 return -ENOMEM;
1304         }
1305
1306         /* Assign commands to change baudrate and packet type. */
1307         skb_put_data(skb, cmd, sizeof(cmd));
1308         hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
1309
1310         skb_queue_tail(&qca->txq, skb);
1311         hci_uart_tx_wakeup(hu);
1312
1313         /* Wait for the baudrate change request to be sent */
1314
1315         while (!skb_queue_empty(&qca->txq))
1316                 usleep_range(100, 200);
1317
1318         if (hu->serdev)
1319                 serdev_device_wait_until_sent(hu->serdev,
1320                       msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS));
1321
1322         /* Give the controller time to process the request */
1323         if (qca_is_wcn399x(qca_soc_type(hu)) ||
1324             qca_is_wcn6750(qca_soc_type(hu)) ||
1325             qca_is_wcn6855(qca_soc_type(hu)))
1326                 usleep_range(1000, 10000);
1327         else
1328                 msleep(300);
1329
1330         return 0;
1331 }
1332
1333 static inline void host_set_baudrate(struct hci_uart *hu, unsigned int speed)
1334 {
1335         if (hu->serdev)
1336                 serdev_device_set_baudrate(hu->serdev, speed);
1337         else
1338                 hci_uart_set_baudrate(hu, speed);
1339 }
1340
1341 static int qca_send_power_pulse(struct hci_uart *hu, bool on)
1342 {
1343         int ret;
1344         int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS);
1345         u8 cmd = on ? QCA_WCN3990_POWERON_PULSE : QCA_WCN3990_POWEROFF_PULSE;
1346
1347         /* These power pulses are single byte command which are sent
1348          * at required baudrate to wcn3990. On wcn3990, we have an external
1349          * circuit at Tx pin which decodes the pulse sent at specific baudrate.
1350          * For example, wcn3990 supports RF COEX antenna for both Wi-Fi/BT
1351          * and also we use the same power inputs to turn on and off for
1352          * Wi-Fi/BT. Powering up the power sources will not enable BT, until
1353          * we send a power on pulse at 115200 bps. This algorithm will help to
1354          * save power. Disabling hardware flow control is mandatory while
1355          * sending power pulses to SoC.
1356          */
1357         bt_dev_dbg(hu->hdev, "sending power pulse %02x to controller", cmd);
1358
1359         serdev_device_write_flush(hu->serdev);
1360         hci_uart_set_flow_control(hu, true);
1361         ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd));
1362         if (ret < 0) {
1363                 bt_dev_err(hu->hdev, "failed to send power pulse %02x", cmd);
1364                 return ret;
1365         }
1366
1367         serdev_device_wait_until_sent(hu->serdev, timeout);
1368         hci_uart_set_flow_control(hu, false);
1369
1370         /* Give to controller time to boot/shutdown */
1371         if (on)
1372                 msleep(100);
1373         else
1374                 usleep_range(1000, 10000);
1375
1376         return 0;
1377 }
1378
1379 static unsigned int qca_get_speed(struct hci_uart *hu,
1380                                   enum qca_speed_type speed_type)
1381 {
1382         unsigned int speed = 0;
1383
1384         if (speed_type == QCA_INIT_SPEED) {
1385                 if (hu->init_speed)
1386                         speed = hu->init_speed;
1387                 else if (hu->proto->init_speed)
1388                         speed = hu->proto->init_speed;
1389         } else {
1390                 if (hu->oper_speed)
1391                         speed = hu->oper_speed;
1392                 else if (hu->proto->oper_speed)
1393                         speed = hu->proto->oper_speed;
1394         }
1395
1396         return speed;
1397 }
1398
1399 static int qca_check_speeds(struct hci_uart *hu)
1400 {
1401         if (qca_is_wcn399x(qca_soc_type(hu)) ||
1402             qca_is_wcn6750(qca_soc_type(hu)) ||
1403             qca_is_wcn6855(qca_soc_type(hu))) {
1404                 if (!qca_get_speed(hu, QCA_INIT_SPEED) &&
1405                     !qca_get_speed(hu, QCA_OPER_SPEED))
1406                         return -EINVAL;
1407         } else {
1408                 if (!qca_get_speed(hu, QCA_INIT_SPEED) ||
1409                     !qca_get_speed(hu, QCA_OPER_SPEED))
1410                         return -EINVAL;
1411         }
1412
1413         return 0;
1414 }
1415
1416 static int qca_set_speed(struct hci_uart *hu, enum qca_speed_type speed_type)
1417 {
1418         unsigned int speed, qca_baudrate;
1419         struct qca_data *qca = hu->priv;
1420         int ret = 0;
1421
1422         if (speed_type == QCA_INIT_SPEED) {
1423                 speed = qca_get_speed(hu, QCA_INIT_SPEED);
1424                 if (speed)
1425                         host_set_baudrate(hu, speed);
1426         } else {
1427                 enum qca_btsoc_type soc_type = qca_soc_type(hu);
1428
1429                 speed = qca_get_speed(hu, QCA_OPER_SPEED);
1430                 if (!speed)
1431                         return 0;
1432
1433                 /* Disable flow control for wcn3990 to deassert RTS while
1434                  * changing the baudrate of chip and host.
