Bluetooth: hci_qca: Add qcom devcoredump support
[linux-2.6-block.git] / drivers / bluetooth / hci_qca.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Bluetooth Software UART Qualcomm protocol
4  *
5  *  HCI_IBS (HCI In-Band Sleep) is Qualcomm's power management
6  *  protocol extension to H4.
7  *
8  *  Copyright (C) 2007 Texas Instruments, Inc.
9  *  Copyright (c) 2010, 2012, 2018 The Linux Foundation. All rights reserved.
10  *
11  *  Acknowledgements:
12  *  This file is based on hci_ll.c, which was...
13  *  Written by Ohad Ben-Cohen <ohad@bencohen.org>
14  *  which was in turn based on hci_h4.c, which was written
15  *  by Maxim Krasnyansky and Marcel Holtmann.
16  */
17
18 #include <linux/kernel.h>
19 #include <linux/clk.h>
20 #include <linux/completion.h>
21 #include <linux/debugfs.h>
22 #include <linux/delay.h>
23 #include <linux/devcoredump.h>
24 #include <linux/device.h>
25 #include <linux/gpio/consumer.h>
26 #include <linux/mod_devicetable.h>
27 #include <linux/module.h>
28 #include <linux/of_device.h>
29 #include <linux/acpi.h>
30 #include <linux/platform_device.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/serdev.h>
33 #include <linux/mutex.h>
34 #include <asm/unaligned.h>
35
36 #include <net/bluetooth/bluetooth.h>
37 #include <net/bluetooth/hci_core.h>
38
39 #include "hci_uart.h"
40 #include "btqca.h"
41
42 /* HCI_IBS protocol messages */
43 #define HCI_IBS_SLEEP_IND       0xFE
44 #define HCI_IBS_WAKE_IND        0xFD
45 #define HCI_IBS_WAKE_ACK        0xFC
46 #define HCI_MAX_IBS_SIZE        10
47
48 #define IBS_WAKE_RETRANS_TIMEOUT_MS     100
49 #define IBS_BTSOC_TX_IDLE_TIMEOUT_MS    200
50 #define IBS_HOST_TX_IDLE_TIMEOUT_MS     2000
51 #define CMD_TRANS_TIMEOUT_MS            100
52 #define MEMDUMP_TIMEOUT_MS              8000
53 #define IBS_DISABLE_SSR_TIMEOUT_MS \
54         (MEMDUMP_TIMEOUT_MS + FW_DOWNLOAD_TIMEOUT_MS)
55 #define FW_DOWNLOAD_TIMEOUT_MS          3000
56
57 /* susclk rate */
58 #define SUSCLK_RATE_32KHZ       32768
59
60 /* Controller debug log header */
61 #define QCA_DEBUG_HANDLE        0x2EDC
62
63 /* max retry count when init fails */
64 #define MAX_INIT_RETRIES 3
65
66 /* Controller dump header */
67 #define QCA_SSR_DUMP_HANDLE             0x0108
68 #define QCA_DUMP_PACKET_SIZE            255
69 #define QCA_LAST_SEQUENCE_NUM           0xFFFF
70 #define QCA_CRASHBYTE_PACKET_LEN        1096
71 #define QCA_MEMDUMP_BYTE                0xFB
72
73 enum qca_flags {
74         QCA_IBS_DISABLED,
75         QCA_DROP_VENDOR_EVENT,
76         QCA_SUSPENDING,
77         QCA_MEMDUMP_COLLECTION,
78         QCA_HW_ERROR_EVENT,
79         QCA_SSR_TRIGGERED,
80         QCA_BT_OFF,
81         QCA_ROM_FW,
82         QCA_DEBUGFS_CREATED,
83 };
84
85 enum qca_capabilities {
86         QCA_CAP_WIDEBAND_SPEECH = BIT(0),
87         QCA_CAP_VALID_LE_STATES = BIT(1),
88 };
89
90 /* HCI_IBS transmit side sleep protocol states */
91 enum tx_ibs_states {
92         HCI_IBS_TX_ASLEEP,
93         HCI_IBS_TX_WAKING,
94         HCI_IBS_TX_AWAKE,
95 };
96
97 /* HCI_IBS receive side sleep protocol states */
98 enum rx_states {
99         HCI_IBS_RX_ASLEEP,
100         HCI_IBS_RX_AWAKE,
101 };
102
103 /* HCI_IBS transmit and receive side clock state vote */
104 enum hci_ibs_clock_state_vote {
105         HCI_IBS_VOTE_STATS_UPDATE,
106         HCI_IBS_TX_VOTE_CLOCK_ON,
107         HCI_IBS_TX_VOTE_CLOCK_OFF,
108         HCI_IBS_RX_VOTE_CLOCK_ON,
109         HCI_IBS_RX_VOTE_CLOCK_OFF,
110 };
111
112 /* Controller memory dump states */
113 enum qca_memdump_states {
114         QCA_MEMDUMP_IDLE,
115         QCA_MEMDUMP_COLLECTING,
116         QCA_MEMDUMP_COLLECTED,
117         QCA_MEMDUMP_TIMEOUT,
118 };
119
120 struct qca_memdump_info {
121         u32 current_seq_no;
122         u32 received_dump;
123         u32 ram_dump_size;
124 };
125
126 struct qca_memdump_event_hdr {
127         __u8    evt;
128         __u8    plen;
129         __u16   opcode;
130         __le16   seq_no;
131         __u8    reserved;
132 } __packed;
133
134
135 struct qca_dump_size {
136         __le32 dump_size;
137 } __packed;
138
139 struct qca_data {
140         struct hci_uart *hu;
141         struct sk_buff *rx_skb;
142         struct sk_buff_head txq;
143         struct sk_buff_head tx_wait_q;  /* HCI_IBS wait queue   */
144         struct sk_buff_head rx_memdump_q;       /* Memdump wait queue   */
145         spinlock_t hci_ibs_lock;        /* HCI_IBS state lock   */
146         u8 tx_ibs_state;        /* HCI_IBS transmit side power state*/
147         u8 rx_ibs_state;        /* HCI_IBS receive side power state */
148         bool tx_vote;           /* Clock must be on for TX */
149         bool rx_vote;           /* Clock must be on for RX */
150         struct timer_list tx_idle_timer;
151         u32 tx_idle_delay;
152         struct timer_list wake_retrans_timer;
153         u32 wake_retrans;
154         struct workqueue_struct *workqueue;
155         struct work_struct ws_awake_rx;
156         struct work_struct ws_awake_device;
157         struct work_struct ws_rx_vote_off;
158         struct work_struct ws_tx_vote_off;
159         struct work_struct ctrl_memdump_evt;
160         struct delayed_work ctrl_memdump_timeout;
161         struct qca_memdump_info *qca_memdump;
162         unsigned long flags;
163         struct completion drop_ev_comp;
164         wait_queue_head_t suspend_wait_q;
165         enum qca_memdump_states memdump_state;
166         struct mutex hci_memdump_lock;
167
168         u16 fw_version;
169         u16 controller_id;
170         /* For debugging purpose */
171         u64 ibs_sent_wacks;
172         u64 ibs_sent_slps;
173         u64 ibs_sent_wakes;
174         u64 ibs_recv_wacks;
175         u64 ibs_recv_slps;
176         u64 ibs_recv_wakes;
177         u64 vote_last_jif;
178         u32 vote_on_ms;
179         u32 vote_off_ms;
180         u64 tx_votes_on;
181         u64 rx_votes_on;
182         u64 tx_votes_off;
183         u64 rx_votes_off;
184         u64 votes_on;
185         u64 votes_off;
186 };
187
188 enum qca_speed_type {
189         QCA_INIT_SPEED = 1,
190         QCA_OPER_SPEED
191 };
192
193 /*
194  * Voltage regulator information required for configuring the
195  * QCA Bluetooth chipset
196  */
197 struct qca_vreg {
198         const char *name;
199         unsigned int load_uA;
200 };
201
202 struct qca_device_data {
203         enum qca_btsoc_type soc_type;
204         struct qca_vreg *vregs;
205         size_t num_vregs;
206         uint32_t capabilities;
207 };
208
209 /*
210  * Platform data for the QCA Bluetooth power driver.
211  */
212 struct qca_power {
213         struct device *dev;
214         struct regulator_bulk_data *vreg_bulk;
215         int num_vregs;
216         bool vregs_on;
217 };
218
219 struct qca_serdev {
220         struct hci_uart  serdev_hu;
221         struct gpio_desc *bt_en;
222         struct gpio_desc *sw_ctrl;
223         struct clk       *susclk;
224         enum qca_btsoc_type btsoc_type;
225         struct qca_power *bt_power;
226         u32 init_speed;
227         u32 oper_speed;
228         const char *firmware_name;
229 };
230
231 static int qca_regulator_enable(struct qca_serdev *qcadev);
232 static void qca_regulator_disable(struct qca_serdev *qcadev);
233 static void qca_power_shutdown(struct hci_uart *hu);
234 static int qca_power_off(struct hci_dev *hdev);
235 static void qca_controller_memdump(struct work_struct *work);
236 static void qca_dmp_hdr(struct hci_dev *hdev, struct sk_buff *skb);
237
238 static enum qca_btsoc_type qca_soc_type(struct hci_uart *hu)
239 {
240         enum qca_btsoc_type soc_type;
241
242         if (hu->serdev) {
243                 struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev);
244
245                 soc_type = qsd->btsoc_type;
246         } else {
247                 soc_type = QCA_ROME;
248         }
249
250         return soc_type;
251 }
252
253 static const char *qca_get_firmware_name(struct hci_uart *hu)
254 {
255         if (hu->serdev) {
256                 struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev);
257
258                 return qsd->firmware_name;
259         } else {
260                 return NULL;
261         }
262 }
263
264 static void __serial_clock_on(struct tty_struct *tty)
265 {
266         /* TODO: Some chipset requires to enable UART clock on client
267          * side to save power consumption or manual work is required.
268          * Please put your code to control UART clock here if needed
269          */
270 }
271
272 static void __serial_clock_off(struct tty_struct *tty)
273 {
274         /* TODO: Some chipset requires to disable UART clock on client
275          * side to save power consumption or manual work is required.
276          * Please put your code to control UART clock off here if needed
277          */
278 }
279
280 /* serial_clock_vote needs to be called with the ibs lock held */
281 static void serial_clock_vote(unsigned long vote, struct hci_uart *hu)
282 {
283         struct qca_data *qca = hu->priv;
284         unsigned int diff;
285
286         bool old_vote = (qca->tx_vote | qca->rx_vote);
287         bool new_vote;
288
289         switch (vote) {
290         case HCI_IBS_VOTE_STATS_UPDATE:
291                 diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
292
293                 if (old_vote)
294                         qca->vote_off_ms += diff;
295                 else
296                         qca->vote_on_ms += diff;
297                 return;
298
299         case HCI_IBS_TX_VOTE_CLOCK_ON:
300                 qca->tx_vote = true;
301                 qca->tx_votes_on++;
302                 break;
303
304         case HCI_IBS_RX_VOTE_CLOCK_ON:
305                 qca->rx_vote = true;
306                 qca->rx_votes_on++;
307                 break;
308
309         case HCI_IBS_TX_VOTE_CLOCK_OFF:
310                 qca->tx_vote = false;
311                 qca->tx_votes_off++;
312                 break;
313
314         case HCI_IBS_RX_VOTE_CLOCK_OFF:
315                 qca->rx_vote = false;
316                 qca->rx_votes_off++;
317                 break;
318
319         default:
320                 BT_ERR("Voting irregularity");
321                 return;
322         }
323
324         new_vote = qca->rx_vote | qca->tx_vote;
325
326         if (new_vote != old_vote) {
327                 if (new_vote)
328                         __serial_clock_on(hu->tty);
329                 else
330                         __serial_clock_off(hu->tty);
331
332                 BT_DBG("Vote serial clock %s(%s)", new_vote ? "true" : "false",
333                        vote ? "true" : "false");
334
335                 diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
336
337                 if (new_vote) {
338                         qca->votes_on++;
339                         qca->vote_off_ms += diff;
340                 } else {
341                         qca->votes_off++;
342                         qca->vote_on_ms += diff;
343                 }
344                 qca->vote_last_jif = jiffies;
345         }
346 }
347
348 /* Builds and sends an HCI_IBS command packet.
