f1a3c958d84bf57bef2fa945bfa3adbf02a940cd
[linux-block.git] / drivers / block / zram / zram_drv.c
1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *               2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the licence that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  *
13  */
14
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18 #ifdef CONFIG_ZRAM_DEBUG
19 #define DEBUG
20 #endif
21
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/bio.h>
25 #include <linux/bitops.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h>
28 #include <linux/device.h>
29 #include <linux/genhd.h>
30 #include <linux/highmem.h>
31 #include <linux/slab.h>
32 #include <linux/lzo.h>
33 #include <linux/string.h>
34 #include <linux/vmalloc.h>
35
36 #include "zram_drv.h"
37
38 /* Globals */
39 static int zram_major;
40 static struct zram *zram_devices;
41
42 /* Module params (documentation at end) */
43 static unsigned int num_devices = 1;
44
45 static inline struct zram *dev_to_zram(struct device *dev)
46 {
47         return (struct zram *)dev_to_disk(dev)->private_data;
48 }
49
50 static ssize_t disksize_show(struct device *dev,
51                 struct device_attribute *attr, char *buf)
52 {
53         struct zram *zram = dev_to_zram(dev);
54
55         return sprintf(buf, "%llu\n", zram->disksize);
56 }
57
58 static ssize_t initstate_show(struct device *dev,
59                 struct device_attribute *attr, char *buf)
60 {
61         struct zram *zram = dev_to_zram(dev);
62
63         return sprintf(buf, "%u\n", zram->init_done);
64 }
65
66 static ssize_t num_reads_show(struct device *dev,
67                 struct device_attribute *attr, char *buf)
68 {
69         struct zram *zram = dev_to_zram(dev);
70
71         return sprintf(buf, "%llu\n",
72                         (u64)atomic64_read(&zram->stats.num_reads));
73 }
74
75 static ssize_t num_writes_show(struct device *dev,
76                 struct device_attribute *attr, char *buf)
77 {
78         struct zram *zram = dev_to_zram(dev);
79
80         return sprintf(buf, "%llu\n",
81                         (u64)atomic64_read(&zram->stats.num_writes));
82 }
83
84 static ssize_t invalid_io_show(struct device *dev,
85                 struct device_attribute *attr, char *buf)
86 {
87         struct zram *zram = dev_to_zram(dev);
88
89         return sprintf(buf, "%llu\n",
90                         (u64)atomic64_read(&zram->stats.invalid_io));
91 }
92
93 static ssize_t notify_free_show(struct device *dev,
94                 struct device_attribute *attr, char *buf)
95 {
96         struct zram *zram = dev_to_zram(dev);
97
98         return sprintf(buf, "%llu\n",
99                         (u64)atomic64_read(&zram->stats.notify_free));
100 }
101
102 static ssize_t zero_pages_show(struct device *dev,
103                 struct device_attribute *attr, char *buf)
104 {
105         struct zram *zram = dev_to_zram(dev);
106
107         return sprintf(buf, "%u\n", atomic_read(&zram->stats.pages_zero));
108 }
109
110 static ssize_t orig_data_size_show(struct device *dev,
111                 struct device_attribute *attr, char *buf)
112 {
113         struct zram *zram = dev_to_zram(dev);
114
115         return sprintf(buf, "%llu\n",
116                 (u64)(atomic_read(&zram->stats.pages_stored)) << PAGE_SHIFT);
117 }
118
119 static ssize_t compr_data_size_show(struct device *dev,
120                 struct device_attribute *attr, char *buf)
121 {
122         struct zram *zram = dev_to_zram(dev);
123
124         return sprintf(buf, "%llu\n",
125                         (u64)atomic64_read(&zram->stats.compr_size));
126 }
127
128 static ssize_t mem_used_total_show(struct device *dev,
129                 struct device_attribute *attr, char *buf)
130 {
131         u64 val = 0;
132         struct zram *zram = dev_to_zram(dev);
133         struct zram_meta *meta = zram->meta;
134
135         down_read(&zram->init_lock);
136         if (zram->init_done)
137                 val = zs_get_total_size_bytes(meta->mem_pool);
138         up_read(&zram->init_lock);
139
140         return sprintf(buf, "%llu\n", val);
141 }
142
143 /* flag operations needs meta->tb_lock */
144 static int zram_test_flag(struct zram_meta *meta, u32 index,
145                         enum zram_pageflags flag)
146 {
147         return meta->table[index].flags & BIT(flag);
148 }
149
150 static void zram_set_flag(struct zram_meta *meta, u32 index,
151                         enum zram_pageflags flag)
152 {
153         meta->table[index].flags |= BIT(flag);
154 }
155
156 static void zram_clear_flag(struct zram_meta *meta, u32 index,
157                         enum zram_pageflags flag)
158 {
159         meta->table[index].flags &= ~BIT(flag);
160 }
161
162 static inline int is_partial_io(struct bio_vec *bvec)
163 {
164         return bvec->bv_len != PAGE_SIZE;
165 }
166
167 /*
168  * Check if request is within bounds and aligned on zram logical blocks.