1435                  */
1436                 if (qca_is_wcn399x(soc_type) ||
1437                     qca_is_wcn6750(soc_type) ||
1438                     qca_is_wcn6855(soc_type))
1439                         hci_uart_set_flow_control(hu, true);
1440
1441                 if (soc_type == QCA_WCN3990) {
1442                         reinit_completion(&qca->drop_ev_comp);
1443                         set_bit(QCA_DROP_VENDOR_EVENT, &qca->flags);
1444                 }
1445
1446                 qca_baudrate = qca_get_baudrate_value(speed);
1447                 bt_dev_dbg(hu->hdev, "Set UART speed to %d", speed);
1448                 ret = qca_set_baudrate(hu->hdev, qca_baudrate);
1449                 if (ret)
1450                         goto error;
1451
1452                 host_set_baudrate(hu, speed);
1453
1454 error:
1455                 if (qca_is_wcn399x(soc_type) ||
1456                     qca_is_wcn6750(soc_type) ||
1457                     qca_is_wcn6855(soc_type))
1458                         hci_uart_set_flow_control(hu, false);
1459
1460                 if (soc_type == QCA_WCN3990) {
1461                         /* Wait for the controller to send the vendor event
1462                          * for the baudrate change command.
1463                          */
1464                         if (!wait_for_completion_timeout(&qca->drop_ev_comp,
1465                                                  msecs_to_jiffies(100))) {
1466                                 bt_dev_err(hu->hdev,
1467                                            "Failed to change controller baudrate\n");
1468                                 ret = -ETIMEDOUT;
1469                         }
1470
1471                         clear_bit(QCA_DROP_VENDOR_EVENT, &qca->flags);
1472                 }
1473         }
1474
1475         return ret;
1476 }
1477
1478 static int qca_send_crashbuffer(struct hci_uart *hu)
1479 {
1480         struct qca_data *qca = hu->priv;
1481         struct sk_buff *skb;
1482
1483         skb = bt_skb_alloc(QCA_CRASHBYTE_PACKET_LEN, GFP_KERNEL);
1484         if (!skb) {
1485                 bt_dev_err(hu->hdev, "Failed to allocate memory for skb packet");
1486                 return -ENOMEM;
1487         }
1488
1489         /* We forcefully crash the controller, by sending 0xfb byte for
1490          * 1024 times. We also might have chance of losing data, To be
1491          * on safer side we send 1096 bytes to the SoC.
1492          */
1493         memset(skb_put(skb, QCA_CRASHBYTE_PACKET_LEN), QCA_MEMDUMP_BYTE,
1494                QCA_CRASHBYTE_PACKET_LEN);
1495         hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
1496         bt_dev_info(hu->hdev, "crash the soc to collect controller dump");
1497         skb_queue_tail(&qca->txq, skb);
1498         hci_uart_tx_wakeup(hu);
1499
1500         return 0;
1501 }
1502
1503 static void qca_wait_for_dump_collection(struct hci_dev *hdev)
1504 {
1505         struct hci_uart *hu = hci_get_drvdata(hdev);
1506         struct qca_data *qca = hu->priv;
1507
1508         wait_on_bit_timeout(&qca->flags, QCA_MEMDUMP_COLLECTION,
1509                             TASK_UNINTERRUPTIBLE, MEMDUMP_TIMEOUT_MS);
1510
1511         clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1512 }
1513
1514 static void qca_hw_error(struct hci_dev *hdev, u8 code)
1515 {
1516         struct hci_uart *hu = hci_get_drvdata(hdev);
1517         struct qca_data *qca = hu->priv;
1518
1519         set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1520         set_bit(QCA_HW_ERROR_EVENT, &qca->flags);
1521         bt_dev_info(hdev, "mem_dump_status: %d", qca->memdump_state);
1522
1523         if (qca->memdump_state == QCA_MEMDUMP_IDLE) {
1524                 /* If hardware error event received for other than QCA
1525                  * soc memory dump event, then we need to crash the SOC
1526                  * and wait here for 8 seconds to get the dump packets.
1527                  * This will block main thread to be on hold until we
1528                  * collect dump.
1529                  */
1530                 set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1531                 qca_send_crashbuffer(hu);
1532                 qca_wait_for_dump_collection(hdev);
1533         } else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) {
1534                 /* Let us wait here until memory dump collected or
1535                  * memory dump timer expired.
1536                  */
1537                 bt_dev_info(hdev, "waiting for dump to complete");
1538                 qca_wait_for_dump_collection(hdev);
1539         }
1540
1541         mutex_lock(&qca->hci_memdump_lock);
1542         if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) {
1543                 bt_dev_err(hu->hdev, "clearing allocated memory due to memdump timeout");
1544                 if (qca->qca_memdump) {
1545                         vfree(qca->qca_memdump->memdump_buf_head);
1546                         kfree(qca->qca_memdump);
1547                         qca->qca_memdump = NULL;
1548                 }
1549                 qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
1550                 cancel_delayed_work(&qca->ctrl_memdump_timeout);
1551         }
1552         mutex_unlock(&qca->hci_memdump_lock);
1553
1554         if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT ||
1555             qca->memdump_state == QCA_MEMDUMP_COLLECTED) {
1556                 cancel_work_sync(&qca->ctrl_memdump_evt);
1557                 skb_queue_purge(&qca->rx_memdump_q);
1558         }
1559
1560         clear_bit(QCA_HW_ERROR_EVENT, &qca->flags);
1561 }
1562
1563 static void qca_cmd_timeout(struct hci_dev *hdev)
1564 {
1565         struct hci_uart *hu = hci_get_drvdata(hdev);
1566         struct qca_data *qca = hu->priv;
1567
1568         set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1569         if (qca->memdump_state == QCA_MEMDUMP_IDLE) {
1570                 set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1571                 qca_send_crashbuffer(hu);
1572                 qca_wait_for_dump_collection(hdev);
1573         } else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) {
1574                 /* Let us wait here until memory dump collected or
1575                  * memory dump timer expired.
