treewide: Use fallthrough pseudo-keyword
[linux-block.git] / drivers / block / skd_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for sTec s1120 PCIe SSDs. sTec was acquired in 2013 by HGST and HGST
4  * was acquired by Western Digital in 2012.
5  *
6  * Copyright 2012 sTec, Inc.
7  * Copyright (c) 2017 Western Digital Corporation or its affiliates.
8  */
9
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/slab.h>
15 #include <linux/spinlock.h>
16 #include <linux/blkdev.h>
17 #include <linux/blk-mq.h>
18 #include <linux/sched.h>
19 #include <linux/interrupt.h>
20 #include <linux/compiler.h>
21 #include <linux/workqueue.h>
22 #include <linux/delay.h>
23 #include <linux/time.h>
24 #include <linux/hdreg.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/completion.h>
27 #include <linux/scatterlist.h>
28 #include <linux/version.h>
29 #include <linux/err.h>
30 #include <linux/aer.h>
31 #include <linux/wait.h>
32 #include <linux/stringify.h>
33 #include <scsi/scsi.h>
34 #include <scsi/sg.h>
35 #include <linux/io.h>
36 #include <linux/uaccess.h>
37 #include <asm/unaligned.h>
38
39 #include "skd_s1120.h"
40
41 static int skd_dbg_level;
42 static int skd_isr_comp_limit = 4;
43
44 #define SKD_ASSERT(expr) \
45         do { \
46                 if (unlikely(!(expr))) { \
47                         pr_err("Assertion failed! %s,%s,%s,line=%d\n",  \
48                                # expr, __FILE__, __func__, __LINE__); \
49                 } \
50         } while (0)
51
52 #define DRV_NAME "skd"
53 #define PFX DRV_NAME ": "
54
55 MODULE_LICENSE("GPL");
56
57 MODULE_DESCRIPTION("STEC s1120 PCIe SSD block driver");
58
59 #define PCI_VENDOR_ID_STEC      0x1B39
60 #define PCI_DEVICE_ID_S1120     0x0001
61
62 #define SKD_FUA_NV              (1 << 1)
63 #define SKD_MINORS_PER_DEVICE   16
64
65 #define SKD_MAX_QUEUE_DEPTH     200u
66
67 #define SKD_PAUSE_TIMEOUT       (5 * 1000)
68
69 #define SKD_N_FITMSG_BYTES      (512u)
70 #define SKD_MAX_REQ_PER_MSG     14
71
72 #define SKD_N_SPECIAL_FITMSG_BYTES      (128u)
73
74 /* SG elements are 32 bytes, so we can make this 4096 and still be under the
75  * 128KB limit.  That allows 4096*4K = 16M xfer size
76  */
77 #define SKD_N_SG_PER_REQ_DEFAULT 256u
78
79 #define SKD_N_COMPLETION_ENTRY  256u
80 #define SKD_N_READ_CAP_BYTES    (8u)
81
82 #define SKD_N_INTERNAL_BYTES    (512u)
83
84 #define SKD_SKCOMP_SIZE                                                 \
85         ((sizeof(struct fit_completion_entry_v1) +                      \
86           sizeof(struct fit_comp_error_info)) * SKD_N_COMPLETION_ENTRY)
87
88 /* 5 bits of uniqifier, 0xF800 */
89 #define SKD_ID_TABLE_MASK       (3u << 8u)
90 #define  SKD_ID_RW_REQUEST      (0u << 8u)
91 #define  SKD_ID_INTERNAL        (1u << 8u)
92 #define  SKD_ID_FIT_MSG         (3u << 8u)
93 #define SKD_ID_SLOT_MASK        0x00FFu
94 #define SKD_ID_SLOT_AND_TABLE_MASK 0x03FFu
95
96 #define SKD_N_MAX_SECTORS 2048u
97
98 #define SKD_MAX_RETRIES 2u
99
100 #define SKD_TIMER_SECONDS(seconds) (seconds)
101 #define SKD_TIMER_MINUTES(minutes) ((minutes) * (60))
102
103 #define INQ_STD_NBYTES 36
104
105 enum skd_drvr_state {
106         SKD_DRVR_STATE_LOAD,
107         SKD_DRVR_STATE_IDLE,
108         SKD_DRVR_STATE_BUSY,
109         SKD_DRVR_STATE_STARTING,
110         SKD_DRVR_STATE_ONLINE,
111         SKD_DRVR_STATE_PAUSING,
112         SKD_DRVR_STATE_PAUSED,
113         SKD_DRVR_STATE_RESTARTING,
114         SKD_DRVR_STATE_RESUMING,
115         SKD_DRVR_STATE_STOPPING,
116         SKD_DRVR_STATE_FAULT,
117         SKD_DRVR_STATE_DISAPPEARED,
118         SKD_DRVR_STATE_PROTOCOL_MISMATCH,
119         SKD_DRVR_STATE_BUSY_ERASE,
120         SKD_DRVR_STATE_BUSY_SANITIZE,
121         SKD_DRVR_STATE_BUSY_IMMINENT,
122         SKD_DRVR_STATE_WAIT_BOOT,
123         SKD_DRVR_STATE_SYNCING,
124 };
125
126 #define SKD_WAIT_BOOT_TIMO      SKD_TIMER_SECONDS(90u)
127 #define SKD_STARTING_TIMO       SKD_TIMER_SECONDS(8u)
128 #define SKD_RESTARTING_TIMO     SKD_TIMER_MINUTES(4u)
129 #define SKD_BUSY_TIMO           SKD_TIMER_MINUTES(20u)
130 #define SKD_STARTED_BUSY_TIMO   SKD_TIMER_SECONDS(60u)
131 #define SKD_START_WAIT_SECONDS  90u
132
133 enum skd_req_state {
134         SKD_REQ_STATE_IDLE,
135         SKD_REQ_STATE_SETUP,
136         SKD_REQ_STATE_BUSY,
137         SKD_REQ_STATE_COMPLETED,
138         SKD_REQ_STATE_TIMEOUT,
139 };
140
141 enum skd_check_status_action {
142         SKD_CHECK_STATUS_REPORT_GOOD,
143         SKD_CHECK_STATUS_REPORT_SMART_ALERT,
144         SKD_CHECK_STATUS_REQUEUE_REQUEST,
145         SKD_CHECK_STATUS_REPORT_ERROR,
146         SKD_CHECK_STATUS_BUSY_IMMINENT,
147 };
148
149 struct skd_msg_buf {
150         struct fit_msg_hdr      fmh;
151         struct skd_scsi_request scsi[SKD_MAX_REQ_PER_MSG];
152 };
153
154 struct skd_fitmsg_context {
155         u32 id;
156
157         u32 length;
158
159         struct skd_msg_buf *msg_buf;
160         dma_addr_t mb_dma_address;
161 };
162
163 struct skd_request_context {
164         enum skd_req_state state;
165
166         u16 id;
167         u32 fitmsg_id;
168
169         u8 flush_cmd;
170
171         enum dma_data_direction data_dir;
172         struct scatterlist *sg;
173         u32 n_sg;
174         u32 sg_byte_count;
175
176         struct fit_sg_descriptor *sksg_list;
177         dma_addr_t sksg_dma_address;
178
179         struct fit_completion_entry_v1 completion;
180
181         struct fit_comp_error_info err_info;
182         int retries;
183
184         blk_status_t status;
185 };
186
187 struct skd_special_context {
188         struct skd_request_context req;
189
190         void *data_buf;
191         dma_addr_t db_dma_address;
192
193         struct skd_msg_buf *msg_buf;
194         dma_addr_t mb_dma_address;
195 };
196
197 typedef enum skd_irq_type {
198         SKD_IRQ_LEGACY,
199         SKD_IRQ_MSI,
200         SKD_IRQ_MSIX
201 } skd_irq_type_t;
202
203 #define SKD_MAX_BARS                    2
204
205 struct skd_device {
206         void __iomem *mem_map[SKD_MAX_BARS];
207         resource_size_t mem_phys[SKD_MAX_BARS];
208         u32 mem_size[SKD_MAX_BARS];
209
210         struct skd_msix_entry *msix_entries;
211
212         struct pci_dev *pdev;
213         int pcie_error_reporting_is_enabled;
214
215         spinlock_t lock;
216         struct gendisk *disk;
217         struct blk_mq_tag_set tag_set;
218         struct request_queue *queue;
219         struct skd_fitmsg_context *skmsg;
220         struct device *class_dev;
221         int gendisk_on;
222         int sync_done;
223
224         u32 devno;
225         u32 major;
226         char isr_name[30];
227
228         enum skd_drvr_state state;
229         u32 drive_state;
230
231         u32 cur_max_queue_depth;
232         u32 queue_low_water_mark;
233         u32 dev_max_queue_depth;
234
235         u32 num_fitmsg_context;
236         u32 num_req_context;
237
238         struct skd_fitmsg_context *skmsg_table;
239
240         struct skd_special_context internal_skspcl;
241         u32 read_cap_blocksize;
242         u32 read_cap_last_lba;
243         int read_cap_is_valid;
244         int inquiry_is_valid;
245         u8 inq_serial_num[13];  /*12 chars plus null term */
246
247         u8 skcomp_cycle;
248         u32 skcomp_ix;
249         struct kmem_cache *msgbuf_cache;
250         struct kmem_cache *sglist_cache;
251         struct kmem_cache *databuf_cache;
252         struct fit_completion_entry_v1 *skcomp_table;
253         struct fit_comp_error_info *skerr_table;
254         dma_addr_t cq_dma_address;
255
256         wait_queue_head_t waitq;
257
258         struct timer_list timer;
259         u32 timer_countdown;
260         u32 timer_substate;
261
262         int sgs_per_request;
263         u32 last_mtd;
264
265         u32 proto_ver;
266
267         int dbg_level;
268         u32 connect_time_stamp;
269         int connect_retries;
270 #define SKD_MAX_CONNECT_RETRIES 16
271         u32 drive_jiffies;
272
273         u32 timo_slot;
274
275         struct work_struct start_queue;
276         struct work_struct completion_worker;
277 };
278
279 #define SKD_WRITEL(DEV, VAL, OFF) skd_reg_write32(DEV, VAL, OFF)
280 #define SKD_READL(DEV, OFF)      skd_reg_read32(DEV, OFF)
281 #define SKD_WRITEQ(DEV, VAL, OFF) skd_reg_write64(DEV, VAL, OFF)
282
283 static inline u32 skd_reg_read32(struct skd_device *skdev, u32 offset)
284 {
285         u32 val = readl(skdev->mem_map[1] + offset);
286
287         if (unlikely(skdev->dbg_level >= 2))
288                 dev_dbg(&skdev->pdev->dev, "offset %x = %x\n", offset, val);
289         return val;
290 }
291
292 static inline void skd_reg_write32(struct skd_device *skdev, u32 val,
293                                    u32 offset)
294 {
295         writel(val, skdev->mem_map[1] + offset);
296         if (unlikely(skdev->dbg_level >= 2))
297                 dev_dbg(&skdev->pdev->dev, "offset %x = %x\n", offset, val);
298 }
299
300 static inline void skd_reg_write64(struct skd_device *skdev, u64 val,
301                                    u32 offset)
302 {
303         writeq(val, skdev->mem_map[1] + offset);
304         if (unlikely(skdev->dbg_level >= 2))
305                 dev_dbg(&skdev->pdev->dev, "offset %x = %016llx\n", offset,
306                         val);
307 }
308
309
310 #define SKD_IRQ_DEFAULT SKD_IRQ_MSIX
311 static int skd_isr_type = SKD_IRQ_DEFAULT;
312
313 module_param(skd_isr_type, int, 0444);
314 MODULE_PARM_DESC(skd_isr_type, "Interrupt type capability."
315                  " (0==legacy, 1==MSI, 2==MSI-X, default==1)");
316
317 #define SKD_MAX_REQ_PER_MSG_DEFAULT 1
318 static int skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
319
320 module_param(skd_max_req_per_msg, int, 0444);
321 MODULE_PARM_DESC(skd_max_req_per_msg,
322                  "Maximum SCSI requests packed in a single message."
323                  " (1-" __stringify(SKD_MAX_REQ_PER_MSG) ", default==1)");
324
325 #define SKD_MAX_QUEUE_DEPTH_DEFAULT 64
326 #define SKD_MAX_QUEUE_DEPTH_DEFAULT_STR "64"
327 static int skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
328
329 module_param(skd_max_queue_depth, int, 0444);
330 MODULE_PARM_DESC(skd_max_queue_depth,
331                  "Maximum SCSI requests issued to s1120."
332                  " (1-200, default==" SKD_MAX_QUEUE_DEPTH_DEFAULT_STR ")");
333
334 static int skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
335 module_param(skd_sgs_per_request, int, 0444);
336 MODULE_PARM_DESC(skd_sgs_per_request,
337                  "Maximum SG elements per block request."