349  * These are very simple packets with only 1 cmd byte.
350  */
351 static int send_hci_ibs_cmd(u8 cmd, struct hci_uart *hu)
352 {
353         int err = 0;
354         struct sk_buff *skb = NULL;
355         struct qca_data *qca = hu->priv;
356
357         BT_DBG("hu %p send hci ibs cmd 0x%x", hu, cmd);
358
359         skb = bt_skb_alloc(1, GFP_ATOMIC);
360         if (!skb) {
361                 BT_ERR("Failed to allocate memory for HCI_IBS packet");
362                 return -ENOMEM;
363         }
364
365         /* Assign HCI_IBS type */
366         skb_put_u8(skb, cmd);
367
368         skb_queue_tail(&qca->txq, skb);
369
370         return err;
371 }
372
373 static void qca_wq_awake_device(struct work_struct *work)
374 {
375         struct qca_data *qca = container_of(work, struct qca_data,
376                                             ws_awake_device);
377         struct hci_uart *hu = qca->hu;
378         unsigned long retrans_delay;
379         unsigned long flags;
380
381         BT_DBG("hu %p wq awake device", hu);
382
383         /* Vote for serial clock */
384         serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_ON, hu);
385
386         spin_lock_irqsave(&qca->hci_ibs_lock, flags);
387
388         /* Send wake indication to device */
389         if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0)
390                 BT_ERR("Failed to send WAKE to device");
391
392         qca->ibs_sent_wakes++;
393
394         /* Start retransmit timer */
395         retrans_delay = msecs_to_jiffies(qca->wake_retrans);
396         mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
397
398         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
399
400         /* Actually send the packets */
401         hci_uart_tx_wakeup(hu);
402 }
403
404 static void qca_wq_awake_rx(struct work_struct *work)
405 {
406         struct qca_data *qca = container_of(work, struct qca_data,
407                                             ws_awake_rx);
408         struct hci_uart *hu = qca->hu;
409         unsigned long flags;
410
411         BT_DBG("hu %p wq awake rx", hu);
412
413         serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_ON, hu);
414
415         spin_lock_irqsave(&qca->hci_ibs_lock, flags);
416         qca->rx_ibs_state = HCI_IBS_RX_AWAKE;
417
418         /* Always acknowledge device wake up,
419          * sending IBS message doesn't count as TX ON.
420          */
421         if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0)
422                 BT_ERR("Failed to acknowledge device wake up");
423
424         qca->ibs_sent_wacks++;
425
426         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
427
428         /* Actually send the packets */
429         hci_uart_tx_wakeup(hu);
430 }
431
432 static void qca_wq_serial_rx_clock_vote_off(struct work_struct *work)
433 {
434         struct qca_data *qca = container_of(work, struct qca_data,
435                                             ws_rx_vote_off);
436         struct hci_uart *hu = qca->hu;
437
438         BT_DBG("hu %p rx clock vote off", hu);
439
440         serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_OFF, hu);
441 }
442
443 static void qca_wq_serial_tx_clock_vote_off(struct work_struct *work)
444 {
445         struct qca_data *qca = container_of(work, struct qca_data,
446                                             ws_tx_vote_off);
447         struct hci_uart *hu = qca->hu;
448
449         BT_DBG("hu %p tx clock vote off", hu);
450
451         /* Run HCI tx handling unlocked */
452         hci_uart_tx_wakeup(hu);
453
454         /* Now that message queued to tty driver, vote for tty clocks off.
455          * It is up to the tty driver to pend the clocks off until tx done.
456          */
457         serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu);
458 }
459
460 static void hci_ibs_tx_idle_timeout(struct timer_list *t)
461 {
462         struct qca_data *qca = from_timer(qca, t, tx_idle_timer);
463         struct hci_uart *hu = qca->hu;
464         unsigned long flags;
465
466         BT_DBG("hu %p idle timeout in %d state", hu, qca->tx_ibs_state);
467
468         spin_lock_irqsave_nested(&qca->hci_ibs_lock,
469                                  flags, SINGLE_DEPTH_NESTING);
470
471         switch (qca->tx_ibs_state) {
472         case HCI_IBS_TX_AWAKE:
473                 /* TX_IDLE, go to SLEEP */
474                 if (send_hci_ibs_cmd(HCI_IBS_SLEEP_IND, hu) < 0) {
475                         BT_ERR("Failed to send SLEEP to device");
476                         break;
477                 }
478                 qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
479                 qca->ibs_sent_slps++;
480                 queue_work(qca->workqueue, &qca->ws_tx_vote_off);
481                 break;
482
483         case HCI_IBS_TX_ASLEEP:
484         case HCI_IBS_TX_WAKING:
485         default:
486                 BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
487                 break;
488         }
489
490         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
491 }
492
493 static void hci_ibs_wake_retrans_timeout(struct timer_list *t)
494 {
495         struct qca_data *qca = from_timer(qca, t, wake_retrans_timer);
496         struct hci_uart *hu = qca->hu;
497         unsigned long flags, retrans_delay;
498         bool retransmit = false;
499
500         BT_DBG("hu %p wake retransmit timeout in %d state",
501                 hu, qca->tx_ibs_state);
502
503         spin_lock_irqsave_nested(&qca->hci_ibs_lock,
504                                  flags, SINGLE_DEPTH_NESTING);
505
506         /* Don't retransmit the HCI_IBS_WAKE_IND when suspending. */
507         if (test_bit(QCA_SUSPENDING, &qca->flags)) {
508                 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
509                 return;
510         }
511
512         switch (qca->tx_ibs_state) {
513         case HCI_IBS_TX_WAKING:
514                 /* No WAKE_ACK, retransmit WAKE */
515                 retransmit = true;
516                 if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0) {
517                         BT_ERR("Failed to acknowledge device wake up");
518                         break;
519                 }
520                 qca->ibs_sent_wakes++;
521                 retrans_delay = msecs_to_jiffies(qca->wake_retrans);
522                 mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
523                 break;
524
525         case HCI_IBS_TX_ASLEEP:
526         case HCI_IBS_TX_AWAKE:
527         default:
528                 BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
529                 break;
530         }
531
532         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
533
534         if (retransmit)
535                 hci_uart_tx_wakeup(hu);
536 }
537
538
539 static void qca_controller_memdump_timeout(struct work_struct *work)
540 {
541         struct qca_data *qca = container_of(work, struct qca_data,
542                                         ctrl_memdump_timeout.work);
543         struct hci_uart *hu = qca->hu;
544
545         mutex_lock(&qca->hci_memdump_lock);
546         if (test_bit(QCA_MEMDUMP_COLLECTION, &qca->flags)) {
547                 qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
548                 if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) {
549                         /* Inject hw error event to reset the device
550                          * and driver.
551                          */
552                         hci_reset_dev(hu->hdev);
553                 }
554         }
555
556         mutex_unlock(&qca->hci_memdump_lock);
557 }
558
559
560 /* Initialize protocol */
561 static int qca_open(struct hci_uart *hu)
562 {
563         struct qca_serdev *qcadev;
564         struct qca_data *qca;
565
566         BT_DBG("hu %p qca_open", hu);
567
568         if (!hci_uart_has_flow_control(hu))
569                 return -EOPNOTSUPP;
570
571         qca = kzalloc(sizeof(struct qca_data), GFP_KERNEL);
572         if (!qca)
573                 return -ENOMEM;
574
575         skb_queue_head_init(&qca->txq);
576         skb_queue_head_init(&qca->tx_wait_q);
577         skb_queue_head_init(&qca->rx_memdump_q);
578         spin_lock_init(&qca->hci_ibs_lock);
579         mutex_init(&qca->hci_memdump_lock);
580         qca->workqueue = alloc_ordered_workqueue("qca_wq", 0);
581         if (!qca->workqueue) {
582                 BT_ERR("QCA Workqueue not initialized properly");
583                 kfree(qca);
584                 return -ENOMEM;
585         }
586
587         INIT_WORK(&qca->ws_awake_rx, qca_wq_awake_rx);
588         INIT_WORK(&qca->ws_awake_device, qca_wq_awake_device);
589         INIT_WORK(&qca->ws_rx_vote_off, qca_wq_serial_rx_clock_vote_off);
590         INIT_WORK(&qca->ws_tx_vote_off, qca_wq_serial_tx_clock_vote_off);
591         INIT_WORK(&qca->ctrl_memdump_evt, qca_controller_memdump);
592         INIT_DELAYED_WORK(&qca->ctrl_memdump_timeout,
593                           qca_controller_memdump_timeout);
594         init_waitqueue_head(&qca->suspend_wait_q);
595
596         qca->hu = hu;
597         init_completion(&qca->drop_ev_comp);
598
599         /* Assume we start with both sides asleep -- extra wakes OK */
600         qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
601         qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
602
603         qca->vote_last_jif = jiffies;
604
605         hu->priv = qca;
606
607         if (hu->serdev) {
608                 qcadev = serdev_device_get_drvdata(hu->serdev);
609
610                 if (qca_is_wcn399x(qcadev->btsoc_type) ||
611                     qca_is_wcn6750(qcadev->btsoc_type))
612                         hu->init_speed = qcadev->init_speed;
613
614                 if (qcadev->oper_speed)
615                         hu->oper_speed = qcadev->oper_speed;
616         }
617
618         timer_setup(&qca->wake_retrans_timer, hci_ibs_wake_retrans_timeout, 0);
619         qca->wake_retrans = IBS_WAKE_RETRANS_TIMEOUT_MS;
620
621         timer_setup(&qca->tx_idle_timer, hci_ibs_tx_idle_timeout, 0);
622         qca->tx_idle_delay = IBS_HOST_TX_IDLE_TIMEOUT_MS;
623
624         BT_DBG("HCI_UART_QCA open, tx_idle_delay=%u, wake_retrans=%u",
625                qca->tx_idle_delay, qca->wake_retrans);
626
627         return 0;
628 }
629
630 static void qca_debugfs_init(struct hci_dev *hdev)
631 {
632         struct hci_uart *hu = hci_get_drvdata(hdev);
633         struct qca_data *qca = hu->priv;
634         struct dentry *ibs_dir;
635         umode_t mode;
636
637         if (!hdev->debugfs)
638                 return;
639
640         if (test_and_set_bit(QCA_DEBUGFS_CREATED, &qca->flags))
641                 return;
642
643         ibs_dir = debugfs_create_dir("ibs", hdev->debugfs);
644
645         /* read only */
646         mode = 0444;
647         debugfs_create_u8("tx_ibs_state", mode, ibs_dir, &qca->tx_ibs_state);
648         debugfs_create_u8("rx_ibs_state", mode, ibs_dir, &qca->rx_ibs_state);
649         debugfs_create_u64("ibs_sent_sleeps", mode, ibs_dir,
650                            &qca->ibs_sent_slps);
651         debugfs_create_u64("ibs_sent_wakes", mode, ibs_dir,
652                            &qca->ibs_sent_wakes);
653         debugfs_create_u64("ibs_sent_wake_acks", mode, ibs_dir,
654                            &qca->ibs_sent_wacks);
655         debugfs_create_u64("ibs_recv_sleeps", mode, ibs_dir,
656                            &qca->ibs_recv_slps);
657         debugfs_create_u64("ibs_recv_wakes", mode, ibs_dir,
658                            &qca->ibs_recv_wakes);
659         debugfs_create_u64("ibs_recv_wake_acks", mode, ibs_dir,
660                            &qca->ibs_recv_wacks);
661         debugfs_create_bool("tx_vote", mode, ibs_dir, &qca->tx_vote);
662         debugfs_create_u64("tx_votes_on", mode, ibs_dir, &qca->tx_votes_on);
663         debugfs_create_u64("tx_votes_off", mode, ibs_dir, &qca->tx_votes_off);
664         debugfs_create_bool("rx_vote", mode, ibs_dir, &qca->rx_vote);
665         debugfs_create_u64("rx_votes_on", mode, ibs_dir, &qca->rx_votes_on);
666         debugfs_create_u64("rx_votes_off", mode, ibs_dir, &qca->rx_votes_off);
667         debugfs_create_u64("votes_on", mode, ibs_dir, &qca->votes_on);
668         debugfs_create_u64("votes_off", mode, ibs_dir, &qca->votes_off);
669         debugfs_create_u32("vote_on_ms", mode, ibs_dir, &qca->vote_on_ms);
670         debugfs_create_u32("vote_off_ms", mode, ibs_dir, &qca->vote_off_ms);
671
672         /* read/write */
673         mode = 0644;
674         debugfs_create_u32("wake_retrans", mode, ibs_dir, &qca->wake_retrans);
675         debugfs_create_u32("tx_idle_delay", mode, ibs_dir,
676                            &qca->tx_idle_delay);
677 }
678
679 /* Flush protocol data */
680 static int qca_flush(struct hci_uart *hu)
681 {
682         struct qca_data *qca = hu->priv;
683
684         BT_DBG("hu %p qca flush", hu);
685
686         skb_queue_purge(&qca->tx_wait_q);
687         skb_queue_purge(&qca->txq);
688
689         return 0;
690 }
691
692 /* Close protocol */
693 static int qca_close(struct hci_uart *hu)
694 {
695         struct qca_data *qca = hu->priv;
696
697         BT_DBG("hu %p qca close", hu);
698
699         serial_clock_vote(HCI_IBS_VOTE_STATS_UPDATE, hu);
700
701         skb_queue_purge(&qca->tx_wait_q);
702         skb_queue_purge(&qca->txq);
703         skb_queue_purge(&qca->rx_memdump_q);
704         /*
705          * Shut the timers down so they can't be rearmed when
706          * destroy_workqueue() drains pending work which in turn might try
707          * to arm a timer.  After shutdown rearm attempts are silently
708          * ignored by the timer core code.