1576                  */
1577                 bt_dev_info(hdev, "waiting for dump to complete");
1578                 qca_wait_for_dump_collection(hdev);
1579         }
1580
1581         mutex_lock(&qca->hci_memdump_lock);
1582         if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) {
1583                 qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
1584                 if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) {
1585                         /* Inject hw error event to reset the device
1586                          * and driver.
1587                          */
1588                         hci_reset_dev(hu->hdev);
1589                 }
1590         }
1591         mutex_unlock(&qca->hci_memdump_lock);
1592 }
1593
1594 static bool qca_wakeup(struct hci_dev *hdev)
1595 {
1596         struct hci_uart *hu = hci_get_drvdata(hdev);
1597         bool wakeup;
1598
1599         /* BT SoC attached through the serial bus is handled by the serdev driver.
1600          * So we need to use the device handle of the serdev driver to get the
1601          * status of device may wakeup.
1602          */
1603         wakeup = device_may_wakeup(&hu->serdev->ctrl->dev);
1604         bt_dev_dbg(hu->hdev, "wakeup status : %d", wakeup);
1605
1606         return wakeup;
1607 }
1608
1609 static int qca_regulator_init(struct hci_uart *hu)
1610 {
1611         enum qca_btsoc_type soc_type = qca_soc_type(hu);
1612         struct qca_serdev *qcadev;
1613         int ret;
1614         bool sw_ctrl_state;
1615
1616         /* Check for vregs status, may be hci down has turned
1617          * off the voltage regulator.
1618          */
1619         qcadev = serdev_device_get_drvdata(hu->serdev);
1620         if (!qcadev->bt_power->vregs_on) {
1621                 serdev_device_close(hu->serdev);
1622                 ret = qca_regulator_enable(qcadev);
1623                 if (ret)
1624                         return ret;
1625
1626                 ret = serdev_device_open(hu->serdev);
1627                 if (ret) {
1628                         bt_dev_err(hu->hdev, "failed to open port");
1629                         return ret;
1630                 }
1631         }
1632
1633         if (qca_is_wcn399x(soc_type)) {
1634                 /* Forcefully enable wcn399x to enter in to boot mode. */
1635                 host_set_baudrate(hu, 2400);
1636                 ret = qca_send_power_pulse(hu, false);
1637                 if (ret)
1638                         return ret;
1639         }
1640
1641         /* For wcn6750 need to enable gpio bt_en */
1642         if (qcadev->bt_en) {
1643                 gpiod_set_value_cansleep(qcadev->bt_en, 0);
1644                 msleep(50);
1645                 gpiod_set_value_cansleep(qcadev->bt_en, 1);
1646                 msleep(50);
1647                 if (qcadev->sw_ctrl) {
1648                         sw_ctrl_state = gpiod_get_value_cansleep(qcadev->sw_ctrl);
1649                         bt_dev_dbg(hu->hdev, "SW_CTRL is %d", sw_ctrl_state);
1650                 }
1651         }
1652
1653         qca_set_speed(hu, QCA_INIT_SPEED);
1654
1655         if (qca_is_wcn399x(soc_type)) {
1656                 ret = qca_send_power_pulse(hu, true);
1657                 if (ret)
1658                         return ret;
1659         }
1660
1661         /* Now the device is in ready state to communicate with host.
1662          * To sync host with device we need to reopen port.
1663          * Without this, we will have RTS and CTS synchronization
1664          * issues.
1665          */
1666         serdev_device_close(hu->serdev);
1667         ret = serdev_device_open(hu->serdev);
1668         if (ret) {
1669                 bt_dev_err(hu->hdev, "failed to open port");
1670                 return ret;
1671         }
1672
1673         hci_uart_set_flow_control(hu, false);
1674
1675         return 0;
1676 }
1677
1678 static int qca_power_on(struct hci_dev *hdev)
1679 {
1680         struct hci_uart *hu = hci_get_drvdata(hdev);
1681         enum qca_btsoc_type soc_type = qca_soc_type(hu);
1682         struct qca_serdev *qcadev;
1683         struct qca_data *qca = hu->priv;
1684         int ret = 0;
1685
1686         /* Non-serdev device usually is powered by external power
1687          * and don't need additional action in driver for power on
1688          */
1689         if (!hu->serdev)
1690                 return 0;
1691
1692         if (qca_is_wcn399x(soc_type) ||
1693             qca_is_wcn6750(soc_type) ||
1694             qca_is_wcn6855(soc_type)) {
1695                 ret = qca_regulator_init(hu);
1696         } else {
1697                 qcadev = serdev_device_get_drvdata(hu->serdev);
1698                 if (qcadev->bt_en) {
1699                         gpiod_set_value_cansleep(qcadev->bt_en, 1);
1700                         /* Controller needs time to bootup. */
1701                         msleep(150);
1702                 }
1703         }
1704
1705         clear_bit(QCA_BT_OFF, &qca->flags);
1706         return ret;
1707 }
1708
1709 static int qca_setup(struct hci_uart *hu)
1710 {
1711         struct hci_dev *hdev = hu->hdev;
1712         struct qca_data *qca = hu->priv;
1713         unsigned int speed, qca_baudrate = QCA_BAUDRATE_115200;
1714         unsigned int retries = 0;
1715         enum qca_btsoc_type soc_type = qca_soc_type(hu);
1716         const char *firmware_name = qca_get_firmware_name(hu);
1717         int ret;
1718         struct qca_btsoc_version ver;
1719
1720         ret = qca_check_speeds(hu);
1721         if (ret)
1722                 return ret;
1723
1724         clear_bit(QCA_ROM_FW, &qca->flags);
1725         /* Patch downloading has to be done without IBS mode */
1726         set_bit(QCA_IBS_DISABLED, &qca->flags);
1727
1728         /* Enable controller to do both LE scan and BR/EDR inquiry
1729          * simultaneously.
