Merge branches 'acpi-tables', 'acpi-bus' and 'acpi-processor'
[linux-2.6-block.git] / drivers / block / skd_main.c
1 /*
2  * Driver for sTec s1120 PCIe SSDs. sTec was acquired in 2013 by HGST and HGST
3  * was acquired by Western Digital in 2012.
4  *
5  * Copyright 2012 sTec, Inc.
6  * Copyright (c) 2017 Western Digital Corporation or its affiliates.
7  *
8  * This file is part of the Linux kernel, and is made available under
9  * the terms of the GNU General Public License version 2.
10  */
11
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/sched.h>
21 #include <linux/interrupt.h>
22 #include <linux/compiler.h>
23 #include <linux/workqueue.h>
24 #include <linux/delay.h>
25 #include <linux/time.h>
26 #include <linux/hdreg.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/completion.h>
29 #include <linux/scatterlist.h>
30 #include <linux/version.h>
31 #include <linux/err.h>
32 #include <linux/aer.h>
33 #include <linux/wait.h>
34 #include <linux/stringify.h>
35 #include <linux/slab_def.h>
36 #include <scsi/scsi.h>
37 #include <scsi/sg.h>
38 #include <linux/io.h>
39 #include <linux/uaccess.h>
40 #include <asm/unaligned.h>
41
42 #include "skd_s1120.h"
43
44 static int skd_dbg_level;
45 static int skd_isr_comp_limit = 4;
46
47 #define SKD_ASSERT(expr) \
48         do { \
49                 if (unlikely(!(expr))) { \
50                         pr_err("Assertion failed! %s,%s,%s,line=%d\n",  \
51                                # expr, __FILE__, __func__, __LINE__); \
52                 } \
53         } while (0)
54
55 #define DRV_NAME "skd"
56 #define PFX DRV_NAME ": "
57
58 MODULE_LICENSE("GPL");
59
60 MODULE_DESCRIPTION("STEC s1120 PCIe SSD block driver");
61
62 #define PCI_VENDOR_ID_STEC      0x1B39
63 #define PCI_DEVICE_ID_S1120     0x0001
64
65 #define SKD_FUA_NV              (1 << 1)
66 #define SKD_MINORS_PER_DEVICE   16
67
68 #define SKD_MAX_QUEUE_DEPTH     200u
69
70 #define SKD_PAUSE_TIMEOUT       (5 * 1000)
71
72 #define SKD_N_FITMSG_BYTES      (512u)
73 #define SKD_MAX_REQ_PER_MSG     14
74
75 #define SKD_N_SPECIAL_FITMSG_BYTES      (128u)
76
77 /* SG elements are 32 bytes, so we can make this 4096 and still be under the
78  * 128KB limit.  That allows 4096*4K = 16M xfer size
79  */
80 #define SKD_N_SG_PER_REQ_DEFAULT 256u
81
82 #define SKD_N_COMPLETION_ENTRY  256u
83 #define SKD_N_READ_CAP_BYTES    (8u)
84
85 #define SKD_N_INTERNAL_BYTES    (512u)
86
87 #define SKD_SKCOMP_SIZE                                                 \
88         ((sizeof(struct fit_completion_entry_v1) +                      \
89           sizeof(struct fit_comp_error_info)) * SKD_N_COMPLETION_ENTRY)
90
91 /* 5 bits of uniqifier, 0xF800 */
92 #define SKD_ID_TABLE_MASK       (3u << 8u)
93 #define  SKD_ID_RW_REQUEST      (0u << 8u)
94 #define  SKD_ID_INTERNAL        (1u << 8u)
95 #define  SKD_ID_FIT_MSG         (3u << 8u)
96 #define SKD_ID_SLOT_MASK        0x00FFu
97 #define SKD_ID_SLOT_AND_TABLE_MASK 0x03FFu
98
99 #define SKD_N_MAX_SECTORS 2048u
100
101 #define SKD_MAX_RETRIES 2u
102
103 #define SKD_TIMER_SECONDS(seconds) (seconds)
104 #define SKD_TIMER_MINUTES(minutes) ((minutes) * (60))
105
106 #define INQ_STD_NBYTES 36
107
108 enum skd_drvr_state {
109         SKD_DRVR_STATE_LOAD,
110         SKD_DRVR_STATE_IDLE,
111         SKD_DRVR_STATE_BUSY,
112         SKD_DRVR_STATE_STARTING,
113         SKD_DRVR_STATE_ONLINE,
114         SKD_DRVR_STATE_PAUSING,
115         SKD_DRVR_STATE_PAUSED,
116         SKD_DRVR_STATE_RESTARTING,
117         SKD_DRVR_STATE_RESUMING,
118         SKD_DRVR_STATE_STOPPING,
119         SKD_DRVR_STATE_FAULT,
120         SKD_DRVR_STATE_DISAPPEARED,
121         SKD_DRVR_STATE_PROTOCOL_MISMATCH,
122         SKD_DRVR_STATE_BUSY_ERASE,
123         SKD_DRVR_STATE_BUSY_SANITIZE,
124         SKD_DRVR_STATE_BUSY_IMMINENT,
125         SKD_DRVR_STATE_WAIT_BOOT,
126         SKD_DRVR_STATE_SYNCING,
127 };
128
129 #define SKD_WAIT_BOOT_TIMO      SKD_TIMER_SECONDS(90u)
130 #define SKD_STARTING_TIMO       SKD_TIMER_SECONDS(8u)
131 #define SKD_RESTARTING_TIMO     SKD_TIMER_MINUTES(4u)
132 #define SKD_BUSY_TIMO           SKD_TIMER_MINUTES(20u)
133 #define SKD_STARTED_BUSY_TIMO   SKD_TIMER_SECONDS(60u)
134 #define SKD_START_WAIT_SECONDS  90u
135
136 enum skd_req_state {
137         SKD_REQ_STATE_IDLE,
138         SKD_REQ_STATE_SETUP,
139         SKD_REQ_STATE_BUSY,
140         SKD_REQ_STATE_COMPLETED,
141         SKD_REQ_STATE_TIMEOUT,
142 };
143
144 enum skd_check_status_action {
145         SKD_CHECK_STATUS_REPORT_GOOD,
146         SKD_CHECK_STATUS_REPORT_SMART_ALERT,
147         SKD_CHECK_STATUS_REQUEUE_REQUEST,
148         SKD_CHECK_STATUS_REPORT_ERROR,
149         SKD_CHECK_STATUS_BUSY_IMMINENT,
150 };
151
152 struct skd_msg_buf {
153         struct fit_msg_hdr      fmh;
154         struct skd_scsi_request scsi[SKD_MAX_REQ_PER_MSG];
155 };
156
157 struct skd_fitmsg_context {
158         u32 id;
159
160         u32 length;
161
162         struct skd_msg_buf *msg_buf;
163         dma_addr_t mb_dma_address;
164 };
165
166 struct skd_request_context {
167         enum skd_req_state state;
168
169         u16 id;
170         u32 fitmsg_id;
171
172         u8 flush_cmd;
173
174         enum dma_data_direction data_dir;
175         struct scatterlist *sg;
176         u32 n_sg;
177         u32 sg_byte_count;
178
179         struct fit_sg_descriptor *sksg_list;
180         dma_addr_t sksg_dma_address;
181
182         struct fit_completion_entry_v1 completion;
183
184         struct fit_comp_error_info err_info;
185
186         blk_status_t status;
187 };
188
189 struct skd_special_context {
190         struct skd_request_context req;
191
192         void *data_buf;
193         dma_addr_t db_dma_address;
194
195         struct skd_msg_buf *msg_buf;
196         dma_addr_t mb_dma_address;
197 };
198
199 typedef enum skd_irq_type {
200         SKD_IRQ_LEGACY,
201         SKD_IRQ_MSI,
202         SKD_IRQ_MSIX
203 } skd_irq_type_t;
204
205 #define SKD_MAX_BARS                    2
206
207 struct skd_device {
208         void __iomem *mem_map[SKD_MAX_BARS];
209         resource_size_t mem_phys[SKD_MAX_BARS];
210         u32 mem_size[SKD_MAX_BARS];
211
212         struct skd_msix_entry *msix_entries;
213
214         struct pci_dev *pdev;
215         int pcie_error_reporting_is_enabled;
216
217         spinlock_t lock;
218         struct gendisk *disk;
219         struct blk_mq_tag_set tag_set;
220         struct request_queue *queue;
221         struct skd_fitmsg_context *skmsg;
222         struct device *class_dev;
223         int gendisk_on;
224         int sync_done;
225
226         u32 devno;
227         u32 major;
228         char isr_name[30];
229
230         enum skd_drvr_state state;
231         u32 drive_state;
232
233         u32 cur_max_queue_depth;
234         u32 queue_low_water_mark;
235         u32 dev_max_queue_depth;
236
237         u32 num_fitmsg_context;
238         u32 num_req_context;
239
240         struct skd_fitmsg_context *skmsg_table;
241
242         struct skd_special_context internal_skspcl;
243         u32 read_cap_blocksize;
244         u32 read_cap_last_lba;
245         int read_cap_is_valid;
246         int inquiry_is_valid;
247         u8 inq_serial_num[13];  /*12 chars plus null term */
248
249         u8 skcomp_cycle;
250         u32 skcomp_ix;
251         struct kmem_cache *msgbuf_cache;
252         struct kmem_cache *sglist_cache;
253         struct kmem_cache *databuf_cache;
254         struct fit_completion_entry_v1 *skcomp_table;
255         struct fit_comp_error_info *skerr_table;
256         dma_addr_t cq_dma_address;
257
258         wait_queue_head_t waitq;
259
260         struct timer_list timer;
261         u32 timer_countdown;
262         u32 timer_substate;
263
264         int sgs_per_request;
265         u32 last_mtd;
266
267         u32 proto_ver;
268
269         int dbg_level;
270         u32 connect_time_stamp;
271         int connect_retries;
272 #define SKD_MAX_CONNECT_RETRIES 16
273         u32 drive_jiffies;
274
275         u32 timo_slot;
276
277         struct work_struct start_queue;
278         struct work_struct completion_worker;
279 };
280
281 #define SKD_WRITEL(DEV, VAL, OFF) skd_reg_write32(DEV, VAL, OFF)
282 #define SKD_READL(DEV, OFF)      skd_reg_read32(DEV, OFF)
283 #define SKD_WRITEQ(DEV, VAL, OFF) skd_reg_write64(DEV, VAL, OFF)
284
285 static inline u32 skd_reg_read32(struct skd_device *skdev, u32 offset)
286 {
287         u32 val = readl(skdev->mem_map[1] + offset);
288
289         if (unlikely(skdev->dbg_level >= 2))
290                 dev_dbg(&skdev->pdev->dev, "offset %x = %x\n", offset, val);
291         return val;
292 }
293
294 static inline void skd_reg_write32(struct skd_device *skdev, u32 val,
295                                    u32 offset)
296 {
297         writel(val, skdev->mem_map[1] + offset);
298         if (unlikely(skdev->dbg_level >= 2))
299                 dev_dbg(&skdev->pdev->dev, "offset %x = %x\n", offset, val);
300 }
301
302 static inline void skd_reg_write64(struct skd_device *skdev, u64 val,
303                                    u32 offset)
304 {
305         writeq(val, skdev->mem_map[1] + offset);
306         if (unlikely(skdev->dbg_level >= 2))
307                 dev_dbg(&skdev->pdev->dev, "offset %x = %016llx\n", offset,
308                         val);
309 }
310
311
312 #define SKD_IRQ_DEFAULT SKD_IRQ_MSIX
313 static int skd_isr_type = SKD_IRQ_DEFAULT;
314
315 module_param(skd_isr_type, int, 0444);
316 MODULE_PARM_DESC(skd_isr_type, "Interrupt type capability."
317                  " (0==legacy, 1==MSI, 2==MSI-X, default==1)");
318
319 #define SKD_MAX_REQ_PER_MSG_DEFAULT 1
320 static int skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
321
322 module_param(skd_max_req_per_msg, int, 0444);
323 MODULE_PARM_DESC(skd_max_req_per_msg,
324                  "Maximum SCSI requests packed in a single message."
325                  " (1-" __stringify(SKD_MAX_REQ_PER_MSG) ", default==1)");
326
327 #define SKD_MAX_QUEUE_DEPTH_DEFAULT 64
328 #define SKD_MAX_QUEUE_DEPTH_DEFAULT_STR "64"
329 static int skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
330
331 module_param(skd_max_queue_depth, int, 0444);
332 MODULE_PARM_DESC(skd_max_queue_depth,
333                  "Maximum SCSI requests issued to s1120."
334                  " (1-200, default==" SKD_MAX_QUEUE_DEPTH_DEFAULT_STR ")");
335
336 static int skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
337 module_param(skd_sgs_per_request, int, 0444);
338 MODULE_PARM_DESC(skd_sgs_per_request,
339                  "Maximum SG elements per block request."
340                  " (1-4096, default==256)");
341
342 static int skd_max_pass_thru = 1;
343 module_param(skd_max_pass_thru, int, 0444);
344 MODULE_PARM_DESC(skd_max_pass_thru,
345                  "Maximum SCSI pass-thru at a time. IGNORED");
346
347 module_param(skd_dbg_level, int, 0444);
348 MODULE_PARM_DESC(skd_dbg_level, "s1120 debug level (0,1,2)");
349
350 module_param(skd_isr_comp_limit, int, 0444);
351 MODULE_PARM_DESC(skd_isr_comp_limit, "s1120 isr comp limit (0=none) default=4");
352
353 /* Major device number dynamically assigned. */
354 static u32 skd_major;
355
356 static void skd_destruct(struct skd_device *skdev);
357 static const struct block_device_operations skd_blockdev_ops;
358 static void skd_send_fitmsg(struct skd_device *skdev,
359                             struct skd_fitmsg_context *skmsg);
360 static void skd_send_special_fitmsg(struct skd_device *skdev,
361                                     struct skd_special_context *skspcl);
362 static bool skd_preop_sg_list(struct skd_device *skdev,
363                              struct skd_request_context *skreq);
364 static void skd_postop_sg_list(struct skd_device *skdev,
365                                struct skd_request_context *skreq);
366
367 static void skd_restart_device(struct skd_device *skdev);
368 static int skd_quiesce_dev(struct skd_device *skdev);
369 static int skd_unquiesce_dev(struct skd_device *skdev);
370 static void skd_disable_interrupts(struct skd_device *skdev);
371 static void skd_isr_fwstate(struct skd_device *skdev);
372 static void skd_recover_requests(struct skd_device *skdev);
373 static void skd_soft_reset(struct skd_device *skdev);
374
375 const char *skd_drive_state_to_str(int state);
376 const char *skd_skdev_state_to_str(enum skd_drvr_state state);
377 static void skd_log_skdev(struct skd_device *skdev, const char *event);
378 static void skd_log_skreq(struct skd_device *skdev,
379                           struct skd_request_context *skreq, const char *event);
380
381 /*
382  *****************************************************************************
383  * READ/WRITE REQUESTS
384  *****************************************************************************
385  */
386 static void skd_inc_in_flight(struct request *rq, void *data, bool reserved)
387 {
388         int *count = data;
389
390         count++;
391 }
392
393 static int skd_in_flight(struct skd_device *skdev)
394 {
395         int count = 0;
396
397         blk_mq_tagset_busy_iter(&skdev->tag_set, skd_inc_in_flight, &count);
398
399         return count;
400 }
401
402 static void
403 skd_prep_rw_cdb(struct skd_scsi_request *scsi_req,
404                 int data_dir, unsigned lba,
405                 unsigned count)
406 {
407         if (data_dir == READ)
408                 scsi_req->cdb[0] = READ_10;
409         else
410                 scsi_req->cdb[0] = WRITE_10;
411
412         scsi_req->cdb[1] = 0;
413         scsi_req->cdb[2] = (lba & 0xff000000) >> 24;
414         scsi_req->cdb[3] = (lba & 0xff0000) >> 16;
415         scsi_req->cdb[4] = (lba & 0xff00) >> 8;
416         scsi_req->cdb[5] = (lba & 0xff);
417         scsi_req->cdb[6] = 0;
418         scsi_req->cdb[7] = (count & 0xff00) >> 8;
419         scsi_req->cdb[8] = count & 0xff;
420         scsi_req->cdb[9] = 0;
421 }
422
423 static void
424 skd_prep_zerosize_flush_cdb(struct skd_scsi_request *scsi_req,
425                             struct skd_request_context *skreq)
426 {
427         skreq->flush_cmd = 1;
428
429         scsi_req->cdb[0] = SYNCHRONIZE_CACHE;
430         scsi_req->cdb[1] = 0;
431         scsi_req->cdb[2] = 0;
432         scsi_req->cdb[3] = 0;
433         scsi_req->cdb[4] = 0;
434         scsi_req->cdb[5] = 0;
435         scsi_req->cdb[6] = 0;
436         scsi_req->cdb[7] = 0;
437         scsi_req->cdb[8] = 0;
438         scsi_req->cdb[9] = 0;
439 }
440
441 /*
442  * Return true if and only if all pending requests should be failed.
443  */
444 static bool skd_fail_all(struct request_queue *q)
445 {
446         struct skd_device *skdev = q->queuedata;
447
448         SKD_ASSERT(skdev->state != SKD_DRVR_STATE_ONLINE);
449
450         skd_log_skdev(skdev, "req_not_online");
451         switch (skdev->state) {
452         case SKD_DRVR_STATE_PAUSING:
453         case SKD_DRVR_STATE_PAUSED:
454         case SKD_DRVR_STATE_STARTING:
455         case SKD_DRVR_STATE_RESTARTING:
456         case SKD_DRVR_STATE_WAIT_BOOT:
457         /* In case of starting, we haven't started the queue,
458          * so we can't get here... but requests are
459          * possibly hanging out waiting for us because we
460          * reported the dev/skd0 already.  They'll wait
461          * forever if connect doesn't complete.
462          * What to do??? delay dev/skd0 ??