709          */
710         timer_shutdown_sync(&qca->tx_idle_timer);
711         timer_shutdown_sync(&qca->wake_retrans_timer);
712         destroy_workqueue(qca->workqueue);
713         qca->hu = NULL;
714
715         kfree_skb(qca->rx_skb);
716
717         hu->priv = NULL;
718
719         kfree(qca);
720
721         return 0;
722 }
723
724 /* Called upon a wake-up-indication from the device.
725  */
726 static void device_want_to_wakeup(struct hci_uart *hu)
727 {
728         unsigned long flags;
729         struct qca_data *qca = hu->priv;
730
731         BT_DBG("hu %p want to wake up", hu);
732
733         spin_lock_irqsave(&qca->hci_ibs_lock, flags);
734
735         qca->ibs_recv_wakes++;
736
737         /* Don't wake the rx up when suspending. */
738         if (test_bit(QCA_SUSPENDING, &qca->flags)) {
739                 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
740                 return;
741         }
742
743         switch (qca->rx_ibs_state) {
744         case HCI_IBS_RX_ASLEEP:
745                 /* Make sure clock is on - we may have turned clock off since
746                  * receiving the wake up indicator awake rx clock.
747                  */
748                 queue_work(qca->workqueue, &qca->ws_awake_rx);
749                 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
750                 return;
751
752         case HCI_IBS_RX_AWAKE:
753                 /* Always acknowledge device wake up,
754                  * sending IBS message doesn't count as TX ON.
755                  */
756                 if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0) {
757                         BT_ERR("Failed to acknowledge device wake up");
758                         break;
759                 }
760                 qca->ibs_sent_wacks++;
761                 break;
762
763         default:
764                 /* Any other state is illegal */
765                 BT_ERR("Received HCI_IBS_WAKE_IND in rx state %d",
766                        qca->rx_ibs_state);
767                 break;
768         }
769
770         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
771
772         /* Actually send the packets */
773         hci_uart_tx_wakeup(hu);
774 }
775
776 /* Called upon a sleep-indication from the device.
777  */
778 static void device_want_to_sleep(struct hci_uart *hu)
779 {
780         unsigned long flags;
781         struct qca_data *qca = hu->priv;
782
783         BT_DBG("hu %p want to sleep in %d state", hu, qca->rx_ibs_state);
784
785         spin_lock_irqsave(&qca->hci_ibs_lock, flags);
786
787         qca->ibs_recv_slps++;
788
789         switch (qca->rx_ibs_state) {
790         case HCI_IBS_RX_AWAKE:
791                 /* Update state */
792                 qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
793                 /* Vote off rx clock under workqueue */
794                 queue_work(qca->workqueue, &qca->ws_rx_vote_off);
795                 break;
796
797         case HCI_IBS_RX_ASLEEP:
798                 break;
799
800         default:
801                 /* Any other state is illegal */
802                 BT_ERR("Received HCI_IBS_SLEEP_IND in rx state %d",
803                        qca->rx_ibs_state);
804                 break;
805         }
806
807         wake_up_interruptible(&qca->suspend_wait_q);
808
809         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
810 }
811
812 /* Called upon wake-up-acknowledgement from the device
813  */
814 static void device_woke_up(struct hci_uart *hu)
815 {
816         unsigned long flags, idle_delay;
817         struct qca_data *qca = hu->priv;
818         struct sk_buff *skb = NULL;
819
820         BT_DBG("hu %p woke up", hu);
821
822         spin_lock_irqsave(&qca->hci_ibs_lock, flags);
823
824         qca->ibs_recv_wacks++;
825
826         /* Don't react to the wake-up-acknowledgment when suspending. */
827         if (test_bit(QCA_SUSPENDING, &qca->flags)) {
828                 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
829                 return;
830         }
831
832         switch (qca->tx_ibs_state) {
833         case HCI_IBS_TX_AWAKE:
834                 /* Expect one if we send 2 WAKEs */
835                 BT_DBG("Received HCI_IBS_WAKE_ACK in tx state %d",
836                        qca->tx_ibs_state);
837                 break;
838
839         case HCI_IBS_TX_WAKING:
840                 /* Send pending packets */
841                 while ((skb = skb_dequeue(&qca->tx_wait_q)))
842                         skb_queue_tail(&qca->txq, skb);
843
844                 /* Switch timers and change state to HCI_IBS_TX_AWAKE */
845                 del_timer(&qca->wake_retrans_timer);
846                 idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
847                 mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
848                 qca->tx_ibs_state = HCI_IBS_TX_AWAKE;
849                 break;
850
851         case HCI_IBS_TX_ASLEEP:
852         default:
853                 BT_ERR("Received HCI_IBS_WAKE_ACK in tx state %d",
854                        qca->tx_ibs_state);
855                 break;
856         }
857
858         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
859
860         /* Actually send the packets */
861         hci_uart_tx_wakeup(hu);
862 }
863
864 /* Enqueue frame for transmittion (padding, crc, etc) may be called from
865  * two simultaneous tasklets.
866  */
867 static int qca_enqueue(struct hci_uart *hu, struct sk_buff *skb)
868 {
869         unsigned long flags = 0, idle_delay;
870         struct qca_data *qca = hu->priv;
871
872         BT_DBG("hu %p qca enq skb %p tx_ibs_state %d", hu, skb,
873                qca->tx_ibs_state);
874
875         if (test_bit(QCA_SSR_TRIGGERED, &qca->flags)) {
876                 /* As SSR is in progress, ignore the packets */
877                 bt_dev_dbg(hu->hdev, "SSR is in progress");
878                 kfree_skb(skb);
879                 return 0;
880         }
881
882         /* Prepend skb with frame type */
883         memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
884
885         spin_lock_irqsave(&qca->hci_ibs_lock, flags);
886
887         /* Don't go to sleep in middle of patch download or
888          * Out-Of-Band(GPIOs control) sleep is selected.
889          * Don't wake the device up when suspending.
890          */
891         if (test_bit(QCA_IBS_DISABLED, &qca->flags) ||
892             test_bit(QCA_SUSPENDING, &qca->flags)) {
893                 skb_queue_tail(&qca->txq, skb);
894                 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
895                 return 0;
896         }
897
898         /* Act according to current state */
899         switch (qca->tx_ibs_state) {
900         case HCI_IBS_TX_AWAKE:
901                 BT_DBG("Device awake, sending normally");
902                 skb_queue_tail(&qca->txq, skb);
903                 idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
904                 mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
905                 break;
906
907         case HCI_IBS_TX_ASLEEP:
908                 BT_DBG("Device asleep, waking up and queueing packet");
909                 /* Save packet for later */
910                 skb_queue_tail(&qca->tx_wait_q, skb);
911
912                 qca->tx_ibs_state = HCI_IBS_TX_WAKING;
913                 /* Schedule a work queue to wake up device */
914                 queue_work(qca->workqueue, &qca->ws_awake_device);
915                 break;
916
917         case HCI_IBS_TX_WAKING:
918                 BT_DBG("Device waking up, queueing packet");
919                 /* Transient state; just keep packet for later */
920                 skb_queue_tail(&qca->tx_wait_q, skb);
921                 break;
922
923         default:
924                 BT_ERR("Illegal tx state: %d (losing packet)",
925                        qca->tx_ibs_state);
926                 dev_kfree_skb_irq(skb);
927                 break;
928         }
929
930         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
931
932         return 0;
933 }
934
935 static int qca_ibs_sleep_ind(struct hci_dev *hdev, struct sk_buff *skb)
936 {
937         struct hci_uart *hu = hci_get_drvdata(hdev);
938
939         BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_SLEEP_IND);
940
941         device_want_to_sleep(hu);
942
943         kfree_skb(skb);
944         return 0;
945 }
946
947 static int qca_ibs_wake_ind(struct hci_dev *hdev, struct sk_buff *skb)
948 {
949         struct hci_uart *hu = hci_get_drvdata(hdev);
950
951         BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_IND);
952
953         device_want_to_wakeup(hu);
954
955         kfree_skb(skb);
956         return 0;
957 }
958
959 static int qca_ibs_wake_ack(struct hci_dev *hdev, struct sk_buff *skb)
960 {
961         struct hci_uart *hu = hci_get_drvdata(hdev);
962
963         BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_ACK);
964
965         device_woke_up(hu);
966
967         kfree_skb(skb);
968         return 0;
969 }
970
971 static int qca_recv_acl_data(struct hci_dev *hdev, struct sk_buff *skb)
972 {
973         /* We receive debug logs from chip as an ACL packets.
974          * Instead of sending the data to ACL to decode the
975          * received data, we are pushing them to the above layers
976          * as a diagnostic packet.