1730          */
1731         set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
1732
1733         bt_dev_info(hdev, "setting up %s",
1734                 qca_is_wcn399x(soc_type) ? "wcn399x" :
1735                 (soc_type == QCA_WCN6750) ? "wcn6750" :
1736                 (soc_type == QCA_WCN6855) ? "wcn6855" : "ROME/QCA6390");
1737
1738         qca->memdump_state = QCA_MEMDUMP_IDLE;
1739
1740 retry:
1741         ret = qca_power_on(hdev);
1742         if (ret)
1743                 goto out;
1744
1745         clear_bit(QCA_SSR_TRIGGERED, &qca->flags);
1746
1747         if (qca_is_wcn399x(soc_type) ||
1748             qca_is_wcn6750(soc_type) ||
1749             qca_is_wcn6855(soc_type)) {
1750                 set_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks);
1751                 hci_set_aosp_capable(hdev);
1752
1753                 ret = qca_read_soc_version(hdev, &ver, soc_type);
1754                 if (ret)
1755                         goto out;
1756         } else {
1757                 qca_set_speed(hu, QCA_INIT_SPEED);
1758         }
1759
1760         /* Setup user speed if needed */
1761         speed = qca_get_speed(hu, QCA_OPER_SPEED);
1762         if (speed) {
1763                 ret = qca_set_speed(hu, QCA_OPER_SPEED);
1764                 if (ret)
1765                         goto out;
1766
1767                 qca_baudrate = qca_get_baudrate_value(speed);
1768         }
1769
1770         if (!(qca_is_wcn399x(soc_type) ||
1771               qca_is_wcn6750(soc_type) ||
1772               qca_is_wcn6855(soc_type))) {
1773                 /* Get QCA version information */
1774                 ret = qca_read_soc_version(hdev, &ver, soc_type);
1775                 if (ret)
1776                         goto out;
1777         }
1778
1779         /* Setup patch / NVM configurations */
1780         ret = qca_uart_setup(hdev, qca_baudrate, soc_type, ver,
1781                         firmware_name);
1782         if (!ret) {
1783                 clear_bit(QCA_IBS_DISABLED, &qca->flags);
1784                 qca_debugfs_init(hdev);
1785                 hu->hdev->hw_error = qca_hw_error;
1786                 hu->hdev->cmd_timeout = qca_cmd_timeout;
1787                 if (device_can_wakeup(hu->serdev->ctrl->dev.parent))
1788                         hu->hdev->wakeup = qca_wakeup;
1789         } else if (ret == -ENOENT) {
1790                 /* No patch/nvm-config found, run with original fw/config */
1791                 set_bit(QCA_ROM_FW, &qca->flags);
1792                 ret = 0;
1793         } else if (ret == -EAGAIN) {
1794                 /*
1795                  * Userspace firmware loader will return -EAGAIN in case no
1796                  * patch/nvm-config is found, so run with original fw/config.
1797                  */
1798                 set_bit(QCA_ROM_FW, &qca->flags);
1799                 ret = 0;
1800         }
1801
1802 out:
1803         if (ret && retries < MAX_INIT_RETRIES) {
1804                 bt_dev_warn(hdev, "Retry BT power ON:%d", retries);
1805                 qca_power_shutdown(hu);
1806                 if (hu->serdev) {
1807                         serdev_device_close(hu->serdev);
1808                         ret = serdev_device_open(hu->serdev);
1809                         if (ret) {
1810                                 bt_dev_err(hdev, "failed to open port");
1811                                 return ret;
1812                         }
1813                 }
1814                 retries++;
1815                 goto retry;
1816         }
1817
1818         /* Setup bdaddr */
1819         if (soc_type == QCA_ROME)
1820                 hu->hdev->set_bdaddr = qca_set_bdaddr_rome;
1821         else
1822                 hu->hdev->set_bdaddr = qca_set_bdaddr;
1823
1824         return ret;
1825 }
1826
1827 static const struct hci_uart_proto qca_proto = {
1828         .id             = HCI_UART_QCA,
1829         .name           = "QCA",
1830         .manufacturer   = 29,
1831         .init_speed     = 115200,
1832         .oper_speed     = 3000000,
1833         .open           = qca_open,
1834         .close          = qca_close,
1835         .flush          = qca_flush,
1836         .setup          = qca_setup,
1837         .recv           = qca_recv,
1838         .enqueue        = qca_enqueue,
1839         .dequeue        = qca_dequeue,
1840 };
1841
1842 static const struct qca_device_data qca_soc_data_wcn3990 __maybe_unused = {
1843         .soc_type = QCA_WCN3990,
1844         .vregs = (struct qca_vreg []) {
1845                 { "vddio", 15000  },
1846                 { "vddxo", 80000  },
1847                 { "vddrf", 300000 },
1848                 { "vddch0", 450000 },
1849         },
1850         .num_vregs = 4,
1851 };
1852
1853 static const struct qca_device_data qca_soc_data_wcn3991 __maybe_unused = {
1854         .soc_type = QCA_WCN3991,
1855         .vregs = (struct qca_vreg []) {
1856                 { "vddio", 15000  },
1857                 { "vddxo", 80000  },
1858                 { "vddrf", 300000 },
1859                 { "vddch0", 450000 },
1860         },
1861         .num_vregs = 4,
1862         .capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
1863 };
1864
1865 static const struct qca_device_data qca_soc_data_wcn3998 __maybe_unused = {
1866         .soc_type = QCA_WCN3998,
1867         .vregs = (struct qca_vreg []) {
1868                 { "vddio", 10000  },
1869                 { "vddxo", 80000  },
1870                 { "vddrf", 300000 },
1871                 { "vddch0", 450000 },
1872         },
1873         .num_vregs = 4,
1874 };
1875
1876 static const struct qca_device_data qca_soc_data_qca6390 __maybe_unused = {
1877         .soc_type = QCA_QCA6390,