338                  " (1-4096, default==256)");
339
340 static int skd_max_pass_thru = 1;
341 module_param(skd_max_pass_thru, int, 0444);
342 MODULE_PARM_DESC(skd_max_pass_thru,
343                  "Maximum SCSI pass-thru at a time. IGNORED");
344
345 module_param(skd_dbg_level, int, 0444);
346 MODULE_PARM_DESC(skd_dbg_level, "s1120 debug level (0,1,2)");
347
348 module_param(skd_isr_comp_limit, int, 0444);
349 MODULE_PARM_DESC(skd_isr_comp_limit, "s1120 isr comp limit (0=none) default=4");
350
351 /* Major device number dynamically assigned. */
352 static u32 skd_major;
353
354 static void skd_destruct(struct skd_device *skdev);
355 static const struct block_device_operations skd_blockdev_ops;
356 static void skd_send_fitmsg(struct skd_device *skdev,
357                             struct skd_fitmsg_context *skmsg);
358 static void skd_send_special_fitmsg(struct skd_device *skdev,
359                                     struct skd_special_context *skspcl);
360 static bool skd_preop_sg_list(struct skd_device *skdev,
361                              struct skd_request_context *skreq);
362 static void skd_postop_sg_list(struct skd_device *skdev,
363                                struct skd_request_context *skreq);
364
365 static void skd_restart_device(struct skd_device *skdev);
366 static int skd_quiesce_dev(struct skd_device *skdev);
367 static int skd_unquiesce_dev(struct skd_device *skdev);
368 static void skd_disable_interrupts(struct skd_device *skdev);
369 static void skd_isr_fwstate(struct skd_device *skdev);
370 static void skd_recover_requests(struct skd_device *skdev);
371 static void skd_soft_reset(struct skd_device *skdev);
372
373 const char *skd_drive_state_to_str(int state);
374 const char *skd_skdev_state_to_str(enum skd_drvr_state state);
375 static void skd_log_skdev(struct skd_device *skdev, const char *event);
376 static void skd_log_skreq(struct skd_device *skdev,
377                           struct skd_request_context *skreq, const char *event);
378
379 /*
380  *****************************************************************************
381  * READ/WRITE REQUESTS
382  *****************************************************************************
383  */
384 static bool skd_inc_in_flight(struct request *rq, void *data, bool reserved)
385 {
386         int *count = data;
387
388         count++;
389         return true;
390 }
391
392 static int skd_in_flight(struct skd_device *skdev)
393 {
394         int count = 0;
395
396         blk_mq_tagset_busy_iter(&skdev->tag_set, skd_inc_in_flight, &count);
397
398         return count;
399 }
400
401 static void
402 skd_prep_rw_cdb(struct skd_scsi_request *scsi_req,
403                 int data_dir, unsigned lba,
404                 unsigned count)
405 {
406         if (data_dir == READ)
407                 scsi_req->cdb[0] = READ_10;
408         else
409                 scsi_req->cdb[0] = WRITE_10;
410
411         scsi_req->cdb[1] = 0;
412         scsi_req->cdb[2] = (lba & 0xff000000) >> 24;
413         scsi_req->cdb[3] = (lba & 0xff0000) >> 16;
414         scsi_req->cdb[4] = (lba & 0xff00) >> 8;
415         scsi_req->cdb[5] = (lba & 0xff);
416         scsi_req->cdb[6] = 0;
417         scsi_req->cdb[7] = (count & 0xff00) >> 8;
418         scsi_req->cdb[8] = count & 0xff;
419         scsi_req->cdb[9] = 0;
420 }
421
422 static void
423 skd_prep_zerosize_flush_cdb(struct skd_scsi_request *scsi_req,
424                             struct skd_request_context *skreq)
425 {
426         skreq->flush_cmd = 1;
427
428         scsi_req->cdb[0] = SYNCHRONIZE_CACHE;
429         scsi_req->cdb[1] = 0;
430         scsi_req->cdb[2] = 0;
431         scsi_req->cdb[3] = 0;
432         scsi_req->cdb[4] = 0;
433         scsi_req->cdb[5] = 0;
434         scsi_req->cdb[6] = 0;
435         scsi_req->cdb[7] = 0;
436         scsi_req->cdb[8] = 0;
437         scsi_req->cdb[9] = 0;
438 }
439
440 /*
441  * Return true if and only if all pending requests should be failed.
442  */
443 static bool skd_fail_all(struct request_queue *q)
444 {
445         struct skd_device *skdev = q->queuedata;
446
447         SKD_ASSERT(skdev->state != SKD_DRVR_STATE_ONLINE);
448
449         skd_log_skdev(skdev, "req_not_online");
450         switch (skdev->state) {
451         case SKD_DRVR_STATE_PAUSING:
452         case SKD_DRVR_STATE_PAUSED:
453         case SKD_DRVR_STATE_STARTING:
454         case SKD_DRVR_STATE_RESTARTING:
455         case SKD_DRVR_STATE_WAIT_BOOT:
456         /* In case of starting, we haven't started the queue,
457          * so we can't get here... but requests are
458          * possibly hanging out waiting for us because we
459          * reported the dev/skd0 already.  They'll wait
460          * forever if connect doesn't complete.
461          * What to do??? delay dev/skd0 ??
462          */
463         case SKD_DRVR_STATE_BUSY:
464         case SKD_DRVR_STATE_BUSY_IMMINENT:
465         case SKD_DRVR_STATE_BUSY_ERASE:
466                 return false;
467
468         case SKD_DRVR_STATE_BUSY_SANITIZE:
469         case SKD_DRVR_STATE_STOPPING:
470         case SKD_DRVR_STATE_SYNCING:
471         case SKD_DRVR_STATE_FAULT:
472         case SKD_DRVR_STATE_DISAPPEARED:
473         default:
474                 return true;
475         }
476 }
477
478 static blk_status_t skd_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
479                                     const struct blk_mq_queue_data *mqd)
480 {
481         struct request *const req = mqd->rq;
482         struct request_queue *const q = req->q;
483         struct skd_device *skdev = q->queuedata;
484         struct skd_fitmsg_context *skmsg;
485         struct fit_msg_hdr *fmh;
486         const u32 tag = blk_mq_unique_tag(req);
487         struct skd_request_context *const skreq = blk_mq_rq_to_pdu(req);
488         struct skd_scsi_request *scsi_req;
489         unsigned long flags = 0;
490         const u32 lba = blk_rq_pos(req);
491         const u32 count = blk_rq_sectors(req);
492         const int data_dir = rq_data_dir(req);
493
494         if (unlikely(skdev->state != SKD_DRVR_STATE_ONLINE))
495                 return skd_fail_all(q) ? BLK_STS_IOERR : BLK_STS_RESOURCE;
496
497         if (!(req->rq_flags & RQF_DONTPREP)) {
498                 skreq->retries = 0;
499                 req->rq_flags |= RQF_DONTPREP;
500         }
501
502         blk_mq_start_request(req);
503
504         WARN_ONCE(tag >= skd_max_queue_depth, "%#x > %#x (nr_requests = %lu)\n",
505                   tag, skd_max_queue_depth, q->nr_requests);
506
507         SKD_ASSERT(skreq->state == SKD_REQ_STATE_IDLE);
508
509         dev_dbg(&skdev->pdev->dev,
510                 "new req=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n", req, lba,
511                 lba, count, count, data_dir);
512
513         skreq->id = tag + SKD_ID_RW_REQUEST;
514         skreq->flush_cmd = 0;
515         skreq->n_sg = 0;
516         skreq->sg_byte_count = 0;
517
518         skreq->fitmsg_id = 0;
519
520         skreq->data_dir = data_dir == READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
521
522         if (req->bio && !skd_preop_sg_list(skdev, skreq)) {
523                 dev_dbg(&skdev->pdev->dev, "error Out\n");
524                 skreq->status = BLK_STS_RESOURCE;
525                 blk_mq_complete_request(req);
526                 return BLK_STS_OK;
527         }
528
529         dma_sync_single_for_device(&skdev->pdev->dev, skreq->sksg_dma_address,
530                                    skreq->n_sg *
531                                    sizeof(struct fit_sg_descriptor),
532                                    DMA_TO_DEVICE);
533
534         /* Either a FIT msg is in progress or we have to start one. */
535         if (skd_max_req_per_msg == 1) {
536                 skmsg = NULL;
537         } else {
538                 spin_lock_irqsave(&skdev->lock, flags);
539                 skmsg = skdev->skmsg;
540         }
541         if (!skmsg) {
542                 skmsg = &skdev->skmsg_table[tag];
543                 skdev->skmsg = skmsg;
544
545                 /* Initialize the FIT msg header */
546                 fmh = &skmsg->msg_buf->fmh;
547                 memset(fmh, 0, sizeof(*fmh));
548                 fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
549                 skmsg->length = sizeof(*fmh);
550         } else {
551                 fmh = &skmsg->msg_buf->fmh;
552         }
553
554         skreq->fitmsg_id = skmsg->id;
555
556         scsi_req = &skmsg->msg_buf->scsi[fmh->num_protocol_cmds_coalesced];
557         memset(scsi_req, 0, sizeof(*scsi_req));
558
559         scsi_req->hdr.tag = skreq->id;
560         scsi_req->hdr.sg_list_dma_address =
561                 cpu_to_be64(skreq->sksg_dma_address);
562
563         if (req_op(req) == REQ_OP_FLUSH) {
564                 skd_prep_zerosize_flush_cdb(scsi_req, skreq);
565                 SKD_ASSERT(skreq->flush_cmd == 1);
566         } else {
567                 skd_prep_rw_cdb(scsi_req, data_dir, lba, count);
568         }
569
570         if (req->cmd_flags & REQ_FUA)
571                 scsi_req->cdb[1] |= SKD_FUA_NV;
572
573         scsi_req->hdr.sg_list_len_bytes = cpu_to_be32(skreq->sg_byte_count);
574
575         /* Complete resource allocations. */
576         skreq->state = SKD_REQ_STATE_BUSY;
577
578         skmsg->length += sizeof(struct skd_scsi_request);
579         fmh->num_protocol_cmds_coalesced++;
580
581         dev_dbg(&skdev->pdev->dev, "req=0x%x busy=%d\n", skreq->id,
582                 skd_in_flight(skdev));
583
584         /*
585          * If the FIT msg buffer is full send it.
586          */
587         if (skd_max_req_per_msg == 1) {
588                 skd_send_fitmsg(skdev, skmsg);
589         } else {
590                 if (mqd->last ||
591                     fmh->num_protocol_cmds_coalesced >= skd_max_req_per_msg) {
592                         skd_send_fitmsg(skdev, skmsg);
593                         skdev->skmsg = NULL;
594                 }
595                 spin_unlock_irqrestore(&skdev->lock, flags);
596         }
597
598         return BLK_STS_OK;
599 }
600
601 static enum blk_eh_timer_return skd_timed_out(struct request *req,
602                                               bool reserved)
603 {
604         struct skd_device *skdev = req->q->queuedata;
605
606         dev_err(&skdev->pdev->dev, "request with tag %#x timed out\n",
607                 blk_mq_unique_tag(req));
608
609         return BLK_EH_RESET_TIMER;
610 }
611
612 static void skd_complete_rq(struct request *req)
613 {
614         struct skd_request_context *skreq = blk_mq_rq_to_pdu(req);
615
616         blk_mq_end_request(req, skreq->status);
617 }
618
619 static bool skd_preop_sg_list(struct skd_device *skdev,
620                              struct skd_request_context *skreq)
621 {
622         struct request *req = blk_mq_rq_from_pdu(skreq);
623         struct scatterlist *sgl = &skreq->sg[0], *sg;
624         int n_sg;
625         int i;
626
627         skreq->sg_byte_count = 0;
628
629         WARN_ON_ONCE(skreq->data_dir != DMA_TO_DEVICE &&
630                      skreq->data_dir != DMA_FROM_DEVICE);
631
632         n_sg = blk_rq_map_sg(skdev->queue, req, sgl);
633         if (n_sg <= 0)
634                 return false;
635
636         /*
637          * Map scatterlist to PCI bus addresses.
638          * Note PCI might change the number of entries.
639          */
640         n_sg = dma_map_sg(&skdev->pdev->dev, sgl, n_sg, skreq->data_dir);
641         if (n_sg <= 0)
642                 return false;
643
644         SKD_ASSERT(n_sg <= skdev->sgs_per_request);
645
646         skreq->n_sg = n_sg;
647
648         for_each_sg(sgl, sg, n_sg, i) {
649                 struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
650                 u32 cnt = sg_dma_len(sg);
651                 uint64_t dma_addr = sg_dma_address(sg);
652
653                 sgd->control = FIT_SGD_CONTROL_NOT_LAST;
654                 sgd->byte_count = cnt;
655                 skreq->sg_byte_count += cnt;
656                 sgd->host_side_addr = dma_addr;
657                 sgd->dev_side_addr = 0;
658         }
659
660         skreq->sksg_list[n_sg - 1].next_desc_ptr = 0LL;
661         skreq->sksg_list[n_sg - 1].control = FIT_SGD_CONTROL_LAST;
662
663         if (unlikely(skdev->dbg_level > 1)) {
664                 dev_dbg(&skdev->pdev->dev,
665                         "skreq=%x sksg_list=%p sksg_dma=%pad\n",
666                         skreq->id, skreq->sksg_list, &skreq->sksg_dma_address);
667                 for (i = 0; i < n_sg; i++) {
668                         struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
669
670                         dev_dbg(&skdev->pdev->dev,
671                                 "  sg[%d] count=%u ctrl=0x%x addr=0x%llx next=0x%llx\n",
672                                 i, sgd->byte_count, sgd->control,
673                                 sgd->host_side_addr, sgd->next_desc_ptr);
674                 }
675         }
676
677         return true;
678 }
679
680 static void skd_postop_sg_list(struct skd_device *skdev,
681                                struct skd_request_context *skreq)
682 {
683         /*
684          * restore the next ptr for next IO request so we
685          * don't have to set it every time.
686          */
687         skreq->sksg_list[skreq->n_sg - 1].next_desc_ptr =
688                 skreq->sksg_dma_address +
689                 ((skreq->n_sg) * sizeof(struct fit_sg_descriptor));
690         dma_unmap_sg(&skdev->pdev->dev, &skreq->sg[0], skreq->n_sg,
691                      skreq->data_dir);
692 }
693
694 /*
695  *****************************************************************************
696  * TIMER
697  *****************************************************************************
698  */
699
700 static void skd_timer_tick_not_online(struct skd_device *skdev);
701
702 static void skd_start_queue(struct work_struct *work)
703 {
704         struct skd_device *skdev = container_of(work, typeof(*skdev),
705                                                 start_queue);
706
707         /*
708          * Although it is safe to call blk_start_queue() from interrupt
709          * context, blk_mq_start_hw_queues() must not be called from
710          * interrupt context.