977          */
978         if (get_unaligned_le16(skb->data) == QCA_DEBUG_HANDLE)
979                 return hci_recv_diag(hdev, skb);
980
981         return hci_recv_frame(hdev, skb);
982 }
983
984 static void qca_dmp_hdr(struct hci_dev *hdev, struct sk_buff *skb)
985 {
986         struct hci_uart *hu = hci_get_drvdata(hdev);
987         struct qca_data *qca = hu->priv;
988         char buf[80];
989
990         snprintf(buf, sizeof(buf), "Controller Name: 0x%x\n",
991                 qca->controller_id);
992         skb_put_data(skb, buf, strlen(buf));
993
994         snprintf(buf, sizeof(buf), "Firmware Version: 0x%x\n",
995                 qca->fw_version);
996         skb_put_data(skb, buf, strlen(buf));
997
998         snprintf(buf, sizeof(buf), "Vendor:Qualcomm\n");
999         skb_put_data(skb, buf, strlen(buf));
1000
1001         snprintf(buf, sizeof(buf), "Driver: %s\n",
1002                 hu->serdev->dev.driver->name);
1003         skb_put_data(skb, buf, strlen(buf));
1004 }
1005
1006 static void qca_controller_memdump(struct work_struct *work)
1007 {
1008         struct qca_data *qca = container_of(work, struct qca_data,
1009                                             ctrl_memdump_evt);
1010         struct hci_uart *hu = qca->hu;
1011         struct sk_buff *skb;
1012         struct qca_memdump_event_hdr *cmd_hdr;
1013         struct qca_memdump_info *qca_memdump = qca->qca_memdump;
1014         struct qca_dump_size *dump;
1015         u16 seq_no;
1016         u32 rx_size;
1017         int ret = 0;
1018         enum qca_btsoc_type soc_type = qca_soc_type(hu);
1019
1020         while ((skb = skb_dequeue(&qca->rx_memdump_q))) {
1021
1022                 mutex_lock(&qca->hci_memdump_lock);
1023                 /* Skip processing the received packets if timeout detected
1024                  * or memdump collection completed.
1025                  */
1026                 if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT ||
1027                     qca->memdump_state == QCA_MEMDUMP_COLLECTED) {
1028                         mutex_unlock(&qca->hci_memdump_lock);
1029                         return;
1030                 }
1031
1032                 if (!qca_memdump) {
1033                         qca_memdump = kzalloc(sizeof(struct qca_memdump_info),
1034                                               GFP_ATOMIC);
1035                         if (!qca_memdump) {
1036                                 mutex_unlock(&qca->hci_memdump_lock);
1037                                 return;
1038                         }
1039
1040                         qca->qca_memdump = qca_memdump;
1041                 }
1042
1043                 qca->memdump_state = QCA_MEMDUMP_COLLECTING;
1044                 cmd_hdr = (void *) skb->data;
1045                 seq_no = __le16_to_cpu(cmd_hdr->seq_no);
1046                 skb_pull(skb, sizeof(struct qca_memdump_event_hdr));
1047
1048                 if (!seq_no) {
1049
1050                         /* This is the first frame of memdump packet from
1051                          * the controller, Disable IBS to recevie dump
1052                          * with out any interruption, ideally time required for
1053                          * the controller to send the dump is 8 seconds. let us
1054                          * start timer to handle this asynchronous activity.
1055                          */
1056                         set_bit(QCA_IBS_DISABLED, &qca->flags);
1057                         set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1058                         dump = (void *) skb->data;
1059                         qca_memdump->ram_dump_size = __le32_to_cpu(dump->dump_size);
1060                         if (!(qca_memdump->ram_dump_size)) {
1061                                 bt_dev_err(hu->hdev, "Rx invalid memdump size");
1062                                 kfree(qca_memdump);
1063                                 kfree_skb(skb);
1064                                 mutex_unlock(&qca->hci_memdump_lock);
1065                                 return;
1066                         }
1067
1068                         queue_delayed_work(qca->workqueue,
1069                                            &qca->ctrl_memdump_timeout,
1070                                            msecs_to_jiffies(MEMDUMP_TIMEOUT_MS));
1071                         skb_pull(skb, sizeof(qca_memdump->ram_dump_size));
1072                         qca_memdump->current_seq_no = 0;
1073                         qca_memdump->received_dump = 0;
1074                         ret = hci_devcd_init(hu->hdev, qca_memdump->ram_dump_size);
1075                         bt_dev_info(hu->hdev, "hci_devcd_init Return:%d",
1076                                     ret);
1077                         if (ret < 0) {
1078                                 kfree(qca->qca_memdump);
1079                                 qca->qca_memdump = NULL;
1080                                 qca->memdump_state = QCA_MEMDUMP_COLLECTED;
1081                                 cancel_delayed_work(&qca->ctrl_memdump_timeout);
1082                                 clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1083                                 mutex_unlock(&qca->hci_memdump_lock);
1084                                 return;
1085                         }
1086
1087                         bt_dev_info(hu->hdev, "QCA collecting dump of size:%u",
1088                                     qca_memdump->ram_dump_size);
1089
1090                 }
1091
1092                 /* If sequence no 0 is missed then there is no point in
1093                  * accepting the other sequences.
1094                  */
1095                 if (!test_bit(QCA_MEMDUMP_COLLECTION, &qca->flags)) {
1096                         bt_dev_err(hu->hdev, "QCA: Discarding other packets");
1097                         kfree(qca_memdump);
1098                         kfree_skb(skb);
1099                         mutex_unlock(&qca->hci_memdump_lock);
1100                         return;
1101                 }
1102                 /* There could be chance of missing some packets from
1103                  * the controller. In such cases let us store the dummy
1104                  * packets in the buffer.
1105                  */
1106                 /* For QCA6390, controller does not lost packets but
1107                  * sequence number field of packet sometimes has error
1108                  * bits, so skip this checking for missing packet.
1109                  */
1110                 while ((seq_no > qca_memdump->current_seq_no + 1) &&
1111                         (soc_type != QCA_QCA6390) &&
1112                         seq_no != QCA_LAST_SEQUENCE_NUM) {
1113                         bt_dev_err(hu->hdev, "QCA controller missed packet:%d",
1114                                    qca_memdump->current_seq_no);
1115                         rx_size = qca_memdump->received_dump;
1116                         rx_size += QCA_DUMP_PACKET_SIZE;
1117                         if (rx_size > qca_memdump->ram_dump_size) {
1118                                 bt_dev_err(hu->hdev,
1119                                            "QCA memdump received %d, no space for missed packet",
1120                                            qca_memdump->received_dump);
1121                                 break;
1122                         }
1123                         hci_devcd_append_pattern(hu->hdev, 0x00,
1124                                 QCA_DUMP_PACKET_SIZE);
1125                         qca_memdump->received_dump += QCA_DUMP_PACKET_SIZE;
1126                         qca_memdump->current_seq_no++;
1127                 }
1128
1129                 rx_size = qca_memdump->received_dump  + skb->len;
1130                 if (rx_size <= qca_memdump->ram_dump_size) {
1131                         if ((seq_no != QCA_LAST_SEQUENCE_NUM) &&
1132                             (seq_no != qca_memdump->current_seq_no)) {
1133                                 bt_dev_err(hu->hdev,
1134                                            "QCA memdump unexpected packet %d",
1135                                            seq_no);
1136                         }
1137                         bt_dev_dbg(hu->hdev,
1138                                    "QCA memdump packet %d with length %d",
1139                                    seq_no, skb->len);
1140                         hci_devcd_append(hu->hdev, skb);
1141                         qca_memdump->current_seq_no += 1;
1142                         qca_memdump->received_dump = rx_size;
1143                 } else {
1144                         bt_dev_err(hu->hdev,
1145                                    "QCA memdump received no space for packet %d",
1146                                     qca_memdump->current_seq_no);
1147                 }
1148
1149                 if (seq_no == QCA_LAST_SEQUENCE_NUM) {
1150                         bt_dev_info(hu->hdev,
1151                                 "QCA memdump Done, received %d, total %d",
1152                                 qca_memdump->received_dump,
1153                                 qca_memdump->ram_dump_size);
1154                         hci_devcd_complete(hu->hdev);
1155                         cancel_delayed_work(&qca->ctrl_memdump_timeout);
1156                         kfree(qca->qca_memdump);
1157                         qca->qca_memdump = NULL;
1158                         qca->memdump_state = QCA_MEMDUMP_COLLECTED;
1159                         clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1160                 }
1161
1162                 mutex_unlock(&qca->hci_memdump_lock);
1163         }
1164
1165 }
1166
1167 static int qca_controller_memdump_event(struct hci_dev *hdev,
1168                                         struct sk_buff *skb)
1169 {
1170         struct hci_uart *hu = hci_get_drvdata(hdev);
1171         struct qca_data *qca = hu->priv;
1172
1173         set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1174         skb_queue_tail(&qca->rx_memdump_q, skb);
1175         queue_work(qca->workqueue, &qca->ctrl_memdump_evt);
1176
1177         return 0;
1178 }
1179
1180 static int qca_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
1181 {
1182         struct hci_uart *hu = hci_get_drvdata(hdev);
1183         struct qca_data *qca = hu->priv;
1184
1185         if (test_bit(QCA_DROP_VENDOR_EVENT, &qca->flags)) {
1186                 struct hci_event_hdr *hdr = (void *)skb->data;
1187
1188                 /* For the WCN3990 the vendor command for a baudrate change
1189                  * isn't sent as synchronous HCI command, because the
1190                  * controller sends the corresponding vendor event with the
1191                  * new baudrate. The event is received and properly decoded
1192                  * after changing the baudrate of the host port. It needs to
1193                  * be dropped, otherwise it can be misinterpreted as
1194                  * response to a later firmware download command (also a
1195                  * vendor command).
1196                  */
1197
1198                 if (hdr->evt == HCI_EV_VENDOR)
1199                         complete(&qca->drop_ev_comp);
1200
1201                 kfree_skb(skb);
1202
1203                 return 0;
1204         }
1205         /* We receive chip memory dump as an event packet, With a dedicated
1206          * handler followed by a hardware error event. When this event is
1207          * received we store dump into a file before closing hci. This
1208          * dump will help in triaging the issues.