169  */
170 static inline int valid_io_request(struct zram *zram, struct bio *bio)
171 {
172         u64 start, end, bound;
173
174         /* unaligned request */
175         if (unlikely(bio->bi_iter.bi_sector &
176                      (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
177                 return 0;
178         if (unlikely(bio->bi_iter.bi_size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
179                 return 0;
180
181         start = bio->bi_iter.bi_sector;
182         end = start + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
183         bound = zram->disksize >> SECTOR_SHIFT;
184         /* out of range range */
185         if (unlikely(start >= bound || end > bound || start > end))
186                 return 0;
187
188         /* I/O request is valid */
189         return 1;
190 }
191
192 static void zram_meta_free(struct zram_meta *meta)
193 {
194         zs_destroy_pool(meta->mem_pool);
195         kfree(meta->compress_workmem);
196         free_pages((unsigned long)meta->compress_buffer, 1);
197         vfree(meta->table);
198         kfree(meta);
199 }
200
201 static struct zram_meta *zram_meta_alloc(u64 disksize)
202 {
203         size_t num_pages;
204         struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
205         if (!meta)
206                 goto out;
207
208         meta->compress_workmem = kzalloc(LZO1X_MEM_COMPRESS, GFP_KERNEL);
209         if (!meta->compress_workmem)
210                 goto free_meta;
211
212         meta->compress_buffer =
213                 (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1);
214         if (!meta->compress_buffer) {
215                 pr_err("Error allocating compressor buffer space\n");
216                 goto free_workmem;
217         }
218
219         num_pages = disksize >> PAGE_SHIFT;
220         meta->table = vzalloc(num_pages * sizeof(*meta->table));
221         if (!meta->table) {
222                 pr_err("Error allocating zram address table\n");
223                 goto free_buffer;
224         }
225
226         meta->mem_pool = zs_create_pool(GFP_NOIO | __GFP_HIGHMEM);
227         if (!meta->mem_pool) {
228                 pr_err("Error creating memory pool\n");
229                 goto free_table;
230         }
231
232         rwlock_init(&meta->tb_lock);
233         return meta;
234
235 free_table:
236         vfree(meta->table);
237 free_buffer:
238         free_pages((unsigned long)meta->compress_buffer, 1);
239 free_workmem:
240         kfree(meta->compress_workmem);
241 free_meta:
242         kfree(meta);
243         meta = NULL;
244 out:
245         return meta;
246 }
247
248 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
249 {
250         if (*offset + bvec->bv_len >= PAGE_SIZE)
251                 (*index)++;
252         *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
253 }
254
255 static int page_zero_filled(void *ptr)
256 {
257         unsigned int pos;
258         unsigned long *page;
259
260         page = (unsigned long *)ptr;
261
262         for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
263                 if (page[pos])
264                         return 0;
265         }
266
267         return 1;
268 }
269
270 static void handle_zero_page(struct bio_vec *bvec)
271 {
272         struct page *page = bvec->bv_page;
273         void *user_mem;
274
275         user_mem = kmap_atomic(page);
276         if (is_partial_io(bvec))
277                 memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
278         else
279                 clear_page(user_mem);
280         kunmap_atomic(user_mem);
281
282         flush_dcache_page(page);
283 }
284
285 /* NOTE: caller should hold meta->tb_lock with write-side */
286 static void zram_free_page(struct zram *zram, size_t index)
287 {
288         struct zram_meta *meta = zram->meta;
289         unsigned long handle = meta->table[index].handle;
290         u16 size = meta->table[index].size;
291
292         if (unlikely(!handle)) {
293                 /*
294                  * No memory is allocated for zero filled pages.