711          */
712         blk_mq_start_hw_queues(skdev->queue);
713 }
714
715 static void skd_timer_tick(struct timer_list *t)
716 {
717         struct skd_device *skdev = from_timer(skdev, t, timer);
718         unsigned long reqflags;
719         u32 state;
720
721         if (skdev->state == SKD_DRVR_STATE_FAULT)
722                 /* The driver has declared fault, and we want it to
723                  * stay that way until driver is reloaded.
724                  */
725                 return;
726
727         spin_lock_irqsave(&skdev->lock, reqflags);
728
729         state = SKD_READL(skdev, FIT_STATUS);
730         state &= FIT_SR_DRIVE_STATE_MASK;
731         if (state != skdev->drive_state)
732                 skd_isr_fwstate(skdev);
733
734         if (skdev->state != SKD_DRVR_STATE_ONLINE)
735                 skd_timer_tick_not_online(skdev);
736
737         mod_timer(&skdev->timer, (jiffies + HZ));
738
739         spin_unlock_irqrestore(&skdev->lock, reqflags);
740 }
741
742 static void skd_timer_tick_not_online(struct skd_device *skdev)
743 {
744         switch (skdev->state) {
745         case SKD_DRVR_STATE_IDLE:
746         case SKD_DRVR_STATE_LOAD:
747                 break;
748         case SKD_DRVR_STATE_BUSY_SANITIZE:
749                 dev_dbg(&skdev->pdev->dev,
750                         "drive busy sanitize[%x], driver[%x]\n",
751                         skdev->drive_state, skdev->state);
752                 /* If we've been in sanitize for 3 seconds, we figure we're not
753                  * going to get anymore completions, so recover requests now
754                  */
755                 if (skdev->timer_countdown > 0) {
756                         skdev->timer_countdown--;
757                         return;
758                 }
759                 skd_recover_requests(skdev);
760                 break;
761
762         case SKD_DRVR_STATE_BUSY:
763         case SKD_DRVR_STATE_BUSY_IMMINENT:
764         case SKD_DRVR_STATE_BUSY_ERASE:
765                 dev_dbg(&skdev->pdev->dev, "busy[%x], countdown=%d\n",
766                         skdev->state, skdev->timer_countdown);
767                 if (skdev->timer_countdown > 0) {
768                         skdev->timer_countdown--;
769                         return;
770                 }
771                 dev_dbg(&skdev->pdev->dev,
772                         "busy[%x], timedout=%d, restarting device.",
773                         skdev->state, skdev->timer_countdown);
774                 skd_restart_device(skdev);
775                 break;
776
777         case SKD_DRVR_STATE_WAIT_BOOT:
778         case SKD_DRVR_STATE_STARTING:
779                 if (skdev->timer_countdown > 0) {
780                         skdev->timer_countdown--;
781                         return;
782                 }
783                 /* For now, we fault the drive.  Could attempt resets to
784                  * revcover at some point. */
785                 skdev->state = SKD_DRVR_STATE_FAULT;
786
787                 dev_err(&skdev->pdev->dev, "DriveFault Connect Timeout (%x)\n",
788                         skdev->drive_state);
789
790                 /*start the queue so we can respond with error to requests */
791                 /* wakeup anyone waiting for startup complete */
792                 schedule_work(&skdev->start_queue);
793                 skdev->gendisk_on = -1;
794                 wake_up_interruptible(&skdev->waitq);
795                 break;
796
797         case SKD_DRVR_STATE_ONLINE:
798                 /* shouldn't get here. */
799                 break;
800
801         case SKD_DRVR_STATE_PAUSING:
802         case SKD_DRVR_STATE_PAUSED:
803                 break;
804
805         case SKD_DRVR_STATE_RESTARTING:
806                 if (skdev->timer_countdown > 0) {
807                         skdev->timer_countdown--;
808                         return;
809                 }
810                 /* For now, we fault the drive. Could attempt resets to
811                  * revcover at some point. */
812                 skdev->state = SKD_DRVR_STATE_FAULT;
813                 dev_err(&skdev->pdev->dev,
814                         "DriveFault Reconnect Timeout (%x)\n",
815                         skdev->drive_state);
816
817                 /*
818                  * Recovering does two things:
819                  * 1. completes IO with error
820                  * 2. reclaims dma resources
821                  * When is it safe to recover requests?
822                  * - if the drive state is faulted
823                  * - if the state is still soft reset after out timeout
824                  * - if the drive registers are dead (state = FF)
825                  * If it is "unsafe", we still need to recover, so we will
826                  * disable pci bus mastering and disable our interrupts.
827                  */
828
829                 if ((skdev->drive_state == FIT_SR_DRIVE_SOFT_RESET) ||
830                     (skdev->drive_state == FIT_SR_DRIVE_FAULT) ||
831                     (skdev->drive_state == FIT_SR_DRIVE_STATE_MASK))
832                         /* It never came out of soft reset. Try to
833                          * recover the requests and then let them
834                          * fail. This is to mitigate hung processes. */
835                         skd_recover_requests(skdev);
836                 else {
837                         dev_err(&skdev->pdev->dev, "Disable BusMaster (%x)\n",
838                                 skdev->drive_state);
839                         pci_disable_device(skdev->pdev);
840                         skd_disable_interrupts(skdev);
841                         skd_recover_requests(skdev);
842                 }
843
844                 /*start the queue so we can respond with error to requests */
845                 /* wakeup anyone waiting for startup complete */
846                 schedule_work(&skdev->start_queue);
847                 skdev->gendisk_on = -1;
848                 wake_up_interruptible(&skdev->waitq);
849                 break;
850
851         case SKD_DRVR_STATE_RESUMING:
852         case SKD_DRVR_STATE_STOPPING:
853         case SKD_DRVR_STATE_SYNCING:
854         case SKD_DRVR_STATE_FAULT:
855         case SKD_DRVR_STATE_DISAPPEARED:
856         default:
857                 break;
858         }
859 }
860
861 static int skd_start_timer(struct skd_device *skdev)
862 {
863         int rc;
864
865         timer_setup(&skdev->timer, skd_timer_tick, 0);
866
867         rc = mod_timer(&skdev->timer, (jiffies + HZ));
868         if (rc)
869                 dev_err(&skdev->pdev->dev, "failed to start timer %d\n", rc);
870         return rc;
871 }
872
873 static void skd_kill_timer(struct skd_device *skdev)
874 {
875         del_timer_sync(&skdev->timer);
876 }
877
878 /*
879  *****************************************************************************
880  * INTERNAL REQUESTS -- generated by driver itself
881  *****************************************************************************
882  */
883
884 static int skd_format_internal_skspcl(struct skd_device *skdev)
885 {
886         struct skd_special_context *skspcl = &skdev->internal_skspcl;
887         struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
888         struct fit_msg_hdr *fmh;
889         uint64_t dma_address;
890         struct skd_scsi_request *scsi;
891
892         fmh = &skspcl->msg_buf->fmh;
893         fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
894         fmh->num_protocol_cmds_coalesced = 1;
895
896         scsi = &skspcl->msg_buf->scsi[0];
897         memset(scsi, 0, sizeof(*scsi));
898         dma_address = skspcl->req.sksg_dma_address;
899         scsi->hdr.sg_list_dma_address = cpu_to_be64(dma_address);
900         skspcl->req.n_sg = 1;
901         sgd->control = FIT_SGD_CONTROL_LAST;
902         sgd->byte_count = 0;
903         sgd->host_side_addr = skspcl->db_dma_address;
904         sgd->dev_side_addr = 0;
905         sgd->next_desc_ptr = 0LL;
906
907         return 1;
908 }
909
910 #define WR_BUF_SIZE SKD_N_INTERNAL_BYTES
911
912 static void skd_send_internal_skspcl(struct skd_device *skdev,
913                                      struct skd_special_context *skspcl,
914                                      u8 opcode)
915 {
916         struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
917         struct skd_scsi_request *scsi;
918         unsigned char *buf = skspcl->data_buf;
919         int i;
920
921         if (skspcl->req.state != SKD_REQ_STATE_IDLE)
922                 /*
923                  * A refresh is already in progress.
924                  * Just wait for it to finish.
925                  */
926                 return;
927
928         skspcl->req.state = SKD_REQ_STATE_BUSY;
929
930         scsi = &skspcl->msg_buf->scsi[0];
931         scsi->hdr.tag = skspcl->req.id;
932
933         memset(scsi->cdb, 0, sizeof(scsi->cdb));
934
935         switch (opcode) {
936         case TEST_UNIT_READY:
937                 scsi->cdb[0] = TEST_UNIT_READY;
938                 sgd->byte_count = 0;
939                 scsi->hdr.sg_list_len_bytes = 0;
940                 break;
941
942         case READ_CAPACITY:
943                 scsi->cdb[0] = READ_CAPACITY;
944                 sgd->byte_count = SKD_N_READ_CAP_BYTES;
945                 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
946                 break;
947
948         case INQUIRY:
949                 scsi->cdb[0] = INQUIRY;
950                 scsi->cdb[1] = 0x01;    /* evpd */
951                 scsi->cdb[2] = 0x80;    /* serial number page */
952                 scsi->cdb[4] = 0x10;
953                 sgd->byte_count = 16;
954                 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
955                 break;
956
957         case SYNCHRONIZE_CACHE:
958                 scsi->cdb[0] = SYNCHRONIZE_CACHE;
959                 sgd->byte_count = 0;
960                 scsi->hdr.sg_list_len_bytes = 0;
961                 break;
962
963         case WRITE_BUFFER:
964                 scsi->cdb[0] = WRITE_BUFFER;
965                 scsi->cdb[1] = 0x02;
966                 scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
967                 scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
968                 sgd->byte_count = WR_BUF_SIZE;
969                 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
970                 /* fill incrementing byte pattern */
971                 for (i = 0; i < sgd->byte_count; i++)
972                         buf[i] = i & 0xFF;
973                 break;
974
975         case READ_BUFFER:
976                 scsi->cdb[0] = READ_BUFFER;
977                 scsi->cdb[1] = 0x02;
978                 scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
979                 scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
980                 sgd->byte_count = WR_BUF_SIZE;
981                 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
982                 memset(skspcl->data_buf, 0, sgd->byte_count);
983                 break;
984
985         default:
986                 SKD_ASSERT("Don't know what to send");
987                 return;
988
989         }
990         skd_send_special_fitmsg(skdev, skspcl);
991 }
992
993 static void skd_refresh_device_data(struct skd_device *skdev)
994 {
995         struct skd_special_context *skspcl = &skdev->internal_skspcl;
996
997         skd_send_internal_skspcl(skdev, skspcl, TEST_UNIT_READY);
998 }
999
1000 static int skd_chk_read_buf(struct skd_device *skdev,
1001                             struct skd_special_context *skspcl)
1002 {
1003         unsigned char *buf = skspcl->data_buf;
1004         int i;
1005
1006         /* check for incrementing byte pattern */
1007         for (i = 0; i < WR_BUF_SIZE; i++)
1008                 if (buf[i] != (i & 0xFF))
1009                         return 1;
1010
1011         return 0;
1012 }
1013
1014 static void skd_log_check_status(struct skd_device *skdev, u8 status, u8 key,
1015                                  u8 code, u8 qual, u8 fruc)
1016 {
1017         /* If the check condition is of special interest, log a message */
1018         if ((status == SAM_STAT_CHECK_CONDITION) && (key == 0x02)
1019             && (code == 0x04) && (qual == 0x06)) {
1020                 dev_err(&skdev->pdev->dev,
1021                         "*** LOST_WRITE_DATA ERROR *** key/asc/ascq/fruc %02x/%02x/%02x/%02x\n",
1022                         key, code, qual, fruc);
1023         }
1024 }
1025
1026 static void skd_complete_internal(struct skd_device *skdev,
1027                                   struct fit_completion_entry_v1 *skcomp,
1028                                   struct fit_comp_error_info *skerr,
1029                                   struct skd_special_context *skspcl)
1030 {
1031         u8 *buf = skspcl->data_buf;
1032         u8 status;
1033         int i;
1034         struct skd_scsi_request *scsi = &skspcl->msg_buf->scsi[0];
1035
1036         lockdep_assert_held(&skdev->lock);
1037
1038         SKD_ASSERT(skspcl == &skdev->internal_skspcl);
1039
1040         dev_dbg(&skdev->pdev->dev, "complete internal %x\n", scsi->cdb[0]);
1041
1042         dma_sync_single_for_cpu(&skdev->pdev->dev,
1043                                 skspcl->db_dma_address,
1044                                 skspcl->req.sksg_list[0].byte_count,
1045                                 DMA_BIDIRECTIONAL);
1046
1047         skspcl->req.completion = *skcomp;
1048         skspcl->req.state = SKD_REQ_STATE_IDLE;
1049
1050         status = skspcl->req.completion.status;
1051
1052         skd_log_check_status(skdev, status, skerr->key, skerr->code,
1053                              skerr->qual, skerr->fruc);
1054
1055         switch (scsi->cdb[0]) {