463          */
464         case SKD_DRVR_STATE_BUSY:
465         case SKD_DRVR_STATE_BUSY_IMMINENT:
466         case SKD_DRVR_STATE_BUSY_ERASE:
467                 return false;
468
469         case SKD_DRVR_STATE_BUSY_SANITIZE:
470         case SKD_DRVR_STATE_STOPPING:
471         case SKD_DRVR_STATE_SYNCING:
472         case SKD_DRVR_STATE_FAULT:
473         case SKD_DRVR_STATE_DISAPPEARED:
474         default:
475                 return true;
476         }
477 }
478
479 static blk_status_t skd_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
480                                     const struct blk_mq_queue_data *mqd)
481 {
482         struct request *const req = mqd->rq;
483         struct request_queue *const q = req->q;
484         struct skd_device *skdev = q->queuedata;
485         struct skd_fitmsg_context *skmsg;
486         struct fit_msg_hdr *fmh;
487         const u32 tag = blk_mq_unique_tag(req);
488         struct skd_request_context *const skreq = blk_mq_rq_to_pdu(req);
489         struct skd_scsi_request *scsi_req;
490         unsigned long flags = 0;
491         const u32 lba = blk_rq_pos(req);
492         const u32 count = blk_rq_sectors(req);
493         const int data_dir = rq_data_dir(req);
494
495         if (unlikely(skdev->state != SKD_DRVR_STATE_ONLINE))
496                 return skd_fail_all(q) ? BLK_STS_IOERR : BLK_STS_RESOURCE;
497
498         blk_mq_start_request(req);
499
500         WARN_ONCE(tag >= skd_max_queue_depth, "%#x > %#x (nr_requests = %lu)\n",
501                   tag, skd_max_queue_depth, q->nr_requests);
502
503         SKD_ASSERT(skreq->state == SKD_REQ_STATE_IDLE);
504
505         dev_dbg(&skdev->pdev->dev,
506                 "new req=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n", req, lba,
507                 lba, count, count, data_dir);
508
509         skreq->id = tag + SKD_ID_RW_REQUEST;
510         skreq->flush_cmd = 0;
511         skreq->n_sg = 0;
512         skreq->sg_byte_count = 0;
513
514         skreq->fitmsg_id = 0;
515
516         skreq->data_dir = data_dir == READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
517
518         if (req->bio && !skd_preop_sg_list(skdev, skreq)) {
519                 dev_dbg(&skdev->pdev->dev, "error Out\n");
520                 skreq->status = BLK_STS_RESOURCE;
521                 blk_mq_complete_request(req);
522                 return BLK_STS_OK;
523         }
524
525         dma_sync_single_for_device(&skdev->pdev->dev, skreq->sksg_dma_address,
526                                    skreq->n_sg *
527                                    sizeof(struct fit_sg_descriptor),
528                                    DMA_TO_DEVICE);
529
530         /* Either a FIT msg is in progress or we have to start one. */
531         if (skd_max_req_per_msg == 1) {
532                 skmsg = NULL;
533         } else {
534                 spin_lock_irqsave(&skdev->lock, flags);
535                 skmsg = skdev->skmsg;
536         }
537         if (!skmsg) {
538                 skmsg = &skdev->skmsg_table[tag];
539                 skdev->skmsg = skmsg;
540
541                 /* Initialize the FIT msg header */
542                 fmh = &skmsg->msg_buf->fmh;
543                 memset(fmh, 0, sizeof(*fmh));
544                 fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
545                 skmsg->length = sizeof(*fmh);
546         } else {
547                 fmh = &skmsg->msg_buf->fmh;
548         }
549
550         skreq->fitmsg_id = skmsg->id;
551
552         scsi_req = &skmsg->msg_buf->scsi[fmh->num_protocol_cmds_coalesced];
553         memset(scsi_req, 0, sizeof(*scsi_req));
554
555         scsi_req->hdr.tag = skreq->id;
556         scsi_req->hdr.sg_list_dma_address =
557                 cpu_to_be64(skreq->sksg_dma_address);
558
559         if (req_op(req) == REQ_OP_FLUSH) {
560                 skd_prep_zerosize_flush_cdb(scsi_req, skreq);
561                 SKD_ASSERT(skreq->flush_cmd == 1);
562         } else {
563                 skd_prep_rw_cdb(scsi_req, data_dir, lba, count);
564         }
565
566         if (req->cmd_flags & REQ_FUA)
567                 scsi_req->cdb[1] |= SKD_FUA_NV;
568
569         scsi_req->hdr.sg_list_len_bytes = cpu_to_be32(skreq->sg_byte_count);
570
571         /* Complete resource allocations. */
572         skreq->state = SKD_REQ_STATE_BUSY;
573
574         skmsg->length += sizeof(struct skd_scsi_request);
575         fmh->num_protocol_cmds_coalesced++;
576
577         dev_dbg(&skdev->pdev->dev, "req=0x%x busy=%d\n", skreq->id,
578                 skd_in_flight(skdev));
579
580         /*
581          * If the FIT msg buffer is full send it.
582          */
583         if (skd_max_req_per_msg == 1) {
584                 skd_send_fitmsg(skdev, skmsg);
585         } else {
586                 if (mqd->last ||
587                     fmh->num_protocol_cmds_coalesced >= skd_max_req_per_msg) {
588                         skd_send_fitmsg(skdev, skmsg);
589                         skdev->skmsg = NULL;
590                 }
591                 spin_unlock_irqrestore(&skdev->lock, flags);
592         }
593
594         return BLK_STS_OK;
595 }
596
597 static enum blk_eh_timer_return skd_timed_out(struct request *req,
598                                               bool reserved)
599 {
600         struct skd_device *skdev = req->q->queuedata;
601
602         dev_err(&skdev->pdev->dev, "request with tag %#x timed out\n",
603                 blk_mq_unique_tag(req));
604
605         return BLK_EH_RESET_TIMER;
606 }
607
608 static void skd_complete_rq(struct request *req)
609 {
610         struct skd_request_context *skreq = blk_mq_rq_to_pdu(req);
611
612         blk_mq_end_request(req, skreq->status);
613 }
614
615 static bool skd_preop_sg_list(struct skd_device *skdev,
616                              struct skd_request_context *skreq)
617 {
618         struct request *req = blk_mq_rq_from_pdu(skreq);
619         struct scatterlist *sgl = &skreq->sg[0], *sg;
620         int n_sg;
621         int i;
622
623         skreq->sg_byte_count = 0;
624
625         WARN_ON_ONCE(skreq->data_dir != DMA_TO_DEVICE &&
626                      skreq->data_dir != DMA_FROM_DEVICE);
627
628         n_sg = blk_rq_map_sg(skdev->queue, req, sgl);
629         if (n_sg <= 0)
630                 return false;
631
632         /*
633          * Map scatterlist to PCI bus addresses.
634          * Note PCI might change the number of entries.
635          */
636         n_sg = pci_map_sg(skdev->pdev, sgl, n_sg, skreq->data_dir);
637         if (n_sg <= 0)
638                 return false;
639
640         SKD_ASSERT(n_sg <= skdev->sgs_per_request);
641
642         skreq->n_sg = n_sg;
643
644         for_each_sg(sgl, sg, n_sg, i) {
645                 struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
646                 u32 cnt = sg_dma_len(sg);
647                 uint64_t dma_addr = sg_dma_address(sg);
648
649                 sgd->control = FIT_SGD_CONTROL_NOT_LAST;
650                 sgd->byte_count = cnt;
651                 skreq->sg_byte_count += cnt;
652                 sgd->host_side_addr = dma_addr;
653                 sgd->dev_side_addr = 0;
654         }
655
656         skreq->sksg_list[n_sg - 1].next_desc_ptr = 0LL;
657         skreq->sksg_list[n_sg - 1].control = FIT_SGD_CONTROL_LAST;
658
659         if (unlikely(skdev->dbg_level > 1)) {
660                 dev_dbg(&skdev->pdev->dev,
661                         "skreq=%x sksg_list=%p sksg_dma=%llx\n",
662                         skreq->id, skreq->sksg_list, skreq->sksg_dma_address);
663                 for (i = 0; i < n_sg; i++) {
664                         struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
665
666                         dev_dbg(&skdev->pdev->dev,
667                                 "  sg[%d] count=%u ctrl=0x%x addr=0x%llx next=0x%llx\n",
668                                 i, sgd->byte_count, sgd->control,
669                                 sgd->host_side_addr, sgd->next_desc_ptr);
670                 }
671         }
672
673         return true;
674 }
675
676 static void skd_postop_sg_list(struct skd_device *skdev,
677                                struct skd_request_context *skreq)
678 {
679         /*
680          * restore the next ptr for next IO request so we
681          * don't have to set it every time.
682          */
683         skreq->sksg_list[skreq->n_sg - 1].next_desc_ptr =
684                 skreq->sksg_dma_address +
685                 ((skreq->n_sg) * sizeof(struct fit_sg_descriptor));
686         pci_unmap_sg(skdev->pdev, &skreq->sg[0], skreq->n_sg, skreq->data_dir);
687 }
688
689 /*
690  *****************************************************************************
691  * TIMER
692  *****************************************************************************
693  */
694
695 static void skd_timer_tick_not_online(struct skd_device *skdev);
696
697 static void skd_start_queue(struct work_struct *work)
698 {
699         struct skd_device *skdev = container_of(work, typeof(*skdev),
700                                                 start_queue);
701
702         /*
703          * Although it is safe to call blk_start_queue() from interrupt
704          * context, blk_mq_start_hw_queues() must not be called from
705          * interrupt context.
706          */
707         blk_mq_start_hw_queues(skdev->queue);
708 }
709
710 static void skd_timer_tick(struct timer_list *t)
711 {
712         struct skd_device *skdev = from_timer(skdev, t, timer);
713         unsigned long reqflags;
714         u32 state;
715
716         if (skdev->state == SKD_DRVR_STATE_FAULT)
717                 /* The driver has declared fault, and we want it to
718                  * stay that way until driver is reloaded.
719                  */
720                 return;
721
722         spin_lock_irqsave(&skdev->lock, reqflags);
723
724         state = SKD_READL(skdev, FIT_STATUS);
725         state &= FIT_SR_DRIVE_STATE_MASK;
726         if (state != skdev->drive_state)
727                 skd_isr_fwstate(skdev);
728
729         if (skdev->state != SKD_DRVR_STATE_ONLINE)
730                 skd_timer_tick_not_online(skdev);
731
732         mod_timer(&skdev->timer, (jiffies + HZ));
733
734         spin_unlock_irqrestore(&skdev->lock, reqflags);
735 }
736
737 static void skd_timer_tick_not_online(struct skd_device *skdev)
738 {
739         switch (skdev->state) {
740         case SKD_DRVR_STATE_IDLE:
741         case SKD_DRVR_STATE_LOAD:
742                 break;
743         case SKD_DRVR_STATE_BUSY_SANITIZE:
744                 dev_dbg(&skdev->pdev->dev,
745                         "drive busy sanitize[%x], driver[%x]\n",
746                         skdev->drive_state, skdev->state);
747                 /* If we've been in sanitize for 3 seconds, we figure we're not
748                  * going to get anymore completions, so recover requests now
749                  */
750                 if (skdev->timer_countdown > 0) {
751                         skdev->timer_countdown--;
752                         return;
753                 }
754                 skd_recover_requests(skdev);
755                 break;
756
757         case SKD_DRVR_STATE_BUSY:
758         case SKD_DRVR_STATE_BUSY_IMMINENT:
759         case SKD_DRVR_STATE_BUSY_ERASE:
760                 dev_dbg(&skdev->pdev->dev, "busy[%x], countdown=%d\n",
761                         skdev->state, skdev->timer_countdown);
762                 if (skdev->timer_countdown > 0) {
763                         skdev->timer_countdown--;
764                         return;
765                 }
766                 dev_dbg(&skdev->pdev->dev,
767                         "busy[%x], timedout=%d, restarting device.",
768                         skdev->state, skdev->timer_countdown);
769                 skd_restart_device(skdev);
770                 break;
771
772         case SKD_DRVR_STATE_WAIT_BOOT:
773         case SKD_DRVR_STATE_STARTING:
774                 if (skdev->timer_countdown > 0) {
775                         skdev->timer_countdown--;
776                         return;
777                 }
778                 /* For now, we fault the drive.  Could attempt resets to
779                  * revcover at some point. */
780                 skdev->state = SKD_DRVR_STATE_FAULT;
781
782                 dev_err(&skdev->pdev->dev, "DriveFault Connect Timeout (%x)\n",
783                         skdev->drive_state);
784
785                 /*start the queue so we can respond with error to requests */
786                 /* wakeup anyone waiting for startup complete */
787                 schedule_work(&skdev->start_queue);
788                 skdev->gendisk_on = -1;
789                 wake_up_interruptible(&skdev->waitq);
790                 break;
791
792         case SKD_DRVR_STATE_ONLINE:
793                 /* shouldn't get here. */
794                 break;
795
796         case SKD_DRVR_STATE_PAUSING:
797         case SKD_DRVR_STATE_PAUSED:
798                 break;
799
800         case SKD_DRVR_STATE_RESTARTING:
801                 if (skdev->timer_countdown > 0) {
802                         skdev->timer_countdown--;
803                         return;
804                 }
805                 /* For now, we fault the drive. Could attempt resets to
806                  * revcover at some point. */
807                 skdev->state = SKD_DRVR_STATE_FAULT;
808                 dev_err(&skdev->pdev->dev,
809                         "DriveFault Reconnect Timeout (%x)\n",
810                         skdev->drive_state);
811
812                 /*
813                  * Recovering does two things:
814                  * 1. completes IO with error
815                  * 2. reclaims dma resources
816                  * When is it safe to recover requests?
817                  * - if the drive state is faulted
818                  * - if the state is still soft reset after out timeout
819                  * - if the drive registers are dead (state = FF)
820                  * If it is "unsafe", we still need to recover, so we will
821                  * disable pci bus mastering and disable our interrupts.
822                  */
823
824                 if ((skdev->drive_state == FIT_SR_DRIVE_SOFT_RESET) ||
825                     (skdev->drive_state == FIT_SR_DRIVE_FAULT) ||
826                     (skdev->drive_state == FIT_SR_DRIVE_STATE_MASK))
827                         /* It never came out of soft reset. Try to
828                          * recover the requests and then let them
829                          * fail. This is to mitigate hung processes. */
830                         skd_recover_requests(skdev);
831                 else {
832                         dev_err(&skdev->pdev->dev, "Disable BusMaster (%x)\n",
833                                 skdev->drive_state);
834                         pci_disable_device(skdev->pdev);
835                         skd_disable_interrupts(skdev);
836                         skd_recover_requests(skdev);
837                 }
838
839                 /*start the queue so we can respond with error to requests */
840                 /* wakeup anyone waiting for startup complete */
841                 schedule_work(&skdev->start_queue);
842                 skdev->gendisk_on = -1;
843                 wake_up_interruptible(&skdev->waitq);
844                 break;
845
846         case SKD_DRVR_STATE_RESUMING:
847         case SKD_DRVR_STATE_STOPPING:
848         case SKD_DRVR_STATE_SYNCING:
849         case SKD_DRVR_STATE_FAULT:
850         case SKD_DRVR_STATE_DISAPPEARED:
851         default:
852                 break;
853         }
854 }
855
856 static int skd_start_timer(struct skd_device *skdev)
857 {
858         int rc;
859
860         timer_setup(&skdev->timer, skd_timer_tick, 0);
861
862         rc = mod_timer(&skdev->timer, (jiffies + HZ));
863         if (rc)
864                 dev_err(&skdev->pdev->dev, "failed to start timer %d\n", rc);
865         return rc;
866 }
867
868 static void skd_kill_timer(struct skd_device *skdev)
869 {
870         del_timer_sync(&skdev->timer);
871 }
872
873 /*
874  *****************************************************************************
875  * INTERNAL REQUESTS -- generated by driver itself
876  *****************************************************************************
877  */
878
879 static int skd_format_internal_skspcl(struct skd_device *skdev)
880 {
881         struct skd_special_context *skspcl = &skdev->internal_skspcl;
882         struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
883         struct fit_msg_hdr *fmh;
884         uint64_t dma_address;
885         struct skd_scsi_request *scsi;
886
887         fmh = &skspcl->msg_buf->fmh;
888         fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
889         fmh->num_protocol_cmds_coalesced = 1;
890
891         scsi = &skspcl->msg_buf->scsi[0];
892         memset(scsi, 0, sizeof(*scsi));
893         dma_address = skspcl->req.sksg_dma_address;
894         scsi->hdr.sg_list_dma_address = cpu_to_be64(dma_address);
895         skspcl->req.n_sg = 1;
896         sgd->control = FIT_SGD_CONTROL_LAST;
897         sgd->byte_count = 0;
898         sgd->host_side_addr = skspcl->db_dma_address;
899         sgd->dev_side_addr = 0;
900         sgd->next_desc_ptr = 0LL;
901
902         return 1;
903 }
904
905 #define WR_BUF_SIZE SKD_N_INTERNAL_BYTES
906
907 static void skd_send_internal_skspcl(struct skd_device *skdev,
908                                      struct skd_special_context *skspcl,
909                                      u8 opcode)
910 {
911         struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
912         struct skd_scsi_request *scsi;
913         unsigned char *buf = skspcl->data_buf;
914         int i;
915
916         if (skspcl->req.state != SKD_REQ_STATE_IDLE)
917                 /*
918                  * A refresh is already in progress.
919                  * Just wait for it to finish.