295                  * Simply clear zero page flag.
296                  */
297                 if (zram_test_flag(meta, index, ZRAM_ZERO)) {
298                         zram_clear_flag(meta, index, ZRAM_ZERO);
299                         atomic_dec(&zram->stats.pages_zero);
300                 }
301                 return;
302         }
303
304         if (unlikely(size > max_zpage_size))
305                 atomic_dec(&zram->stats.bad_compress);
306
307         zs_free(meta->mem_pool, handle);
308
309         if (size <= PAGE_SIZE / 2)
310                 atomic_dec(&zram->stats.good_compress);
311
312         atomic64_sub(meta->table[index].size, &zram->stats.compr_size);
313         atomic_dec(&zram->stats.pages_stored);
314
315         meta->table[index].handle = 0;
316         meta->table[index].size = 0;
317 }
318
319 static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
320 {
321         int ret = LZO_E_OK;
322         size_t clen = PAGE_SIZE;
323         unsigned char *cmem;
324         struct zram_meta *meta = zram->meta;
325         unsigned long handle;
326         u16 size;
327
328         read_lock(&meta->tb_lock);
329         handle = meta->table[index].handle;
330         size = meta->table[index].size;
331
332         if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) {
333                 read_unlock(&meta->tb_lock);
334                 clear_page(mem);
335                 return 0;
336         }
337
338         cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
339         if (size == PAGE_SIZE)
340                 copy_page(mem, cmem);
341         else
342                 ret = lzo1x_decompress_safe(cmem, size, mem, &clen);
343         zs_unmap_object(meta->mem_pool, handle);
344         read_unlock(&meta->tb_lock);
345
346         /* Should NEVER happen. Return bio error if it does. */
347         if (unlikely(ret != LZO_E_OK)) {
348                 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
349                 atomic64_inc(&zram->stats.failed_reads);
350                 return ret;
351         }
352
353         return 0;
354 }
355
356 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
357                           u32 index, int offset, struct bio *bio)
358 {
359         int ret;
360         struct page *page;
361         unsigned char *user_mem, *uncmem = NULL;
362         struct zram_meta *meta = zram->meta;
363         page = bvec->bv_page;
364
365         read_lock(&meta->tb_lock);
366         if (unlikely(!meta->table[index].handle) ||
367                         zram_test_flag(meta, index, ZRAM_ZERO)) {
368                 read_unlock(&meta->tb_lock);
369                 handle_zero_page(bvec);
370                 return 0;
371         }
372         read_unlock(&meta->tb_lock);
373
374         if (is_partial_io(bvec))
375                 /* Use  a temporary buffer to decompress the page */
376                 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
377
378         user_mem = kmap_atomic(page);
379         if (!is_partial_io(bvec))
380                 uncmem = user_mem;
381
382         if (!uncmem) {
383                 pr_info("Unable to allocate temp memory\n");
384                 ret = -ENOMEM;
385                 goto out_cleanup;
386         }
387
388         ret = zram_decompress_page(zram, uncmem, index);
389         /* Should NEVER happen. Return bio error if it does. */
390         if (unlikely(ret != LZO_E_OK))
391                 goto out_cleanup;
392
393         if (is_partial_io(bvec))
394                 memcpy(user_mem + bvec->bv_offset, uncmem + offset,
395                                 bvec->bv_len);
396
397         flush_dcache_page(page);
398         ret = 0;
399 out_cleanup:
400         kunmap_atomic(user_mem);
401         if (is_partial_io(bvec))
402                 kfree(uncmem);
403         return ret;
404 }
405
406 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
407                            int offset)
408 {
409         int ret = 0;
410         size_t clen;
411         unsigned long handle;
412         struct page *page;
413         unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
414         struct zram_meta *meta = zram->meta;
415
416         page = bvec->bv_page;
417         src = meta->compress_buffer;
418
419         if (is_partial_io(bvec)) {
420                 /*
421                  * This is a partial IO. We need to read the full page
422                  * before to write the changes.