1056         case TEST_UNIT_READY:
1057                 if (status == SAM_STAT_GOOD)
1058                         skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
1059                 else if ((status == SAM_STAT_CHECK_CONDITION) &&
1060                          (skerr->key == MEDIUM_ERROR))
1061                         skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
1062                 else {
1063                         if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1064                                 dev_dbg(&skdev->pdev->dev,
1065                                         "TUR failed, don't send anymore state 0x%x\n",
1066                                         skdev->state);
1067                                 return;
1068                         }
1069                         dev_dbg(&skdev->pdev->dev,
1070                                 "**** TUR failed, retry skerr\n");
1071                         skd_send_internal_skspcl(skdev, skspcl,
1072                                                  TEST_UNIT_READY);
1073                 }
1074                 break;
1075
1076         case WRITE_BUFFER:
1077                 if (status == SAM_STAT_GOOD)
1078                         skd_send_internal_skspcl(skdev, skspcl, READ_BUFFER);
1079                 else {
1080                         if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1081                                 dev_dbg(&skdev->pdev->dev,
1082                                         "write buffer failed, don't send anymore state 0x%x\n",
1083                                         skdev->state);
1084                                 return;
1085                         }
1086                         dev_dbg(&skdev->pdev->dev,
1087                                 "**** write buffer failed, retry skerr\n");
1088                         skd_send_internal_skspcl(skdev, skspcl,
1089                                                  TEST_UNIT_READY);
1090                 }
1091                 break;
1092
1093         case READ_BUFFER:
1094                 if (status == SAM_STAT_GOOD) {
1095                         if (skd_chk_read_buf(skdev, skspcl) == 0)
1096                                 skd_send_internal_skspcl(skdev, skspcl,
1097                                                          READ_CAPACITY);
1098                         else {
1099                                 dev_err(&skdev->pdev->dev,
1100                                         "*** W/R Buffer mismatch %d ***\n",
1101                                         skdev->connect_retries);
1102                                 if (skdev->connect_retries <
1103                                     SKD_MAX_CONNECT_RETRIES) {
1104                                         skdev->connect_retries++;
1105                                         skd_soft_reset(skdev);
1106                                 } else {
1107                                         dev_err(&skdev->pdev->dev,
1108                                                 "W/R Buffer Connect Error\n");
1109                                         return;
1110                                 }
1111                         }
1112
1113                 } else {
1114                         if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1115                                 dev_dbg(&skdev->pdev->dev,
1116                                         "read buffer failed, don't send anymore state 0x%x\n",
1117                                         skdev->state);
1118                                 return;
1119                         }
1120                         dev_dbg(&skdev->pdev->dev,
1121                                 "**** read buffer failed, retry skerr\n");
1122                         skd_send_internal_skspcl(skdev, skspcl,
1123                                                  TEST_UNIT_READY);
1124                 }
1125                 break;
1126
1127         case READ_CAPACITY:
1128                 skdev->read_cap_is_valid = 0;
1129                 if (status == SAM_STAT_GOOD) {
1130                         skdev->read_cap_last_lba =
1131                                 (buf[0] << 24) | (buf[1] << 16) |
1132                                 (buf[2] << 8) | buf[3];
1133                         skdev->read_cap_blocksize =
1134                                 (buf[4] << 24) | (buf[5] << 16) |
1135                                 (buf[6] << 8) | buf[7];
1136
1137                         dev_dbg(&skdev->pdev->dev, "last lba %d, bs %d\n",
1138                                 skdev->read_cap_last_lba,
1139                                 skdev->read_cap_blocksize);
1140
1141                         set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
1142
1143                         skdev->read_cap_is_valid = 1;
1144
1145                         skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
1146                 } else if ((status == SAM_STAT_CHECK_CONDITION) &&
1147                            (skerr->key == MEDIUM_ERROR)) {
1148                         skdev->read_cap_last_lba = ~0;
1149                         set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
1150                         dev_dbg(&skdev->pdev->dev, "**** MEDIUM ERROR caused READCAP to fail, ignore failure and continue to inquiry\n");
1151                         skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
1152                 } else {
1153                         dev_dbg(&skdev->pdev->dev, "**** READCAP failed, retry TUR\n");
1154                         skd_send_internal_skspcl(skdev, skspcl,
1155                                                  TEST_UNIT_READY);
1156                 }
1157                 break;
1158
1159         case INQUIRY:
1160                 skdev->inquiry_is_valid = 0;
1161                 if (status == SAM_STAT_GOOD) {
1162                         skdev->inquiry_is_valid = 1;
1163
1164                         for (i = 0; i < 12; i++)
1165                                 skdev->inq_serial_num[i] = buf[i + 4];
1166                         skdev->inq_serial_num[12] = 0;
1167                 }
1168
1169                 if (skd_unquiesce_dev(skdev) < 0)
1170                         dev_dbg(&skdev->pdev->dev, "**** failed, to ONLINE device\n");
1171                  /* connection is complete */
1172                 skdev->connect_retries = 0;
1173                 break;
1174
1175         case SYNCHRONIZE_CACHE:
1176                 if (status == SAM_STAT_GOOD)
1177                         skdev->sync_done = 1;
1178                 else
1179                         skdev->sync_done = -1;
1180                 wake_up_interruptible(&skdev->waitq);
1181                 break;
1182
1183         default:
1184                 SKD_ASSERT("we didn't send this");
1185         }
1186 }
1187
1188 /*
1189  *****************************************************************************
1190  * FIT MESSAGES
1191  *****************************************************************************
1192  */
1193
1194 static void skd_send_fitmsg(struct skd_device *skdev,
1195                             struct skd_fitmsg_context *skmsg)
1196 {
1197         u64 qcmd;
1198
1199         dev_dbg(&skdev->pdev->dev, "dma address %pad, busy=%d\n",
1200                 &skmsg->mb_dma_address, skd_in_flight(skdev));
1201         dev_dbg(&skdev->pdev->dev, "msg_buf %p\n", skmsg->msg_buf);
1202
1203         qcmd = skmsg->mb_dma_address;
1204         qcmd |= FIT_QCMD_QID_NORMAL;
1205
1206         if (unlikely(skdev->dbg_level > 1)) {
1207                 u8 *bp = (u8 *)skmsg->msg_buf;
1208                 int i;
1209                 for (i = 0; i < skmsg->length; i += 8) {
1210                         dev_dbg(&skdev->pdev->dev, "msg[%2d] %8ph\n", i,
1211                                 &bp[i]);
1212                         if (i == 0)
1213                                 i = 64 - 8;
1214                 }
1215         }
1216
1217         if (skmsg->length > 256)
1218                 qcmd |= FIT_QCMD_MSGSIZE_512;
1219         else if (skmsg->length > 128)
1220                 qcmd |= FIT_QCMD_MSGSIZE_256;
1221         else if (skmsg->length > 64)
1222                 qcmd |= FIT_QCMD_MSGSIZE_128;
1223         else
1224                 /*
1225                  * This makes no sense because the FIT msg header is
1226                  * 64 bytes. If the msg is only 64 bytes long it has
1227                  * no payload.
1228                  */
1229                 qcmd |= FIT_QCMD_MSGSIZE_64;
1230
1231         dma_sync_single_for_device(&skdev->pdev->dev, skmsg->mb_dma_address,
1232                                    skmsg->length, DMA_TO_DEVICE);
1233
1234         /* Make sure skd_msg_buf is written before the doorbell is triggered. */
1235         smp_wmb();
1236
1237         SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
1238 }
1239
1240 static void skd_send_special_fitmsg(struct skd_device *skdev,
1241                                     struct skd_special_context *skspcl)
1242 {
1243         u64 qcmd;
1244
1245         WARN_ON_ONCE(skspcl->req.n_sg != 1);
1246
1247         if (unlikely(skdev->dbg_level > 1)) {
1248                 u8 *bp = (u8 *)skspcl->msg_buf;
1249                 int i;
1250
1251                 for (i = 0; i < SKD_N_SPECIAL_FITMSG_BYTES; i += 8) {
1252                         dev_dbg(&skdev->pdev->dev, " spcl[%2d] %8ph\n", i,
1253                                 &bp[i]);
1254                         if (i == 0)
1255                                 i = 64 - 8;
1256                 }
1257
1258                 dev_dbg(&skdev->pdev->dev,
1259                         "skspcl=%p id=%04x sksg_list=%p sksg_dma=%pad\n",
1260                         skspcl, skspcl->req.id, skspcl->req.sksg_list,
1261                         &skspcl->req.sksg_dma_address);
1262                 for (i = 0; i < skspcl->req.n_sg; i++) {
1263                         struct fit_sg_descriptor *sgd =
1264                                 &skspcl->req.sksg_list[i];
1265
1266                         dev_dbg(&skdev->pdev->dev,
1267                                 "  sg[%d] count=%u ctrl=0x%x addr=0x%llx next=0x%llx\n",
1268                                 i, sgd->byte_count, sgd->control,
1269                                 sgd->host_side_addr, sgd->next_desc_ptr);
1270                 }
1271         }
1272
1273         /*
1274          * Special FIT msgs are always 128 bytes: a 64-byte FIT hdr
1275          * and one 64-byte SSDI command.
1276          */
1277         qcmd = skspcl->mb_dma_address;
1278         qcmd |= FIT_QCMD_QID_NORMAL + FIT_QCMD_MSGSIZE_128;
1279
1280         dma_sync_single_for_device(&skdev->pdev->dev, skspcl->mb_dma_address,
1281                                    SKD_N_SPECIAL_FITMSG_BYTES, DMA_TO_DEVICE);
1282         dma_sync_single_for_device(&skdev->pdev->dev,
1283                                    skspcl->req.sksg_dma_address,
1284                                    1 * sizeof(struct fit_sg_descriptor),
1285                                    DMA_TO_DEVICE);
1286         dma_sync_single_for_device(&skdev->pdev->dev,
1287                                    skspcl->db_dma_address,
1288                                    skspcl->req.sksg_list[0].byte_count,
1289                                    DMA_BIDIRECTIONAL);
1290
1291         /* Make sure skd_msg_buf is written before the doorbell is triggered. */
1292         smp_wmb();
1293
1294         SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
1295 }
1296
1297 /*
1298  *****************************************************************************
1299  * COMPLETION QUEUE
1300  *****************************************************************************
1301  */
1302
1303 static void skd_complete_other(struct skd_device *skdev,
1304                                struct fit_completion_entry_v1 *skcomp,
1305                                struct fit_comp_error_info *skerr);
1306
1307 struct sns_info {
1308         u8 type;
1309         u8 stat;
1310         u8 key;
1311         u8 asc;
1312         u8 ascq;
1313         u8 mask;
1314         enum skd_check_status_action action;
1315 };
1316
1317 static struct sns_info skd_chkstat_table[] = {
1318         /* Good */
1319         { 0x70, 0x02, RECOVERED_ERROR, 0,    0,    0x1c,
1320           SKD_CHECK_STATUS_REPORT_GOOD },
1321
1322         /* Smart alerts */
1323         { 0x70, 0x02, NO_SENSE,        0x0B, 0x00, 0x1E,        /* warnings */
1324           SKD_CHECK_STATUS_REPORT_SMART_ALERT },
1325         { 0x70, 0x02, NO_SENSE,        0x5D, 0x00, 0x1E,        /* thresholds */
1326           SKD_CHECK_STATUS_REPORT_SMART_ALERT },
1327         { 0x70, 0x02, RECOVERED_ERROR, 0x0B, 0x01, 0x1F,        /* temperature over trigger */
1328           SKD_CHECK_STATUS_REPORT_SMART_ALERT },
1329
1330         /* Retry (with limits) */
1331         { 0x70, 0x02, 0x0B,            0,    0,    0x1C,        /* This one is for DMA ERROR */
1332           SKD_CHECK_STATUS_REQUEUE_REQUEST },
1333         { 0x70, 0x02, 0x06,            0x0B, 0x00, 0x1E,        /* warnings */
1334           SKD_CHECK_STATUS_REQUEUE_REQUEST },
1335         { 0x70, 0x02, 0x06,            0x5D, 0x00, 0x1E,        /* thresholds */
1336           SKD_CHECK_STATUS_REQUEUE_REQUEST },
1337         { 0x70, 0x02, 0x06,            0x80, 0x30, 0x1F,        /* backup power */
1338           SKD_CHECK_STATUS_REQUEUE_REQUEST },
1339
1340         /* Busy (or about to be) */
1341         { 0x70, 0x02, 0x06,            0x3f, 0x01, 0x1F, /* fw changed */
1342           SKD_CHECK_STATUS_BUSY_IMMINENT },
1343 };
1344
1345 /*
1346  * Look up status and sense data to decide how to handle the error
1347  * from the device.
1348  * mask says which fields must match e.g., mask=0x18 means check
1349  * type and stat, ignore key, asc, ascq.