1878         .num_vregs = 0,
1879 };
1880
1881 static const struct qca_device_data qca_soc_data_wcn6750 __maybe_unused = {
1882         .soc_type = QCA_WCN6750,
1883         .vregs = (struct qca_vreg []) {
1884                 { "vddio", 5000 },
1885                 { "vddaon", 26000 },
1886                 { "vddbtcxmx", 126000 },
1887                 { "vddrfacmn", 12500 },
1888                 { "vddrfa0p8", 102000 },
1889                 { "vddrfa1p7", 302000 },
1890                 { "vddrfa1p2", 257000 },
1891                 { "vddrfa2p2", 1700000 },
1892                 { "vddasd", 200 },
1893         },
1894         .num_vregs = 9,
1895         .capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
1896 };
1897
1898 static const struct qca_device_data qca_soc_data_wcn6855 __maybe_unused = {
1899         .soc_type = QCA_WCN6855,
1900         .vregs = (struct qca_vreg []) {
1901                 { "vddio", 5000 },
1902                 { "vddbtcxmx", 126000 },
1903                 { "vddrfacmn", 12500 },
1904                 { "vddrfa0p8", 102000 },
1905                 { "vddrfa1p7", 302000 },
1906                 { "vddrfa1p2", 257000 },
1907         },
1908         .num_vregs = 6,
1909         .capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
1910 };
1911
1912 static void qca_power_shutdown(struct hci_uart *hu)
1913 {
1914         struct qca_serdev *qcadev;
1915         struct qca_data *qca = hu->priv;
1916         unsigned long flags;
1917         enum qca_btsoc_type soc_type = qca_soc_type(hu);
1918         bool sw_ctrl_state;
1919
1920         /* From this point we go into power off state. But serial port is
1921          * still open, stop queueing the IBS data and flush all the buffered
1922          * data in skb's.
1923          */
1924         spin_lock_irqsave(&qca->hci_ibs_lock, flags);
1925         set_bit(QCA_IBS_DISABLED, &qca->flags);
1926         qca_flush(hu);
1927         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
1928
1929         /* Non-serdev device usually is powered by external power
1930          * and don't need additional action in driver for power down
1931          */
1932         if (!hu->serdev)
1933                 return;
1934
1935         qcadev = serdev_device_get_drvdata(hu->serdev);
1936
1937         if (qca_is_wcn399x(soc_type)) {
1938                 host_set_baudrate(hu, 2400);
1939                 qca_send_power_pulse(hu, false);
1940                 qca_regulator_disable(qcadev);
1941         } else if (soc_type == QCA_WCN6750 || soc_type == QCA_WCN6855) {
1942                 gpiod_set_value_cansleep(qcadev->bt_en, 0);
1943                 msleep(100);
1944                 qca_regulator_disable(qcadev);
1945                 if (qcadev->sw_ctrl) {
1946                         sw_ctrl_state = gpiod_get_value_cansleep(qcadev->sw_ctrl);
1947                         bt_dev_dbg(hu->hdev, "SW_CTRL is %d", sw_ctrl_state);
1948                 }
1949         } else if (qcadev->bt_en) {
1950                 gpiod_set_value_cansleep(qcadev->bt_en, 0);
1951         }
1952
1953         set_bit(QCA_BT_OFF, &qca->flags);
1954 }
1955
1956 static int qca_power_off(struct hci_dev *hdev)
1957 {
1958         struct hci_uart *hu = hci_get_drvdata(hdev);
1959         struct qca_data *qca = hu->priv;
1960         enum qca_btsoc_type soc_type = qca_soc_type(hu);
1961
1962         hu->hdev->hw_error = NULL;
1963         hu->hdev->cmd_timeout = NULL;
1964
1965         del_timer_sync(&qca->wake_retrans_timer);
1966         del_timer_sync(&qca->tx_idle_timer);
1967
1968         /* Stop sending shutdown command if soc crashes. */
1969         if (soc_type != QCA_ROME
1970                 && qca->memdump_state == QCA_MEMDUMP_IDLE) {
1971                 qca_send_pre_shutdown_cmd(hdev);
1972                 usleep_range(8000, 10000);
1973         }
1974
1975         qca_power_shutdown(hu);
1976         return 0;
1977 }
1978
1979 static int qca_regulator_enable(struct qca_serdev *qcadev)
1980 {
1981         struct qca_power *power = qcadev->bt_power;
1982         int ret;
1983
1984         /* Already enabled */
1985         if (power->vregs_on)
1986                 return 0;
1987
1988         BT_DBG("enabling %d regulators)", power->num_vregs);
1989
1990         ret = regulator_bulk_enable(power->num_vregs, power->vreg_bulk);
1991         if (ret)
1992                 return ret;
1993
1994         power->vregs_on = true;
1995
1996         ret = clk_prepare_enable(qcadev->susclk);
1997         if (ret)
1998                 qca_regulator_disable(qcadev);
1999
2000         return ret;
2001 }
2002
2003 static void qca_regulator_disable(struct qca_serdev *qcadev)
2004 {
2005         struct qca_power *power;
2006
2007         if (!qcadev)
2008                 return;
2009
2010         power = qcadev->bt_power;
2011
2012         /* Already disabled? */
2013         if (!power->vregs_on)
2014                 return;
2015
2016         regulator_bulk_disable(power->num_vregs, power->vreg_bulk);
2017         power->vregs_on = false;
2018
2019         clk_disable_unprepare(qcadev->susclk);
2020 }
2021
2022 static int qca_init_regulators(struct qca_power *qca,
2023                                 const struct qca_vreg *vregs, size_t num_vregs)
2024 {
2025         struct regulator_bulk_data *bulk;
2026         int ret;
2027         int i;
2028
2029         bulk = devm_kcalloc(qca->dev, num_vregs, sizeof(*bulk), GFP_KERNEL);
2030         if (!bulk)
2031                 return -ENOMEM;
2032
2033         for (i = 0; i < num_vregs; i++)
2034                 bulk[i].supply = vregs[i].name;
2035
2036         ret = devm_regulator_bulk_get(qca->dev, num_vregs, bulk);
2037         if (ret < 0)