423                  */
424                 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
425                 if (!uncmem) {
426                         ret = -ENOMEM;
427                         goto out;
428                 }
429                 ret = zram_decompress_page(zram, uncmem, index);
430                 if (ret)
431                         goto out;
432         }
433
434         user_mem = kmap_atomic(page);
435
436         if (is_partial_io(bvec)) {
437                 memcpy(uncmem + offset, user_mem + bvec->bv_offset,
438                        bvec->bv_len);
439                 kunmap_atomic(user_mem);
440                 user_mem = NULL;
441         } else {
442                 uncmem = user_mem;
443         }
444
445         if (page_zero_filled(uncmem)) {
446                 kunmap_atomic(user_mem);
447                 /* Free memory associated with this sector now. */
448                 write_lock(&zram->meta->tb_lock);
449                 zram_free_page(zram, index);
450                 zram_set_flag(meta, index, ZRAM_ZERO);
451                 write_unlock(&zram->meta->tb_lock);
452
453                 atomic_inc(&zram->stats.pages_zero);
454                 ret = 0;
455                 goto out;
456         }
457
458         ret = lzo1x_1_compress(uncmem, PAGE_SIZE, src, &clen,
459                                meta->compress_workmem);
460
461         if (!is_partial_io(bvec)) {
462                 kunmap_atomic(user_mem);
463                 user_mem = NULL;
464                 uncmem = NULL;
465         }
466
467         if (unlikely(ret != LZO_E_OK)) {
468                 pr_err("Compression failed! err=%d\n", ret);
469                 goto out;
470         }
471
472         if (unlikely(clen > max_zpage_size)) {
473                 atomic_inc(&zram->stats.bad_compress);
474                 clen = PAGE_SIZE;
475                 src = NULL;
476                 if (is_partial_io(bvec))
477                         src = uncmem;
478         }
479
480         handle = zs_malloc(meta->mem_pool, clen);
481         if (!handle) {
482                 pr_info("Error allocating memory for compressed page: %u, size=%zu\n",
483                         index, clen);
484                 ret = -ENOMEM;
485                 goto out;
486         }
487         cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
488
489         if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) {
490                 src = kmap_atomic(page);
491                 copy_page(cmem, src);
492                 kunmap_atomic(src);
493         } else {
494                 memcpy(cmem, src, clen);
495         }
496
497         zs_unmap_object(meta->mem_pool, handle);
498
499         /*
500          * Free memory associated with this sector
501          * before overwriting unused sectors.
502          */
503         write_lock(&zram->meta->tb_lock);
504         zram_free_page(zram, index);
505
506         meta->table[index].handle = handle;
507         meta->table[index].size = clen;
508         write_unlock(&zram->meta->tb_lock);
509
510         /* Update stats */
511         atomic64_add(clen, &zram->stats.compr_size);
512         atomic_inc(&zram->stats.pages_stored);
513         if (clen <= PAGE_SIZE / 2)
514                 atomic_inc(&zram->stats.good_compress);
515
516 out:
517         if (is_partial_io(bvec))
518                 kfree(uncmem);
519
520         if (ret)
521                 atomic64_inc(&zram->stats.failed_writes);
522         return ret;
523 }
524
525 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
526                         int offset, struct bio *bio, int rw)
527 {
528         int ret;
529
530         if (rw == READ) {
531                 down_read(&zram->lock);
532                 ret = zram_bvec_read(zram, bvec, index, offset, bio);
533                 up_read(&zram->lock);
534         } else {
535                 down_write(&zram->lock);
536                 ret = zram_bvec_write(zram, bvec, index, offset);
537                 up_write(&zram->lock);
538         }
539
540         return ret;
541 }
542
543 static void zram_reset_device(struct zram *zram, bool reset_capacity)
544 {
545         size_t index;
546         struct zram_meta *meta;
547
548         down_write(&zram->init_lock);
549         if (!zram->init_done) {
550                 up_write(&zram->init_lock);
551                 return;
552         }
553
554         meta = zram->meta;
555         zram->init_done = 0;
556
557         /* Free all pages that are still in this zram device */
558         for (index = 0; index < zram->disksize >> PAGE_SHIFT; index++) {