920                  */
921                 return;
922
923         skspcl->req.state = SKD_REQ_STATE_BUSY;
924
925         scsi = &skspcl->msg_buf->scsi[0];
926         scsi->hdr.tag = skspcl->req.id;
927
928         memset(scsi->cdb, 0, sizeof(scsi->cdb));
929
930         switch (opcode) {
931         case TEST_UNIT_READY:
932                 scsi->cdb[0] = TEST_UNIT_READY;
933                 sgd->byte_count = 0;
934                 scsi->hdr.sg_list_len_bytes = 0;
935                 break;
936
937         case READ_CAPACITY:
938                 scsi->cdb[0] = READ_CAPACITY;
939                 sgd->byte_count = SKD_N_READ_CAP_BYTES;
940                 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
941                 break;
942
943         case INQUIRY:
944                 scsi->cdb[0] = INQUIRY;
945                 scsi->cdb[1] = 0x01;    /* evpd */
946                 scsi->cdb[2] = 0x80;    /* serial number page */
947                 scsi->cdb[4] = 0x10;
948                 sgd->byte_count = 16;
949                 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
950                 break;
951
952         case SYNCHRONIZE_CACHE:
953                 scsi->cdb[0] = SYNCHRONIZE_CACHE;
954                 sgd->byte_count = 0;
955                 scsi->hdr.sg_list_len_bytes = 0;
956                 break;
957
958         case WRITE_BUFFER:
959                 scsi->cdb[0] = WRITE_BUFFER;
960                 scsi->cdb[1] = 0x02;
961                 scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
962                 scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
963                 sgd->byte_count = WR_BUF_SIZE;
964                 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
965                 /* fill incrementing byte pattern */
966                 for (i = 0; i < sgd->byte_count; i++)
967                         buf[i] = i & 0xFF;
968                 break;
969
970         case READ_BUFFER:
971                 scsi->cdb[0] = READ_BUFFER;
972                 scsi->cdb[1] = 0x02;
973                 scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
974                 scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
975                 sgd->byte_count = WR_BUF_SIZE;
976                 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
977                 memset(skspcl->data_buf, 0, sgd->byte_count);
978                 break;
979
980         default:
981                 SKD_ASSERT("Don't know what to send");
982                 return;
983
984         }
985         skd_send_special_fitmsg(skdev, skspcl);
986 }
987
988 static void skd_refresh_device_data(struct skd_device *skdev)
989 {
990         struct skd_special_context *skspcl = &skdev->internal_skspcl;
991
992         skd_send_internal_skspcl(skdev, skspcl, TEST_UNIT_READY);
993 }
994
995 static int skd_chk_read_buf(struct skd_device *skdev,
996                             struct skd_special_context *skspcl)
997 {
998         unsigned char *buf = skspcl->data_buf;
999         int i;
1000
1001         /* check for incrementing byte pattern */
1002         for (i = 0; i < WR_BUF_SIZE; i++)
1003                 if (buf[i] != (i & 0xFF))
1004                         return 1;
1005
1006         return 0;
1007 }
1008
1009 static void skd_log_check_status(struct skd_device *skdev, u8 status, u8 key,
1010                                  u8 code, u8 qual, u8 fruc)
1011 {
1012         /* If the check condition is of special interest, log a message */
1013         if ((status == SAM_STAT_CHECK_CONDITION) && (key == 0x02)
1014             && (code == 0x04) && (qual == 0x06)) {
1015                 dev_err(&skdev->pdev->dev,
1016                         "*** LOST_WRITE_DATA ERROR *** key/asc/ascq/fruc %02x/%02x/%02x/%02x\n",
1017                         key, code, qual, fruc);
1018         }
1019 }
1020
1021 static void skd_complete_internal(struct skd_device *skdev,
1022                                   struct fit_completion_entry_v1 *skcomp,
1023                                   struct fit_comp_error_info *skerr,
1024                                   struct skd_special_context *skspcl)
1025 {
1026         u8 *buf = skspcl->data_buf;
1027         u8 status;
1028         int i;
1029         struct skd_scsi_request *scsi = &skspcl->msg_buf->scsi[0];
1030
1031         lockdep_assert_held(&skdev->lock);
1032
1033         SKD_ASSERT(skspcl == &skdev->internal_skspcl);
1034
1035         dev_dbg(&skdev->pdev->dev, "complete internal %x\n", scsi->cdb[0]);
1036
1037         dma_sync_single_for_cpu(&skdev->pdev->dev,
1038                                 skspcl->db_dma_address,
1039                                 skspcl->req.sksg_list[0].byte_count,
1040                                 DMA_BIDIRECTIONAL);
1041
1042         skspcl->req.completion = *skcomp;
1043         skspcl->req.state = SKD_REQ_STATE_IDLE;
1044
1045         status = skspcl->req.completion.status;
1046
1047         skd_log_check_status(skdev, status, skerr->key, skerr->code,
1048                              skerr->qual, skerr->fruc);
1049
1050         switch (scsi->cdb[0]) {
1051         case TEST_UNIT_READY:
1052                 if (status == SAM_STAT_GOOD)
1053                         skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
1054                 else if ((status == SAM_STAT_CHECK_CONDITION) &&
1055                          (skerr->key == MEDIUM_ERROR))
1056                         skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
1057                 else {
1058                         if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1059                                 dev_dbg(&skdev->pdev->dev,
1060                                         "TUR failed, don't send anymore state 0x%x\n",
1061                                         skdev->state);
1062                                 return;
1063                         }
1064                         dev_dbg(&skdev->pdev->dev,
1065                                 "**** TUR failed, retry skerr\n");
1066                         skd_send_internal_skspcl(skdev, skspcl,
1067                                                  TEST_UNIT_READY);
1068                 }
1069                 break;
1070
1071         case WRITE_BUFFER:
1072                 if (status == SAM_STAT_GOOD)
1073                         skd_send_internal_skspcl(skdev, skspcl, READ_BUFFER);
1074                 else {
1075                         if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1076                                 dev_dbg(&skdev->pdev->dev,
1077                                         "write buffer failed, don't send anymore state 0x%x\n",
1078                                         skdev->state);
1079                                 return;
1080                         }
1081                         dev_dbg(&skdev->pdev->dev,
1082                                 "**** write buffer failed, retry skerr\n");
1083                         skd_send_internal_skspcl(skdev, skspcl,
1084                                                  TEST_UNIT_READY);
1085                 }
1086                 break;
1087
1088         case READ_BUFFER:
1089                 if (status == SAM_STAT_GOOD) {
1090                         if (skd_chk_read_buf(skdev, skspcl) == 0)
1091                                 skd_send_internal_skspcl(skdev, skspcl,
1092                                                          READ_CAPACITY);
1093                         else {
1094                                 dev_err(&skdev->pdev->dev,
1095                                         "*** W/R Buffer mismatch %d ***\n",
1096                                         skdev->connect_retries);
1097                                 if (skdev->connect_retries <
1098                                     SKD_MAX_CONNECT_RETRIES) {
1099                                         skdev->connect_retries++;
1100                                         skd_soft_reset(skdev);
1101                                 } else {
1102                                         dev_err(&skdev->pdev->dev,
1103                                                 "W/R Buffer Connect Error\n");
1104                                         return;
1105                                 }
1106                         }
1107
1108                 } else {
1109                         if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1110                                 dev_dbg(&skdev->pdev->dev,
1111                                         "read buffer failed, don't send anymore state 0x%x\n",
1112                                         skdev->state);
1113                                 return;
1114                         }
1115                         dev_dbg(&skdev->pdev->dev,
1116                                 "**** read buffer failed, retry skerr\n");
1117                         skd_send_internal_skspcl(skdev, skspcl,
1118                                                  TEST_UNIT_READY);
1119                 }
1120                 break;
1121
1122         case READ_CAPACITY:
1123                 skdev->read_cap_is_valid = 0;
1124                 if (status == SAM_STAT_GOOD) {
1125                         skdev->read_cap_last_lba =
1126                                 (buf[0] << 24) | (buf[1] << 16) |
1127                                 (buf[2] << 8) | buf[3];
1128                         skdev->read_cap_blocksize =
1129                                 (buf[4] << 24) | (buf[5] << 16) |
1130                                 (buf[6] << 8) | buf[7];
1131
1132                         dev_dbg(&skdev->pdev->dev, "last lba %d, bs %d\n",
1133                                 skdev->read_cap_last_lba,
1134                                 skdev->read_cap_blocksize);
1135
1136                         set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
1137
1138                         skdev->read_cap_is_valid = 1;
1139
1140                         skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
1141                 } else if ((status == SAM_STAT_CHECK_CONDITION) &&
1142                            (skerr->key == MEDIUM_ERROR)) {
1143                         skdev->read_cap_last_lba = ~0;
1144                         set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
1145                         dev_dbg(&skdev->pdev->dev, "**** MEDIUM ERROR caused READCAP to fail, ignore failure and continue to inquiry\n");
1146                         skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
1147                 } else {
1148                         dev_dbg(&skdev->pdev->dev, "**** READCAP failed, retry TUR\n");
1149                         skd_send_internal_skspcl(skdev, skspcl,
1150                                                  TEST_UNIT_READY);
1151                 }
1152                 break;
1153
1154         case INQUIRY:
1155                 skdev->inquiry_is_valid = 0;
1156                 if (status == SAM_STAT_GOOD) {
1157                         skdev->inquiry_is_valid = 1;
1158
1159                         for (i = 0; i < 12; i++)
1160                                 skdev->inq_serial_num[i] = buf[i + 4];
1161                         skdev->inq_serial_num[12] = 0;
1162                 }
1163
1164                 if (skd_unquiesce_dev(skdev) < 0)
1165                         dev_dbg(&skdev->pdev->dev, "**** failed, to ONLINE device\n");
1166                  /* connection is complete */
1167                 skdev->connect_retries = 0;
1168                 break;
1169
1170         case SYNCHRONIZE_CACHE:
1171                 if (status == SAM_STAT_GOOD)
1172                         skdev->sync_done = 1;
1173                 else
1174                         skdev->sync_done = -1;
1175                 wake_up_interruptible(&skdev->waitq);
1176                 break;
1177
1178         default:
1179                 SKD_ASSERT("we didn't send this");
1180         }
1181 }
1182
1183 /*
1184  *****************************************************************************
1185  * FIT MESSAGES
1186  *****************************************************************************
1187  */
1188
1189 static void skd_send_fitmsg(struct skd_device *skdev,
1190                             struct skd_fitmsg_context *skmsg)
1191 {
1192         u64 qcmd;
1193
1194         dev_dbg(&skdev->pdev->dev, "dma address 0x%llx, busy=%d\n",
1195                 skmsg->mb_dma_address, skd_in_flight(skdev));
1196         dev_dbg(&skdev->pdev->dev, "msg_buf %p\n", skmsg->msg_buf);
1197
1198         qcmd = skmsg->mb_dma_address;
1199         qcmd |= FIT_QCMD_QID_NORMAL;
1200
1201         if (unlikely(skdev->dbg_level > 1)) {
1202                 u8 *bp = (u8 *)skmsg->msg_buf;
1203                 int i;
1204                 for (i = 0; i < skmsg->length; i += 8) {
1205                         dev_dbg(&skdev->pdev->dev, "msg[%2d] %8ph\n", i,
1206                                 &bp[i]);
1207                         if (i == 0)
1208                                 i = 64 - 8;
1209                 }
1210         }
1211
1212         if (skmsg->length > 256)
1213                 qcmd |= FIT_QCMD_MSGSIZE_512;
1214         else if (skmsg->length > 128)
1215                 qcmd |= FIT_QCMD_MSGSIZE_256;
1216         else if (skmsg->length > 64)
1217                 qcmd |= FIT_QCMD_MSGSIZE_128;
1218         else
1219                 /*
1220                  * This makes no sense because the FIT msg header is
1221                  * 64 bytes. If the msg is only 64 bytes long it has
1222                  * no payload.
1223                  */
1224                 qcmd |= FIT_QCMD_MSGSIZE_64;
1225
1226         dma_sync_single_for_device(&skdev->pdev->dev, skmsg->mb_dma_address,
1227                                    skmsg->length, DMA_TO_DEVICE);
1228
1229         /* Make sure skd_msg_buf is written before the doorbell is triggered. */
1230         smp_wmb();
1231
1232         SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
1233 }
1234
1235 static void skd_send_special_fitmsg(struct skd_device *skdev,
1236                                     struct skd_special_context *skspcl)
1237 {
1238         u64 qcmd;
1239
1240         WARN_ON_ONCE(skspcl->req.n_sg != 1);
1241
1242         if (unlikely(skdev->dbg_level > 1)) {
1243                 u8 *bp = (u8 *)skspcl->msg_buf;
1244                 int i;
1245
1246                 for (i = 0; i < SKD_N_SPECIAL_FITMSG_BYTES; i += 8) {
1247                         dev_dbg(&skdev->pdev->dev, " spcl[%2d] %8ph\n", i,
1248                                 &bp[i]);
1249                         if (i == 0)
1250                                 i = 64 - 8;
1251                 }
1252
1253                 dev_dbg(&skdev->pdev->dev,
1254                         "skspcl=%p id=%04x sksg_list=%p sksg_dma=%llx\n",
1255                         skspcl, skspcl->req.id, skspcl->req.sksg_list,
1256                         skspcl->req.sksg_dma_address);
1257                 for (i = 0; i < skspcl->req.n_sg; i++) {
1258                         struct fit_sg_descriptor *sgd =
1259                                 &skspcl->req.sksg_list[i];
1260
1261                         dev_dbg(&skdev->pdev->dev,
1262                                 "  sg[%d] count=%u ctrl=0x%x addr=0x%llx next=0x%llx\n",
1263                                 i, sgd->byte_count, sgd->control,
1264                                 sgd->host_side_addr, sgd->next_desc_ptr);
1265                 }
1266         }
1267
1268         /*
1269          * Special FIT msgs are always 128 bytes: a 64-byte FIT hdr
1270          * and one 64-byte SSDI command.
1271          */
1272         qcmd = skspcl->mb_dma_address;
1273         qcmd |= FIT_QCMD_QID_NORMAL + FIT_QCMD_MSGSIZE_128;
1274
1275         dma_sync_single_for_device(&skdev->pdev->dev, skspcl->mb_dma_address,
1276                                    SKD_N_SPECIAL_FITMSG_BYTES, DMA_TO_DEVICE);
1277         dma_sync_single_for_device(&skdev->pdev->dev,
1278                                    skspcl->req.sksg_dma_address,
1279                                    1 * sizeof(struct fit_sg_descriptor),
1280                                    DMA_TO_DEVICE);
1281         dma_sync_single_for_device(&skdev->pdev->dev,
1282                                    skspcl->db_dma_address,
1283                                    skspcl->req.sksg_list[0].byte_count,
1284                                    DMA_BIDIRECTIONAL);
1285
1286         /* Make sure skd_msg_buf is written before the doorbell is triggered. */
1287         smp_wmb();
1288
1289         SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
1290 }
1291
1292 /*
1293  *****************************************************************************
1294  * COMPLETION QUEUE
1295  *****************************************************************************
1296  */
1297
1298 static void skd_complete_other(struct skd_device *skdev,
1299                                struct fit_completion_entry_v1 *skcomp,
1300                                struct fit_comp_error_info *skerr);
1301
1302 struct sns_info {
1303         u8 type;
1304         u8 stat;
1305         u8 key;
1306         u8 asc;
1307         u8 ascq;
1308         u8 mask;
1309         enum skd_check_status_action action;
1310 };
1311
1312 static struct sns_info skd_chkstat_table[] = {
1313         /* Good */
1314         { 0x70, 0x02, RECOVERED_ERROR, 0,    0,    0x1c,
1315           SKD_CHECK_STATUS_REPORT_GOOD },
1316
1317         /* Smart alerts */
1318         { 0x70, 0x02, NO_SENSE,        0x0B, 0x00, 0x1E,        /* warnings */
1319           SKD_CHECK_STATUS_REPORT_SMART_ALERT },
1320         { 0x70, 0x02, NO_SENSE,        0x5D, 0x00, 0x1E,        /* thresholds */
1321           SKD_CHECK_STATUS_REPORT_SMART_ALERT },
1322         { 0x70, 0x02, RECOVERED_ERROR, 0x0B, 0x01, 0x1F,        /* temperature over trigger */
1323           SKD_CHECK_STATUS_REPORT_SMART_ALERT },
1324
1325         /* Retry (with limits) */
1326         { 0x70, 0x02, 0x0B,            0,    0,    0x1C,        /* This one is for DMA ERROR */
1327           SKD_CHECK_STATUS_REQUEUE_REQUEST },
1328         { 0x70, 0x02, 0x06,            0x0B, 0x00, 0x1E,        /* warnings */
1329           SKD_CHECK_STATUS_REQUEUE_REQUEST },
1330         { 0x70, 0x02, 0x06,            0x5D, 0x00, 0x1E,        /* thresholds */
1331           SKD_CHECK_STATUS_REQUEUE_REQUEST },
1332         { 0x70, 0x02, 0x06,            0x80, 0x30, 0x1F,        /* backup power */
1333           SKD_CHECK_STATUS_REQUEUE_REQUEST },
1334
1335         /* Busy (or about to be) */
1336         { 0x70, 0x02, 0x06,            0x3f, 0x01, 0x1F, /* fw changed */
1337           SKD_CHECK_STATUS_BUSY_IMMINENT },
1338 };
1339
1340 /*
1341  * Look up status and sense data to decide how to handle the error
1342  * from the device.
1343  * mask says which fields must match e.g., mask=0x18 means check
1344  * type and stat, ignore key, asc, ascq.