2038                 return ret;
2039
2040         for (i = 0; i < num_vregs; i++) {
2041                 ret = regulator_set_load(bulk[i].consumer, vregs[i].load_uA);
2042                 if (ret)
2043                         return ret;
2044         }
2045
2046         qca->vreg_bulk = bulk;
2047         qca->num_vregs = num_vregs;
2048
2049         return 0;
2050 }
2051
2052 static int qca_serdev_probe(struct serdev_device *serdev)
2053 {
2054         struct qca_serdev *qcadev;
2055         struct hci_dev *hdev;
2056         const struct qca_device_data *data;
2057         int err;
2058         bool power_ctrl_enabled = true;
2059
2060         qcadev = devm_kzalloc(&serdev->dev, sizeof(*qcadev), GFP_KERNEL);
2061         if (!qcadev)
2062                 return -ENOMEM;
2063
2064         qcadev->serdev_hu.serdev = serdev;
2065         data = device_get_match_data(&serdev->dev);
2066         serdev_device_set_drvdata(serdev, qcadev);
2067         device_property_read_string(&serdev->dev, "firmware-name",
2068                                          &qcadev->firmware_name);
2069         device_property_read_u32(&serdev->dev, "max-speed",
2070                                  &qcadev->oper_speed);
2071         if (!qcadev->oper_speed)
2072                 BT_DBG("UART will pick default operating speed");
2073
2074         if (data &&
2075             (qca_is_wcn399x(data->soc_type) ||
2076              qca_is_wcn6750(data->soc_type) ||
2077              qca_is_wcn6855(data->soc_type))) {
2078                 qcadev->btsoc_type = data->soc_type;
2079                 qcadev->bt_power = devm_kzalloc(&serdev->dev,
2080                                                 sizeof(struct qca_power),
2081                                                 GFP_KERNEL);
2082                 if (!qcadev->bt_power)
2083                         return -ENOMEM;
2084
2085                 qcadev->bt_power->dev = &serdev->dev;
2086                 err = qca_init_regulators(qcadev->bt_power, data->vregs,
2087                                           data->num_vregs);
2088                 if (err) {
2089                         BT_ERR("Failed to init regulators:%d", err);
2090                         return err;
2091                 }
2092
2093                 qcadev->bt_power->vregs_on = false;
2094
2095                 qcadev->bt_en = devm_gpiod_get_optional(&serdev->dev, "enable",
2096                                                GPIOD_OUT_LOW);
2097                 if (IS_ERR_OR_NULL(qcadev->bt_en) &&
2098                     (data->soc_type == QCA_WCN6750 ||
2099                      data->soc_type == QCA_WCN6855)) {
2100                         dev_err(&serdev->dev, "failed to acquire BT_EN gpio\n");
2101                         power_ctrl_enabled = false;
2102                 }
2103
2104                 qcadev->sw_ctrl = devm_gpiod_get_optional(&serdev->dev, "swctrl",
2105                                                GPIOD_IN);
2106                 if (IS_ERR_OR_NULL(qcadev->sw_ctrl) &&
2107                     (data->soc_type == QCA_WCN6750 ||
2108                      data->soc_type == QCA_WCN6855))
2109                         dev_warn(&serdev->dev, "failed to acquire SW_CTRL gpio\n");
2110
2111                 qcadev->susclk = devm_clk_get_optional(&serdev->dev, NULL);
2112                 if (IS_ERR(qcadev->susclk)) {
2113                         dev_err(&serdev->dev, "failed to acquire clk\n");
2114                         return PTR_ERR(qcadev->susclk);
2115                 }
2116
2117                 err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto);
2118                 if (err) {
2119                         BT_ERR("wcn3990 serdev registration failed");
2120                         return err;
2121                 }
2122         } else {
2123                 if (data)
2124                         qcadev->btsoc_type = data->soc_type;
2125                 else
2126                         qcadev->btsoc_type = QCA_ROME;
2127
2128                 qcadev->bt_en = devm_gpiod_get_optional(&serdev->dev, "enable",
2129                                                GPIOD_OUT_LOW);
2130                 if (IS_ERR_OR_NULL(qcadev->bt_en)) {
2131                         dev_warn(&serdev->dev, "failed to acquire enable gpio\n");
2132                         power_ctrl_enabled = false;
2133                 }
2134
2135                 qcadev->susclk = devm_clk_get_optional(&serdev->dev, NULL);
2136                 if (IS_ERR(qcadev->susclk)) {
2137                         dev_warn(&serdev->dev, "failed to acquire clk\n");
2138                         return PTR_ERR(qcadev->susclk);
2139                 }
2140                 err = clk_set_rate(qcadev->susclk, SUSCLK_RATE_32KHZ);
2141                 if (err)
2142                         return err;
2143
2144                 err = clk_prepare_enable(qcadev->susclk);
2145                 if (err)
2146                         return err;
2147
2148                 err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto);
2149                 if (err) {
2150                         BT_ERR("Rome serdev registration failed");
2151                         clk_disable_unprepare(qcadev->susclk);
2152                         return err;
2153                 }
2154         }
2155
2156         hdev = qcadev->serdev_hu.hdev;
2157
2158         if (power_ctrl_enabled) {
2159                 set_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks);
2160                 hdev->shutdown = qca_power_off;
2161         }
2162
2163         if (data) {
2164                 /* Wideband speech support must be set per driver since it can't
2165                  * be queried via hci. Same with the valid le states quirk.