559                 unsigned long handle = meta->table[index].handle;
560                 if (!handle)
561                         continue;
562
563                 zs_free(meta->mem_pool, handle);
564         }
565
566         zram_meta_free(zram->meta);
567         zram->meta = NULL;
568         /* Reset stats */
569         memset(&zram->stats, 0, sizeof(zram->stats));
570
571         zram->disksize = 0;
572         if (reset_capacity)
573                 set_capacity(zram->disk, 0);
574         up_write(&zram->init_lock);
575 }
576
577 static void zram_init_device(struct zram *zram, struct zram_meta *meta)
578 {
579         if (zram->disksize > 2 * (totalram_pages << PAGE_SHIFT)) {
580                 pr_info(
581                 "There is little point creating a zram of greater than "
582                 "twice the size of memory since we expect a 2:1 compression "
583                 "ratio. Note that zram uses about 0.1%% of the size of "
584                 "the disk when not in use so a huge zram is "
585                 "wasteful.\n"
586                 "\tMemory Size: %lu kB\n"
587                 "\tSize you selected: %llu kB\n"
588                 "Continuing anyway ...\n",
589                 (totalram_pages << PAGE_SHIFT) >> 10, zram->disksize >> 10
590                 );
591         }
592
593         /* zram devices sort of resembles non-rotational disks */
594         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
595
596         zram->meta = meta;
597         zram->init_done = 1;
598
599         pr_debug("Initialization done!\n");
600 }
601
602 static ssize_t disksize_store(struct device *dev,
603                 struct device_attribute *attr, const char *buf, size_t len)
604 {
605         u64 disksize;
606         struct zram_meta *meta;
607         struct zram *zram = dev_to_zram(dev);
608
609         disksize = memparse(buf, NULL);
610         if (!disksize)
611                 return -EINVAL;
612
613         disksize = PAGE_ALIGN(disksize);
614         meta = zram_meta_alloc(disksize);
615         down_write(&zram->init_lock);
616         if (zram->init_done) {
617                 up_write(&zram->init_lock);
618                 zram_meta_free(meta);
619                 pr_info("Cannot change disksize for initialized device\n");
620                 return -EBUSY;
621         }
622
623         zram->disksize = disksize;
624         set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
625         zram_init_device(zram, meta);
626         up_write(&zram->init_lock);
627
628         return len;
629 }
630
631 static ssize_t reset_store(struct device *dev,
632                 struct device_attribute *attr, const char *buf, size_t len)
633 {
634         int ret;
635         unsigned short do_reset;
636         struct zram *zram;
637         struct block_device *bdev;
638
639         zram = dev_to_zram(dev);
640         bdev = bdget_disk(zram->disk, 0);
641
642         if (!bdev)
643                 return -ENOMEM;
644
645         /* Do not reset an active device! */
646         if (bdev->bd_holders) {
647                 ret = -EBUSY;
648                 goto out;
649         }
650
651         ret = kstrtou16(buf, 10, &do_reset);
652         if (ret)
653                 goto out;
654
655         if (!do_reset) {
656                 ret = -EINVAL;
657                 goto out;
658         }
659
660         /* Make sure all pending I/O is finished */
661         fsync_bdev(bdev);
662         bdput(bdev);
663
664         zram_reset_device(zram, true);
665         return len;
666
667 out:
668         bdput(bdev);
669         return ret;
670 }
671
672 static void __zram_make_request(struct zram *zram, struct bio *bio, int rw)
673 {
674         int offset;
675         u32 index;
676         struct bio_vec bvec;
677         struct bvec_iter iter;
678
679         switch (rw) {
680         case READ:
681                 atomic64_inc(&zram->stats.num_reads);
682                 break;
683         case WRITE:
684                 atomic64_inc(&zram->stats.num_writes);
685                 break;
686         }
687
688         index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
689         offset = (bio->bi_iter.bi_sector &
690                   (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
691
692         bio_for_each_segment(bvec, bio, iter) {
693                 int max_transfer_size = PAGE_SIZE - offset;
694
695                 if (bvec.bv_len > max_transfer_size) {
696                         /*
697                          * zram_bvec_rw() can only make operation on a single
698                          * zram page. Split the bio vector.