1345  */
1346
1347 static enum skd_check_status_action
1348 skd_check_status(struct skd_device *skdev,
1349                  u8 cmp_status, struct fit_comp_error_info *skerr)
1350 {
1351         int i;
1352
1353         dev_err(&skdev->pdev->dev, "key/asc/ascq/fruc %02x/%02x/%02x/%02x\n",
1354                 skerr->key, skerr->code, skerr->qual, skerr->fruc);
1355
1356         dev_dbg(&skdev->pdev->dev,
1357                 "stat: t=%02x stat=%02x k=%02x c=%02x q=%02x fruc=%02x\n",
1358                 skerr->type, cmp_status, skerr->key, skerr->code, skerr->qual,
1359                 skerr->fruc);
1360
1361         /* Does the info match an entry in the good category? */
1362         for (i = 0; i < ARRAY_SIZE(skd_chkstat_table); i++) {
1363                 struct sns_info *sns = &skd_chkstat_table[i];
1364
1365                 if (sns->mask & 0x10)
1366                         if (skerr->type != sns->type)
1367                                 continue;
1368
1369                 if (sns->mask & 0x08)
1370                         if (cmp_status != sns->stat)
1371                                 continue;
1372
1373                 if (sns->mask & 0x04)
1374                         if (skerr->key != sns->key)
1375                                 continue;
1376
1377                 if (sns->mask & 0x02)
1378                         if (skerr->code != sns->asc)
1379                                 continue;
1380
1381                 if (sns->mask & 0x01)
1382                         if (skerr->qual != sns->ascq)
1383                                 continue;
1384
1385                 if (sns->action == SKD_CHECK_STATUS_REPORT_SMART_ALERT) {
1386                         dev_err(&skdev->pdev->dev,
1387                                 "SMART Alert: sense key/asc/ascq %02x/%02x/%02x\n",
1388                                 skerr->key, skerr->code, skerr->qual);
1389                 }
1390                 return sns->action;
1391         }
1392
1393         /* No other match, so nonzero status means error,
1394          * zero status means good
1395          */
1396         if (cmp_status) {
1397                 dev_dbg(&skdev->pdev->dev, "status check: error\n");
1398                 return SKD_CHECK_STATUS_REPORT_ERROR;
1399         }
1400
1401         dev_dbg(&skdev->pdev->dev, "status check good default\n");
1402         return SKD_CHECK_STATUS_REPORT_GOOD;
1403 }
1404
1405 static void skd_resolve_req_exception(struct skd_device *skdev,
1406                                       struct skd_request_context *skreq,
1407                                       struct request *req)
1408 {
1409         u8 cmp_status = skreq->completion.status;
1410
1411         switch (skd_check_status(skdev, cmp_status, &skreq->err_info)) {
1412         case SKD_CHECK_STATUS_REPORT_GOOD:
1413         case SKD_CHECK_STATUS_REPORT_SMART_ALERT:
1414                 skreq->status = BLK_STS_OK;
1415                 blk_mq_complete_request(req);
1416                 break;
1417
1418         case SKD_CHECK_STATUS_BUSY_IMMINENT:
1419                 skd_log_skreq(skdev, skreq, "retry(busy)");
1420                 blk_requeue_request(skdev->queue, req);
1421                 dev_info(&skdev->pdev->dev, "drive BUSY imminent\n");
1422                 skdev->state = SKD_DRVR_STATE_BUSY_IMMINENT;
1423                 skdev->timer_countdown = SKD_TIMER_MINUTES(20);
1424                 skd_quiesce_dev(skdev);
1425                 break;
1426
1427         case SKD_CHECK_STATUS_REQUEUE_REQUEST:
1428                 if ((unsigned long) ++req->special < SKD_MAX_RETRIES) {
1429                         skd_log_skreq(skdev, skreq, "retry");
1430                         blk_requeue_request(skdev->queue, req);
1431                         break;
1432                 }
1433                 /* fall through */
1434
1435         case SKD_CHECK_STATUS_REPORT_ERROR:
1436         default:
1437                 skreq->status = BLK_STS_IOERR;
1438                 blk_mq_complete_request(req);
1439                 break;
1440         }
1441 }
1442
1443 static void skd_release_skreq(struct skd_device *skdev,
1444                               struct skd_request_context *skreq)
1445 {
1446         /*
1447          * Reclaim the skd_request_context
1448          */
1449         skreq->state = SKD_REQ_STATE_IDLE;
1450 }
1451
1452 static int skd_isr_completion_posted(struct skd_device *skdev,
1453                                         int limit, int *enqueued)
1454 {
1455         struct fit_completion_entry_v1 *skcmp;
1456         struct fit_comp_error_info *skerr;
1457         u16 req_id;
1458         u32 tag;
1459         u16 hwq = 0;
1460         struct request *rq;
1461         struct skd_request_context *skreq;
1462         u16 cmp_cntxt;
1463         u8 cmp_status;
1464         u8 cmp_cycle;
1465         u32 cmp_bytes;
1466         int rc = 0;
1467         int processed = 0;
1468
1469         lockdep_assert_held(&skdev->lock);
1470
1471         for (;; ) {
1472                 SKD_ASSERT(skdev->skcomp_ix < SKD_N_COMPLETION_ENTRY);
1473
1474                 skcmp = &skdev->skcomp_table[skdev->skcomp_ix];
1475                 cmp_cycle = skcmp->cycle;
1476                 cmp_cntxt = skcmp->tag;
1477                 cmp_status = skcmp->status;
1478                 cmp_bytes = be32_to_cpu(skcmp->num_returned_bytes);
1479
1480                 skerr = &skdev->skerr_table[skdev->skcomp_ix];
1481
1482                 dev_dbg(&skdev->pdev->dev,
1483                         "cycle=%d ix=%d got cycle=%d cmdctxt=0x%x stat=%d busy=%d rbytes=0x%x proto=%d\n",
1484                         skdev->skcomp_cycle, skdev->skcomp_ix, cmp_cycle,
1485                         cmp_cntxt, cmp_status, skd_in_flight(skdev),
1486                         cmp_bytes, skdev->proto_ver);
1487
1488                 if (cmp_cycle != skdev->skcomp_cycle) {
1489                         dev_dbg(&skdev->pdev->dev, "end of completions\n");
1490                         break;
1491                 }
1492                 /*
1493                  * Update the completion queue head index and possibly
1494                  * the completion cycle count. 8-bit wrap-around.
1495                  */
1496                 skdev->skcomp_ix++;
1497                 if (skdev->skcomp_ix >= SKD_N_COMPLETION_ENTRY) {
1498                         skdev->skcomp_ix = 0;
1499                         skdev->skcomp_cycle++;
1500                 }
1501
1502                 /*
1503                  * The command context is a unique 32-bit ID. The low order
1504                  * bits help locate the request. The request is usually a
1505                  * r/w request (see skd_start() above) or a special request.
1506                  */
1507                 req_id = cmp_cntxt;
1508                 tag = req_id & SKD_ID_SLOT_AND_TABLE_MASK;
1509
1510                 /* Is this other than a r/w request? */
1511                 if (tag >= skdev->num_req_context) {
1512                         /*
1513                          * This is not a completion for a r/w request.
1514                          */
1515                         WARN_ON_ONCE(blk_mq_tag_to_rq(skdev->tag_set.tags[hwq],
1516                                                       tag));
1517                         skd_complete_other(skdev, skcmp, skerr);
1518                         continue;
1519                 }
1520
1521                 rq = blk_mq_tag_to_rq(skdev->tag_set.tags[hwq], tag);
1522                 if (WARN(!rq, "No request for tag %#x -> %#x\n", cmp_cntxt,
1523                          tag))
1524                         continue;
1525                 skreq = blk_mq_rq_to_pdu(rq);
1526
1527                 /*
1528                  * Make sure the request ID for the slot matches.
1529                  */
1530                 if (skreq->id != req_id) {
1531                         dev_err(&skdev->pdev->dev,
1532                                 "Completion mismatch comp_id=0x%04x skreq=0x%04x new=0x%04x\n",
1533                                 req_id, skreq->id, cmp_cntxt);
1534
1535                         continue;
1536                 }
1537
1538                 SKD_ASSERT(skreq->state == SKD_REQ_STATE_BUSY);
1539
1540                 skreq->completion = *skcmp;
1541                 if (unlikely(cmp_status == SAM_STAT_CHECK_CONDITION)) {
1542                         skreq->err_info = *skerr;
1543                         skd_log_check_status(skdev, cmp_status, skerr->key,
1544                                              skerr->code, skerr->qual,
1545                                              skerr->fruc);
1546                 }
1547                 /* Release DMA resources for the request. */
1548                 if (skreq->n_sg > 0)
1549                         skd_postop_sg_list(skdev, skreq);
1550
1551                 skd_release_skreq(skdev, skreq);
1552
1553                 /*
1554                  * Capture the outcome and post it back to the native request.
1555                  */
1556                 if (likely(cmp_status == SAM_STAT_GOOD)) {
1557                         skreq->status = BLK_STS_OK;
1558                         blk_mq_complete_request(rq);
1559                 } else {
1560                         skd_resolve_req_exception(skdev, skreq, rq);
1561                 }
1562
1563                 /* skd_isr_comp_limit equal zero means no limit */
1564                 if (limit) {
1565                         if (++processed >= limit) {
1566                                 rc = 1;
1567                                 break;
1568                         }
1569                 }
1570         }
1571
1572         if (skdev->state == SKD_DRVR_STATE_PAUSING &&
1573             skd_in_flight(skdev) == 0) {
1574                 skdev->state = SKD_DRVR_STATE_PAUSED;
1575                 wake_up_interruptible(&skdev->waitq);
1576         }
1577
1578         return rc;
1579 }
1580
1581 static void skd_complete_other(struct skd_device *skdev,
1582                                struct fit_completion_entry_v1 *skcomp,
1583                                struct fit_comp_error_info *skerr)
1584 {
1585         u32 req_id = 0;
1586         u32 req_table;
1587         u32 req_slot;
1588         struct skd_special_context *skspcl;
1589
1590         lockdep_assert_held(&skdev->lock);
1591
1592         req_id = skcomp->tag;
1593         req_table = req_id & SKD_ID_TABLE_MASK;
1594         req_slot = req_id & SKD_ID_SLOT_MASK;
1595
1596         dev_dbg(&skdev->pdev->dev, "table=0x%x id=0x%x slot=%d\n", req_table,
1597                 req_id, req_slot);
1598
1599         /*
1600          * Based on the request id, determine how to dispatch this completion.
1601          * This swich/case is finding the good cases and forwarding the
1602          * completion entry. Errors are reported below the switch.
1603          */
1604         switch (req_table) {
1605         case SKD_ID_RW_REQUEST:
1606                 /*
1607                  * The caller, skd_isr_completion_posted() above,
1608                  * handles r/w requests. The only way we get here
1609                  * is if the req_slot is out of bounds.
1610                  */
1611                 break;
1612
1613         case SKD_ID_INTERNAL:
1614                 if (req_slot == 0) {
1615                         skspcl = &skdev->internal_skspcl;
1616                         if (skspcl->req.id == req_id &&
1617                             skspcl->req.state == SKD_REQ_STATE_BUSY) {
1618                                 skd_complete_internal(skdev,
1619                                                       skcomp, skerr, skspcl);
1620                                 return;
1621                         }
1622                 }
1623                 break;
1624
1625         case SKD_ID_FIT_MSG:
1626                 /*
1627                  * These id's should never appear in a completion record.
1628                  */
1629                 break;
1630
1631         default:
1632                 /*
1633                  * These id's should never appear anywhere;
1634                  */
1635                 break;
1636         }
1637
1638         /*
1639          * If we get here it is a bad or stale id.
1640          */
1641 }
1642
1643 static void skd_reset_skcomp(struct skd_device *skdev)
1644 {
1645         memset(skdev->skcomp_table, 0, SKD_SKCOMP_SIZE);
1646
1647         skdev->skcomp_ix = 0;
1648         skdev->skcomp_cycle = 1;
1649 }
1650
1651 /*
1652  *****************************************************************************
1653  * INTERRUPTS
1654  *****************************************************************************
1655  */
1656 static void skd_completion_worker(struct work_struct *work)
1657 {
1658         struct skd_device *skdev =
1659                 container_of(work, struct skd_device, completion_worker);
1660         unsigned long flags;
1661         int flush_enqueued = 0;
1662
1663         spin_lock_irqsave(&skdev->lock, flags);
1664
1665         /*
1666          * pass in limit=0, which means no limit..
1667          * process everything in compq
1668          */
1669         skd_isr_completion_posted(skdev, 0, &flush_enqueued);
1670         schedule_work(&skdev->start_queue);
1671
1672         spin_unlock_irqrestore(&skdev->lock, flags);
1673 }
1674
1675 static void skd_isr_msg_from_dev(struct skd_device *skdev);
1676
1677 static irqreturn_t
1678 skd_isr(int irq, void *ptr)
1679 {
1680         struct skd_device *skdev = ptr;
1681         u32 intstat;
1682         u32 ack;
1683         int rc = 0;
1684         int deferred = 0;
1685         int flush_enqueued = 0;
1686
1687         spin_lock(&skdev->lock);
1688
1689         for (;; ) {
1690                 intstat = SKD_READL(skdev, FIT_INT_STATUS_HOST);
1691
1692                 ack = FIT_INT_DEF_MASK;
1693                 ack &= intstat;
1694
1695                 dev_dbg(&skdev->pdev->dev, "intstat=0x%x ack=0x%x\n", intstat,
1696                         ack);
1697
1698                 /* As long as there is an int pending on device, keep
1699                  * running loop.  When none, get out, but if we've never
1700                  * done any processing, call completion handler?
1701                  */
1702                 if (ack == 0) {
1703                         /* No interrupts on device, but run the completion
1704                          * processor anyway?
1705                          */
1706                         if (rc == 0)
1707                                 if (likely (skdev->state
1708                                         == SKD_DRVR_STATE_ONLINE))
1709                                         deferred = 1;
1710                         break;
1711                 }
1712
1713                 rc = IRQ_HANDLED;
1714
1715                 SKD_WRITEL(skdev, ack, FIT_INT_STATUS_HOST);
1716
1717                 if (likely((skdev->state != SKD_DRVR_STATE_LOAD) &&
1718                            (skdev->state != SKD_DRVR_STATE_STOPPING))) {
1719                         if (intstat & FIT_ISH_COMPLETION_POSTED) {
1720                                 /*
1721                                  * If we have already deferred completion
1722                                  * processing, don't bother running it again
1723                                  */
1724                                 if (deferred == 0)
1725                                         deferred =
1726                                                 skd_isr_completion_posted(skdev,
1727                                                 skd_isr_comp_limit, &flush_enqueued);
1728                         }
1729
1730                         if (intstat & FIT_ISH_FW_STATE_CHANGE) {
1731                                 skd_isr_fwstate(skdev);
1732                                 if (skdev->state == SKD_DRVR_STATE_FAULT ||
1733                                     skdev->state ==
1734                                     SKD_DRVR_STATE_DISAPPEARED) {
1735                                         spin_unlock(&skdev->lock);
1736                                         return rc;
1737                                 }
1738                         }
1739
1740                         if (intstat & FIT_ISH_MSG_FROM_DEV)
1741                                 skd_isr_msg_from_dev(skdev);
1742                 }
1743         }
1744
1745         if (unlikely(flush_enqueued))
1746                 schedule_work(&skdev->start_queue);
1747
1748         if (deferred)
1749                 schedule_work(&skdev->completion_worker);
1750         else if (!flush_enqueued)
1751                 schedule_work(&skdev->start_queue);
1752
1753         spin_unlock(&skdev->lock);
1754
1755         return rc;
1756 }
1757
1758 static void skd_drive_fault(struct skd_device *skdev)
1759 {
1760         skdev->state = SKD_DRVR_STATE_FAULT;
1761         dev_err(&skdev->pdev->dev, "Drive FAULT\n");
1762 }
1763
1764 static void skd_drive_disappeared(struct skd_device *skdev)
1765 {
1766         skdev->state = SKD_DRVR_STATE_DISAPPEARED;
1767         dev_err(&skdev->pdev->dev, "Drive DISAPPEARED\n");
1768 }
1769
1770 static void skd_isr_fwstate(struct skd_device *skdev)
1771 {
1772         u32 sense;
1773         u32 state;
1774         u32 mtd;
1775         int prev_driver_state = skdev->state;
1776
1777         sense = SKD_READL(skdev, FIT_STATUS);
1778         state = sense & FIT_SR_DRIVE_STATE_MASK;
1779
1780         dev_err(&skdev->pdev->dev, "s1120 state %s(%d)=>%s(%d)\n",
1781                 skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
1782                 skd_drive_state_to_str(state), state);
1783
1784         skdev->drive_state = state;
1785
1786         switch (skdev->drive_state) {
1787         case FIT_SR_DRIVE_INIT:
1788                 if (skdev->state == SKD_DRVR_STATE_PROTOCOL_MISMATCH) {
1789                         skd_disable_interrupts(skdev);
1790                         break;
1791                 }
1792                 if (skdev->state == SKD_DRVR_STATE_RESTARTING)
1793                         skd_recover_requests(skdev);
1794                 if (skdev->state == SKD_DRVR_STATE_WAIT_BOOT) {
1795                         skdev->timer_countdown = SKD_STARTING_TIMO;
1796                         skdev->state = SKD_DRVR_STATE_STARTING;
1797                         skd_soft_reset(skdev);
1798                         break;
1799                 }
1800                 mtd = FIT_MXD_CONS(FIT_MTD_FITFW_INIT, 0, 0);
1801                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1802                 skdev->last_mtd = mtd;
1803                 break;
1804
1805         case FIT_SR_DRIVE_ONLINE:
1806                 skdev->cur_max_queue_depth = skd_max_queue_depth;
1807                 if (skdev->cur_max_queue_depth > skdev->dev_max_queue_depth)
1808                         skdev->cur_max_queue_depth = skdev->dev_max_queue_depth;
1809
1810                 skdev->queue_low_water_mark =
1811                         skdev->cur_max_queue_depth * 2 / 3 + 1;
1812                 if (skdev->queue_low_water_mark < 1)
1813                         skdev->queue_low_water_mark = 1;
1814                 dev_info(&skdev->pdev->dev,
1815                          "Queue depth limit=%d dev=%d lowat=%d\n",
1816                          skdev->cur_max_queue_depth,
1817                          skdev->dev_max_queue_depth,
1818                          skdev->queue_low_water_mark);
1819
1820                 skd_refresh_device_data(skdev);
1821                 break;
1822
1823         case FIT_SR_DRIVE_BUSY:
1824                 skdev->state = SKD_DRVR_STATE_BUSY;
1825                 skdev->timer_countdown = SKD_BUSY_TIMO;
1826                 skd_quiesce_dev(skdev);
1827                 break;
1828         case FIT_SR_DRIVE_BUSY_SANITIZE:
1829                 /* set timer for 3 seconds, we'll abort any unfinished
1830                  * commands after that expires
1831                  */
1832                 skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
1833                 skdev->timer_countdown = SKD_TIMER_SECONDS(3);
1834                 schedule_work(&skdev->start_queue);
1835                 break;
1836         case FIT_SR_DRIVE_BUSY_ERASE:
1837                 skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
1838                 skdev->timer_countdown = SKD_BUSY_TIMO;
1839                 break;
1840         case FIT_SR_DRIVE_OFFLINE:
1841                 skdev->state = SKD_DRVR_STATE_IDLE;
1842                 break;
1843         case FIT_SR_DRIVE_SOFT_RESET:
1844                 switch (skdev->state) {
1845                 case SKD_DRVR_STATE_STARTING:
1846                 case SKD_DRVR_STATE_RESTARTING:
1847                         /* Expected by a caller of skd_soft_reset() */
1848                         break;
1849                 default:
1850                         skdev->state = SKD_DRVR_STATE_RESTARTING;
1851                         break;
1852                 }
1853                 break;
1854         case FIT_SR_DRIVE_FW_BOOTING:
1855                 dev_dbg(&skdev->pdev->dev, "ISR FIT_SR_DRIVE_FW_BOOTING\n");
1856                 skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
1857                 skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
1858                 break;
1859
1860         case FIT_SR_DRIVE_DEGRADED:
1861         case FIT_SR_PCIE_LINK_DOWN:
1862         case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
1863                 break;
1864
1865         case FIT_SR_DRIVE_FAULT:
1866                 skd_drive_fault(skdev);
1867                 skd_recover_requests(skdev);
1868                 schedule_work(&skdev->start_queue);
1869                 break;
1870
1871         /* PCIe bus returned all Fs? */
1872         case 0xFF:
1873                 dev_info(&skdev->pdev->dev, "state=0x%x sense=0x%x\n", state,
1874                          sense);
1875                 skd_drive_disappeared(skdev);
1876                 skd_recover_requests(skdev);
1877                 schedule_work(&skdev->start_queue);
1878                 break;
1879         default:
1880                 /*
1881                  * Uknown FW State. Wait for a state we recognize.