2166                  */
2167                 if (data->capabilities & QCA_CAP_WIDEBAND_SPEECH)
2168                         set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED,
2169                                 &hdev->quirks);
2170
2171                 if (data->capabilities & QCA_CAP_VALID_LE_STATES)
2172                         set_bit(HCI_QUIRK_VALID_LE_STATES, &hdev->quirks);
2173         }
2174
2175         return 0;
2176 }
2177
2178 static void qca_serdev_remove(struct serdev_device *serdev)
2179 {
2180         struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2181         struct qca_power *power = qcadev->bt_power;
2182
2183         if ((qca_is_wcn399x(qcadev->btsoc_type) ||
2184              qca_is_wcn6750(qcadev->btsoc_type) ||
2185              qca_is_wcn6855(qcadev->btsoc_type)) &&
2186             power->vregs_on)
2187                 qca_power_shutdown(&qcadev->serdev_hu);
2188         else if (qcadev->susclk)
2189                 clk_disable_unprepare(qcadev->susclk);
2190
2191         hci_uart_unregister_device(&qcadev->serdev_hu);
2192 }
2193
2194 static void qca_serdev_shutdown(struct device *dev)
2195 {
2196         int ret;
2197         int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS);
2198         struct serdev_device *serdev = to_serdev_device(dev);
2199         struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2200         struct hci_uart *hu = &qcadev->serdev_hu;
2201         struct hci_dev *hdev = hu->hdev;
2202         struct qca_data *qca = hu->priv;
2203         const u8 ibs_wake_cmd[] = { 0xFD };
2204         const u8 edl_reset_soc_cmd[] = { 0x01, 0x00, 0xFC, 0x01, 0x05 };
2205
2206         if (qcadev->btsoc_type == QCA_QCA6390) {
2207                 if (test_bit(QCA_BT_OFF, &qca->flags) ||
2208                     !test_bit(HCI_RUNNING, &hdev->flags))
2209                         return;
2210
2211                 serdev_device_write_flush(serdev);
2212                 ret = serdev_device_write_buf(serdev, ibs_wake_cmd,
2213                                               sizeof(ibs_wake_cmd));
2214                 if (ret < 0) {
2215                         BT_ERR("QCA send IBS_WAKE_IND error: %d", ret);
2216                         return;
2217                 }
2218                 serdev_device_wait_until_sent(serdev, timeout);
2219                 usleep_range(8000, 10000);
2220
2221                 serdev_device_write_flush(serdev);
2222                 ret = serdev_device_write_buf(serdev, edl_reset_soc_cmd,
2223                                               sizeof(edl_reset_soc_cmd));
2224                 if (ret < 0) {
2225                         BT_ERR("QCA send EDL_RESET_REQ error: %d", ret);
2226                         return;
2227                 }
2228                 serdev_device_wait_until_sent(serdev, timeout);
2229                 usleep_range(8000, 10000);
2230         }
2231 }
2232
2233 static int __maybe_unused qca_suspend(struct device *dev)
2234 {
2235         struct serdev_device *serdev = to_serdev_device(dev);
2236         struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2237         struct hci_uart *hu = &qcadev->serdev_hu;
2238         struct qca_data *qca = hu->priv;
2239         unsigned long flags;
2240         bool tx_pending = false;
2241         int ret = 0;
2242         u8 cmd;
2243         u32 wait_timeout = 0;
2244
2245         set_bit(QCA_SUSPENDING, &qca->flags);
2246
2247         /* if BT SoC is running with default firmware then it does not
2248          * support in-band sleep
2249          */
2250         if (test_bit(QCA_ROM_FW, &qca->flags))
2251                 return 0;
2252
2253         /* During SSR after memory dump collection, controller will be
2254          * powered off and then powered on.If controller is powered off
2255          * during SSR then we should wait until SSR is completed.
2256          */
2257         if (test_bit(QCA_BT_OFF, &qca->flags) &&
2258             !test_bit(QCA_SSR_TRIGGERED, &qca->flags))
2259                 return 0;
2260
2261         if (test_bit(QCA_IBS_DISABLED, &qca->flags) ||
2262             test_bit(QCA_SSR_TRIGGERED, &qca->flags)) {
2263                 wait_timeout = test_bit(QCA_SSR_TRIGGERED, &qca->flags) ?
2264                                         IBS_DISABLE_SSR_TIMEOUT_MS :
2265                                         FW_DOWNLOAD_TIMEOUT_MS;
2266
2267                 /* QCA_IBS_DISABLED flag is set to true, During FW download
2268                  * and during memory dump collection. It is reset to false,
2269                  * After FW download complete.