699                          */
700                         struct bio_vec bv;
701
702                         bv.bv_page = bvec.bv_page;
703                         bv.bv_len = max_transfer_size;
704                         bv.bv_offset = bvec.bv_offset;
705
706                         if (zram_bvec_rw(zram, &bv, index, offset, bio, rw) < 0)
707                                 goto out;
708
709                         bv.bv_len = bvec.bv_len - max_transfer_size;
710                         bv.bv_offset += max_transfer_size;
711                         if (zram_bvec_rw(zram, &bv, index+1, 0, bio, rw) < 0)
712                                 goto out;
713                 } else
714                         if (zram_bvec_rw(zram, &bvec, index, offset, bio, rw)
715                             < 0)
716                                 goto out;
717
718                 update_position(&index, &offset, &bvec);
719         }
720
721         set_bit(BIO_UPTODATE, &bio->bi_flags);
722         bio_endio(bio, 0);
723         return;
724
725 out:
726         bio_io_error(bio);
727 }
728
729 /*
730  * Handler function for all zram I/O requests.
731  */
732 static void zram_make_request(struct request_queue *queue, struct bio *bio)
733 {
734         struct zram *zram = queue->queuedata;
735
736         down_read(&zram->init_lock);
737         if (unlikely(!zram->init_done))
738                 goto error;
739
740         if (!valid_io_request(zram, bio)) {
741                 atomic64_inc(&zram->stats.invalid_io);
742                 goto error;
743         }
744
745         __zram_make_request(zram, bio, bio_data_dir(bio));
746         up_read(&zram->init_lock);
747
748         return;
749
750 error:
751         up_read(&zram->init_lock);
752         bio_io_error(bio);
753 }
754
755 static void zram_slot_free_notify(struct block_device *bdev,
756                                 unsigned long index)
757 {
758         struct zram *zram;
759         struct zram_meta *meta;
760
761         zram = bdev->bd_disk->private_data;
762         meta = zram->meta;
763
764         write_lock(&meta->tb_lock);
765         zram_free_page(zram, index);
766         write_unlock(&meta->tb_lock);
767         atomic64_inc(&zram->stats.notify_free);
768 }
769
770 static const struct block_device_operations zram_devops = {
771         .swap_slot_free_notify = zram_slot_free_notify,
772         .owner = THIS_MODULE
773 };
774
775 static DEVICE_ATTR(disksize, S_IRUGO | S_IWUSR,
776                 disksize_show, disksize_store);
777 static DEVICE_ATTR(initstate, S_IRUGO, initstate_show, NULL);
778 static DEVICE_ATTR(reset, S_IWUSR, NULL, reset_store);
779 static DEVICE_ATTR(num_reads, S_IRUGO, num_reads_show, NULL);
780 static DEVICE_ATTR(num_writes, S_IRUGO, num_writes_show, NULL);
781 static DEVICE_ATTR(invalid_io, S_IRUGO, invalid_io_show, NULL);
782 static DEVICE_ATTR(notify_free, S_IRUGO, notify_free_show, NULL);
783 static DEVICE_ATTR(zero_pages, S_IRUGO, zero_pages_show, NULL);
784 static DEVICE_ATTR(orig_data_size, S_IRUGO, orig_data_size_show, NULL);
785 static DEVICE_ATTR(compr_data_size, S_IRUGO, compr_data_size_show, NULL);
786 static DEVICE_ATTR(mem_used_total, S_IRUGO, mem_used_total_show, NULL);
787
788 static struct attribute *zram_disk_attrs[] = {
789         &dev_attr_disksize.attr,
790         &dev_attr_initstate.attr,
791         &dev_attr_reset.attr,
792         &dev_attr_num_reads.attr,
793         &dev_attr_num_writes.attr,
794         &dev_attr_invalid_io.attr,
795         &dev_attr_notify_free.attr,
796         &dev_attr_zero_pages.attr,
797         &dev_attr_orig_data_size.attr,
798         &dev_attr_compr_data_size.attr,
799         &dev_attr_mem_used_total.attr,
800         NULL,
801 };
802
803 static struct attribute_group zram_disk_attr_group = {
804         .attrs = zram_disk_attrs,
805 };
806
807 static int create_device(struct zram *zram, int device_id)
808 {
809         int ret = -ENOMEM;
810
811         init_rwsem(&zram->lock);
812         init_rwsem(&zram->init_lock);
813
814         zram->queue = blk_alloc_queue(GFP_KERNEL);
815         if (!zram->queue) {
816                 pr_err("Error allocating disk queue for device %d\n",
817                         device_id);
818                 goto out;
819         }
820
821         blk_queue_make_request(zram->queue, zram_make_request);
822         zram->queue->queuedata = zram;
823
824          /* gendisk structure */
825         zram->disk = alloc_disk(1);
826         if (!zram->disk) {
827                 pr_warn("Error allocating disk structure for device %d\n",
828                         device_id);
829                 goto out_free_queue;
830         }
831
832         zram->disk->major = zram_major;
833         zram->disk->first_minor = device_id;
834         zram->disk->fops = &zram_devops;
835         zram->disk->queue = zram->queue;
836         zram->disk->private_data = zram;
837         snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
838
839         /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
840         set_capacity(zram->disk, 0);
841
842         /*
843          * To ensure that we always get PAGE_SIZE aligned
844          * and n*PAGE_SIZED sized I/O requests.