1209          */
1210         if ((skb->data[0] == HCI_VENDOR_PKT) &&
1211             (get_unaligned_be16(skb->data + 2) == QCA_SSR_DUMP_HANDLE))
1212                 return qca_controller_memdump_event(hdev, skb);
1213
1214         return hci_recv_frame(hdev, skb);
1215 }
1216
1217 #define QCA_IBS_SLEEP_IND_EVENT \
1218         .type = HCI_IBS_SLEEP_IND, \
1219         .hlen = 0, \
1220         .loff = 0, \
1221         .lsize = 0, \
1222         .maxlen = HCI_MAX_IBS_SIZE
1223
1224 #define QCA_IBS_WAKE_IND_EVENT \
1225         .type = HCI_IBS_WAKE_IND, \
1226         .hlen = 0, \
1227         .loff = 0, \
1228         .lsize = 0, \
1229         .maxlen = HCI_MAX_IBS_SIZE
1230
1231 #define QCA_IBS_WAKE_ACK_EVENT \
1232         .type = HCI_IBS_WAKE_ACK, \
1233         .hlen = 0, \
1234         .loff = 0, \
1235         .lsize = 0, \
1236         .maxlen = HCI_MAX_IBS_SIZE
1237
1238 static const struct h4_recv_pkt qca_recv_pkts[] = {
1239         { H4_RECV_ACL,             .recv = qca_recv_acl_data },
1240         { H4_RECV_SCO,             .recv = hci_recv_frame    },
1241         { H4_RECV_EVENT,           .recv = qca_recv_event    },
1242         { QCA_IBS_WAKE_IND_EVENT,  .recv = qca_ibs_wake_ind  },
1243         { QCA_IBS_WAKE_ACK_EVENT,  .recv = qca_ibs_wake_ack  },
1244         { QCA_IBS_SLEEP_IND_EVENT, .recv = qca_ibs_sleep_ind },
1245 };
1246
1247 static int qca_recv(struct hci_uart *hu, const void *data, int count)
1248 {
1249         struct qca_data *qca = hu->priv;
1250
1251         if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
1252                 return -EUNATCH;
1253
1254         qca->rx_skb = h4_recv_buf(hu->hdev, qca->rx_skb, data, count,
1255                                   qca_recv_pkts, ARRAY_SIZE(qca_recv_pkts));
1256         if (IS_ERR(qca->rx_skb)) {
1257                 int err = PTR_ERR(qca->rx_skb);
1258                 bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
1259                 qca->rx_skb = NULL;
1260                 return err;
1261         }
1262
1263         return count;
1264 }
1265
1266 static struct sk_buff *qca_dequeue(struct hci_uart *hu)
1267 {
1268         struct qca_data *qca = hu->priv;
1269
1270         return skb_dequeue(&qca->txq);
1271 }
1272
1273 static uint8_t qca_get_baudrate_value(int speed)
1274 {
1275         switch (speed) {
1276         case 9600:
1277                 return QCA_BAUDRATE_9600;
1278         case 19200:
1279                 return QCA_BAUDRATE_19200;
1280         case 38400:
1281                 return QCA_BAUDRATE_38400;
1282         case 57600:
1283                 return QCA_BAUDRATE_57600;
1284         case 115200:
1285                 return QCA_BAUDRATE_115200;
1286         case 230400:
1287                 return QCA_BAUDRATE_230400;
1288         case 460800:
1289                 return QCA_BAUDRATE_460800;
1290         case 500000:
1291                 return QCA_BAUDRATE_500000;
1292         case 921600:
1293                 return QCA_BAUDRATE_921600;
1294         case 1000000:
1295                 return QCA_BAUDRATE_1000000;
1296         case 2000000:
1297                 return QCA_BAUDRATE_2000000;
1298         case 3000000:
1299                 return QCA_BAUDRATE_3000000;
1300         case 3200000:
1301                 return QCA_BAUDRATE_3200000;
1302         case 3500000:
1303                 return QCA_BAUDRATE_3500000;
1304         default:
1305                 return QCA_BAUDRATE_115200;
1306         }
1307 }
1308
1309 static int qca_set_baudrate(struct hci_dev *hdev, uint8_t baudrate)
1310 {
1311         struct hci_uart *hu = hci_get_drvdata(hdev);
1312         struct qca_data *qca = hu->priv;
1313         struct sk_buff *skb;
1314         u8 cmd[] = { 0x01, 0x48, 0xFC, 0x01, 0x00 };
1315
1316         if (baudrate > QCA_BAUDRATE_3200000)
1317                 return -EINVAL;
1318
1319         cmd[4] = baudrate;
1320
1321         skb = bt_skb_alloc(sizeof(cmd), GFP_KERNEL);
1322         if (!skb) {
1323                 bt_dev_err(hdev, "Failed to allocate baudrate packet");
1324                 return -ENOMEM;
1325         }
1326
1327         /* Assign commands to change baudrate and packet type. */
1328         skb_put_data(skb, cmd, sizeof(cmd));
1329         hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
1330
1331         skb_queue_tail(&qca->txq, skb);
1332         hci_uart_tx_wakeup(hu);
1333
1334         /* Wait for the baudrate change request to be sent */
1335
1336         while (!skb_queue_empty(&qca->txq))
1337                 usleep_range(100, 200);
1338
1339         if (hu->serdev)
1340                 serdev_device_wait_until_sent(hu->serdev,
1341                       msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS));
1342
1343         /* Give the controller time to process the request */
1344         if (qca_is_wcn399x(qca_soc_type(hu)) ||
1345             qca_is_wcn6750(qca_soc_type(hu)) ||
1346             qca_is_wcn6855(qca_soc_type(hu)))
1347                 usleep_range(1000, 10000);
1348         else
1349                 msleep(300);
1350
1351         return 0;
1352 }
1353
1354 static inline void host_set_baudrate(struct hci_uart *hu, unsigned int speed)
1355 {
1356         if (hu->serdev)
1357                 serdev_device_set_baudrate(hu->serdev, speed);
1358         else
1359                 hci_uart_set_baudrate(hu, speed);
1360 }
1361
1362 static int qca_send_power_pulse(struct hci_uart *hu, bool on)
1363 {
1364         int ret;
1365         int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS);
1366         u8 cmd = on ? QCA_WCN3990_POWERON_PULSE : QCA_WCN3990_POWEROFF_PULSE;
1367
1368         /* These power pulses are single byte command which are sent
1369          * at required baudrate to wcn3990. On wcn3990, we have an external
1370          * circuit at Tx pin which decodes the pulse sent at specific baudrate.
1371          * For example, wcn3990 supports RF COEX antenna for both Wi-Fi/BT
1372          * and also we use the same power inputs to turn on and off for
1373          * Wi-Fi/BT. Powering up the power sources will not enable BT, until
1374          * we send a power on pulse at 115200 bps. This algorithm will help to
1375          * save power. Disabling hardware flow control is mandatory while
1376          * sending power pulses to SoC.
1377          */
1378         bt_dev_dbg(hu->hdev, "sending power pulse %02x to controller", cmd);
1379
1380         serdev_device_write_flush(hu->serdev);
1381         hci_uart_set_flow_control(hu, true);
1382         ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd));
1383         if (ret < 0) {
1384                 bt_dev_err(hu->hdev, "failed to send power pulse %02x", cmd);
1385                 return ret;
1386         }
1387
1388         serdev_device_wait_until_sent(hu->serdev, timeout);
1389         hci_uart_set_flow_control(hu, false);
1390
1391         /* Give to controller time to boot/shutdown */
1392         if (on)
1393                 msleep(100);
1394         else
1395                 usleep_range(1000, 10000);
1396
1397         return 0;
1398 }
1399
1400 static unsigned int qca_get_speed(struct hci_uart *hu,
1401                                   enum qca_speed_type speed_type)
1402 {
1403         unsigned int speed = 0;
1404
1405         if (speed_type == QCA_INIT_SPEED) {
1406                 if (hu->init_speed)
1407                         speed = hu->init_speed;
1408                 else if (hu->proto->init_speed)
1409                         speed = hu->proto->init_speed;
1410         } else {
1411                 if (hu->oper_speed)
1412                         speed = hu->oper_speed;
1413                 else if (hu->proto->oper_speed)
1414                         speed = hu->proto->oper_speed;
1415         }
1416
1417         return speed;
1418 }
1419
1420 static int qca_check_speeds(struct hci_uart *hu)
1421 {
1422         if (qca_is_wcn399x(qca_soc_type(hu)) ||
1423             qca_is_wcn6750(qca_soc_type(hu)) ||
1424             qca_is_wcn6855(qca_soc_type(hu))) {
1425                 if (!qca_get_speed(hu, QCA_INIT_SPEED) &&
1426                     !qca_get_speed(hu, QCA_OPER_SPEED))
1427                         return -EINVAL;
1428         } else {
1429                 if (!qca_get_speed(hu, QCA_INIT_SPEED) ||
1430                     !qca_get_speed(hu, QCA_OPER_SPEED))
1431                         return -EINVAL;
1432         }
1433
1434         return 0;
1435 }
1436
1437 static int qca_set_speed(struct hci_uart *hu, enum qca_speed_type speed_type)
1438 {
1439         unsigned int speed, qca_baudrate;
1440         struct qca_data *qca = hu->priv;
1441         int ret = 0;
1442
1443         if (speed_type == QCA_INIT_SPEED) {
1444                 speed = qca_get_speed(hu, QCA_INIT_SPEED);
1445                 if (speed)
1446                         host_set_baudrate(hu, speed);
1447         } else {
1448                 enum qca_btsoc_type soc_type = qca_soc_type(hu);
1449
1450                 speed = qca_get_speed(hu, QCA_OPER_SPEED);
1451                 if (!speed)
1452                         return 0;
1453
1454                 /* Disable flow control for wcn3990 to deassert RTS while
1455                  * changing the baudrate of chip and host.
1456                  */
1457                 if (qca_is_wcn399x(soc_type) ||
1458                     qca_is_wcn6750(soc_type) ||
1459                     qca_is_wcn6855(soc_type))
1460                         hci_uart_set_flow_control(hu, true);
1461
1462                 if (soc_type == QCA_WCN3990) {
1463                         reinit_completion(&qca->drop_ev_comp);
1464                         set_bit(QCA_DROP_VENDOR_EVENT, &qca->flags);
1465                 }
1466
1467                 qca_baudrate = qca_get_baudrate_value(speed);
1468                 bt_dev_dbg(hu->hdev, "Set UART speed to %d", speed);
1469                 ret = qca_set_baudrate(hu->hdev, qca_baudrate);
1470                 if (ret)
1471                         goto error;
1472
1473                 host_set_baudrate(hu, speed);
1474
1475 error:
1476                 if (qca_is_wcn399x(soc_type) ||
1477                     qca_is_wcn6750(soc_type) ||
1478                     qca_is_wcn6855(soc_type))
1479                         hci_uart_set_flow_control(hu, false);
1480
1481                 if (soc_type == QCA_WCN3990) {
1482                         /* Wait for the controller to send the vendor event
1483                          * for the baudrate change command.
1484                          */
1485                         if (!wait_for_completion_timeout(&qca->drop_ev_comp,
1486                                                  msecs_to_jiffies(100))) {
1487                                 bt_dev_err(hu->hdev,
1488                                            "Failed to change controller baudrate\n");
1489                                 ret = -ETIMEDOUT;
1490                         }
1491
1492                         clear_bit(QCA_DROP_VENDOR_EVENT, &qca->flags);
1493                 }
1494         }
1495
1496         return ret;
1497 }
1498
1499 static int qca_send_crashbuffer(struct hci_uart *hu)
1500 {
1501         struct qca_data *qca = hu->priv;
1502         struct sk_buff *skb;
1503
1504         skb = bt_skb_alloc(QCA_CRASHBYTE_PACKET_LEN, GFP_KERNEL);
1505         if (!skb) {
1506                 bt_dev_err(hu->hdev, "Failed to allocate memory for skb packet");
1507                 return -ENOMEM;
1508         }
1509
1510         /* We forcefully crash the controller, by sending 0xfb byte for
1511          * 1024 times. We also might have chance of losing data, To be
1512          * on safer side we send 1096 bytes to the SoC.
1513          */
1514         memset(skb_put(skb, QCA_CRASHBYTE_PACKET_LEN), QCA_MEMDUMP_BYTE,
1515                QCA_CRASHBYTE_PACKET_LEN);
1516         hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
1517         bt_dev_info(hu->hdev, "crash the soc to collect controller dump");
1518         skb_queue_tail(&qca->txq, skb);
1519         hci_uart_tx_wakeup(hu);
1520
1521         return 0;
1522 }
1523
1524 static void qca_wait_for_dump_collection(struct hci_dev *hdev)
1525 {
1526         struct hci_uart *hu = hci_get_drvdata(hdev);
1527         struct qca_data *qca = hu->priv;
1528
1529         wait_on_bit_timeout(&qca->flags, QCA_MEMDUMP_COLLECTION,
1530                             TASK_UNINTERRUPTIBLE, MEMDUMP_TIMEOUT_MS);
1531
1532         clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1533 }
1534
1535 static void qca_hw_error(struct hci_dev *hdev, u8 code)
1536 {
1537         struct hci_uart *hu = hci_get_drvdata(hdev);
1538         struct qca_data *qca = hu->priv;
1539
1540         set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1541         set_bit(QCA_HW_ERROR_EVENT, &qca->flags);
1542         bt_dev_info(hdev, "mem_dump_status: %d", qca->memdump_state);
1543
1544         if (qca->memdump_state == QCA_MEMDUMP_IDLE) {
1545                 /* If hardware error event received for other than QCA
1546                  * soc memory dump event, then we need to crash the SOC
1547                  * and wait here for 8 seconds to get the dump packets.
1548                  * This will block main thread to be on hold until we
1549                  * collect dump.
1550                  */
1551                 set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1552                 qca_send_crashbuffer(hu);
1553                 qca_wait_for_dump_collection(hdev);
1554         } else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) {
1555                 /* Let us wait here until memory dump collected or
1556                  * memory dump timer expired.