1882                  */
1883                 break;
1884         }
1885         dev_err(&skdev->pdev->dev, "Driver state %s(%d)=>%s(%d)\n",
1886                 skd_skdev_state_to_str(prev_driver_state), prev_driver_state,
1887                 skd_skdev_state_to_str(skdev->state), skdev->state);
1888 }
1889
1890 static void skd_recover_request(struct request *req, void *data, bool reserved)
1891 {
1892         struct skd_device *const skdev = data;
1893         struct skd_request_context *skreq = blk_mq_rq_to_pdu(req);
1894
1895         if (skreq->state != SKD_REQ_STATE_BUSY)
1896                 return;
1897
1898         skd_log_skreq(skdev, skreq, "recover");
1899
1900         /* Release DMA resources for the request. */
1901         if (skreq->n_sg > 0)
1902                 skd_postop_sg_list(skdev, skreq);
1903
1904         skreq->state = SKD_REQ_STATE_IDLE;
1905         skreq->status = BLK_STS_IOERR;
1906         blk_mq_complete_request(req);
1907 }
1908
1909 static void skd_recover_requests(struct skd_device *skdev)
1910 {
1911         blk_mq_tagset_busy_iter(&skdev->tag_set, skd_recover_request, skdev);
1912 }
1913
1914 static void skd_isr_msg_from_dev(struct skd_device *skdev)
1915 {
1916         u32 mfd;
1917         u32 mtd;
1918         u32 data;
1919
1920         mfd = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
1921
1922         dev_dbg(&skdev->pdev->dev, "mfd=0x%x last_mtd=0x%x\n", mfd,
1923                 skdev->last_mtd);
1924
1925         /* ignore any mtd that is an ack for something we didn't send */
1926         if (FIT_MXD_TYPE(mfd) != FIT_MXD_TYPE(skdev->last_mtd))
1927                 return;
1928
1929         switch (FIT_MXD_TYPE(mfd)) {
1930         case FIT_MTD_FITFW_INIT:
1931                 skdev->proto_ver = FIT_PROTOCOL_MAJOR_VER(mfd);
1932
1933                 if (skdev->proto_ver != FIT_PROTOCOL_VERSION_1) {
1934                         dev_err(&skdev->pdev->dev, "protocol mismatch\n");
1935                         dev_err(&skdev->pdev->dev, "  got=%d support=%d\n",
1936                                 skdev->proto_ver, FIT_PROTOCOL_VERSION_1);
1937                         dev_err(&skdev->pdev->dev, "  please upgrade driver\n");
1938                         skdev->state = SKD_DRVR_STATE_PROTOCOL_MISMATCH;
1939                         skd_soft_reset(skdev);
1940                         break;
1941                 }
1942                 mtd = FIT_MXD_CONS(FIT_MTD_GET_CMDQ_DEPTH, 0, 0);
1943                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1944                 skdev->last_mtd = mtd;
1945                 break;
1946
1947         case FIT_MTD_GET_CMDQ_DEPTH:
1948                 skdev->dev_max_queue_depth = FIT_MXD_DATA(mfd);
1949                 mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_DEPTH, 0,
1950                                    SKD_N_COMPLETION_ENTRY);
1951                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1952                 skdev->last_mtd = mtd;
1953                 break;
1954
1955         case FIT_MTD_SET_COMPQ_DEPTH:
1956                 SKD_WRITEQ(skdev, skdev->cq_dma_address, FIT_MSG_TO_DEVICE_ARG);
1957                 mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_ADDR, 0, 0);
1958                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1959                 skdev->last_mtd = mtd;
1960                 break;
1961
1962         case FIT_MTD_SET_COMPQ_ADDR:
1963                 skd_reset_skcomp(skdev);
1964                 mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_HOST_ID, 0, skdev->devno);
1965                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1966                 skdev->last_mtd = mtd;
1967                 break;
1968
1969         case FIT_MTD_CMD_LOG_HOST_ID:
1970                 /* hardware interface overflows in y2106 */
1971                 skdev->connect_time_stamp = (u32)ktime_get_real_seconds();
1972                 data = skdev->connect_time_stamp & 0xFFFF;
1973                 mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_LO, 0, data);
1974                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1975                 skdev->last_mtd = mtd;
1976                 break;
1977
1978         case FIT_MTD_CMD_LOG_TIME_STAMP_LO:
1979                 skdev->drive_jiffies = FIT_MXD_DATA(mfd);
1980                 data = (skdev->connect_time_stamp >> 16) & 0xFFFF;
1981                 mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_HI, 0, data);
1982                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1983                 skdev->last_mtd = mtd;
1984                 break;
1985
1986         case FIT_MTD_CMD_LOG_TIME_STAMP_HI:
1987                 skdev->drive_jiffies |= (FIT_MXD_DATA(mfd) << 16);
1988                 mtd = FIT_MXD_CONS(FIT_MTD_ARM_QUEUE, 0, 0);
1989                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1990                 skdev->last_mtd = mtd;
1991
1992                 dev_err(&skdev->pdev->dev, "Time sync driver=0x%x device=0x%x\n",
1993                         skdev->connect_time_stamp, skdev->drive_jiffies);
1994                 break;
1995
1996         case FIT_MTD_ARM_QUEUE:
1997                 skdev->last_mtd = 0;
1998                 /*
1999                  * State should be, or soon will be, FIT_SR_DRIVE_ONLINE.
2000                  */
2001                 break;
2002
2003         default:
2004                 break;
2005         }
2006 }
2007
2008 static void skd_disable_interrupts(struct skd_device *skdev)
2009 {
2010         u32 sense;
2011
2012         sense = SKD_READL(skdev, FIT_CONTROL);
2013         sense &= ~FIT_CR_ENABLE_INTERRUPTS;
2014         SKD_WRITEL(skdev, sense, FIT_CONTROL);
2015         dev_dbg(&skdev->pdev->dev, "sense 0x%x\n", sense);
2016
2017         /* Note that the 1s is written. A 1-bit means
2018          * disable, a 0 means enable.
2019          */
2020         SKD_WRITEL(skdev, ~0, FIT_INT_MASK_HOST);
2021 }
2022
2023 static void skd_enable_interrupts(struct skd_device *skdev)
2024 {
2025         u32 val;
2026
2027         /* unmask interrupts first */
2028         val = FIT_ISH_FW_STATE_CHANGE +
2029               FIT_ISH_COMPLETION_POSTED + FIT_ISH_MSG_FROM_DEV;
2030
2031         /* Note that the compliment of mask is written. A 1-bit means
2032          * disable, a 0 means enable. */
2033         SKD_WRITEL(skdev, ~val, FIT_INT_MASK_HOST);
2034         dev_dbg(&skdev->pdev->dev, "interrupt mask=0x%x\n", ~val);
2035
2036         val = SKD_READL(skdev, FIT_CONTROL);
2037         val |= FIT_CR_ENABLE_INTERRUPTS;
2038         dev_dbg(&skdev->pdev->dev, "control=0x%x\n", val);
2039         SKD_WRITEL(skdev, val, FIT_CONTROL);
2040 }
2041
2042 /*
2043  *****************************************************************************
2044  * START, STOP, RESTART, QUIESCE, UNQUIESCE
2045  *****************************************************************************
2046  */
2047
2048 static void skd_soft_reset(struct skd_device *skdev)
2049 {
2050         u32 val;
2051
2052         val = SKD_READL(skdev, FIT_CONTROL);
2053         val |= (FIT_CR_SOFT_RESET);
2054         dev_dbg(&skdev->pdev->dev, "control=0x%x\n", val);
2055         SKD_WRITEL(skdev, val, FIT_CONTROL);
2056 }
2057
2058 static void skd_start_device(struct skd_device *skdev)
2059 {
2060         unsigned long flags;
2061         u32 sense;
2062         u32 state;
2063
2064         spin_lock_irqsave(&skdev->lock, flags);
2065
2066         /* ack all ghost interrupts */
2067         SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
2068
2069         sense = SKD_READL(skdev, FIT_STATUS);
2070
2071         dev_dbg(&skdev->pdev->dev, "initial status=0x%x\n", sense);
2072
2073         state = sense & FIT_SR_DRIVE_STATE_MASK;
2074         skdev->drive_state = state;
2075         skdev->last_mtd = 0;
2076
2077         skdev->state = SKD_DRVR_STATE_STARTING;
2078         skdev->timer_countdown = SKD_STARTING_TIMO;
2079
2080         skd_enable_interrupts(skdev);
2081
2082         switch (skdev->drive_state) {
2083         case FIT_SR_DRIVE_OFFLINE:
2084                 dev_err(&skdev->pdev->dev, "Drive offline...\n");
2085                 break;
2086
2087         case FIT_SR_DRIVE_FW_BOOTING:
2088                 dev_dbg(&skdev->pdev->dev, "FIT_SR_DRIVE_FW_BOOTING\n");
2089                 skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
2090                 skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
2091                 break;
2092
2093         case FIT_SR_DRIVE_BUSY_SANITIZE:
2094                 dev_info(&skdev->pdev->dev, "Start: BUSY_SANITIZE\n");
2095                 skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
2096                 skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
2097                 break;
2098
2099         case FIT_SR_DRIVE_BUSY_ERASE:
2100                 dev_info(&skdev->pdev->dev, "Start: BUSY_ERASE\n");
2101                 skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
2102                 skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
2103                 break;
2104
2105         case FIT_SR_DRIVE_INIT:
2106         case FIT_SR_DRIVE_ONLINE:
2107                 skd_soft_reset(skdev);
2108                 break;
2109
2110         case FIT_SR_DRIVE_BUSY:
2111                 dev_err(&skdev->pdev->dev, "Drive Busy...\n");
2112                 skdev->state = SKD_DRVR_STATE_BUSY;
2113                 skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
2114                 break;
2115
2116         case FIT_SR_DRIVE_SOFT_RESET:
2117                 dev_err(&skdev->pdev->dev, "drive soft reset in prog\n");
2118                 break;
2119
2120         case FIT_SR_DRIVE_FAULT:
2121                 /* Fault state is bad...soft reset won't do it...
2122                  * Hard reset, maybe, but does it work on device?
2123                  * For now, just fault so the system doesn't hang.
2124                  */
2125                 skd_drive_fault(skdev);
2126                 /*start the queue so we can respond with error to requests */
2127                 dev_dbg(&skdev->pdev->dev, "starting queue\n");
2128                 schedule_work(&skdev->start_queue);
2129                 skdev->gendisk_on = -1;
2130                 wake_up_interruptible(&skdev->waitq);
2131                 break;
2132
2133         case 0xFF:
2134                 /* Most likely the device isn't there or isn't responding
2135                  * to the BAR1 addresses. */
2136                 skd_drive_disappeared(skdev);
2137                 /*start the queue so we can respond with error to requests */
2138                 dev_dbg(&skdev->pdev->dev,
2139                         "starting queue to error-out reqs\n");
2140                 schedule_work(&skdev->start_queue);
2141                 skdev->gendisk_on = -1;
2142                 wake_up_interruptible(&skdev->waitq);
2143                 break;
2144
2145         default:
2146                 dev_err(&skdev->pdev->dev, "Start: unknown state %x\n",
2147                         skdev->drive_state);
2148                 break;
2149         }
2150
2151         state = SKD_READL(skdev, FIT_CONTROL);
2152         dev_dbg(&skdev->pdev->dev, "FIT Control Status=0x%x\n", state);
2153
2154         state = SKD_READL(skdev, FIT_INT_STATUS_HOST);
2155         dev_dbg(&skdev->pdev->dev, "Intr Status=0x%x\n", state);
2156
2157         state = SKD_READL(skdev, FIT_INT_MASK_HOST);
2158         dev_dbg(&skdev->pdev->dev, "Intr Mask=0x%x\n", state);
2159
2160         state = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
2161         dev_dbg(&skdev->pdev->dev, "Msg from Dev=0x%x\n", state);
2162
2163         state = SKD_READL(skdev, FIT_HW_VERSION);
2164         dev_dbg(&skdev->pdev->dev, "HW version=0x%x\n", state);
2165
2166         spin_unlock_irqrestore(&skdev->lock, flags);
2167 }
2168
2169 static void skd_stop_device(struct skd_device *skdev)
2170 {
2171         unsigned long flags;
2172         struct skd_special_context *skspcl = &skdev->internal_skspcl;
2173         u32 dev_state;
2174         int i;
2175
2176         spin_lock_irqsave(&skdev->lock, flags);
2177
2178         if (skdev->state != SKD_DRVR_STATE_ONLINE) {
2179                 dev_err(&skdev->pdev->dev, "%s not online no sync\n", __func__);
2180                 goto stop_out;
2181         }
2182
2183         if (skspcl->req.state != SKD_REQ_STATE_IDLE) {
2184                 dev_err(&skdev->pdev->dev, "%s no special\n", __func__);
2185                 goto stop_out;
2186         }
2187
2188         skdev->state = SKD_DRVR_STATE_SYNCING;
2189         skdev->sync_done = 0;
2190
2191         skd_send_internal_skspcl(skdev, skspcl, SYNCHRONIZE_CACHE);
2192
2193         spin_unlock_irqrestore(&skdev->lock, flags);
2194
2195         wait_event_interruptible_timeout(skdev->waitq,
2196                                          (skdev->sync_done), (10 * HZ));
2197
2198         spin_lock_irqsave(&skdev->lock, flags);
2199
2200         switch (skdev->sync_done) {
2201         case 0:
2202                 dev_err(&skdev->pdev->dev, "%s no sync\n", __func__);
2203                 break;
2204         case 1:
2205                 dev_err(&skdev->pdev->dev, "%s sync done\n", __func__);
2206                 break;
2207         default:
2208                 dev_err(&skdev->pdev->dev, "%s sync error\n", __func__);
2209         }
2210
2211 stop_out:
2212         skdev->state = SKD_DRVR_STATE_STOPPING;
2213         spin_unlock_irqrestore(&skdev->lock, flags);
2214
2215         skd_kill_timer(skdev);
2216
2217         spin_lock_irqsave(&skdev->lock, flags);
2218         skd_disable_interrupts(skdev);
2219
2220         /* ensure all ints on device are cleared */
2221         /* soft reset the device to unload with a clean slate */
2222         SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
2223         SKD_WRITEL(skdev, FIT_CR_SOFT_RESET, FIT_CONTROL);
2224
2225         spin_unlock_irqrestore(&skdev->lock, flags);
2226
2227         /* poll every 100ms, 1 second timeout */
2228         for (i = 0; i < 10; i++) {
2229                 dev_state =
2230                         SKD_READL(skdev, FIT_STATUS) & FIT_SR_DRIVE_STATE_MASK;
2231                 if (dev_state == FIT_SR_DRIVE_INIT)
2232                         break;
2233                 set_current_state(TASK_INTERRUPTIBLE);
2234                 schedule_timeout(msecs_to_jiffies(100));
2235         }
2236
2237         if (dev_state != FIT_SR_DRIVE_INIT)
2238                 dev_err(&skdev->pdev->dev, "%s state error 0x%02x\n", __func__,
2239                         dev_state);
2240 }
2241
2242 /* assume spinlock is held */
2243 static void skd_restart_device(struct skd_device *skdev)
2244 {
2245         u32 state;
2246
2247         /* ack all ghost interrupts */
2248         SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
2249
2250         state = SKD_READL(skdev, FIT_STATUS);
2251
2252         dev_dbg(&skdev->pdev->dev, "drive status=0x%x\n", state);
2253
2254         state &= FIT_SR_DRIVE_STATE_MASK;
2255         skdev->drive_state = state;
2256         skdev->last_mtd = 0;
2257
2258         skdev->state = SKD_DRVR_STATE_RESTARTING;
2259         skdev->timer_countdown = SKD_RESTARTING_TIMO;
2260
2261         skd_soft_reset(skdev);
2262 }
2263
2264 /* assume spinlock is held */
2265 static int skd_quiesce_dev(struct skd_device *skdev)
2266 {
2267         int rc = 0;
2268
2269         switch (skdev->state) {
2270         case SKD_DRVR_STATE_BUSY:
2271         case SKD_DRVR_STATE_BUSY_IMMINENT:
2272                 dev_dbg(&skdev->pdev->dev, "stopping queue\n");
2273                 blk_mq_stop_hw_queues(skdev->queue);
2274                 break;
2275         case SKD_DRVR_STATE_ONLINE:
2276         case SKD_DRVR_STATE_STOPPING:
2277         case SKD_DRVR_STATE_SYNCING:
2278         case SKD_DRVR_STATE_PAUSING:
2279         case SKD_DRVR_STATE_PAUSED:
2280         case SKD_DRVR_STATE_STARTING:
2281         case SKD_DRVR_STATE_RESTARTING:
2282         case SKD_DRVR_STATE_RESUMING:
2283         default:
2284                 rc = -EINVAL;
2285                 dev_dbg(&skdev->pdev->dev, "state [%d] not implemented\n",
2286                         skdev->state);
2287         }
2288         return rc;
2289 }
2290
2291 /* assume spinlock is held */
2292 static int skd_unquiesce_dev(struct skd_device *skdev)
2293 {
2294         int prev_driver_state = skdev->state;
2295
2296         skd_log_skdev(skdev, "unquiesce");
2297         if (skdev->state == SKD_DRVR_STATE_ONLINE) {
2298                 dev_dbg(&skdev->pdev->dev, "**** device already ONLINE\n");
2299                 return 0;
2300         }
2301         if (skdev->drive_state != FIT_SR_DRIVE_ONLINE) {
2302                 /*
2303                  * If there has been an state change to other than
2304                  * ONLINE, we will rely on controller state change
2305                  * to come back online and restart the queue.