1350  */
1351
1352 static enum skd_check_status_action
1353 skd_check_status(struct skd_device *skdev,
1354                  u8 cmp_status, struct fit_comp_error_info *skerr)
1355 {
1356         int i;
1357
1358         dev_err(&skdev->pdev->dev, "key/asc/ascq/fruc %02x/%02x/%02x/%02x\n",
1359                 skerr->key, skerr->code, skerr->qual, skerr->fruc);
1360
1361         dev_dbg(&skdev->pdev->dev,
1362                 "stat: t=%02x stat=%02x k=%02x c=%02x q=%02x fruc=%02x\n",
1363                 skerr->type, cmp_status, skerr->key, skerr->code, skerr->qual,
1364                 skerr->fruc);
1365
1366         /* Does the info match an entry in the good category? */
1367         for (i = 0; i < ARRAY_SIZE(skd_chkstat_table); i++) {
1368                 struct sns_info *sns = &skd_chkstat_table[i];
1369
1370                 if (sns->mask & 0x10)
1371                         if (skerr->type != sns->type)
1372                                 continue;
1373
1374                 if (sns->mask & 0x08)
1375                         if (cmp_status != sns->stat)
1376                                 continue;
1377
1378                 if (sns->mask & 0x04)
1379                         if (skerr->key != sns->key)
1380                                 continue;
1381
1382                 if (sns->mask & 0x02)
1383                         if (skerr->code != sns->asc)
1384                                 continue;
1385
1386                 if (sns->mask & 0x01)
1387                         if (skerr->qual != sns->ascq)
1388                                 continue;
1389
1390                 if (sns->action == SKD_CHECK_STATUS_REPORT_SMART_ALERT) {
1391                         dev_err(&skdev->pdev->dev,
1392                                 "SMART Alert: sense key/asc/ascq %02x/%02x/%02x\n",
1393                                 skerr->key, skerr->code, skerr->qual);
1394                 }
1395                 return sns->action;
1396         }
1397
1398         /* No other match, so nonzero status means error,
1399          * zero status means good
1400          */
1401         if (cmp_status) {
1402                 dev_dbg(&skdev->pdev->dev, "status check: error\n");
1403                 return SKD_CHECK_STATUS_REPORT_ERROR;
1404         }
1405
1406         dev_dbg(&skdev->pdev->dev, "status check good default\n");
1407         return SKD_CHECK_STATUS_REPORT_GOOD;
1408 }
1409
1410 static void skd_resolve_req_exception(struct skd_device *skdev,
1411                                       struct skd_request_context *skreq,
1412                                       struct request *req)
1413 {
1414         u8 cmp_status = skreq->completion.status;
1415
1416         switch (skd_check_status(skdev, cmp_status, &skreq->err_info)) {
1417         case SKD_CHECK_STATUS_REPORT_GOOD:
1418         case SKD_CHECK_STATUS_REPORT_SMART_ALERT:
1419                 skreq->status = BLK_STS_OK;
1420                 if (likely(!blk_should_fake_timeout(req->q)))
1421                         blk_mq_complete_request(req);
1422                 break;
1423
1424         case SKD_CHECK_STATUS_BUSY_IMMINENT:
1425                 skd_log_skreq(skdev, skreq, "retry(busy)");
1426                 blk_mq_requeue_request(req, true);
1427                 dev_info(&skdev->pdev->dev, "drive BUSY imminent\n");
1428                 skdev->state = SKD_DRVR_STATE_BUSY_IMMINENT;
1429                 skdev->timer_countdown = SKD_TIMER_MINUTES(20);
1430                 skd_quiesce_dev(skdev);
1431                 break;
1432
1433         case SKD_CHECK_STATUS_REQUEUE_REQUEST:
1434                 if (++skreq->retries < SKD_MAX_RETRIES) {
1435                         skd_log_skreq(skdev, skreq, "retry");
1436                         blk_mq_requeue_request(req, true);
1437                         break;
1438                 }
1439                 fallthrough;
1440
1441         case SKD_CHECK_STATUS_REPORT_ERROR:
1442         default:
1443                 skreq->status = BLK_STS_IOERR;
1444                 if (likely(!blk_should_fake_timeout(req->q)))
1445                         blk_mq_complete_request(req);
1446                 break;
1447         }
1448 }
1449
1450 static void skd_release_skreq(struct skd_device *skdev,
1451                               struct skd_request_context *skreq)
1452 {
1453         /*
1454          * Reclaim the skd_request_context
1455          */
1456         skreq->state = SKD_REQ_STATE_IDLE;
1457 }
1458
1459 static int skd_isr_completion_posted(struct skd_device *skdev,
1460                                         int limit, int *enqueued)
1461 {
1462         struct fit_completion_entry_v1 *skcmp;
1463         struct fit_comp_error_info *skerr;
1464         u16 req_id;
1465         u32 tag;
1466         u16 hwq = 0;
1467         struct request *rq;
1468         struct skd_request_context *skreq;
1469         u16 cmp_cntxt;
1470         u8 cmp_status;
1471         u8 cmp_cycle;
1472         u32 cmp_bytes;
1473         int rc = 0;
1474         int processed = 0;
1475
1476         lockdep_assert_held(&skdev->lock);
1477
1478         for (;; ) {
1479                 SKD_ASSERT(skdev->skcomp_ix < SKD_N_COMPLETION_ENTRY);
1480
1481                 skcmp = &skdev->skcomp_table[skdev->skcomp_ix];
1482                 cmp_cycle = skcmp->cycle;
1483                 cmp_cntxt = skcmp->tag;
1484                 cmp_status = skcmp->status;
1485                 cmp_bytes = be32_to_cpu(skcmp->num_returned_bytes);
1486
1487                 skerr = &skdev->skerr_table[skdev->skcomp_ix];
1488
1489                 dev_dbg(&skdev->pdev->dev,
1490                         "cycle=%d ix=%d got cycle=%d cmdctxt=0x%x stat=%d busy=%d rbytes=0x%x proto=%d\n",
1491                         skdev->skcomp_cycle, skdev->skcomp_ix, cmp_cycle,
1492                         cmp_cntxt, cmp_status, skd_in_flight(skdev),
1493                         cmp_bytes, skdev->proto_ver);
1494
1495                 if (cmp_cycle != skdev->skcomp_cycle) {
1496                         dev_dbg(&skdev->pdev->dev, "end of completions\n");
1497                         break;
1498                 }
1499                 /*
1500                  * Update the completion queue head index and possibly
1501                  * the completion cycle count. 8-bit wrap-around.
1502                  */
1503                 skdev->skcomp_ix++;
1504                 if (skdev->skcomp_ix >= SKD_N_COMPLETION_ENTRY) {
1505                         skdev->skcomp_ix = 0;
1506                         skdev->skcomp_cycle++;
1507                 }
1508
1509                 /*
1510                  * The command context is a unique 32-bit ID. The low order
1511                  * bits help locate the request. The request is usually a
1512                  * r/w request (see skd_start() above) or a special request.
1513                  */
1514                 req_id = cmp_cntxt;
1515                 tag = req_id & SKD_ID_SLOT_AND_TABLE_MASK;
1516
1517                 /* Is this other than a r/w request? */
1518                 if (tag >= skdev->num_req_context) {
1519                         /*
1520                          * This is not a completion for a r/w request.
1521                          */
1522                         WARN_ON_ONCE(blk_mq_tag_to_rq(skdev->tag_set.tags[hwq],
1523                                                       tag));
1524                         skd_complete_other(skdev, skcmp, skerr);
1525                         continue;
1526                 }
1527
1528                 rq = blk_mq_tag_to_rq(skdev->tag_set.tags[hwq], tag);
1529                 if (WARN(!rq, "No request for tag %#x -> %#x\n", cmp_cntxt,
1530                          tag))
1531                         continue;
1532                 skreq = blk_mq_rq_to_pdu(rq);
1533
1534                 /*
1535                  * Make sure the request ID for the slot matches.
1536                  */
1537                 if (skreq->id != req_id) {
1538                         dev_err(&skdev->pdev->dev,
1539                                 "Completion mismatch comp_id=0x%04x skreq=0x%04x new=0x%04x\n",
1540                                 req_id, skreq->id, cmp_cntxt);
1541
1542                         continue;
1543                 }
1544
1545                 SKD_ASSERT(skreq->state == SKD_REQ_STATE_BUSY);
1546
1547                 skreq->completion = *skcmp;
1548                 if (unlikely(cmp_status == SAM_STAT_CHECK_CONDITION)) {
1549                         skreq->err_info = *skerr;
1550                         skd_log_check_status(skdev, cmp_status, skerr->key,
1551                                              skerr->code, skerr->qual,
1552                                              skerr->fruc);
1553                 }
1554                 /* Release DMA resources for the request. */
1555                 if (skreq->n_sg > 0)
1556                         skd_postop_sg_list(skdev, skreq);
1557
1558                 skd_release_skreq(skdev, skreq);
1559
1560                 /*
1561                  * Capture the outcome and post it back to the native request.
1562                  */
1563                 if (likely(cmp_status == SAM_STAT_GOOD)) {
1564                         skreq->status = BLK_STS_OK;
1565                         if (likely(!blk_should_fake_timeout(rq->q)))
1566                                 blk_mq_complete_request(rq);
1567                 } else {
1568                         skd_resolve_req_exception(skdev, skreq, rq);
1569                 }
1570
1571                 /* skd_isr_comp_limit equal zero means no limit */
1572                 if (limit) {
1573                         if (++processed >= limit) {
1574                                 rc = 1;
1575                                 break;
1576                         }
1577                 }
1578         }
1579
1580         if (skdev->state == SKD_DRVR_STATE_PAUSING &&
1581             skd_in_flight(skdev) == 0) {
1582                 skdev->state = SKD_DRVR_STATE_PAUSED;
1583                 wake_up_interruptible(&skdev->waitq);
1584         }
1585
1586         return rc;
1587 }
1588
1589 static void skd_complete_other(struct skd_device *skdev,
1590                                struct fit_completion_entry_v1 *skcomp,
1591                                struct fit_comp_error_info *skerr)
1592 {
1593         u32 req_id = 0;
1594         u32 req_table;
1595         u32 req_slot;
1596         struct skd_special_context *skspcl;
1597
1598         lockdep_assert_held(&skdev->lock);
1599
1600         req_id = skcomp->tag;
1601         req_table = req_id & SKD_ID_TABLE_MASK;
1602         req_slot = req_id & SKD_ID_SLOT_MASK;
1603
1604         dev_dbg(&skdev->pdev->dev, "table=0x%x id=0x%x slot=%d\n", req_table,
1605                 req_id, req_slot);
1606
1607         /*
1608          * Based on the request id, determine how to dispatch this completion.
1609          * This swich/case is finding the good cases and forwarding the
1610          * completion entry. Errors are reported below the switch.
1611          */
1612         switch (req_table) {
1613         case SKD_ID_RW_REQUEST:
1614                 /*
1615                  * The caller, skd_isr_completion_posted() above,
1616                  * handles r/w requests. The only way we get here
1617                  * is if the req_slot is out of bounds.
1618                  */
1619                 break;
1620
1621         case SKD_ID_INTERNAL:
1622                 if (req_slot == 0) {
1623                         skspcl = &skdev->internal_skspcl;
1624                         if (skspcl->req.id == req_id &&
1625                             skspcl->req.state == SKD_REQ_STATE_BUSY) {
1626                                 skd_complete_internal(skdev,
1627                                                       skcomp, skerr, skspcl);
1628                                 return;
1629                         }
1630                 }
1631                 break;
1632
1633         case SKD_ID_FIT_MSG:
1634                 /*
1635                  * These id's should never appear in a completion record.
1636                  */
1637                 break;
1638
1639         default:
1640                 /*
1641                  * These id's should never appear anywhere;
1642                  */
1643                 break;
1644         }
1645
1646         /*
1647          * If we get here it is a bad or stale id.
1648          */
1649 }
1650
1651 static void skd_reset_skcomp(struct skd_device *skdev)
1652 {
1653         memset(skdev->skcomp_table, 0, SKD_SKCOMP_SIZE);
1654
1655         skdev->skcomp_ix = 0;
1656         skdev->skcomp_cycle = 1;
1657 }
1658
1659 /*
1660  *****************************************************************************
1661  * INTERRUPTS
1662  *****************************************************************************
1663  */
1664 static void skd_completion_worker(struct work_struct *work)
1665 {
1666         struct skd_device *skdev =
1667                 container_of(work, struct skd_device, completion_worker);
1668         unsigned long flags;
1669         int flush_enqueued = 0;
1670
1671         spin_lock_irqsave(&skdev->lock, flags);
1672
1673         /*
1674          * pass in limit=0, which means no limit..
1675          * process everything in compq
1676          */
1677         skd_isr_completion_posted(skdev, 0, &flush_enqueued);
1678         schedule_work(&skdev->start_queue);
1679
1680         spin_unlock_irqrestore(&skdev->lock, flags);
1681 }
1682
1683 static void skd_isr_msg_from_dev(struct skd_device *skdev);
1684
1685 static irqreturn_t
1686 skd_isr(int irq, void *ptr)
1687 {
1688         struct skd_device *skdev = ptr;
1689         u32 intstat;
1690         u32 ack;
1691         int rc = 0;
1692         int deferred = 0;
1693         int flush_enqueued = 0;
1694
1695         spin_lock(&skdev->lock);
1696
1697         for (;; ) {
1698                 intstat = SKD_READL(skdev, FIT_INT_STATUS_HOST);
1699
1700                 ack = FIT_INT_DEF_MASK;
1701                 ack &= intstat;
1702
1703                 dev_dbg(&skdev->pdev->dev, "intstat=0x%x ack=0x%x\n", intstat,
1704                         ack);
1705
1706                 /* As long as there is an int pending on device, keep
1707                  * running loop.  When none, get out, but if we've never
1708                  * done any processing, call completion handler?
1709                  */
1710                 if (ack == 0) {
1711                         /* No interrupts on device, but run the completion
1712                          * processor anyway?