845          */
846         blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
847         blk_queue_logical_block_size(zram->disk->queue,
848                                         ZRAM_LOGICAL_BLOCK_SIZE);
849         blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
850         blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
851
852         add_disk(zram->disk);
853
854         ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
855                                 &zram_disk_attr_group);
856         if (ret < 0) {
857                 pr_warn("Error creating sysfs group");
858                 goto out_free_disk;
859         }
860
861         zram->init_done = 0;
862         return 0;
863
864 out_free_disk:
865         del_gendisk(zram->disk);
866         put_disk(zram->disk);
867 out_free_queue:
868         blk_cleanup_queue(zram->queue);
869 out:
870         return ret;
871 }
872
873 static void destroy_device(struct zram *zram)
874 {
875         sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
876                         &zram_disk_attr_group);
877
878         del_gendisk(zram->disk);
879         put_disk(zram->disk);
880
881         blk_cleanup_queue(zram->queue);
882 }
883
884 static int __init zram_init(void)
885 {
886         int ret, dev_id;
887
888         if (num_devices > max_num_devices) {
889                 pr_warn("Invalid value for num_devices: %u\n",
890                                 num_devices);
891                 ret = -EINVAL;
892                 goto out;
893         }
894
895         zram_major = register_blkdev(0, "zram");
896         if (zram_major <= 0) {
897                 pr_warn("Unable to get major number\n");
898                 ret = -EBUSY;
899                 goto out;
900         }
901
902         /* Allocate the device array and initialize each one */
903         zram_devices = kzalloc(num_devices * sizeof(struct zram), GFP_KERNEL);
904         if (!zram_devices) {
905                 ret = -ENOMEM;
906                 goto unregister;
907         }
908
909         for (dev_id = 0; dev_id < num_devices; dev_id++) {
910                 ret = create_device(&zram_devices[dev_id], dev_id);
911                 if (ret)
912                         goto free_devices;
913         }
914
915         pr_info("Created %u device(s) ...\n", num_devices);
916
917         return 0;
918
919 free_devices:
920         while (dev_id)
921                 destroy_device(&zram_devices[--dev_id]);
922         kfree(zram_devices);
923 unregister:
924         unregister_blkdev(zram_major, "zram");
925 out:
926         return ret;
927 }
928
929 static void __exit zram_exit(void)
930 {
931         int i;
932         struct zram *zram;
933
934         for (i = 0; i < num_devices; i++) {
935                 zram = &zram_devices[i];
936
937                 destroy_device(zram);
938                 /*
939                  * Shouldn't access zram->disk after destroy_device
940                  * because destroy_device already released zram->disk.
941                  */
942                 zram_reset_device(zram, false);
943         }
944
945         unregister_blkdev(zram_major, "zram");
946
947         kfree(zram_devices);
948         pr_debug("Cleanup done!\n");
949 }
950
951 module_init(zram_init);
952 module_exit(zram_exit);
953
954 module_param(num_devices, uint, 0);
955 MODULE_PARM_DESC(num_devices, "Number of zram devices");
956
957 MODULE_LICENSE("Dual BSD/GPL");
958 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
959 MODULE_DESCRIPTION("Compressed RAM Block Device");