1557                  */
1558                 bt_dev_info(hdev, "waiting for dump to complete");
1559                 qca_wait_for_dump_collection(hdev);
1560         }
1561
1562         mutex_lock(&qca->hci_memdump_lock);
1563         if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) {
1564                 bt_dev_err(hu->hdev, "clearing allocated memory due to memdump timeout");
1565                 hci_devcd_abort(hu->hdev);
1566                 if (qca->qca_memdump) {
1567                         kfree(qca->qca_memdump);
1568                         qca->qca_memdump = NULL;
1569                 }
1570                 qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
1571                 cancel_delayed_work(&qca->ctrl_memdump_timeout);
1572         }
1573         mutex_unlock(&qca->hci_memdump_lock);
1574
1575         if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT ||
1576             qca->memdump_state == QCA_MEMDUMP_COLLECTED) {
1577                 cancel_work_sync(&qca->ctrl_memdump_evt);
1578                 skb_queue_purge(&qca->rx_memdump_q);
1579         }
1580
1581         clear_bit(QCA_HW_ERROR_EVENT, &qca->flags);
1582 }
1583
1584 static void qca_cmd_timeout(struct hci_dev *hdev)
1585 {
1586         struct hci_uart *hu = hci_get_drvdata(hdev);
1587         struct qca_data *qca = hu->priv;
1588
1589         set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1590         if (qca->memdump_state == QCA_MEMDUMP_IDLE) {
1591                 set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1592                 qca_send_crashbuffer(hu);
1593                 qca_wait_for_dump_collection(hdev);
1594         } else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) {
1595                 /* Let us wait here until memory dump collected or
1596                  * memory dump timer expired.
1597                  */
1598                 bt_dev_info(hdev, "waiting for dump to complete");
1599                 qca_wait_for_dump_collection(hdev);
1600         }
1601
1602         mutex_lock(&qca->hci_memdump_lock);
1603         if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) {
1604                 qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
1605                 if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) {
1606                         /* Inject hw error event to reset the device
1607                          * and driver.
1608                          */
1609                         hci_reset_dev(hu->hdev);
1610                 }
1611         }
1612         mutex_unlock(&qca->hci_memdump_lock);
1613 }
1614
1615 static bool qca_wakeup(struct hci_dev *hdev)
1616 {
1617         struct hci_uart *hu = hci_get_drvdata(hdev);
1618         bool wakeup;
1619
1620         /* BT SoC attached through the serial bus is handled by the serdev driver.
1621          * So we need to use the device handle of the serdev driver to get the
1622          * status of device may wakeup.
1623          */
1624         wakeup = device_may_wakeup(&hu->serdev->ctrl->dev);
1625         bt_dev_dbg(hu->hdev, "wakeup status : %d", wakeup);
1626
1627         return wakeup;
1628 }
1629
1630 static int qca_regulator_init(struct hci_uart *hu)
1631 {
1632         enum qca_btsoc_type soc_type = qca_soc_type(hu);
1633         struct qca_serdev *qcadev;
1634         int ret;
1635         bool sw_ctrl_state;
1636
1637         /* Check for vregs status, may be hci down has turned
1638          * off the voltage regulator.
1639          */
1640         qcadev = serdev_device_get_drvdata(hu->serdev);
1641         if (!qcadev->bt_power->vregs_on) {
1642                 serdev_device_close(hu->serdev);
1643                 ret = qca_regulator_enable(qcadev);
1644                 if (ret)
1645                         return ret;
1646
1647                 ret = serdev_device_open(hu->serdev);
1648                 if (ret) {
1649                         bt_dev_err(hu->hdev, "failed to open port");
1650                         return ret;
1651                 }
1652         }
1653
1654         if (qca_is_wcn399x(soc_type)) {
1655                 /* Forcefully enable wcn399x to enter in to boot mode. */
1656                 host_set_baudrate(hu, 2400);
1657                 ret = qca_send_power_pulse(hu, false);
1658                 if (ret)
1659                         return ret;
1660         }
1661
1662         /* For wcn6750 need to enable gpio bt_en */
1663         if (qcadev->bt_en) {
1664                 gpiod_set_value_cansleep(qcadev->bt_en, 0);
1665                 msleep(50);
1666                 gpiod_set_value_cansleep(qcadev->bt_en, 1);
1667                 msleep(50);
1668                 if (qcadev->sw_ctrl) {
1669                         sw_ctrl_state = gpiod_get_value_cansleep(qcadev->sw_ctrl);
1670                         bt_dev_dbg(hu->hdev, "SW_CTRL is %d", sw_ctrl_state);
1671                 }
1672         }
1673
1674         qca_set_speed(hu, QCA_INIT_SPEED);
1675
1676         if (qca_is_wcn399x(soc_type)) {
1677                 ret = qca_send_power_pulse(hu, true);
1678                 if (ret)
1679                         return ret;
1680         }
1681
1682         /* Now the device is in ready state to communicate with host.
1683          * To sync host with device we need to reopen port.
1684          * Without this, we will have RTS and CTS synchronization
1685          * issues.
1686          */
1687         serdev_device_close(hu->serdev);
1688         ret = serdev_device_open(hu->serdev);
1689         if (ret) {
1690                 bt_dev_err(hu->hdev, "failed to open port");
1691                 return ret;
1692         }
1693
1694         hci_uart_set_flow_control(hu, false);
1695
1696         return 0;
1697 }
1698
1699 static int qca_power_on(struct hci_dev *hdev)
1700 {
1701         struct hci_uart *hu = hci_get_drvdata(hdev);
1702         enum qca_btsoc_type soc_type = qca_soc_type(hu);
1703         struct qca_serdev *qcadev;
1704         struct qca_data *qca = hu->priv;
1705         int ret = 0;
1706
1707         /* Non-serdev device usually is powered by external power
1708          * and don't need additional action in driver for power on
1709          */
1710         if (!hu->serdev)
1711                 return 0;
1712
1713         if (qca_is_wcn399x(soc_type) ||
1714             qca_is_wcn6750(soc_type) ||
1715             qca_is_wcn6855(soc_type)) {
1716                 ret = qca_regulator_init(hu);
1717         } else {
1718                 qcadev = serdev_device_get_drvdata(hu->serdev);
1719                 if (qcadev->bt_en) {
1720                         gpiod_set_value_cansleep(qcadev->bt_en, 1);
1721                         /* Controller needs time to bootup. */
1722                         msleep(150);
1723                 }
1724         }
1725
1726         clear_bit(QCA_BT_OFF, &qca->flags);
1727         return ret;
1728 }
1729
1730 static void hci_coredump_qca(struct hci_dev *hdev)
1731 {
1732         static const u8 param[] = { 0x26 };
1733         struct sk_buff *skb;
1734
1735         skb = __hci_cmd_sync(hdev, 0xfc0c, 1, param, HCI_CMD_TIMEOUT);
1736         if (IS_ERR(skb))
1737                 bt_dev_err(hdev, "%s: trigger crash failed (%ld)", __func__, PTR_ERR(skb));
1738         kfree_skb(skb);
1739 }
1740
1741 static int qca_setup(struct hci_uart *hu)
1742 {
1743         struct hci_dev *hdev = hu->hdev;
1744         struct qca_data *qca = hu->priv;
1745         unsigned int speed, qca_baudrate = QCA_BAUDRATE_115200;
1746         unsigned int retries = 0;
1747         enum qca_btsoc_type soc_type = qca_soc_type(hu);
1748         const char *firmware_name = qca_get_firmware_name(hu);
1749         int ret;
1750         struct qca_btsoc_version ver;
1751
1752         ret = qca_check_speeds(hu);
1753         if (ret)
1754                 return ret;
1755
1756         clear_bit(QCA_ROM_FW, &qca->flags);
1757         /* Patch downloading has to be done without IBS mode */
1758         set_bit(QCA_IBS_DISABLED, &qca->flags);
1759
1760         /* Enable controller to do both LE scan and BR/EDR inquiry
1761          * simultaneously.
1762          */
1763         set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
1764
1765         bt_dev_info(hdev, "setting up %s",
1766                 qca_is_wcn399x(soc_type) ? "wcn399x" :
1767                 (soc_type == QCA_WCN6750) ? "wcn6750" :
1768                 (soc_type == QCA_WCN6855) ? "wcn6855" : "ROME/QCA6390");
1769
1770         qca->memdump_state = QCA_MEMDUMP_IDLE;
1771
1772 retry:
1773         ret = qca_power_on(hdev);
1774         if (ret)
1775                 goto out;
1776
1777         clear_bit(QCA_SSR_TRIGGERED, &qca->flags);
1778
1779         if (qca_is_wcn399x(soc_type) ||
1780             qca_is_wcn6750(soc_type) ||
1781             qca_is_wcn6855(soc_type)) {
1782                 set_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks);
1783                 hci_set_aosp_capable(hdev);
1784
1785                 ret = qca_read_soc_version(hdev, &ver, soc_type);
1786                 if (ret)
1787                         goto out;
1788         } else {
1789                 qca_set_speed(hu, QCA_INIT_SPEED);
1790         }
1791
1792         /* Setup user speed if needed */
1793         speed = qca_get_speed(hu, QCA_OPER_SPEED);
1794         if (speed) {
1795                 ret = qca_set_speed(hu, QCA_OPER_SPEED);
1796                 if (ret)
1797                         goto out;
1798
1799                 qca_baudrate = qca_get_baudrate_value(speed);
1800         }
1801
1802         if (!(qca_is_wcn399x(soc_type) ||
1803               qca_is_wcn6750(soc_type) ||
1804               qca_is_wcn6855(soc_type))) {
1805                 /* Get QCA version information */
1806                 ret = qca_read_soc_version(hdev, &ver, soc_type);
1807                 if (ret)
1808                         goto out;
1809         }
1810
1811         /* Setup patch / NVM configurations */
1812         ret = qca_uart_setup(hdev, qca_baudrate, soc_type, ver,
1813                         firmware_name);
1814         if (!ret) {
1815                 clear_bit(QCA_IBS_DISABLED, &qca->flags);
1816                 qca_debugfs_init(hdev);
1817                 hu->hdev->hw_error = qca_hw_error;
1818                 hu->hdev->cmd_timeout = qca_cmd_timeout;
1819                 if (device_can_wakeup(hu->serdev->ctrl->dev.parent))
1820                         hu->hdev->wakeup = qca_wakeup;
1821         } else if (ret == -ENOENT) {
1822                 /* No patch/nvm-config found, run with original fw/config */
1823                 set_bit(QCA_ROM_FW, &qca->flags);
1824                 ret = 0;
1825         } else if (ret == -EAGAIN) {
1826                 /*
1827                  * Userspace firmware loader will return -EAGAIN in case no
1828                  * patch/nvm-config is found, so run with original fw/config.