1713                          */
1714                         if (rc == 0)
1715                                 if (likely (skdev->state
1716                                         == SKD_DRVR_STATE_ONLINE))
1717                                         deferred = 1;
1718                         break;
1719                 }
1720
1721                 rc = IRQ_HANDLED;
1722
1723                 SKD_WRITEL(skdev, ack, FIT_INT_STATUS_HOST);
1724
1725                 if (likely((skdev->state != SKD_DRVR_STATE_LOAD) &&
1726                            (skdev->state != SKD_DRVR_STATE_STOPPING))) {
1727                         if (intstat & FIT_ISH_COMPLETION_POSTED) {
1728                                 /*
1729                                  * If we have already deferred completion
1730                                  * processing, don't bother running it again
1731                                  */
1732                                 if (deferred == 0)
1733                                         deferred =
1734                                                 skd_isr_completion_posted(skdev,
1735                                                 skd_isr_comp_limit, &flush_enqueued);
1736                         }
1737
1738                         if (intstat & FIT_ISH_FW_STATE_CHANGE) {
1739                                 skd_isr_fwstate(skdev);
1740                                 if (skdev->state == SKD_DRVR_STATE_FAULT ||
1741                                     skdev->state ==
1742                                     SKD_DRVR_STATE_DISAPPEARED) {
1743                                         spin_unlock(&skdev->lock);
1744                                         return rc;
1745                                 }
1746                         }
1747
1748                         if (intstat & FIT_ISH_MSG_FROM_DEV)
1749                                 skd_isr_msg_from_dev(skdev);
1750                 }
1751         }
1752
1753         if (unlikely(flush_enqueued))
1754                 schedule_work(&skdev->start_queue);
1755
1756         if (deferred)
1757                 schedule_work(&skdev->completion_worker);
1758         else if (!flush_enqueued)
1759                 schedule_work(&skdev->start_queue);
1760
1761         spin_unlock(&skdev->lock);
1762
1763         return rc;
1764 }
1765
1766 static void skd_drive_fault(struct skd_device *skdev)
1767 {
1768         skdev->state = SKD_DRVR_STATE_FAULT;
1769         dev_err(&skdev->pdev->dev, "Drive FAULT\n");
1770 }
1771
1772 static void skd_drive_disappeared(struct skd_device *skdev)
1773 {
1774         skdev->state = SKD_DRVR_STATE_DISAPPEARED;
1775         dev_err(&skdev->pdev->dev, "Drive DISAPPEARED\n");
1776 }
1777
1778 static void skd_isr_fwstate(struct skd_device *skdev)
1779 {
1780         u32 sense;
1781         u32 state;
1782         u32 mtd;
1783         int prev_driver_state = skdev->state;
1784
1785         sense = SKD_READL(skdev, FIT_STATUS);
1786         state = sense & FIT_SR_DRIVE_STATE_MASK;
1787
1788         dev_err(&skdev->pdev->dev, "s1120 state %s(%d)=>%s(%d)\n",
1789                 skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
1790                 skd_drive_state_to_str(state), state);
1791
1792         skdev->drive_state = state;
1793
1794         switch (skdev->drive_state) {
1795         case FIT_SR_DRIVE_INIT:
1796                 if (skdev->state == SKD_DRVR_STATE_PROTOCOL_MISMATCH) {
1797                         skd_disable_interrupts(skdev);
1798                         break;
1799                 }
1800                 if (skdev->state == SKD_DRVR_STATE_RESTARTING)
1801                         skd_recover_requests(skdev);
1802                 if (skdev->state == SKD_DRVR_STATE_WAIT_BOOT) {
1803                         skdev->timer_countdown = SKD_STARTING_TIMO;
1804                         skdev->state = SKD_DRVR_STATE_STARTING;
1805                         skd_soft_reset(skdev);
1806                         break;
1807                 }
1808                 mtd = FIT_MXD_CONS(FIT_MTD_FITFW_INIT, 0, 0);
1809                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1810                 skdev->last_mtd = mtd;
1811                 break;
1812
1813         case FIT_SR_DRIVE_ONLINE:
1814                 skdev->cur_max_queue_depth = skd_max_queue_depth;
1815                 if (skdev->cur_max_queue_depth > skdev->dev_max_queue_depth)
1816                         skdev->cur_max_queue_depth = skdev->dev_max_queue_depth;
1817
1818                 skdev->queue_low_water_mark =
1819                         skdev->cur_max_queue_depth * 2 / 3 + 1;
1820                 if (skdev->queue_low_water_mark < 1)
1821                         skdev->queue_low_water_mark = 1;
1822                 dev_info(&skdev->pdev->dev,
1823                          "Queue depth limit=%d dev=%d lowat=%d\n",
1824                          skdev->cur_max_queue_depth,
1825                          skdev->dev_max_queue_depth,
1826                          skdev->queue_low_water_mark);
1827
1828                 skd_refresh_device_data(skdev);
1829                 break;
1830
1831         case FIT_SR_DRIVE_BUSY:
1832                 skdev->state = SKD_DRVR_STATE_BUSY;
1833                 skdev->timer_countdown = SKD_BUSY_TIMO;
1834                 skd_quiesce_dev(skdev);
1835                 break;
1836         case FIT_SR_DRIVE_BUSY_SANITIZE:
1837                 /* set timer for 3 seconds, we'll abort any unfinished
1838                  * commands after that expires
1839                  */
1840                 skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
1841                 skdev->timer_countdown = SKD_TIMER_SECONDS(3);
1842                 schedule_work(&skdev->start_queue);
1843                 break;
1844         case FIT_SR_DRIVE_BUSY_ERASE:
1845                 skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
1846                 skdev->timer_countdown = SKD_BUSY_TIMO;
1847                 break;
1848         case FIT_SR_DRIVE_OFFLINE:
1849                 skdev->state = SKD_DRVR_STATE_IDLE;
1850                 break;
1851         case FIT_SR_DRIVE_SOFT_RESET:
1852                 switch (skdev->state) {
1853                 case SKD_DRVR_STATE_STARTING:
1854                 case SKD_DRVR_STATE_RESTARTING:
1855                         /* Expected by a caller of skd_soft_reset() */
1856                         break;
1857                 default:
1858                         skdev->state = SKD_DRVR_STATE_RESTARTING;
1859                         break;
1860                 }
1861                 break;
1862         case FIT_SR_DRIVE_FW_BOOTING:
1863                 dev_dbg(&skdev->pdev->dev, "ISR FIT_SR_DRIVE_FW_BOOTING\n");
1864                 skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
1865                 skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
1866                 break;
1867
1868         case FIT_SR_DRIVE_DEGRADED:
1869         case FIT_SR_PCIE_LINK_DOWN:
1870         case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
1871                 break;
1872
1873         case FIT_SR_DRIVE_FAULT:
1874                 skd_drive_fault(skdev);
1875                 skd_recover_requests(skdev);
1876                 schedule_work(&skdev->start_queue);
1877                 break;
1878
1879         /* PCIe bus returned all Fs? */
1880         case 0xFF:
1881                 dev_info(&skdev->pdev->dev, "state=0x%x sense=0x%x\n", state,
1882                          sense);
1883                 skd_drive_disappeared(skdev);
1884                 skd_recover_requests(skdev);
1885                 schedule_work(&skdev->start_queue);
1886                 break;
1887         default:
1888                 /*
1889                  * Uknown FW State. Wait for a state we recognize.
1890                  */
1891                 break;
1892         }
1893         dev_err(&skdev->pdev->dev, "Driver state %s(%d)=>%s(%d)\n",
1894                 skd_skdev_state_to_str(prev_driver_state), prev_driver_state,
1895                 skd_skdev_state_to_str(skdev->state), skdev->state);
1896 }
1897
1898 static bool skd_recover_request(struct request *req, void *data, bool reserved)
1899 {
1900         struct skd_device *const skdev = data;
1901         struct skd_request_context *skreq = blk_mq_rq_to_pdu(req);
1902
1903         if (skreq->state != SKD_REQ_STATE_BUSY)
1904                 return true;
1905
1906         skd_log_skreq(skdev, skreq, "recover");
1907
1908         /* Release DMA resources for the request. */
1909         if (skreq->n_sg > 0)
1910                 skd_postop_sg_list(skdev, skreq);
1911
1912         skreq->state = SKD_REQ_STATE_IDLE;
1913         skreq->status = BLK_STS_IOERR;
1914         blk_mq_complete_request(req);
1915         return true;
1916 }
1917
1918 static void skd_recover_requests(struct skd_device *skdev)
1919 {
1920         blk_mq_tagset_busy_iter(&skdev->tag_set, skd_recover_request, skdev);
1921 }
1922
1923 static void skd_isr_msg_from_dev(struct skd_device *skdev)
1924 {
1925         u32 mfd;
1926         u32 mtd;
1927         u32 data;
1928
1929         mfd = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
1930
1931         dev_dbg(&skdev->pdev->dev, "mfd=0x%x last_mtd=0x%x\n", mfd,
1932                 skdev->last_mtd);
1933
1934         /* ignore any mtd that is an ack for something we didn't send */
1935         if (FIT_MXD_TYPE(mfd) != FIT_MXD_TYPE(skdev->last_mtd))
1936                 return;
1937
1938         switch (FIT_MXD_TYPE(mfd)) {
1939         case FIT_MTD_FITFW_INIT:
1940                 skdev->proto_ver = FIT_PROTOCOL_MAJOR_VER(mfd);
1941
1942                 if (skdev->proto_ver != FIT_PROTOCOL_VERSION_1) {
1943                         dev_err(&skdev->pdev->dev, "protocol mismatch\n");
1944                         dev_err(&skdev->pdev->dev, "  got=%d support=%d\n",
1945                                 skdev->proto_ver, FIT_PROTOCOL_VERSION_1);
1946                         dev_err(&skdev->pdev->dev, "  please upgrade driver\n");
1947                         skdev->state = SKD_DRVR_STATE_PROTOCOL_MISMATCH;
1948                         skd_soft_reset(skdev);
1949                         break;
1950                 }
1951                 mtd = FIT_MXD_CONS(FIT_MTD_GET_CMDQ_DEPTH, 0, 0);
1952                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1953                 skdev->last_mtd = mtd;
1954                 break;
1955
1956         case FIT_MTD_GET_CMDQ_DEPTH:
1957                 skdev->dev_max_queue_depth = FIT_MXD_DATA(mfd);
1958                 mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_DEPTH, 0,
1959                                    SKD_N_COMPLETION_ENTRY);
1960                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1961                 skdev->last_mtd = mtd;
1962                 break;
1963
1964         case FIT_MTD_SET_COMPQ_DEPTH:
1965                 SKD_WRITEQ(skdev, skdev->cq_dma_address, FIT_MSG_TO_DEVICE_ARG);
1966                 mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_ADDR, 0, 0);
1967                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1968                 skdev->last_mtd = mtd;
1969                 break;
1970
1971         case FIT_MTD_SET_COMPQ_ADDR:
1972                 skd_reset_skcomp(skdev);
1973                 mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_HOST_ID, 0, skdev->devno);
1974                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1975                 skdev->last_mtd = mtd;
1976                 break;
1977
1978         case FIT_MTD_CMD_LOG_HOST_ID:
1979                 /* hardware interface overflows in y2106 */
1980                 skdev->connect_time_stamp = (u32)ktime_get_real_seconds();
1981                 data = skdev->connect_time_stamp & 0xFFFF;
1982                 mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_LO, 0, data);
1983                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1984                 skdev->last_mtd = mtd;
1985                 break;
1986
1987         case FIT_MTD_CMD_LOG_TIME_STAMP_LO:
1988                 skdev->drive_jiffies = FIT_MXD_DATA(mfd);
1989                 data = (skdev->connect_time_stamp >> 16) & 0xFFFF;
1990                 mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_HI, 0, data);
1991                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1992                 skdev->last_mtd = mtd;
1993                 break;
1994
1995         case FIT_MTD_CMD_LOG_TIME_STAMP_HI:
1996                 skdev->drive_jiffies |= (FIT_MXD_DATA(mfd) << 16);
1997                 mtd = FIT_MXD_CONS(FIT_MTD_ARM_QUEUE, 0, 0);
1998                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1999                 skdev->last_mtd = mtd;
2000
2001                 dev_err(&skdev->pdev->dev, "Time sync driver=0x%x device=0x%x\n",
2002                         skdev->connect_time_stamp, skdev->drive_jiffies);
2003                 break;
2004
2005         case FIT_MTD_ARM_QUEUE:
2006                 skdev->last_mtd = 0;
2007                 /*
2008                  * State should be, or soon will be, FIT_SR_DRIVE_ONLINE.
2009                  */
2010                 break;
2011
2012         default:
2013                 break;
2014         }
2015 }
2016
2017 static void skd_disable_interrupts(struct skd_device *skdev)
2018 {
2019         u32 sense;
2020
2021         sense = SKD_READL(skdev, FIT_CONTROL);
2022         sense &= ~FIT_CR_ENABLE_INTERRUPTS;
2023         SKD_WRITEL(skdev, sense, FIT_CONTROL);
2024         dev_dbg(&skdev->pdev->dev, "sense 0x%x\n", sense);
2025
2026         /* Note that the 1s is written. A 1-bit means
2027          * disable, a 0 means enable.