2306                  * The BUSY state means that driver is ready to
2307                  * continue normal processing but waiting for controller
2308                  * to become available.
2309                  */
2310                 skdev->state = SKD_DRVR_STATE_BUSY;
2311                 dev_dbg(&skdev->pdev->dev, "drive BUSY state\n");
2312                 return 0;
2313         }
2314
2315         /*
2316          * Drive has just come online, driver is either in startup,
2317          * paused performing a task, or bust waiting for hardware.
2318          */
2319         switch (skdev->state) {
2320         case SKD_DRVR_STATE_PAUSED:
2321         case SKD_DRVR_STATE_BUSY:
2322         case SKD_DRVR_STATE_BUSY_IMMINENT:
2323         case SKD_DRVR_STATE_BUSY_ERASE:
2324         case SKD_DRVR_STATE_STARTING:
2325         case SKD_DRVR_STATE_RESTARTING:
2326         case SKD_DRVR_STATE_FAULT:
2327         case SKD_DRVR_STATE_IDLE:
2328         case SKD_DRVR_STATE_LOAD:
2329                 skdev->state = SKD_DRVR_STATE_ONLINE;
2330                 dev_err(&skdev->pdev->dev, "Driver state %s(%d)=>%s(%d)\n",
2331                         skd_skdev_state_to_str(prev_driver_state),
2332                         prev_driver_state, skd_skdev_state_to_str(skdev->state),
2333                         skdev->state);
2334                 dev_dbg(&skdev->pdev->dev,
2335                         "**** device ONLINE...starting block queue\n");
2336                 dev_dbg(&skdev->pdev->dev, "starting queue\n");
2337                 dev_info(&skdev->pdev->dev, "STEC s1120 ONLINE\n");
2338                 schedule_work(&skdev->start_queue);
2339                 skdev->gendisk_on = 1;
2340                 wake_up_interruptible(&skdev->waitq);
2341                 break;
2342
2343         case SKD_DRVR_STATE_DISAPPEARED:
2344         default:
2345                 dev_dbg(&skdev->pdev->dev,
2346                         "**** driver state %d, not implemented\n",
2347                         skdev->state);
2348                 return -EBUSY;
2349         }
2350         return 0;
2351 }
2352
2353 /*
2354  *****************************************************************************
2355  * PCIe MSI/MSI-X INTERRUPT HANDLERS
2356  *****************************************************************************
2357  */
2358
2359 static irqreturn_t skd_reserved_isr(int irq, void *skd_host_data)
2360 {
2361         struct skd_device *skdev = skd_host_data;
2362         unsigned long flags;
2363
2364         spin_lock_irqsave(&skdev->lock, flags);
2365         dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2366                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2367         dev_err(&skdev->pdev->dev, "MSIX reserved irq %d = 0x%x\n", irq,
2368                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2369         SKD_WRITEL(skdev, FIT_INT_RESERVED_MASK, FIT_INT_STATUS_HOST);
2370         spin_unlock_irqrestore(&skdev->lock, flags);
2371         return IRQ_HANDLED;
2372 }
2373
2374 static irqreturn_t skd_statec_isr(int irq, void *skd_host_data)
2375 {
2376         struct skd_device *skdev = skd_host_data;
2377         unsigned long flags;
2378
2379         spin_lock_irqsave(&skdev->lock, flags);
2380         dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2381                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2382         SKD_WRITEL(skdev, FIT_ISH_FW_STATE_CHANGE, FIT_INT_STATUS_HOST);
2383         skd_isr_fwstate(skdev);
2384         spin_unlock_irqrestore(&skdev->lock, flags);
2385         return IRQ_HANDLED;
2386 }
2387
2388 static irqreturn_t skd_comp_q(int irq, void *skd_host_data)
2389 {
2390         struct skd_device *skdev = skd_host_data;
2391         unsigned long flags;
2392         int flush_enqueued = 0;
2393         int deferred;
2394
2395         spin_lock_irqsave(&skdev->lock, flags);
2396         dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2397                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2398         SKD_WRITEL(skdev, FIT_ISH_COMPLETION_POSTED, FIT_INT_STATUS_HOST);
2399         deferred = skd_isr_completion_posted(skdev, skd_isr_comp_limit,
2400                                                 &flush_enqueued);
2401         if (flush_enqueued)
2402                 schedule_work(&skdev->start_queue);
2403
2404         if (deferred)
2405                 schedule_work(&skdev->completion_worker);
2406         else if (!flush_enqueued)
2407                 schedule_work(&skdev->start_queue);
2408
2409         spin_unlock_irqrestore(&skdev->lock, flags);
2410
2411         return IRQ_HANDLED;
2412 }
2413
2414 static irqreturn_t skd_msg_isr(int irq, void *skd_host_data)
2415 {
2416         struct skd_device *skdev = skd_host_data;
2417         unsigned long flags;
2418
2419         spin_lock_irqsave(&skdev->lock, flags);
2420         dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2421                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2422         SKD_WRITEL(skdev, FIT_ISH_MSG_FROM_DEV, FIT_INT_STATUS_HOST);
2423         skd_isr_msg_from_dev(skdev);
2424         spin_unlock_irqrestore(&skdev->lock, flags);
2425         return IRQ_HANDLED;
2426 }
2427
2428 static irqreturn_t skd_qfull_isr(int irq, void *skd_host_data)
2429 {
2430         struct skd_device *skdev = skd_host_data;
2431         unsigned long flags;
2432
2433         spin_lock_irqsave(&skdev->lock, flags);
2434         dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2435                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2436         SKD_WRITEL(skdev, FIT_INT_QUEUE_FULL, FIT_INT_STATUS_HOST);
2437         spin_unlock_irqrestore(&skdev->lock, flags);
2438         return IRQ_HANDLED;
2439 }
2440
2441 /*
2442  *****************************************************************************
2443  * PCIe MSI/MSI-X SETUP
2444  *****************************************************************************
2445  */
2446
2447 struct skd_msix_entry {
2448         char isr_name[30];
2449 };
2450
2451 struct skd_init_msix_entry {
2452         const char *name;
2453         irq_handler_t handler;
2454 };
2455
2456 #define SKD_MAX_MSIX_COUNT              13
2457 #define SKD_MIN_MSIX_COUNT              7
2458 #define SKD_BASE_MSIX_IRQ               4
2459
2460 static struct skd_init_msix_entry msix_entries[SKD_MAX_MSIX_COUNT] = {
2461         { "(DMA 0)",        skd_reserved_isr },
2462         { "(DMA 1)",        skd_reserved_isr },
2463         { "(DMA 2)",        skd_reserved_isr },
2464         { "(DMA 3)",        skd_reserved_isr },
2465         { "(State Change)", skd_statec_isr   },
2466         { "(COMPL_Q)",      skd_comp_q       },
2467         { "(MSG)",          skd_msg_isr      },
2468         { "(Reserved)",     skd_reserved_isr },
2469         { "(Reserved)",     skd_reserved_isr },
2470         { "(Queue Full 0)", skd_qfull_isr    },
2471         { "(Queue Full 1)", skd_qfull_isr    },
2472         { "(Queue Full 2)", skd_qfull_isr    },
2473         { "(Queue Full 3)", skd_qfull_isr    },
2474 };
2475
2476 static int skd_acquire_msix(struct skd_device *skdev)
2477 {
2478         int i, rc;
2479         struct pci_dev *pdev = skdev->pdev;
2480
2481         rc = pci_alloc_irq_vectors(pdev, SKD_MAX_MSIX_COUNT, SKD_MAX_MSIX_COUNT,
2482                         PCI_IRQ_MSIX);
2483         if (rc < 0) {
2484                 dev_err(&skdev->pdev->dev, "failed to enable MSI-X %d\n", rc);
2485                 goto out;
2486         }
2487
2488         skdev->msix_entries = kcalloc(SKD_MAX_MSIX_COUNT,
2489                         sizeof(struct skd_msix_entry), GFP_KERNEL);
2490         if (!skdev->msix_entries) {
2491                 rc = -ENOMEM;
2492                 dev_err(&skdev->pdev->dev, "msix table allocation error\n");
2493                 goto out;
2494         }
2495
2496         /* Enable MSI-X vectors for the base queue */
2497         for (i = 0; i < SKD_MAX_MSIX_COUNT; i++) {
2498                 struct skd_msix_entry *qentry = &skdev->msix_entries[i];
2499
2500                 snprintf(qentry->isr_name, sizeof(qentry->isr_name),
2501                          "%s%d-msix %s", DRV_NAME, skdev->devno,
2502                          msix_entries[i].name);
2503
2504                 rc = devm_request_irq(&skdev->pdev->dev,
2505                                 pci_irq_vector(skdev->pdev, i),
2506                                 msix_entries[i].handler, 0,
2507                                 qentry->isr_name, skdev);
2508                 if (rc) {
2509                         dev_err(&skdev->pdev->dev,
2510                                 "Unable to register(%d) MSI-X handler %d: %s\n",
2511                                 rc, i, qentry->isr_name);
2512                         goto msix_out;
2513                 }
2514         }
2515
2516         dev_dbg(&skdev->pdev->dev, "%d msix irq(s) enabled\n",
2517                 SKD_MAX_MSIX_COUNT);
2518         return 0;
2519
2520 msix_out:
2521         while (--i >= 0)
2522                 devm_free_irq(&pdev->dev, pci_irq_vector(pdev, i), skdev);
2523 out:
2524         kfree(skdev->msix_entries);
2525         skdev->msix_entries = NULL;
2526         return rc;
2527 }
2528
2529 static int skd_acquire_irq(struct skd_device *skdev)
2530 {
2531         struct pci_dev *pdev = skdev->pdev;
2532         unsigned int irq_flag = PCI_IRQ_LEGACY;
2533         int rc;
2534
2535         if (skd_isr_type == SKD_IRQ_MSIX) {
2536                 rc = skd_acquire_msix(skdev);
2537                 if (!rc)
2538                         return 0;
2539
2540                 dev_err(&skdev->pdev->dev,
2541                         "failed to enable MSI-X, re-trying with MSI %d\n", rc);
2542         }
2543
2544         snprintf(skdev->isr_name, sizeof(skdev->isr_name), "%s%d", DRV_NAME,
2545                         skdev->devno);
2546
2547         if (skd_isr_type != SKD_IRQ_LEGACY)
2548                 irq_flag |= PCI_IRQ_MSI;
2549         rc = pci_alloc_irq_vectors(pdev, 1, 1, irq_flag);
2550         if (rc < 0) {
2551                 dev_err(&skdev->pdev->dev,
2552                         "failed to allocate the MSI interrupt %d\n", rc);
2553                 return rc;
2554         }
2555
2556         rc = devm_request_irq(&pdev->dev, pdev->irq, skd_isr,
2557                         pdev->msi_enabled ? 0 : IRQF_SHARED,
2558                         skdev->isr_name, skdev);
2559         if (rc) {
2560                 pci_free_irq_vectors(pdev);
2561                 dev_err(&skdev->pdev->dev, "failed to allocate interrupt %d\n",
2562                         rc);
2563                 return rc;
2564         }
2565
2566         return 0;
2567 }
2568
2569 static void skd_release_irq(struct skd_device *skdev)
2570 {
2571         struct pci_dev *pdev = skdev->pdev;
2572
2573         if (skdev->msix_entries) {
2574                 int i;
2575
2576                 for (i = 0; i < SKD_MAX_MSIX_COUNT; i++) {
2577                         devm_free_irq(&pdev->dev, pci_irq_vector(pdev, i),
2578                                         skdev);
2579                 }
2580
2581                 kfree(skdev->msix_entries);
2582                 skdev->msix_entries = NULL;
2583         } else {
2584                 devm_free_irq(&pdev->dev, pdev->irq, skdev);
2585         }
2586
2587         pci_free_irq_vectors(pdev);
2588 }
2589
2590 /*
2591  *****************************************************************************
2592  * CONSTRUCT
2593  *****************************************************************************
2594  */
2595
2596 static void *skd_alloc_dma(struct skd_device *skdev, struct kmem_cache *s,
2597                            dma_addr_t *dma_handle, gfp_t gfp,
2598                            enum dma_data_direction dir)
2599 {
2600         struct device *dev = &skdev->pdev->dev;
2601         void *buf;
2602
2603         buf = kmem_cache_alloc(s, gfp);
2604         if (!buf)
2605                 return NULL;
2606         *dma_handle = dma_map_single(dev, buf, s->size, dir);
2607         if (dma_mapping_error(dev, *dma_handle)) {
2608                 kmem_cache_free(s, buf);
2609                 buf = NULL;
2610         }
2611         return buf;
2612 }
2613
2614 static void skd_free_dma(struct skd_device *skdev, struct kmem_cache *s,
2615                          void *vaddr, dma_addr_t dma_handle,
2616                          enum dma_data_direction dir)
2617 {
2618         if (!vaddr)
2619                 return;
2620
2621         dma_unmap_single(&skdev->pdev->dev, dma_handle, s->size, dir);
2622         kmem_cache_free(s, vaddr);
2623 }
2624
2625 static int skd_cons_skcomp(struct skd_device *skdev)
2626 {
2627         int rc = 0;
2628         struct fit_completion_entry_v1 *skcomp;
2629
2630         dev_dbg(&skdev->pdev->dev,
2631                 "comp pci_alloc, total bytes %zd entries %d\n",
2632                 SKD_SKCOMP_SIZE, SKD_N_COMPLETION_ENTRY);
2633
2634         skcomp = pci_zalloc_consistent(skdev->pdev, SKD_SKCOMP_SIZE,
2635                                        &skdev->cq_dma_address);
2636
2637         if (skcomp == NULL) {
2638                 rc = -ENOMEM;
2639                 goto err_out;
2640         }
2641
2642         skdev->skcomp_table = skcomp;
2643         skdev->skerr_table = (struct fit_comp_error_info *)((char *)skcomp +
2644                                                            sizeof(*skcomp) *
2645                                                            SKD_N_COMPLETION_ENTRY);
2646
2647 err_out:
2648         return rc;
2649 }
2650
2651 static int skd_cons_skmsg(struct skd_device *skdev)
2652 {
2653         int rc = 0;
2654         u32 i;
2655
2656         dev_dbg(&skdev->pdev->dev,
2657                 "skmsg_table kcalloc, struct %lu, count %u total %lu\n",
2658                 sizeof(struct skd_fitmsg_context), skdev->num_fitmsg_context,
2659                 sizeof(struct skd_fitmsg_context) * skdev->num_fitmsg_context);
2660
2661         skdev->skmsg_table = kcalloc(skdev->num_fitmsg_context,
2662                                      sizeof(struct skd_fitmsg_context),
2663                                      GFP_KERNEL);
2664         if (skdev->skmsg_table == NULL) {
2665                 rc = -ENOMEM;
2666                 goto err_out;
2667         }
2668
2669         for (i = 0; i < skdev->num_fitmsg_context; i++) {
2670                 struct skd_fitmsg_context *skmsg;
2671
2672                 skmsg = &skdev->skmsg_table[i];
2673
2674                 skmsg->id = i + SKD_ID_FIT_MSG;
2675
2676                 skmsg->msg_buf = pci_alloc_consistent(skdev->pdev,
2677                                                       SKD_N_FITMSG_BYTES,
2678                                                       &skmsg->mb_dma_address);
2679
2680                 if (skmsg->msg_buf == NULL) {
2681                         rc = -ENOMEM;
2682                         goto err_out;
2683                 }
2684
2685                 WARN(((uintptr_t)skmsg->msg_buf | skmsg->mb_dma_address) &
2686                      (FIT_QCMD_ALIGN - 1),
2687                      "not aligned: msg_buf %p mb_dma_address %#llx\n",
2688                      skmsg->msg_buf, skmsg->mb_dma_address);
2689                 memset(skmsg->msg_buf, 0, SKD_N_FITMSG_BYTES);
2690         }
2691
2692 err_out:
2693         return rc;
2694 }
2695
2696 static struct fit_sg_descriptor *skd_cons_sg_list(struct skd_device *skdev,
2697                                                   u32 n_sg,
2698                                                   dma_addr_t *ret_dma_addr)
2699 {
2700         struct fit_sg_descriptor *sg_list;
2701
2702         sg_list = skd_alloc_dma(skdev, skdev->sglist_cache, ret_dma_addr,
2703                                 GFP_DMA | __GFP_ZERO, DMA_TO_DEVICE);
2704
2705         if (sg_list != NULL) {
2706                 uint64_t dma_address = *ret_dma_addr;
2707                 u32 i;
2708
2709                 for (i = 0; i < n_sg - 1; i++) {
2710                         uint64_t ndp_off;
2711                         ndp_off = (i + 1) * sizeof(struct fit_sg_descriptor);
2712
2713                         sg_list[i].next_desc_ptr = dma_address + ndp_off;
2714                 }
2715                 sg_list[i].next_desc_ptr = 0LL;
2716         }
2717
2718         return sg_list;
2719 }
2720
2721 static void skd_free_sg_list(struct skd_device *skdev,
2722                              struct fit_sg_descriptor *sg_list,
2723                              dma_addr_t dma_addr)
2724 {
2725         if (WARN_ON_ONCE(!sg_list))
2726                 return;
2727
2728         skd_free_dma(skdev, skdev->sglist_cache, sg_list, dma_addr,
2729                      DMA_TO_DEVICE);
2730 }
2731
2732 static int skd_init_request(struct blk_mq_tag_set *set, struct request *rq,
2733                             unsigned int hctx_idx, unsigned int numa_node)
2734 {
2735         struct skd_device *skdev = set->driver_data;
2736         struct skd_request_context *skreq = blk_mq_rq_to_pdu(rq);
2737
2738         skreq->state = SKD_REQ_STATE_IDLE;
2739         skreq->sg = (void *)(skreq + 1);
2740         sg_init_table(skreq->sg, skd_sgs_per_request);