1829                  */
1830                 set_bit(QCA_ROM_FW, &qca->flags);
1831                 ret = 0;
1832         }
1833
1834 out:
1835         if (ret && retries < MAX_INIT_RETRIES) {
1836                 bt_dev_warn(hdev, "Retry BT power ON:%d", retries);
1837                 qca_power_shutdown(hu);
1838                 if (hu->serdev) {
1839                         serdev_device_close(hu->serdev);
1840                         ret = serdev_device_open(hu->serdev);
1841                         if (ret) {
1842                                 bt_dev_err(hdev, "failed to open port");
1843                                 return ret;
1844                         }
1845                 }
1846                 retries++;
1847                 goto retry;
1848         }
1849
1850         /* Setup bdaddr */
1851         if (soc_type == QCA_ROME)
1852                 hu->hdev->set_bdaddr = qca_set_bdaddr_rome;
1853         else
1854                 hu->hdev->set_bdaddr = qca_set_bdaddr;
1855         qca->fw_version = le16_to_cpu(ver.patch_ver);
1856         qca->controller_id = le16_to_cpu(ver.rom_ver);
1857         hci_devcd_register(hdev, hci_coredump_qca, qca_dmp_hdr, NULL);
1858
1859         return ret;
1860 }
1861
1862 static const struct hci_uart_proto qca_proto = {
1863         .id             = HCI_UART_QCA,
1864         .name           = "QCA",
1865         .manufacturer   = 29,
1866         .init_speed     = 115200,
1867         .oper_speed     = 3000000,
1868         .open           = qca_open,
1869         .close          = qca_close,
1870         .flush          = qca_flush,
1871         .setup          = qca_setup,
1872         .recv           = qca_recv,
1873         .enqueue        = qca_enqueue,
1874         .dequeue        = qca_dequeue,
1875 };
1876
1877 static const struct qca_device_data qca_soc_data_wcn3990 __maybe_unused = {
1878         .soc_type = QCA_WCN3990,
1879         .vregs = (struct qca_vreg []) {
1880                 { "vddio", 15000  },
1881                 { "vddxo", 80000  },
1882                 { "vddrf", 300000 },
1883                 { "vddch0", 450000 },
1884         },
1885         .num_vregs = 4,
1886 };
1887
1888 static const struct qca_device_data qca_soc_data_wcn3991 __maybe_unused = {
1889         .soc_type = QCA_WCN3991,
1890         .vregs = (struct qca_vreg []) {
1891                 { "vddio", 15000  },
1892                 { "vddxo", 80000  },
1893                 { "vddrf", 300000 },
1894                 { "vddch0", 450000 },
1895         },
1896         .num_vregs = 4,
1897         .capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
1898 };
1899
1900 static const struct qca_device_data qca_soc_data_wcn3998 __maybe_unused = {
1901         .soc_type = QCA_WCN3998,
1902         .vregs = (struct qca_vreg []) {
1903                 { "vddio", 10000  },
1904                 { "vddxo", 80000  },
1905                 { "vddrf", 300000 },
1906                 { "vddch0", 450000 },
1907         },
1908         .num_vregs = 4,
1909 };
1910
1911 static const struct qca_device_data qca_soc_data_qca6390 __maybe_unused = {
1912         .soc_type = QCA_QCA6390,
1913         .num_vregs = 0,
1914 };
1915
1916 static const struct qca_device_data qca_soc_data_wcn6750 __maybe_unused = {
1917         .soc_type = QCA_WCN6750,
1918         .vregs = (struct qca_vreg []) {
1919                 { "vddio", 5000 },
1920                 { "vddaon", 26000 },
1921                 { "vddbtcxmx", 126000 },
1922                 { "vddrfacmn", 12500 },
1923                 { "vddrfa0p8", 102000 },
1924                 { "vddrfa1p7", 302000 },
1925                 { "vddrfa1p2", 257000 },
1926                 { "vddrfa2p2", 1700000 },
1927                 { "vddasd", 200 },
1928         },
1929         .num_vregs = 9,
1930         .capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
1931 };
1932
1933 static const struct qca_device_data qca_soc_data_wcn6855 __maybe_unused = {
1934         .soc_type = QCA_WCN6855,
1935         .vregs = (struct qca_vreg []) {
1936                 { "vddio", 5000 },
1937                 { "vddbtcxmx", 126000 },
1938                 { "vddrfacmn", 12500 },
1939                 { "vddrfa0p8", 102000 },
1940                 { "vddrfa1p7", 302000 },
1941                 { "vddrfa1p2", 257000 },
1942         },
1943         .num_vregs = 6,
1944         .capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
1945 };
1946
1947 static void qca_power_shutdown(struct hci_uart *hu)
1948 {
1949         struct qca_serdev *qcadev;
1950         struct qca_data *qca = hu->priv;
1951         unsigned long flags;
1952         enum qca_btsoc_type soc_type = qca_soc_type(hu);
1953         bool sw_ctrl_state;
1954
1955         /* From this point we go into power off state. But serial port is
1956          * still open, stop queueing the IBS data and flush all the buffered
1957          * data in skb's.
1958          */
1959         spin_lock_irqsave(&qca->hci_ibs_lock, flags);
1960         set_bit(QCA_IBS_DISABLED, &qca->flags);
1961         qca_flush(hu);
1962         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
1963
1964         /* Non-serdev device usually is powered by external power
1965          * and don't need additional action in driver for power down
1966          */
1967         if (!hu->serdev)
1968                 return;
1969
1970         qcadev = serdev_device_get_drvdata(hu->serdev);
1971
1972         if (qca_is_wcn399x(soc_type)) {
1973                 host_set_baudrate(hu, 2400);
1974                 qca_send_power_pulse(hu, false);
1975                 qca_regulator_disable(qcadev);
1976         } else if (soc_type == QCA_WCN6750 || soc_type == QCA_WCN6855) {
1977                 gpiod_set_value_cansleep(qcadev->bt_en, 0);
1978                 msleep(100);
1979                 qca_regulator_disable(qcadev);
1980                 if (qcadev->sw_ctrl) {
1981                         sw_ctrl_state = gpiod_get_value_cansleep(qcadev->sw_ctrl);
1982                         bt_dev_dbg(hu->hdev, "SW_CTRL is %d", sw_ctrl_state);
1983                 }
1984         } else if (qcadev->bt_en) {
1985                 gpiod_set_value_cansleep(qcadev->bt_en, 0);
1986         }
1987
1988         set_bit(QCA_BT_OFF, &qca->flags);
1989 }
1990
1991 static int qca_power_off(struct hci_dev *hdev)
1992 {
1993         struct hci_uart *hu = hci_get_drvdata(hdev);
1994         struct qca_data *qca = hu->priv;
1995         enum qca_btsoc_type soc_type = qca_soc_type(hu);
1996
1997         hu->hdev->hw_error = NULL;
1998         hu->hdev->cmd_timeout = NULL;
1999
2000         del_timer_sync(&qca->wake_retrans_timer);
2001         del_timer_sync(&qca->tx_idle_timer);
2002
2003         /* Stop sending shutdown command if soc crashes. */
2004         if (soc_type != QCA_ROME
2005                 && qca->memdump_state == QCA_MEMDUMP_IDLE) {
2006                 qca_send_pre_shutdown_cmd(hdev);
2007                 usleep_range(8000, 10000);
2008         }
2009
2010         qca_power_shutdown(hu);
2011         return 0;
2012 }
2013
2014 static int qca_regulator_enable(struct qca_serdev *qcadev)
2015 {
2016         struct qca_power *power = qcadev->bt_power;
2017         int ret;
2018
2019         /* Already enabled */
2020         if (power->vregs_on)
2021                 return 0;
2022
2023         BT_DBG("enabling %d regulators)", power->num_vregs);
2024
2025         ret = regulator_bulk_enable(power->num_vregs, power->vreg_bulk);
2026         if (ret)
2027                 return ret;
2028
2029         power->vregs_on = true;
2030
2031         ret = clk_prepare_enable(qcadev->susclk);
2032         if (ret)
2033                 qca_regulator_disable(qcadev);
2034
2035         return ret;
2036 }
2037
2038 static void qca_regulator_disable(struct qca_serdev *qcadev)
2039 {
2040         struct qca_power *power;
2041
2042         if (!qcadev)
2043                 return;
2044
2045         power = qcadev->bt_power;
2046
2047         /* Already disabled? */
2048         if (!power->vregs_on)
2049                 return;
2050
2051         regulator_bulk_disable(power->num_vregs, power->vreg_bulk);
2052         power->vregs_on = false;
2053
2054         clk_disable_unprepare(qcadev->susclk);
2055 }
2056
2057 static int qca_init_regulators(struct qca_power *qca,
2058                                 const struct qca_vreg *vregs, size_t num_vregs)
2059 {
2060         struct regulator_bulk_data *bulk;
2061         int ret;
2062         int i;
2063
2064         bulk = devm_kcalloc(qca->dev, num_vregs, sizeof(*bulk), GFP_KERNEL);
2065         if (!bulk)
2066                 return -ENOMEM;
2067
2068         for (i = 0; i < num_vregs; i++)
2069                 bulk[i].supply = vregs[i].name;
2070
2071         ret = devm_regulator_bulk_get(qca->dev, num_vregs, bulk);
2072         if (ret < 0)
2073                 return ret;
2074
2075         for (i = 0; i < num_vregs; i++) {
2076                 ret = regulator_set_load(bulk[i].consumer, vregs[i].load_uA);
2077                 if (ret)
2078                         return ret;
2079         }
2080
2081         qca->vreg_bulk = bulk;
2082         qca->num_vregs = num_vregs;
2083
2084         return 0;
2085 }
2086
2087 static int qca_serdev_probe(struct serdev_device *serdev)
2088 {
2089         struct qca_serdev *qcadev;
2090         struct hci_dev *hdev;
2091         const struct qca_device_data *data;
2092         int err;
2093         bool power_ctrl_enabled = true;
2094
2095         qcadev = devm_kzalloc(&serdev->dev, sizeof(*qcadev), GFP_KERNEL);
2096         if (!qcadev)
2097                 return -ENOMEM;
2098
2099         qcadev->serdev_hu.serdev = serdev;
2100         data = device_get_match_data(&serdev->dev);
2101         serdev_device_set_drvdata(serdev, qcadev);
2102         device_property_read_string(&serdev->dev, "firmware-name",
2103                                          &qcadev->firmware_name);
2104         device_property_read_u32(&serdev->dev, "max-speed",
2105                                  &qcadev->oper_speed);
2106         if (!qcadev->oper_speed)
2107                 BT_DBG("UART will pick default operating speed");
2108
2109         if (data &&
2110             (qca_is_wcn399x(data->soc_type) ||
2111              qca_is_wcn6750(data->soc_type) ||
2112              qca_is_wcn6855(data->soc_type))) {
2113                 qcadev->btsoc_type = data->soc_type;
2114                 qcadev->bt_power = devm_kzalloc(&serdev->dev,
2115                                                 sizeof(struct qca_power),
2116                                                 GFP_KERNEL);
2117                 if (!qcadev->bt_power)
2118                         return -ENOMEM;
2119
2120                 qcadev->bt_power->dev = &serdev->dev;
2121                 err = qca_init_regulators(qcadev->bt_power, data->vregs,
2122                                           data->num_vregs);
2123                 if (err) {
2124                         BT_ERR("Failed to init regulators:%d", err);
2125                         return err;
2126                 }
2127
2128                 qcadev->bt_power->vregs_on = false;
2129
2130                 qcadev->bt_en = devm_gpiod_get_optional(&serdev->dev, "enable",
2131                                                GPIOD_OUT_LOW);
2132                 if (IS_ERR_OR_NULL(qcadev->bt_en) &&
2133                     (data->soc_type == QCA_WCN6750 ||
2134                      data->soc_type == QCA_WCN6855)) {
2135                         dev_err(&serdev->dev, "failed to acquire BT_EN gpio\n");
2136                         power_ctrl_enabled = false;
2137                 }
2138
2139                 qcadev->sw_ctrl = devm_gpiod_get_optional(&serdev->dev, "swctrl",
2140                                                GPIOD_IN);
2141                 if (IS_ERR_OR_NULL(qcadev->sw_ctrl) &&
2142                     (data->soc_type == QCA_WCN6750 ||
2143                      data->soc_type == QCA_WCN6855))
2144                         dev_warn(&serdev->dev, "failed to acquire SW_CTRL gpio\n");
2145
2146                 qcadev->susclk = devm_clk_get_optional(&serdev->dev, NULL);
2147                 if (IS_ERR(qcadev->susclk)) {
2148                         dev_err(&serdev->dev, "failed to acquire clk\n");
2149                         return PTR_ERR(qcadev->susclk);
2150                 }
2151
2152                 err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto);
2153                 if (err) {
2154                         BT_ERR("wcn3990 serdev registration failed");
2155                         return err;
2156                 }
2157         } else {
2158                 if (data)
2159                         qcadev->btsoc_type = data->soc_type;
2160                 else
2161                         qcadev->btsoc_type = QCA_ROME;
2162
2163                 qcadev->bt_en = devm_gpiod_get_optional(&serdev->dev, "enable",
2164                                                GPIOD_OUT_LOW);
2165                 if (IS_ERR_OR_NULL(qcadev->bt_en)) {
2166                         dev_warn(&serdev->dev, "failed to acquire enable gpio\n");
2167                         power_ctrl_enabled = false;
2168                 }
2169
2170                 qcadev->susclk = devm_clk_get_optional(&serdev->dev, NULL);
2171                 if (IS_ERR(qcadev->susclk)) {
2172                         dev_warn(&serdev->dev, "failed to acquire clk\n");
2173                         return PTR_ERR(qcadev->susclk);
2174                 }
2175                 err = clk_set_rate(qcadev->susclk, SUSCLK_RATE_32KHZ);
2176                 if (err)
2177                         return err;
2178
2179                 err = clk_prepare_enable(qcadev->susclk);
2180                 if (err)
2181                         return err;
2182
2183                 err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto);
2184                 if (err) {
2185                         BT_ERR("Rome serdev registration failed");
2186                         clk_disable_unprepare(qcadev->susclk);
2187                         return err;
2188                 }
2189         }
2190
2191         hdev = qcadev->serdev_hu.hdev;
2192
2193         if (power_ctrl_enabled) {
2194                 set_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks);
2195                 hdev->shutdown = qca_power_off;
2196         }
2197
2198         if (data) {
2199                 /* Wideband speech support must be set per driver since it can't
2200                  * be queried via hci. Same with the valid le states quirk.