2028          */
2029         SKD_WRITEL(skdev, ~0, FIT_INT_MASK_HOST);
2030 }
2031
2032 static void skd_enable_interrupts(struct skd_device *skdev)
2033 {
2034         u32 val;
2035
2036         /* unmask interrupts first */
2037         val = FIT_ISH_FW_STATE_CHANGE +
2038               FIT_ISH_COMPLETION_POSTED + FIT_ISH_MSG_FROM_DEV;
2039
2040         /* Note that the compliment of mask is written. A 1-bit means
2041          * disable, a 0 means enable. */
2042         SKD_WRITEL(skdev, ~val, FIT_INT_MASK_HOST);
2043         dev_dbg(&skdev->pdev->dev, "interrupt mask=0x%x\n", ~val);
2044
2045         val = SKD_READL(skdev, FIT_CONTROL);
2046         val |= FIT_CR_ENABLE_INTERRUPTS;
2047         dev_dbg(&skdev->pdev->dev, "control=0x%x\n", val);
2048         SKD_WRITEL(skdev, val, FIT_CONTROL);
2049 }
2050
2051 /*
2052  *****************************************************************************
2053  * START, STOP, RESTART, QUIESCE, UNQUIESCE
2054  *****************************************************************************
2055  */
2056
2057 static void skd_soft_reset(struct skd_device *skdev)
2058 {
2059         u32 val;
2060
2061         val = SKD_READL(skdev, FIT_CONTROL);
2062         val |= (FIT_CR_SOFT_RESET);
2063         dev_dbg(&skdev->pdev->dev, "control=0x%x\n", val);
2064         SKD_WRITEL(skdev, val, FIT_CONTROL);
2065 }
2066
2067 static void skd_start_device(struct skd_device *skdev)
2068 {
2069         unsigned long flags;
2070         u32 sense;
2071         u32 state;
2072
2073         spin_lock_irqsave(&skdev->lock, flags);
2074
2075         /* ack all ghost interrupts */
2076         SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
2077
2078         sense = SKD_READL(skdev, FIT_STATUS);
2079
2080         dev_dbg(&skdev->pdev->dev, "initial status=0x%x\n", sense);
2081
2082         state = sense & FIT_SR_DRIVE_STATE_MASK;
2083         skdev->drive_state = state;
2084         skdev->last_mtd = 0;
2085
2086         skdev->state = SKD_DRVR_STATE_STARTING;
2087         skdev->timer_countdown = SKD_STARTING_TIMO;
2088
2089         skd_enable_interrupts(skdev);
2090
2091         switch (skdev->drive_state) {
2092         case FIT_SR_DRIVE_OFFLINE:
2093                 dev_err(&skdev->pdev->dev, "Drive offline...\n");
2094                 break;
2095
2096         case FIT_SR_DRIVE_FW_BOOTING:
2097                 dev_dbg(&skdev->pdev->dev, "FIT_SR_DRIVE_FW_BOOTING\n");
2098                 skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
2099                 skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
2100                 break;
2101
2102         case FIT_SR_DRIVE_BUSY_SANITIZE:
2103                 dev_info(&skdev->pdev->dev, "Start: BUSY_SANITIZE\n");
2104                 skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
2105                 skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
2106                 break;
2107
2108         case FIT_SR_DRIVE_BUSY_ERASE:
2109                 dev_info(&skdev->pdev->dev, "Start: BUSY_ERASE\n");
2110                 skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
2111                 skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
2112                 break;
2113
2114         case FIT_SR_DRIVE_INIT:
2115         case FIT_SR_DRIVE_ONLINE:
2116                 skd_soft_reset(skdev);
2117                 break;
2118
2119         case FIT_SR_DRIVE_BUSY:
2120                 dev_err(&skdev->pdev->dev, "Drive Busy...\n");
2121                 skdev->state = SKD_DRVR_STATE_BUSY;
2122                 skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
2123                 break;
2124
2125         case FIT_SR_DRIVE_SOFT_RESET:
2126                 dev_err(&skdev->pdev->dev, "drive soft reset in prog\n");
2127                 break;
2128
2129         case FIT_SR_DRIVE_FAULT:
2130                 /* Fault state is bad...soft reset won't do it...
2131                  * Hard reset, maybe, but does it work on device?
2132                  * For now, just fault so the system doesn't hang.
2133                  */
2134                 skd_drive_fault(skdev);
2135                 /*start the queue so we can respond with error to requests */
2136                 dev_dbg(&skdev->pdev->dev, "starting queue\n");
2137                 schedule_work(&skdev->start_queue);
2138                 skdev->gendisk_on = -1;
2139                 wake_up_interruptible(&skdev->waitq);
2140                 break;
2141
2142         case 0xFF:
2143                 /* Most likely the device isn't there or isn't responding
2144                  * to the BAR1 addresses. */
2145                 skd_drive_disappeared(skdev);
2146                 /*start the queue so we can respond with error to requests */
2147                 dev_dbg(&skdev->pdev->dev,
2148                         "starting queue to error-out reqs\n");
2149                 schedule_work(&skdev->start_queue);
2150                 skdev->gendisk_on = -1;
2151                 wake_up_interruptible(&skdev->waitq);
2152                 break;
2153
2154         default:
2155                 dev_err(&skdev->pdev->dev, "Start: unknown state %x\n",
2156                         skdev->drive_state);
2157                 break;
2158         }
2159
2160         state = SKD_READL(skdev, FIT_CONTROL);
2161         dev_dbg(&skdev->pdev->dev, "FIT Control Status=0x%x\n", state);
2162
2163         state = SKD_READL(skdev, FIT_INT_STATUS_HOST);
2164         dev_dbg(&skdev->pdev->dev, "Intr Status=0x%x\n", state);
2165
2166         state = SKD_READL(skdev, FIT_INT_MASK_HOST);
2167         dev_dbg(&skdev->pdev->dev, "Intr Mask=0x%x\n", state);
2168
2169         state = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
2170         dev_dbg(&skdev->pdev->dev, "Msg from Dev=0x%x\n", state);
2171
2172         state = SKD_READL(skdev, FIT_HW_VERSION);
2173         dev_dbg(&skdev->pdev->dev, "HW version=0x%x\n", state);
2174
2175         spin_unlock_irqrestore(&skdev->lock, flags);
2176 }
2177
2178 static void skd_stop_device(struct skd_device *skdev)
2179 {
2180         unsigned long flags;
2181         struct skd_special_context *skspcl = &skdev->internal_skspcl;
2182         u32 dev_state;
2183         int i;
2184
2185         spin_lock_irqsave(&skdev->lock, flags);
2186
2187         if (skdev->state != SKD_DRVR_STATE_ONLINE) {
2188                 dev_err(&skdev->pdev->dev, "%s not online no sync\n", __func__);
2189                 goto stop_out;
2190         }
2191
2192         if (skspcl->req.state != SKD_REQ_STATE_IDLE) {
2193                 dev_err(&skdev->pdev->dev, "%s no special\n", __func__);
2194                 goto stop_out;
2195         }
2196
2197         skdev->state = SKD_DRVR_STATE_SYNCING;
2198         skdev->sync_done = 0;
2199
2200         skd_send_internal_skspcl(skdev, skspcl, SYNCHRONIZE_CACHE);
2201
2202         spin_unlock_irqrestore(&skdev->lock, flags);
2203
2204         wait_event_interruptible_timeout(skdev->waitq,
2205                                          (skdev->sync_done), (10 * HZ));
2206
2207         spin_lock_irqsave(&skdev->lock, flags);
2208
2209         switch (skdev->sync_done) {
2210         case 0:
2211                 dev_err(&skdev->pdev->dev, "%s no sync\n", __func__);
2212                 break;
2213         case 1:
2214                 dev_err(&skdev->pdev->dev, "%s sync done\n", __func__);
2215                 break;
2216         default:
2217                 dev_err(&skdev->pdev->dev, "%s sync error\n", __func__);
2218         }
2219
2220 stop_out:
2221         skdev->state = SKD_DRVR_STATE_STOPPING;
2222         spin_unlock_irqrestore(&skdev->lock, flags);
2223
2224         skd_kill_timer(skdev);
2225
2226         spin_lock_irqsave(&skdev->lock, flags);
2227         skd_disable_interrupts(skdev);
2228
2229         /* ensure all ints on device are cleared */
2230         /* soft reset the device to unload with a clean slate */
2231         SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
2232         SKD_WRITEL(skdev, FIT_CR_SOFT_RESET, FIT_CONTROL);
2233
2234         spin_unlock_irqrestore(&skdev->lock, flags);
2235
2236         /* poll every 100ms, 1 second timeout */
2237         for (i = 0; i < 10; i++) {
2238                 dev_state =
2239                         SKD_READL(skdev, FIT_STATUS) & FIT_SR_DRIVE_STATE_MASK;
2240                 if (dev_state == FIT_SR_DRIVE_INIT)
2241                         break;
2242                 set_current_state(TASK_INTERRUPTIBLE);
2243                 schedule_timeout(msecs_to_jiffies(100));
2244         }
2245
2246         if (dev_state != FIT_SR_DRIVE_INIT)
2247                 dev_err(&skdev->pdev->dev, "%s state error 0x%02x\n", __func__,
2248                         dev_state);
2249 }
2250
2251 /* assume spinlock is held */
2252 static void skd_restart_device(struct skd_device *skdev)
2253 {
2254         u32 state;
2255
2256         /* ack all ghost interrupts */
2257         SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
2258
2259         state = SKD_READL(skdev, FIT_STATUS);
2260
2261         dev_dbg(&skdev->pdev->dev, "drive status=0x%x\n", state);
2262
2263         state &= FIT_SR_DRIVE_STATE_MASK;
2264         skdev->drive_state = state;
2265         skdev->last_mtd = 0;
2266
2267         skdev->state = SKD_DRVR_STATE_RESTARTING;
2268         skdev->timer_countdown = SKD_RESTARTING_TIMO;
2269
2270         skd_soft_reset(skdev);
2271 }
2272
2273 /* assume spinlock is held */
2274 static int skd_quiesce_dev(struct skd_device *skdev)
2275 {
2276         int rc = 0;
2277
2278         switch (skdev->state) {
2279         case SKD_DRVR_STATE_BUSY:
2280         case SKD_DRVR_STATE_BUSY_IMMINENT:
2281                 dev_dbg(&skdev->pdev->dev, "stopping queue\n");
2282                 blk_mq_stop_hw_queues(skdev->queue);
2283                 break;
2284         case SKD_DRVR_STATE_ONLINE:
2285         case SKD_DRVR_STATE_STOPPING:
2286         case SKD_DRVR_STATE_SYNCING:
2287         case SKD_DRVR_STATE_PAUSING:
2288         case SKD_DRVR_STATE_PAUSED:
2289         case SKD_DRVR_STATE_STARTING:
2290         case SKD_DRVR_STATE_RESTARTING:
2291         case SKD_DRVR_STATE_RESUMING:
2292         default:
2293                 rc = -EINVAL;
2294                 dev_dbg(&skdev->pdev->dev, "state [%d] not implemented\n",
2295                         skdev->state);
2296         }
2297         return rc;
2298 }
2299
2300 /* assume spinlock is held */
2301 static int skd_unquiesce_dev(struct skd_device *skdev)
2302 {
2303         int prev_driver_state = skdev->state;
2304
2305         skd_log_skdev(skdev, "unquiesce");
2306         if (skdev->state == SKD_DRVR_STATE_ONLINE) {
2307                 dev_dbg(&skdev->pdev->dev, "**** device already ONLINE\n");
2308                 return 0;
2309         }
2310         if (skdev->drive_state != FIT_SR_DRIVE_ONLINE) {
2311                 /*
2312                  * If there has been an state change to other than
2313                  * ONLINE, we will rely on controller state change
2314                  * to come back online and restart the queue.
2315                  * The BUSY state means that driver is ready to
2316                  * continue normal processing but waiting for controller
2317                  * to become available.
2318                  */
2319                 skdev->state = SKD_DRVR_STATE_BUSY;
2320                 dev_dbg(&skdev->pdev->dev, "drive BUSY state\n");
2321                 return 0;
2322         }
2323
2324         /*
2325          * Drive has just come online, driver is either in startup,
2326          * paused performing a task, or bust waiting for hardware.