2270                  */
2271                 wait_on_bit_timeout(&qca->flags, QCA_IBS_DISABLED,
2272                             TASK_UNINTERRUPTIBLE, msecs_to_jiffies(wait_timeout));
2273
2274                 if (test_bit(QCA_IBS_DISABLED, &qca->flags)) {
2275                         bt_dev_err(hu->hdev, "SSR or FW download time out");
2276                         ret = -ETIMEDOUT;
2277                         goto error;
2278                 }
2279         }
2280
2281         cancel_work_sync(&qca->ws_awake_device);
2282         cancel_work_sync(&qca->ws_awake_rx);
2283
2284         spin_lock_irqsave_nested(&qca->hci_ibs_lock,
2285                                  flags, SINGLE_DEPTH_NESTING);
2286
2287         switch (qca->tx_ibs_state) {
2288         case HCI_IBS_TX_WAKING:
2289                 del_timer(&qca->wake_retrans_timer);
2290                 fallthrough;
2291         case HCI_IBS_TX_AWAKE:
2292                 del_timer(&qca->tx_idle_timer);
2293
2294                 serdev_device_write_flush(hu->serdev);
2295                 cmd = HCI_IBS_SLEEP_IND;
2296                 ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd));
2297
2298                 if (ret < 0) {
2299                         BT_ERR("Failed to send SLEEP to device");
2300                         break;
2301                 }
2302
2303                 qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
2304                 qca->ibs_sent_slps++;
2305                 tx_pending = true;
2306                 break;
2307
2308         case HCI_IBS_TX_ASLEEP:
2309                 break;
2310
2311         default:
2312                 BT_ERR("Spurious tx state %d", qca->tx_ibs_state);
2313                 ret = -EINVAL;
2314                 break;
2315         }
2316
2317         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
2318
2319         if (ret < 0)
2320                 goto error;
2321
2322         if (tx_pending) {
2323                 serdev_device_wait_until_sent(hu->serdev,
2324                                               msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS));
2325                 serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu);
2326         }
2327
2328         /* Wait for HCI_IBS_SLEEP_IND sent by device to indicate its Tx is going
2329          * to sleep, so that the packet does not wake the system later.
2330          */
2331         ret = wait_event_interruptible_timeout(qca->suspend_wait_q,
2332                         qca->rx_ibs_state == HCI_IBS_RX_ASLEEP,
2333                         msecs_to_jiffies(IBS_BTSOC_TX_IDLE_TIMEOUT_MS));
2334         if (ret == 0) {
2335                 ret = -ETIMEDOUT;
2336                 goto error;
2337         }
2338
2339         return 0;
2340
2341 error:
2342         clear_bit(QCA_SUSPENDING, &qca->flags);
2343
2344         return ret;
2345 }
2346
2347 static int __maybe_unused qca_resume(struct device *dev)
2348 {
2349         struct serdev_device *serdev = to_serdev_device(dev);
2350         struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2351         struct hci_uart *hu = &qcadev->serdev_hu;
2352         struct qca_data *qca = hu->priv;
2353
2354         clear_bit(QCA_SUSPENDING, &qca->flags);
2355
2356         return 0;
2357 }
2358
2359 static SIMPLE_DEV_PM_OPS(qca_pm_ops, qca_suspend, qca_resume);
2360
2361 #ifdef CONFIG_OF
2362 static const struct of_device_id qca_bluetooth_of_match[] = {
2363         { .compatible = "qcom,qca6174-bt" },
2364         { .compatible = "qcom,qca6390-bt", .data = &qca_soc_data_qca6390},
2365         { .compatible = "qcom,qca9377-bt" },
2366         { .compatible = "qcom,wcn3990-bt", .data = &qca_soc_data_wcn3990},
2367         { .compatible = "qcom,wcn3991-bt", .data = &qca_soc_data_wcn3991},
2368         { .compatible = "qcom,wcn3998-bt", .data = &qca_soc_data_wcn3998},
2369         { .compatible = "qcom,wcn6750-bt", .data = &qca_soc_data_wcn6750},
2370         { .compatible = "qcom,wcn6855-bt", .data = &qca_soc_data_wcn6855},
2371         { /* sentinel */ }
2372 };
2373 MODULE_DEVICE_TABLE(of, qca_bluetooth_of_match);
2374 #endif
2375
2376 #ifdef CONFIG_ACPI
2377 static const struct acpi_device_id qca_bluetooth_acpi_match[] = {
2378         { "QCOM6390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2379         { "DLA16390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2380         { "DLB16390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2381         { "DLB26390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2382         { },
2383 };
2384 MODULE_DEVICE_TABLE(acpi, qca_bluetooth_acpi_match);
2385 #endif
2386
2387
2388 static struct serdev_device_driver qca_serdev_driver = {
2389         .probe = qca_serdev_probe,
2390         .remove = qca_serdev_remove,
2391         .driver = {
2392                 .name = "hci_uart_qca",
2393                 .of_match_table = of_match_ptr(qca_bluetooth_of_match),
2394                 .acpi_match_table = ACPI_PTR(qca_bluetooth_acpi_match),
2395                 .shutdown = qca_serdev_shutdown,
2396                 .pm = &qca_pm_ops,
2397         },
2398 };
2399
2400 int __init qca_init(void)
2401 {
2402         serdev_device_driver_register(&qca_serdev_driver);
2403
2404         return hci_uart_register_proto(&qca_proto);
2405 }
2406
2407 int __exit qca_deinit(void)
2408 {
2409         serdev_device_driver_unregister(&qca_serdev_driver);
2410
2411         return hci_uart_unregister_proto(&qca_proto);
2412 }