2741         skreq->sksg_list = skd_cons_sg_list(skdev, skd_sgs_per_request,
2742                                             &skreq->sksg_dma_address);
2743
2744         return skreq->sksg_list ? 0 : -ENOMEM;
2745 }
2746
2747 static void skd_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2748                              unsigned int hctx_idx)
2749 {
2750         struct skd_device *skdev = set->driver_data;
2751         struct skd_request_context *skreq = blk_mq_rq_to_pdu(rq);
2752
2753         skd_free_sg_list(skdev, skreq->sksg_list, skreq->sksg_dma_address);
2754 }
2755
2756 static int skd_cons_sksb(struct skd_device *skdev)
2757 {
2758         int rc = 0;
2759         struct skd_special_context *skspcl;
2760
2761         skspcl = &skdev->internal_skspcl;
2762
2763         skspcl->req.id = 0 + SKD_ID_INTERNAL;
2764         skspcl->req.state = SKD_REQ_STATE_IDLE;
2765
2766         skspcl->data_buf = skd_alloc_dma(skdev, skdev->databuf_cache,
2767                                          &skspcl->db_dma_address,
2768                                          GFP_DMA | __GFP_ZERO,
2769                                          DMA_BIDIRECTIONAL);
2770         if (skspcl->data_buf == NULL) {
2771                 rc = -ENOMEM;
2772                 goto err_out;
2773         }
2774
2775         skspcl->msg_buf = skd_alloc_dma(skdev, skdev->msgbuf_cache,
2776                                         &skspcl->mb_dma_address,
2777                                         GFP_DMA | __GFP_ZERO, DMA_TO_DEVICE);
2778         if (skspcl->msg_buf == NULL) {
2779                 rc = -ENOMEM;
2780                 goto err_out;
2781         }
2782
2783         skspcl->req.sksg_list = skd_cons_sg_list(skdev, 1,
2784                                                  &skspcl->req.sksg_dma_address);
2785         if (skspcl->req.sksg_list == NULL) {
2786                 rc = -ENOMEM;
2787                 goto err_out;
2788         }
2789
2790         if (!skd_format_internal_skspcl(skdev)) {
2791                 rc = -EINVAL;
2792                 goto err_out;
2793         }
2794
2795 err_out:
2796         return rc;
2797 }
2798
2799 static const struct blk_mq_ops skd_mq_ops = {
2800         .queue_rq       = skd_mq_queue_rq,
2801         .complete       = skd_complete_rq,
2802         .timeout        = skd_timed_out,
2803         .init_request   = skd_init_request,
2804         .exit_request   = skd_exit_request,
2805 };
2806
2807 static int skd_cons_disk(struct skd_device *skdev)
2808 {
2809         int rc = 0;
2810         struct gendisk *disk;
2811         struct request_queue *q;
2812         unsigned long flags;
2813
2814         disk = alloc_disk(SKD_MINORS_PER_DEVICE);
2815         if (!disk) {
2816                 rc = -ENOMEM;
2817                 goto err_out;
2818         }
2819
2820         skdev->disk = disk;
2821         sprintf(disk->disk_name, DRV_NAME "%u", skdev->devno);
2822
2823         disk->major = skdev->major;
2824         disk->first_minor = skdev->devno * SKD_MINORS_PER_DEVICE;
2825         disk->fops = &skd_blockdev_ops;
2826         disk->private_data = skdev;
2827
2828         memset(&skdev->tag_set, 0, sizeof(skdev->tag_set));
2829         skdev->tag_set.ops = &skd_mq_ops;
2830         skdev->tag_set.nr_hw_queues = 1;
2831         skdev->tag_set.queue_depth = skd_max_queue_depth;
2832         skdev->tag_set.cmd_size = sizeof(struct skd_request_context) +
2833                 skdev->sgs_per_request * sizeof(struct scatterlist);
2834         skdev->tag_set.numa_node = NUMA_NO_NODE;
2835         skdev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE |
2836                 BLK_MQ_F_SG_MERGE |
2837                 BLK_ALLOC_POLICY_TO_MQ_FLAG(BLK_TAG_ALLOC_FIFO);
2838         skdev->tag_set.driver_data = skdev;
2839         rc = blk_mq_alloc_tag_set(&skdev->tag_set);
2840         if (rc)
2841                 goto err_out;
2842         q = blk_mq_init_queue(&skdev->tag_set);
2843         if (IS_ERR(q)) {
2844                 blk_mq_free_tag_set(&skdev->tag_set);
2845                 rc = PTR_ERR(q);
2846                 goto err_out;
2847         }
2848         q->queuedata = skdev;
2849
2850         skdev->queue = q;
2851         disk->queue = q;
2852
2853         blk_queue_write_cache(q, true, true);
2854         blk_queue_max_segments(q, skdev->sgs_per_request);
2855         blk_queue_max_hw_sectors(q, SKD_N_MAX_SECTORS);
2856
2857         /* set optimal I/O size to 8KB */
2858         blk_queue_io_opt(q, 8192);
2859
2860         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
2861         queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
2862
2863         blk_queue_rq_timeout(q, 8 * HZ);
2864
2865         spin_lock_irqsave(&skdev->lock, flags);
2866         dev_dbg(&skdev->pdev->dev, "stopping queue\n");
2867         blk_mq_stop_hw_queues(skdev->queue);
2868         spin_unlock_irqrestore(&skdev->lock, flags);
2869
2870 err_out:
2871         return rc;
2872 }
2873
2874 #define SKD_N_DEV_TABLE         16u
2875 static u32 skd_next_devno;
2876
2877 static struct skd_device *skd_construct(struct pci_dev *pdev)
2878 {
2879         struct skd_device *skdev;
2880         int blk_major = skd_major;
2881         size_t size;
2882         int rc;
2883
2884         skdev = kzalloc(sizeof(*skdev), GFP_KERNEL);
2885
2886         if (!skdev) {
2887                 dev_err(&pdev->dev, "memory alloc failure\n");
2888                 return NULL;
2889         }
2890
2891         skdev->state = SKD_DRVR_STATE_LOAD;
2892         skdev->pdev = pdev;
2893         skdev->devno = skd_next_devno++;
2894         skdev->major = blk_major;
2895         skdev->dev_max_queue_depth = 0;
2896
2897         skdev->num_req_context = skd_max_queue_depth;
2898         skdev->num_fitmsg_context = skd_max_queue_depth;
2899         skdev->cur_max_queue_depth = 1;
2900         skdev->queue_low_water_mark = 1;
2901         skdev->proto_ver = 99;
2902         skdev->sgs_per_request = skd_sgs_per_request;
2903         skdev->dbg_level = skd_dbg_level;
2904
2905         spin_lock_init(&skdev->lock);
2906
2907         INIT_WORK(&skdev->start_queue, skd_start_queue);
2908         INIT_WORK(&skdev->completion_worker, skd_completion_worker);
2909
2910         size = max(SKD_N_FITMSG_BYTES, SKD_N_SPECIAL_FITMSG_BYTES);
2911         skdev->msgbuf_cache = kmem_cache_create("skd-msgbuf", size, 0,
2912                                                 SLAB_HWCACHE_ALIGN, NULL);
2913         if (!skdev->msgbuf_cache)
2914                 goto err_out;
2915         WARN_ONCE(kmem_cache_size(skdev->msgbuf_cache) < size,
2916                   "skd-msgbuf: %d < %zd\n",
2917                   kmem_cache_size(skdev->msgbuf_cache), size);
2918         size = skd_sgs_per_request * sizeof(struct fit_sg_descriptor);
2919         skdev->sglist_cache = kmem_cache_create("skd-sglist", size, 0,
2920                                                 SLAB_HWCACHE_ALIGN, NULL);
2921         if (!skdev->sglist_cache)
2922                 goto err_out;
2923         WARN_ONCE(kmem_cache_size(skdev->sglist_cache) < size,
2924                   "skd-sglist: %d < %zd\n",
2925                   kmem_cache_size(skdev->sglist_cache), size);
2926         size = SKD_N_INTERNAL_BYTES;
2927         skdev->databuf_cache = kmem_cache_create("skd-databuf", size, 0,
2928                                                  SLAB_HWCACHE_ALIGN, NULL);
2929         if (!skdev->databuf_cache)
2930                 goto err_out;
2931         WARN_ONCE(kmem_cache_size(skdev->databuf_cache) < size,
2932                   "skd-databuf: %d < %zd\n",
2933                   kmem_cache_size(skdev->databuf_cache), size);
2934
2935         dev_dbg(&skdev->pdev->dev, "skcomp\n");
2936         rc = skd_cons_skcomp(skdev);
2937         if (rc < 0)
2938                 goto err_out;
2939
2940         dev_dbg(&skdev->pdev->dev, "skmsg\n");
2941         rc = skd_cons_skmsg(skdev);
2942         if (rc < 0)
2943                 goto err_out;
2944
2945         dev_dbg(&skdev->pdev->dev, "sksb\n");
2946         rc = skd_cons_sksb(skdev);
2947         if (rc < 0)
2948                 goto err_out;
2949
2950         dev_dbg(&skdev->pdev->dev, "disk\n");
2951         rc = skd_cons_disk(skdev);
2952         if (rc < 0)
2953                 goto err_out;
2954
2955         dev_dbg(&skdev->pdev->dev, "VICTORY\n");
2956         return skdev;
2957
2958 err_out:
2959         dev_dbg(&skdev->pdev->dev, "construct failed\n");
2960         skd_destruct(skdev);
2961         return NULL;
2962 }
2963
2964 /*
2965  *****************************************************************************
2966  * DESTRUCT (FREE)
2967  *****************************************************************************
2968  */
2969
2970 static void skd_free_skcomp(struct skd_device *skdev)
2971 {
2972         if (skdev->skcomp_table)
2973                 pci_free_consistent(skdev->pdev, SKD_SKCOMP_SIZE,
2974                                     skdev->skcomp_table, skdev->cq_dma_address);
2975
2976         skdev->skcomp_table = NULL;
2977         skdev->cq_dma_address = 0;
2978 }
2979
2980 static void skd_free_skmsg(struct skd_device *skdev)
2981 {
2982         u32 i;
2983
2984         if (skdev->skmsg_table == NULL)
2985                 return;
2986
2987         for (i = 0; i < skdev->num_fitmsg_context; i++) {
2988                 struct skd_fitmsg_context *skmsg;
2989
2990                 skmsg = &skdev->skmsg_table[i];
2991
2992                 if (skmsg->msg_buf != NULL) {
2993                         pci_free_consistent(skdev->pdev, SKD_N_FITMSG_BYTES,
2994                                             skmsg->msg_buf,
2995                                             skmsg->mb_dma_address);
2996                 }
2997                 skmsg->msg_buf = NULL;
2998                 skmsg->mb_dma_address = 0;
2999         }
3000
3001         kfree(skdev->skmsg_table);
3002         skdev->skmsg_table = NULL;
3003 }
3004
3005 static void skd_free_sksb(struct skd_device *skdev)
3006 {
3007         struct skd_special_context *skspcl = &skdev->internal_skspcl;
3008
3009         skd_free_dma(skdev, skdev->databuf_cache, skspcl->data_buf,
3010                      skspcl->db_dma_address, DMA_BIDIRECTIONAL);
3011
3012         skspcl->data_buf = NULL;
3013         skspcl->db_dma_address = 0;
3014
3015         skd_free_dma(skdev, skdev->msgbuf_cache, skspcl->msg_buf,
3016                      skspcl->mb_dma_address, DMA_TO_DEVICE);
3017
3018         skspcl->msg_buf = NULL;
3019         skspcl->mb_dma_address = 0;
3020
3021         skd_free_sg_list(skdev, skspcl->req.sksg_list,
3022                          skspcl->req.sksg_dma_address);
3023
3024         skspcl->req.sksg_list = NULL;
3025         skspcl->req.sksg_dma_address = 0;
3026 }
3027
3028 static void skd_free_disk(struct skd_device *skdev)
3029 {
3030         struct gendisk *disk = skdev->disk;
3031
3032         if (disk && (disk->flags & GENHD_FL_UP))
3033                 del_gendisk(disk);
3034
3035         if (skdev->queue) {
3036                 blk_cleanup_queue(skdev->queue);
3037                 skdev->queue = NULL;
3038                 if (disk)
3039                         disk->queue = NULL;
3040         }
3041
3042         if (skdev->tag_set.tags)
3043                 blk_mq_free_tag_set(&skdev->tag_set);
3044
3045         put_disk(disk);
3046         skdev->disk = NULL;
3047 }
3048
3049 static void skd_destruct(struct skd_device *skdev)
3050 {
3051         if (skdev == NULL)
3052                 return;
3053
3054         cancel_work_sync(&skdev->start_queue);
3055
3056         dev_dbg(&skdev->pdev->dev, "disk\n");
3057         skd_free_disk(skdev);
3058
3059         dev_dbg(&skdev->pdev->dev, "sksb\n");
3060         skd_free_sksb(skdev);
3061
3062         dev_dbg(&skdev->pdev->dev, "skmsg\n");
3063         skd_free_skmsg(skdev);
3064
3065         dev_dbg(&skdev->pdev->dev, "skcomp\n");
3066         skd_free_skcomp(skdev);
3067
3068         kmem_cache_destroy(skdev->databuf_cache);
3069         kmem_cache_destroy(skdev->sglist_cache);
3070         kmem_cache_destroy(skdev->msgbuf_cache);
3071
3072         dev_dbg(&skdev->pdev->dev, "skdev\n");
3073         kfree(skdev);
3074 }
3075
3076 /*
3077  *****************************************************************************
3078  * BLOCK DEVICE (BDEV) GLUE
3079  *****************************************************************************
3080  */
3081
3082 static int skd_bdev_getgeo(struct block_device *bdev, struct hd_geometry *geo)
3083 {
3084         struct skd_device *skdev;
3085         u64 capacity;
3086
3087         skdev = bdev->bd_disk->private_data;
3088
3089         dev_dbg(&skdev->pdev->dev, "%s: CMD[%s] getgeo device\n",
3090                 bdev->bd_disk->disk_name, current->comm);
3091
3092         if (skdev->read_cap_is_valid) {
3093                 capacity = get_capacity(skdev->disk);
3094                 geo->heads = 64;
3095                 geo->sectors = 255;
3096                 geo->cylinders = (capacity) / (255 * 64);
3097
3098                 return 0;
3099         }
3100         return -EIO;
3101 }
3102
3103 static int skd_bdev_attach(struct device *parent, struct skd_device *skdev)
3104 {
3105         dev_dbg(&skdev->pdev->dev, "add_disk\n");
3106         device_add_disk(parent, skdev->disk);
3107         return 0;
3108 }
3109
3110 static const struct block_device_operations skd_blockdev_ops = {
3111         .owner          = THIS_MODULE,
3112         .getgeo         = skd_bdev_getgeo,
3113 };
3114
3115 /*
3116  *****************************************************************************
3117  * PCIe DRIVER GLUE
3118  *****************************************************************************
3119  */
3120
3121 static const struct pci_device_id skd_pci_tbl[] = {
3122         { PCI_VENDOR_ID_STEC, PCI_DEVICE_ID_S1120,
3123           PCI_ANY_ID, PCI_ANY_ID, 0, 0, },
3124         { 0 }                     /* terminate list */
3125 };
3126
3127 MODULE_DEVICE_TABLE(pci, skd_pci_tbl);
3128
3129 static char *skd_pci_info(struct skd_device *skdev, char *str)
3130 {
3131         int pcie_reg;
3132
3133         strcpy(str, "PCIe (");
3134         pcie_reg = pci_find_capability(skdev->pdev, PCI_CAP_ID_EXP);
3135
3136         if (pcie_reg) {
3137
3138                 char lwstr[6];
3139                 uint16_t pcie_lstat, lspeed, lwidth;
3140
3141                 pcie_reg += 0x12;
3142                 pci_read_config_word(skdev->pdev, pcie_reg, &pcie_lstat);
3143                 lspeed = pcie_lstat & (0xF);
3144                 lwidth = (pcie_lstat & 0x3F0) >> 4;
3145
3146                 if (lspeed == 1)
3147                         strcat(str, "2.5GT/s ");
3148                 else if (lspeed == 2)
3149                         strcat(str, "5.0GT/s ");
3150                 else
3151                         strcat(str, "<unknown> ");
3152                 snprintf(lwstr, sizeof(lwstr), "%dX)", lwidth);
3153                 strcat(str, lwstr);
3154         }
3155         return str;
3156 }
3157
3158 static int skd_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3159 {
3160         int i;
3161         int rc = 0;
3162         char pci_str[32];
3163         struct skd_device *skdev;
3164
3165         dev_dbg(&pdev->dev, "vendor=%04X device=%04x\n", pdev->vendor,
3166                 pdev->device);
3167
3168         rc = pci_enable_device(pdev);
3169         if (rc)
3170                 return rc;
3171         rc = pci_request_regions(pdev, DRV_NAME);
3172         if (rc)
3173                 goto err_out;
3174         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
3175         if (!rc) {
3176                 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
3177                         dev_err(&pdev->dev, "consistent DMA mask error %d\n",
3178                                 rc);
3179                 }
3180         } else {
3181                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3182                 if (rc) {
3183                         dev_err(&pdev->dev, "DMA mask error %d\n", rc);
3184                         goto err_out_regions;
3185                 }
3186         }
3187
3188         if (!skd_major) {
3189                 rc = register_blkdev(0, DRV_NAME);
3190                 if (rc < 0)
3191                         goto err_out_regions;
3192                 BUG_ON(!rc);
3193                 skd_major = rc;
3194         }
3195
3196         skdev = skd_construct(pdev);
3197         if (skdev == NULL) {
3198                 rc = -ENOMEM;
3199                 goto err_out_regions;
3200         }
3201
3202         skd_pci_info(skdev, pci_str);
3203         dev_info(&pdev->dev, "%s 64bit\n", pci_str);
3204
3205         pci_set_master(pdev);
3206         rc = pci_enable_pcie_error_reporting(pdev);
3207         if (rc) {
3208                 dev_err(&pdev->dev,
3209                         "bad enable of PCIe error reporting rc=%d\n", rc);
3210                 skdev->pcie_error_reporting_is_enabled = 0;
3211         } else
3212                 skdev->pcie_error_reporting_is_enabled = 1;
3213
3214         pci_set_drvdata(pdev, skdev);
3215
3216         for (i = 0; i < SKD_MAX_BARS; i++) {
3217                 skdev->mem_phys[i] = pci_resource_start(pdev, i);