2201                  */
2202                 if (data->capabilities & QCA_CAP_WIDEBAND_SPEECH)
2203                         set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED,
2204                                 &hdev->quirks);
2205
2206                 if (data->capabilities & QCA_CAP_VALID_LE_STATES)
2207                         set_bit(HCI_QUIRK_VALID_LE_STATES, &hdev->quirks);
2208         }
2209
2210         return 0;
2211 }
2212
2213 static void qca_serdev_remove(struct serdev_device *serdev)
2214 {
2215         struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2216         struct qca_power *power = qcadev->bt_power;
2217
2218         if ((qca_is_wcn399x(qcadev->btsoc_type) ||
2219              qca_is_wcn6750(qcadev->btsoc_type) ||
2220              qca_is_wcn6855(qcadev->btsoc_type)) &&
2221             power->vregs_on)
2222                 qca_power_shutdown(&qcadev->serdev_hu);
2223         else if (qcadev->susclk)
2224                 clk_disable_unprepare(qcadev->susclk);
2225
2226         hci_uart_unregister_device(&qcadev->serdev_hu);
2227 }
2228
2229 static void qca_serdev_shutdown(struct device *dev)
2230 {
2231         int ret;
2232         int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS);
2233         struct serdev_device *serdev = to_serdev_device(dev);
2234         struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2235         struct hci_uart *hu = &qcadev->serdev_hu;
2236         struct hci_dev *hdev = hu->hdev;
2237         struct qca_data *qca = hu->priv;
2238         const u8 ibs_wake_cmd[] = { 0xFD };
2239         const u8 edl_reset_soc_cmd[] = { 0x01, 0x00, 0xFC, 0x01, 0x05 };
2240
2241         if (qcadev->btsoc_type == QCA_QCA6390) {
2242                 if (test_bit(QCA_BT_OFF, &qca->flags) ||
2243                     !test_bit(HCI_RUNNING, &hdev->flags))
2244                         return;
2245
2246                 serdev_device_write_flush(serdev);
2247                 ret = serdev_device_write_buf(serdev, ibs_wake_cmd,
2248                                               sizeof(ibs_wake_cmd));
2249                 if (ret < 0) {
2250                         BT_ERR("QCA send IBS_WAKE_IND error: %d", ret);
2251                         return;
2252                 }
2253                 serdev_device_wait_until_sent(serdev, timeout);
2254                 usleep_range(8000, 10000);
2255
2256                 serdev_device_write_flush(serdev);
2257                 ret = serdev_device_write_buf(serdev, edl_reset_soc_cmd,
2258                                               sizeof(edl_reset_soc_cmd));
2259                 if (ret < 0) {
2260                         BT_ERR("QCA send EDL_RESET_REQ error: %d", ret);
2261                         return;
2262                 }
2263                 serdev_device_wait_until_sent(serdev, timeout);
2264                 usleep_range(8000, 10000);
2265         }
2266 }
2267
2268 static int __maybe_unused qca_suspend(struct device *dev)
2269 {
2270         struct serdev_device *serdev = to_serdev_device(dev);
2271         struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2272         struct hci_uart *hu = &qcadev->serdev_hu;
2273         struct qca_data *qca = hu->priv;
2274         unsigned long flags;
2275         bool tx_pending = false;
2276         int ret = 0;
2277         u8 cmd;
2278         u32 wait_timeout = 0;
2279
2280         set_bit(QCA_SUSPENDING, &qca->flags);
2281
2282         /* if BT SoC is running with default firmware then it does not
2283          * support in-band sleep
2284          */
2285         if (test_bit(QCA_ROM_FW, &qca->flags))
2286                 return 0;
2287
2288         /* During SSR after memory dump collection, controller will be
2289          * powered off and then powered on.If controller is powered off
2290          * during SSR then we should wait until SSR is completed.
2291          */
2292         if (test_bit(QCA_BT_OFF, &qca->flags) &&
2293             !test_bit(QCA_SSR_TRIGGERED, &qca->flags))
2294                 return 0;
2295
2296         if (test_bit(QCA_IBS_DISABLED, &qca->flags) ||
2297             test_bit(QCA_SSR_TRIGGERED, &qca->flags)) {
2298                 wait_timeout = test_bit(QCA_SSR_TRIGGERED, &qca->flags) ?
2299                                         IBS_DISABLE_SSR_TIMEOUT_MS :
2300                                         FW_DOWNLOAD_TIMEOUT_MS;
2301
2302                 /* QCA_IBS_DISABLED flag is set to true, During FW download
2303                  * and during memory dump collection. It is reset to false,
2304                  * After FW download complete.
2305                  */
2306                 wait_on_bit_timeout(&qca->flags, QCA_IBS_DISABLED,
2307                             TASK_UNINTERRUPTIBLE, msecs_to_jiffies(wait_timeout));
2308
2309                 if (test_bit(QCA_IBS_DISABLED, &qca->flags)) {
2310                         bt_dev_err(hu->hdev, "SSR or FW download time out");
2311                         ret = -ETIMEDOUT;
2312                         goto error;
2313                 }
2314         }
2315
2316         cancel_work_sync(&qca->ws_awake_device);
2317         cancel_work_sync(&qca->ws_awake_rx);
2318
2319         spin_lock_irqsave_nested(&qca->hci_ibs_lock,
2320                                  flags, SINGLE_DEPTH_NESTING);
2321
2322         switch (qca->tx_ibs_state) {
2323         case HCI_IBS_TX_WAKING:
2324                 del_timer(&qca->wake_retrans_timer);
2325                 fallthrough;
2326         case HCI_IBS_TX_AWAKE:
2327                 del_timer(&qca->tx_idle_timer);
2328
2329                 serdev_device_write_flush(hu->serdev);
2330                 cmd = HCI_IBS_SLEEP_IND;
2331                 ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd));
2332
2333                 if (ret < 0) {
2334                         BT_ERR("Failed to send SLEEP to device");
2335                         break;
2336                 }
2337
2338                 qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
2339                 qca->ibs_sent_slps++;
2340                 tx_pending = true;
2341                 break;
2342
2343         case HCI_IBS_TX_ASLEEP:
2344                 break;
2345
2346         default:
2347                 BT_ERR("Spurious tx state %d", qca->tx_ibs_state);
2348                 ret = -EINVAL;
2349                 break;
2350         }
2351
2352         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
2353
2354         if (ret < 0)
2355                 goto error;
2356
2357         if (tx_pending) {
2358                 serdev_device_wait_until_sent(hu->serdev,
2359                                               msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS));
2360                 serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu);
2361         }
2362
2363         /* Wait for HCI_IBS_SLEEP_IND sent by device to indicate its Tx is going
2364          * to sleep, so that the packet does not wake the system later.
2365          */
2366         ret = wait_event_interruptible_timeout(qca->suspend_wait_q,
2367                         qca->rx_ibs_state == HCI_IBS_RX_ASLEEP,
2368                         msecs_to_jiffies(IBS_BTSOC_TX_IDLE_TIMEOUT_MS));
2369         if (ret == 0) {
2370                 ret = -ETIMEDOUT;
2371                 goto error;
2372         }
2373
2374         return 0;
2375
2376 error:
2377         clear_bit(QCA_SUSPENDING, &qca->flags);
2378
2379         return ret;
2380 }
2381
2382 static int __maybe_unused qca_resume(struct device *dev)
2383 {
2384         struct serdev_device *serdev = to_serdev_device(dev);
2385         struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2386         struct hci_uart *hu = &qcadev->serdev_hu;
2387         struct qca_data *qca = hu->priv;
2388
2389         clear_bit(QCA_SUSPENDING, &qca->flags);
2390
2391         return 0;
2392 }
2393
2394 static SIMPLE_DEV_PM_OPS(qca_pm_ops, qca_suspend, qca_resume);
2395
2396 #ifdef CONFIG_OF
2397 static const struct of_device_id qca_bluetooth_of_match[] = {
2398         { .compatible = "qcom,qca6174-bt" },
2399         { .compatible = "qcom,qca6390-bt", .data = &qca_soc_data_qca6390},
2400         { .compatible = "qcom,qca9377-bt" },
2401         { .compatible = "qcom,wcn3990-bt", .data = &qca_soc_data_wcn3990},
2402         { .compatible = "qcom,wcn3991-bt", .data = &qca_soc_data_wcn3991},
2403         { .compatible = "qcom,wcn3998-bt", .data = &qca_soc_data_wcn3998},
2404         { .compatible = "qcom,wcn6750-bt", .data = &qca_soc_data_wcn6750},
2405         { .compatible = "qcom,wcn6855-bt", .data = &qca_soc_data_wcn6855},
2406         { /* sentinel */ }
2407 };
2408 MODULE_DEVICE_TABLE(of, qca_bluetooth_of_match);
2409 #endif
2410
2411 #ifdef CONFIG_ACPI
2412 static const struct acpi_device_id qca_bluetooth_acpi_match[] = {
2413         { "QCOM6390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2414         { "DLA16390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2415         { "DLB16390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2416         { "DLB26390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2417         { },
2418 };
2419 MODULE_DEVICE_TABLE(acpi, qca_bluetooth_acpi_match);
2420 #endif
2421
2422 #ifdef CONFIG_DEV_COREDUMP
2423 static void hciqca_coredump(struct device *dev)
2424 {
2425         struct serdev_device *serdev = to_serdev_device(dev);
2426         struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2427         struct hci_uart *hu = &qcadev->serdev_hu;
2428         struct hci_dev  *hdev = hu->hdev;
2429
2430         if (hdev->dump.coredump)
2431                 hdev->dump.coredump(hdev);
2432 }
2433 #endif
2434
2435 static struct serdev_device_driver qca_serdev_driver = {
2436         .probe = qca_serdev_probe,
2437         .remove = qca_serdev_remove,
2438         .driver = {
2439                 .name = "hci_uart_qca",
2440                 .of_match_table = of_match_ptr(qca_bluetooth_of_match),
2441                 .acpi_match_table = ACPI_PTR(qca_bluetooth_acpi_match),
2442                 .shutdown = qca_serdev_shutdown,
2443                 .pm = &qca_pm_ops,
2444 #ifdef CONFIG_DEV_COREDUMP
2445                 .coredump = hciqca_coredump,
2446 #endif
2447         },
2448 };
2449
2450 int __init qca_init(void)
2451 {
2452         serdev_device_driver_register(&qca_serdev_driver);
2453
2454         return hci_uart_register_proto(&qca_proto);
2455 }
2456
2457 int __exit qca_deinit(void)
2458 {
2459         serdev_device_driver_unregister(&qca_serdev_driver);
2460
2461         return hci_uart_unregister_proto(&qca_proto);
2462 }