3218                 skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
3219                 skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
3220                                             skdev->mem_size[i]);
3221                 if (!skdev->mem_map[i]) {
3222                         dev_err(&pdev->dev,
3223                                 "Unable to map adapter memory!\n");
3224                         rc = -ENODEV;
3225                         goto err_out_iounmap;
3226                 }
3227                 dev_dbg(&pdev->dev, "mem_map=%p, phyd=%016llx, size=%d\n",
3228                         skdev->mem_map[i], (uint64_t)skdev->mem_phys[i],
3229                         skdev->mem_size[i]);
3230         }
3231
3232         rc = skd_acquire_irq(skdev);
3233         if (rc) {
3234                 dev_err(&pdev->dev, "interrupt resource error %d\n", rc);
3235                 goto err_out_iounmap;
3236         }
3237
3238         rc = skd_start_timer(skdev);
3239         if (rc)
3240                 goto err_out_timer;
3241
3242         init_waitqueue_head(&skdev->waitq);
3243
3244         skd_start_device(skdev);
3245
3246         rc = wait_event_interruptible_timeout(skdev->waitq,
3247                                               (skdev->gendisk_on),
3248                                               (SKD_START_WAIT_SECONDS * HZ));
3249         if (skdev->gendisk_on > 0) {
3250                 /* device came on-line after reset */
3251                 skd_bdev_attach(&pdev->dev, skdev);
3252                 rc = 0;
3253         } else {
3254                 /* we timed out, something is wrong with the device,
3255                    don't add the disk structure */
3256                 dev_err(&pdev->dev, "error: waiting for s1120 timed out %d!\n",
3257                         rc);
3258                 /* in case of no error; we timeout with ENXIO */
3259                 if (!rc)
3260                         rc = -ENXIO;
3261                 goto err_out_timer;
3262         }
3263
3264         return rc;
3265
3266 err_out_timer:
3267         skd_stop_device(skdev);
3268         skd_release_irq(skdev);
3269
3270 err_out_iounmap:
3271         for (i = 0; i < SKD_MAX_BARS; i++)
3272                 if (skdev->mem_map[i])
3273                         iounmap(skdev->mem_map[i]);
3274
3275         if (skdev->pcie_error_reporting_is_enabled)
3276                 pci_disable_pcie_error_reporting(pdev);
3277
3278         skd_destruct(skdev);
3279
3280 err_out_regions:
3281         pci_release_regions(pdev);
3282
3283 err_out:
3284         pci_disable_device(pdev);
3285         pci_set_drvdata(pdev, NULL);
3286         return rc;
3287 }
3288
3289 static void skd_pci_remove(struct pci_dev *pdev)
3290 {
3291         int i;
3292         struct skd_device *skdev;
3293
3294         skdev = pci_get_drvdata(pdev);
3295         if (!skdev) {
3296                 dev_err(&pdev->dev, "no device data for PCI\n");
3297                 return;
3298         }
3299         skd_stop_device(skdev);
3300         skd_release_irq(skdev);
3301
3302         for (i = 0; i < SKD_MAX_BARS; i++)
3303                 if (skdev->mem_map[i])
3304                         iounmap(skdev->mem_map[i]);
3305
3306         if (skdev->pcie_error_reporting_is_enabled)
3307                 pci_disable_pcie_error_reporting(pdev);
3308
3309         skd_destruct(skdev);
3310
3311         pci_release_regions(pdev);
3312         pci_disable_device(pdev);
3313         pci_set_drvdata(pdev, NULL);
3314
3315         return;
3316 }
3317
3318 static int skd_pci_suspend(struct pci_dev *pdev, pm_message_t state)
3319 {
3320         int i;
3321         struct skd_device *skdev;
3322
3323         skdev = pci_get_drvdata(pdev);
3324         if (!skdev) {
3325                 dev_err(&pdev->dev, "no device data for PCI\n");
3326                 return -EIO;
3327         }
3328
3329         skd_stop_device(skdev);
3330
3331         skd_release_irq(skdev);
3332
3333         for (i = 0; i < SKD_MAX_BARS; i++)
3334                 if (skdev->mem_map[i])
3335                         iounmap(skdev->mem_map[i]);
3336
3337         if (skdev->pcie_error_reporting_is_enabled)
3338                 pci_disable_pcie_error_reporting(pdev);
3339
3340         pci_release_regions(pdev);
3341         pci_save_state(pdev);
3342         pci_disable_device(pdev);
3343         pci_set_power_state(pdev, pci_choose_state(pdev, state));
3344         return 0;
3345 }
3346
3347 static int skd_pci_resume(struct pci_dev *pdev)
3348 {
3349         int i;
3350         int rc = 0;
3351         struct skd_device *skdev;
3352
3353         skdev = pci_get_drvdata(pdev);
3354         if (!skdev) {
3355                 dev_err(&pdev->dev, "no device data for PCI\n");
3356                 return -1;
3357         }
3358
3359         pci_set_power_state(pdev, PCI_D0);
3360         pci_enable_wake(pdev, PCI_D0, 0);
3361         pci_restore_state(pdev);
3362
3363         rc = pci_enable_device(pdev);
3364         if (rc)
3365                 return rc;
3366         rc = pci_request_regions(pdev, DRV_NAME);
3367         if (rc)
3368                 goto err_out;
3369         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
3370         if (!rc) {
3371                 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
3372
3373                         dev_err(&pdev->dev, "consistent DMA mask error %d\n",
3374                                 rc);
3375                 }
3376         } else {
3377                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3378                 if (rc) {
3379
3380                         dev_err(&pdev->dev, "DMA mask error %d\n", rc);
3381                         goto err_out_regions;
3382                 }
3383         }
3384
3385         pci_set_master(pdev);
3386         rc = pci_enable_pcie_error_reporting(pdev);
3387         if (rc) {
3388                 dev_err(&pdev->dev,
3389                         "bad enable of PCIe error reporting rc=%d\n", rc);
3390                 skdev->pcie_error_reporting_is_enabled = 0;
3391         } else
3392                 skdev->pcie_error_reporting_is_enabled = 1;
3393
3394         for (i = 0; i < SKD_MAX_BARS; i++) {
3395
3396                 skdev->mem_phys[i] = pci_resource_start(pdev, i);
3397                 skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
3398                 skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
3399                                             skdev->mem_size[i]);
3400                 if (!skdev->mem_map[i]) {
3401                         dev_err(&pdev->dev, "Unable to map adapter memory!\n");
3402                         rc = -ENODEV;
3403                         goto err_out_iounmap;
3404                 }
3405                 dev_dbg(&pdev->dev, "mem_map=%p, phyd=%016llx, size=%d\n",
3406                         skdev->mem_map[i], (uint64_t)skdev->mem_phys[i],
3407                         skdev->mem_size[i]);
3408         }
3409         rc = skd_acquire_irq(skdev);
3410         if (rc) {
3411                 dev_err(&pdev->dev, "interrupt resource error %d\n", rc);
3412                 goto err_out_iounmap;
3413         }
3414
3415         rc = skd_start_timer(skdev);
3416         if (rc)
3417                 goto err_out_timer;
3418
3419         init_waitqueue_head(&skdev->waitq);
3420
3421         skd_start_device(skdev);
3422
3423         return rc;
3424
3425 err_out_timer:
3426         skd_stop_device(skdev);
3427         skd_release_irq(skdev);
3428
3429 err_out_iounmap:
3430         for (i = 0; i < SKD_MAX_BARS; i++)
3431                 if (skdev->mem_map[i])
3432                         iounmap(skdev->mem_map[i]);
3433
3434         if (skdev->pcie_error_reporting_is_enabled)
3435                 pci_disable_pcie_error_reporting(pdev);
3436
3437 err_out_regions:
3438         pci_release_regions(pdev);
3439
3440 err_out:
3441         pci_disable_device(pdev);
3442         return rc;
3443 }
3444
3445 static void skd_pci_shutdown(struct pci_dev *pdev)
3446 {
3447         struct skd_device *skdev;
3448
3449         dev_err(&pdev->dev, "%s called\n", __func__);
3450
3451         skdev = pci_get_drvdata(pdev);
3452         if (!skdev) {
3453                 dev_err(&pdev->dev, "no device data for PCI\n");
3454                 return;
3455         }
3456
3457         dev_err(&pdev->dev, "calling stop\n");
3458         skd_stop_device(skdev);
3459 }
3460
3461 static struct pci_driver skd_driver = {
3462         .name           = DRV_NAME,
3463         .id_table       = skd_pci_tbl,
3464         .probe          = skd_pci_probe,
3465         .remove         = skd_pci_remove,
3466         .suspend        = skd_pci_suspend,
3467         .resume         = skd_pci_resume,
3468         .shutdown       = skd_pci_shutdown,
3469 };
3470
3471 /*
3472  *****************************************************************************
3473  * LOGGING SUPPORT
3474  *****************************************************************************
3475  */
3476
3477 const char *skd_drive_state_to_str(int state)
3478 {
3479         switch (state) {
3480         case FIT_SR_DRIVE_OFFLINE:
3481                 return "OFFLINE";
3482         case FIT_SR_DRIVE_INIT:
3483                 return "INIT";
3484         case FIT_SR_DRIVE_ONLINE:
3485                 return "ONLINE";
3486         case FIT_SR_DRIVE_BUSY:
3487                 return "BUSY";
3488         case FIT_SR_DRIVE_FAULT:
3489                 return "FAULT";
3490         case FIT_SR_DRIVE_DEGRADED:
3491                 return "DEGRADED";
3492         case FIT_SR_PCIE_LINK_DOWN:
3493                 return "INK_DOWN";
3494         case FIT_SR_DRIVE_SOFT_RESET:
3495                 return "SOFT_RESET";
3496         case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
3497                 return "NEED_FW";
3498         case FIT_SR_DRIVE_INIT_FAULT:
3499                 return "INIT_FAULT";
3500         case FIT_SR_DRIVE_BUSY_SANITIZE:
3501                 return "BUSY_SANITIZE";
3502         case FIT_SR_DRIVE_BUSY_ERASE:
3503                 return "BUSY_ERASE";
3504         case FIT_SR_DRIVE_FW_BOOTING:
3505                 return "FW_BOOTING";
3506         default:
3507                 return "???";
3508         }
3509 }
3510
3511 const char *skd_skdev_state_to_str(enum skd_drvr_state state)
3512 {
3513         switch (state) {
3514         case SKD_DRVR_STATE_LOAD:
3515                 return "LOAD";
3516         case SKD_DRVR_STATE_IDLE:
3517                 return "IDLE";
3518         case SKD_DRVR_STATE_BUSY:
3519                 return "BUSY";
3520         case SKD_DRVR_STATE_STARTING:
3521                 return "STARTING";
3522         case SKD_DRVR_STATE_ONLINE:
3523                 return "ONLINE";
3524         case SKD_DRVR_STATE_PAUSING:
3525                 return "PAUSING";
3526         case SKD_DRVR_STATE_PAUSED:
3527                 return "PAUSED";
3528         case SKD_DRVR_STATE_RESTARTING:
3529                 return "RESTARTING";
3530         case SKD_DRVR_STATE_RESUMING:
3531                 return "RESUMING";
3532         case SKD_DRVR_STATE_STOPPING:
3533                 return "STOPPING";
3534         case SKD_DRVR_STATE_SYNCING:
3535                 return "SYNCING";
3536         case SKD_DRVR_STATE_FAULT:
3537                 return "FAULT";
3538         case SKD_DRVR_STATE_DISAPPEARED:
3539                 return "DISAPPEARED";
3540         case SKD_DRVR_STATE_BUSY_ERASE:
3541                 return "BUSY_ERASE";
3542         case SKD_DRVR_STATE_BUSY_SANITIZE:
3543                 return "BUSY_SANITIZE";
3544         case SKD_DRVR_STATE_BUSY_IMMINENT:
3545                 return "BUSY_IMMINENT";
3546         case SKD_DRVR_STATE_WAIT_BOOT:
3547                 return "WAIT_BOOT";
3548
3549         default:
3550                 return "???";
3551         }
3552 }
3553
3554 static const char *skd_skreq_state_to_str(enum skd_req_state state)
3555 {
3556         switch (state) {
3557         case SKD_REQ_STATE_IDLE:
3558                 return "IDLE";
3559         case SKD_REQ_STATE_SETUP:
3560                 return "SETUP";
3561         case SKD_REQ_STATE_BUSY:
3562                 return "BUSY";
3563         case SKD_REQ_STATE_COMPLETED:
3564                 return "COMPLETED";
3565         case SKD_REQ_STATE_TIMEOUT:
3566                 return "TIMEOUT";
3567         default:
3568                 return "???";
3569         }
3570 }
3571
3572 static void skd_log_skdev(struct skd_device *skdev, const char *event)
3573 {
3574         dev_dbg(&skdev->pdev->dev, "skdev=%p event='%s'\n", skdev, event);
3575         dev_dbg(&skdev->pdev->dev, "  drive_state=%s(%d) driver_state=%s(%d)\n",
3576                 skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
3577                 skd_skdev_state_to_str(skdev->state), skdev->state);
3578         dev_dbg(&skdev->pdev->dev, "  busy=%d limit=%d dev=%d lowat=%d\n",
3579                 skd_in_flight(skdev), skdev->cur_max_queue_depth,
3580                 skdev->dev_max_queue_depth, skdev->queue_low_water_mark);
3581         dev_dbg(&skdev->pdev->dev, "  cycle=%d cycle_ix=%d\n",
3582                 skdev->skcomp_cycle, skdev->skcomp_ix);
3583 }
3584
3585 static void skd_log_skreq(struct skd_device *skdev,
3586                           struct skd_request_context *skreq, const char *event)
3587 {
3588         struct request *req = blk_mq_rq_from_pdu(skreq);
3589         u32 lba = blk_rq_pos(req);
3590         u32 count = blk_rq_sectors(req);
3591
3592         dev_dbg(&skdev->pdev->dev, "skreq=%p event='%s'\n", skreq, event);
3593         dev_dbg(&skdev->pdev->dev, "  state=%s(%d) id=0x%04x fitmsg=0x%04x\n",
3594                 skd_skreq_state_to_str(skreq->state), skreq->state, skreq->id,
3595                 skreq->fitmsg_id);
3596         dev_dbg(&skdev->pdev->dev, "  sg_dir=%d n_sg=%d\n",
3597                 skreq->data_dir, skreq->n_sg);
3598
3599         dev_dbg(&skdev->pdev->dev,
3600                 "req=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n", req, lba, lba,
3601                 count, count, (int)rq_data_dir(req));
3602 }
3603
3604 /*
3605  *****************************************************************************
3606  * MODULE GLUE
3607  *****************************************************************************
3608  */
3609
3610 static int __init skd_init(void)
3611 {
3612         BUILD_BUG_ON(sizeof(struct fit_completion_entry_v1) != 8);
3613         BUILD_BUG_ON(sizeof(struct fit_comp_error_info) != 32);
3614         BUILD_BUG_ON(sizeof(struct skd_command_header) != 16);
3615         BUILD_BUG_ON(sizeof(struct skd_scsi_request) != 32);
3616         BUILD_BUG_ON(sizeof(struct driver_inquiry_data) != 44);
3617         BUILD_BUG_ON(offsetof(struct skd_msg_buf, fmh) != 0);
3618         BUILD_BUG_ON(offsetof(struct skd_msg_buf, scsi) != 64);
3619         BUILD_BUG_ON(sizeof(struct skd_msg_buf) != SKD_N_FITMSG_BYTES);
3620
3621         switch (skd_isr_type) {
3622         case SKD_IRQ_LEGACY:
3623         case SKD_IRQ_MSI:
3624         case SKD_IRQ_MSIX:
3625                 break;
3626         default:
3627                 pr_err(PFX "skd_isr_type %d invalid, re-set to %d\n",
3628                        skd_isr_type, SKD_IRQ_DEFAULT);
3629                 skd_isr_type = SKD_IRQ_DEFAULT;
3630         }
3631
3632         if (skd_max_queue_depth < 1 ||
3633             skd_max_queue_depth > SKD_MAX_QUEUE_DEPTH) {
3634                 pr_err(PFX "skd_max_queue_depth %d invalid, re-set to %d\n",
3635                        skd_max_queue_depth, SKD_MAX_QUEUE_DEPTH_DEFAULT);
3636                 skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
3637         }
3638
3639         if (skd_max_req_per_msg < 1 ||
3640             skd_max_req_per_msg > SKD_MAX_REQ_PER_MSG) {
3641                 pr_err(PFX "skd_max_req_per_msg %d invalid, re-set to %d\n",
3642                        skd_max_req_per_msg, SKD_MAX_REQ_PER_MSG_DEFAULT);
3643                 skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
3644         }
3645
3646         if (skd_sgs_per_request < 1 || skd_sgs_per_request > 4096) {
3647                 pr_err(PFX "skd_sg_per_request %d invalid, re-set to %d\n",
3648                        skd_sgs_per_request, SKD_N_SG_PER_REQ_DEFAULT);
3649                 skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
3650         }
3651
3652         if (skd_dbg_level < 0 || skd_dbg_level > 2) {
3653                 pr_err(PFX "skd_dbg_level %d invalid, re-set to %d\n",
3654                        skd_dbg_level, 0);
3655                 skd_dbg_level = 0;
3656         }
3657
3658         if (skd_isr_comp_limit < 0) {
3659                 pr_err(PFX "skd_isr_comp_limit %d invalid, set to %d\n",
3660                        skd_isr_comp_limit, 0);
3661                 skd_isr_comp_limit = 0;
3662         }
3663
3664         return pci_register_driver(&skd_driver);
3665 }
3666
3667 static void __exit skd_exit(void)
3668 {
3669         pci_unregister_driver(&skd_driver);
3670
3671         if (skd_major)
3672                 unregister_blkdev(skd_major, DRV_NAME);
3673 }
3674
3675 module_init(skd_init);
3676 module_exit(skd_exit);