2327          */
2328         switch (skdev->state) {
2329         case SKD_DRVR_STATE_PAUSED:
2330         case SKD_DRVR_STATE_BUSY:
2331         case SKD_DRVR_STATE_BUSY_IMMINENT:
2332         case SKD_DRVR_STATE_BUSY_ERASE:
2333         case SKD_DRVR_STATE_STARTING:
2334         case SKD_DRVR_STATE_RESTARTING:
2335         case SKD_DRVR_STATE_FAULT:
2336         case SKD_DRVR_STATE_IDLE:
2337         case SKD_DRVR_STATE_LOAD:
2338                 skdev->state = SKD_DRVR_STATE_ONLINE;
2339                 dev_err(&skdev->pdev->dev, "Driver state %s(%d)=>%s(%d)\n",
2340                         skd_skdev_state_to_str(prev_driver_state),
2341                         prev_driver_state, skd_skdev_state_to_str(skdev->state),
2342                         skdev->state);
2343                 dev_dbg(&skdev->pdev->dev,
2344                         "**** device ONLINE...starting block queue\n");
2345                 dev_dbg(&skdev->pdev->dev, "starting queue\n");
2346                 dev_info(&skdev->pdev->dev, "STEC s1120 ONLINE\n");
2347                 schedule_work(&skdev->start_queue);
2348                 skdev->gendisk_on = 1;
2349                 wake_up_interruptible(&skdev->waitq);
2350                 break;
2351
2352         case SKD_DRVR_STATE_DISAPPEARED:
2353         default:
2354                 dev_dbg(&skdev->pdev->dev,
2355                         "**** driver state %d, not implemented\n",
2356                         skdev->state);
2357                 return -EBUSY;
2358         }
2359         return 0;
2360 }
2361
2362 /*
2363  *****************************************************************************
2364  * PCIe MSI/MSI-X INTERRUPT HANDLERS
2365  *****************************************************************************
2366  */
2367
2368 static irqreturn_t skd_reserved_isr(int irq, void *skd_host_data)
2369 {
2370         struct skd_device *skdev = skd_host_data;
2371         unsigned long flags;
2372
2373         spin_lock_irqsave(&skdev->lock, flags);
2374         dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2375                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2376         dev_err(&skdev->pdev->dev, "MSIX reserved irq %d = 0x%x\n", irq,
2377                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2378         SKD_WRITEL(skdev, FIT_INT_RESERVED_MASK, FIT_INT_STATUS_HOST);
2379         spin_unlock_irqrestore(&skdev->lock, flags);
2380         return IRQ_HANDLED;
2381 }
2382
2383 static irqreturn_t skd_statec_isr(int irq, void *skd_host_data)
2384 {
2385         struct skd_device *skdev = skd_host_data;
2386         unsigned long flags;
2387
2388         spin_lock_irqsave(&skdev->lock, flags);
2389         dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2390                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2391         SKD_WRITEL(skdev, FIT_ISH_FW_STATE_CHANGE, FIT_INT_STATUS_HOST);
2392         skd_isr_fwstate(skdev);
2393         spin_unlock_irqrestore(&skdev->lock, flags);
2394         return IRQ_HANDLED;
2395 }
2396
2397 static irqreturn_t skd_comp_q(int irq, void *skd_host_data)
2398 {
2399         struct skd_device *skdev = skd_host_data;
2400         unsigned long flags;
2401         int flush_enqueued = 0;
2402         int deferred;
2403
2404         spin_lock_irqsave(&skdev->lock, flags);
2405         dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2406                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2407         SKD_WRITEL(skdev, FIT_ISH_COMPLETION_POSTED, FIT_INT_STATUS_HOST);
2408         deferred = skd_isr_completion_posted(skdev, skd_isr_comp_limit,
2409                                                 &flush_enqueued);
2410         if (flush_enqueued)
2411                 schedule_work(&skdev->start_queue);
2412
2413         if (deferred)
2414                 schedule_work(&skdev->completion_worker);
2415         else if (!flush_enqueued)
2416                 schedule_work(&skdev->start_queue);
2417
2418         spin_unlock_irqrestore(&skdev->lock, flags);
2419
2420         return IRQ_HANDLED;
2421 }
2422
2423 static irqreturn_t skd_msg_isr(int irq, void *skd_host_data)
2424 {
2425         struct skd_device *skdev = skd_host_data;
2426         unsigned long flags;
2427
2428         spin_lock_irqsave(&skdev->lock, flags);
2429         dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2430                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2431         SKD_WRITEL(skdev, FIT_ISH_MSG_FROM_DEV, FIT_INT_STATUS_HOST);
2432         skd_isr_msg_from_dev(skdev);
2433         spin_unlock_irqrestore(&skdev->lock, flags);
2434         return IRQ_HANDLED;
2435 }
2436
2437 static irqreturn_t skd_qfull_isr(int irq, void *skd_host_data)
2438 {
2439         struct skd_device *skdev = skd_host_data;
2440         unsigned long flags;
2441
2442         spin_lock_irqsave(&skdev->lock, flags);
2443         dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2444                 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2445         SKD_WRITEL(skdev, FIT_INT_QUEUE_FULL, FIT_INT_STATUS_HOST);
2446         spin_unlock_irqrestore(&skdev->lock, flags);
2447         return IRQ_HANDLED;
2448 }
2449
2450 /*
2451  *****************************************************************************
2452  * PCIe MSI/MSI-X SETUP
2453  *****************************************************************************
2454  */
2455
2456 struct skd_msix_entry {
2457         char isr_name[30];
2458 };
2459
2460 struct skd_init_msix_entry {
2461         const char *name;
2462         irq_handler_t handler;
2463 };
2464
2465 #define SKD_MAX_MSIX_COUNT              13
2466 #define SKD_MIN_MSIX_COUNT              7
2467 #define SKD_BASE_MSIX_IRQ               4
2468
2469 static struct skd_init_msix_entry msix_entries[SKD_MAX_MSIX_COUNT] = {
2470         { "(DMA 0)",        skd_reserved_isr },
2471         { "(DMA 1)",        skd_reserved_isr },
2472         { "(DMA 2)",        skd_reserved_isr },
2473         { "(DMA 3)",        skd_reserved_isr },
2474         { "(State Change)", skd_statec_isr   },
2475         { "(COMPL_Q)",      skd_comp_q       },
2476         { "(MSG)",          skd_msg_isr      },
2477         { "(Reserved)",     skd_reserved_isr },
2478         { "(Reserved)",     skd_reserved_isr },
2479         { "(Queue Full 0)", skd_qfull_isr    },
2480         { "(Queue Full 1)", skd_qfull_isr    },
2481         { "(Queue Full 2)", skd_qfull_isr    },
2482         { "(Queue Full 3)", skd_qfull_isr    },
2483 };
2484
2485 static int skd_acquire_msix(struct skd_device *skdev)
2486 {
2487         int i, rc;
2488         struct pci_dev *pdev = skdev->pdev;
2489
2490         rc = pci_alloc_irq_vectors(pdev, SKD_MAX_MSIX_COUNT, SKD_MAX_MSIX_COUNT,
2491                         PCI_IRQ_MSIX);
2492         if (rc < 0) {
2493                 dev_err(&skdev->pdev->dev, "failed to enable MSI-X %d\n", rc);
2494                 goto out;
2495         }
2496
2497         skdev->msix_entries = kcalloc(SKD_MAX_MSIX_COUNT,
2498                         sizeof(struct skd_msix_entry), GFP_KERNEL);
2499         if (!skdev->msix_entries) {
2500                 rc = -ENOMEM;
2501                 dev_err(&skdev->pdev->dev, "msix table allocation error\n");
2502                 goto out;
2503         }
2504
2505         /* Enable MSI-X vectors for the base queue */
2506         for (i = 0; i < SKD_MAX_MSIX_COUNT; i++) {
2507                 struct skd_msix_entry *qentry = &skdev->msix_entries[i];
2508
2509                 snprintf(qentry->isr_name, sizeof(qentry->isr_name),
2510                          "%s%d-msix %s", DRV_NAME, skdev->devno,
2511                          msix_entries[i].name);
2512
2513                 rc = devm_request_irq(&skdev->pdev->dev,
2514                                 pci_irq_vector(skdev->pdev, i),
2515                                 msix_entries[i].handler, 0,
2516                                 qentry->isr_name, skdev);
2517                 if (rc) {
2518                         dev_err(&skdev->pdev->dev,
2519                                 "Unable to register(%d) MSI-X handler %d: %s\n",
2520                                 rc, i, qentry->isr_name);
2521                         goto msix_out;
2522                 }
2523         }
2524
2525         dev_dbg(&skdev->pdev->dev, "%d msix irq(s) enabled\n",
2526                 SKD_MAX_MSIX_COUNT);
2527         return 0;
2528
2529 msix_out:
2530         while (--i >= 0)
2531                 devm_free_irq(&pdev->dev, pci_irq_vector(pdev, i), skdev);
2532 out:
2533         kfree(skdev->msix_entries);
2534         skdev->msix_entries = NULL;
2535         return rc;
2536 }
2537
2538 static int skd_acquire_irq(struct skd_device *skdev)
2539 {
2540         struct pci_dev *pdev = skdev->pdev;
2541         unsigned int irq_flag = PCI_IRQ_LEGACY;
2542         int rc;
2543
2544         if (skd_isr_type == SKD_IRQ_MSIX) {
2545                 rc = skd_acquire_msix(skdev);
2546                 if (!rc)
2547                         return 0;
2548
2549                 dev_err(&skdev->pdev->dev,
2550                         "failed to enable MSI-X, re-trying with MSI %d\n", rc);
2551         }
2552
2553         snprintf(skdev->isr_name, sizeof(skdev->isr_name), "%s%d", DRV_NAME,
2554                         skdev->devno);
2555
2556         if (skd_isr_type != SKD_IRQ_LEGACY)
2557                 irq_flag |= PCI_IRQ_MSI;
2558         rc = pci_alloc_irq_vectors(pdev, 1, 1, irq_flag);
2559         if (rc < 0) {
2560                 dev_err(&skdev->pdev->dev,
2561                         "failed to allocate the MSI interrupt %d\n", rc);
2562                 return rc;
2563         }
2564
2565         rc = devm_request_irq(&pdev->dev, pdev->irq, skd_isr,
2566                         pdev->msi_enabled ? 0 : IRQF_SHARED,
2567                         skdev->isr_name, skdev);
2568         if (rc) {
2569                 pci_free_irq_vectors(pdev);
2570                 dev_err(&skdev->pdev->dev, "failed to allocate interrupt %d\n",
2571                         rc);
2572                 return rc;
2573         }
2574
2575         return 0;
2576 }
2577
2578 static void skd_release_irq(struct skd_device *skdev)
2579 {
2580         struct pci_dev *pdev = skdev->pdev;
2581
2582         if (skdev->msix_entries) {
2583                 int i;
2584
2585                 for (i = 0; i < SKD_MAX_MSIX_COUNT; i++) {
2586                         devm_free_irq(&pdev->dev, pci_irq_vector(pdev, i),
2587                                         skdev);
2588                 }
2589
2590                 kfree(skdev->msix_entries);
2591                 skdev->msix_entries = NULL;
2592         } else {
2593                 devm_free_irq(&pdev->dev, pdev->irq, skdev);
2594         }
2595
2596         pci_free_irq_vectors(pdev);
2597 }
2598
2599 /*
2600  *****************************************************************************
2601  * CONSTRUCT
2602  *****************************************************************************
2603  */
2604
2605 static void *skd_alloc_dma(struct skd_device *skdev, struct kmem_cache *s,
2606                            dma_addr_t *dma_handle, gfp_t gfp,
2607                            enum dma_data_direction dir)
2608 {
2609         struct device *dev = &skdev->pdev->dev;
2610         void *buf;
2611
2612         buf = kmem_cache_alloc(s, gfp);
2613         if (!buf)
2614                 return NULL;
2615         *dma_handle = dma_map_single(dev, buf,
2616                                      kmem_cache_size(s), dir);
2617         if (dma_mapping_error(dev, *dma_handle)) {
2618                 kmem_cache_free(s, buf);
2619                 buf = NULL;
2620         }
2621         return buf;
2622 }
2623
2624 static void skd_free_dma(struct skd_device *skdev, struct kmem_cache *s,
2625                          void *vaddr, dma_addr_t dma_handle,
2626                          enum dma_data_direction dir)
2627 {
2628         if (!vaddr)
2629                 return;
2630
2631         dma_unmap_single(&skdev->pdev->dev, dma_handle,
2632                          kmem_cache_size(s), dir);
2633         kmem_cache_free(s, vaddr);
2634 }
2635
2636 static int skd_cons_skcomp(struct skd_device *skdev)
2637 {
2638         int rc = 0;
2639         struct fit_completion_entry_v1 *skcomp;
2640
2641         dev_dbg(&skdev->pdev->dev,
2642                 "comp pci_alloc, total bytes %zd entries %d\n",
2643                 SKD_SKCOMP_SIZE, SKD_N_COMPLETION_ENTRY);
2644
2645         skcomp = dma_alloc_coherent(&skdev->pdev->dev, SKD_SKCOMP_SIZE,
2646                                     &skdev->cq_dma_address, GFP_KERNEL);
2647
2648         if (skcomp == NULL) {
2649                 rc = -ENOMEM;
2650                 goto err_out;
2651         }
2652
2653         skdev->skcomp_table = skcomp;
2654         skdev->skerr_table = (struct fit_comp_error_info *)((char *)skcomp +
2655                                                            sizeof(*skcomp) *
2656                                                            SKD_N_COMPLETION_ENTRY);
2657
2658 err_out:
2659         return rc;
2660 }
2661
2662 static int skd_cons_skmsg(struct skd_device *skdev)
2663 {
2664         int rc = 0;
2665         u32 i;
2666
2667         dev_dbg(&skdev->pdev->dev,
2668                 "skmsg_table kcalloc, struct %lu, count %u total %lu\n",
2669                 sizeof(struct skd_fitmsg_context), skdev->num_fitmsg_context,
2670                 sizeof(struct skd_fitmsg_context) * skdev->num_fitmsg_context);
2671
2672         skdev->skmsg_table = kcalloc(skdev->num_fitmsg_context,
2673                                      sizeof(struct skd_fitmsg_context),
2674                                      GFP_KERNEL);
2675         if (skdev->skmsg_table == NULL) {
2676                 rc = -ENOMEM;
2677                 goto err_out;
2678         }
2679
2680         for (i = 0; i < skdev->num_fitmsg_context; i++) {
2681                 struct skd_fitmsg_context *skmsg;
2682
2683                 skmsg = &skdev->skmsg_table[i];
2684
2685                 skmsg->id = i + SKD_ID_FIT_MSG;
2686
2687                 skmsg->msg_buf = dma_alloc_coherent(&skdev->pdev->dev,
2688                                                     SKD_N_FITMSG_BYTES,
2689                                                     &skmsg->mb_dma_address,
2690                                                     GFP_KERNEL);
2691                 if (skmsg->msg_buf == NULL) {
2692                         rc = -ENOMEM;
2693                         goto err_out;
2694                 }
2695
2696                 WARN(((uintptr_t)skmsg->msg_buf | skmsg->mb_dma_address) &
2697                      (FIT_QCMD_ALIGN - 1),
2698                      "not aligned: msg_buf %p mb_dma_address %pad\n",
2699                      skmsg->msg_buf, &skmsg->mb_dma_address);
2700         }
2701
2702 err_out:
2703         return rc;
2704 }
2705
2706 static struct fit_sg_descriptor *skd_cons_sg_list(struct skd_device *skdev,
2707                                                   u32 n_sg,
2708                                                   dma_addr_t *ret_dma_addr)
2709 {
2710         struct fit_sg_descriptor *sg_list;
2711
2712         sg_list = skd_alloc_dma(skdev, skdev->sglist_cache, ret_dma_addr,
2713                                 GFP_DMA | __GFP_ZERO, DMA_TO_DEVICE);
2714
2715         if (sg_list != NULL) {
2716                 uint64_t dma_address = *ret_dma_addr;
2717                 u32 i;
2718
2719                 for (i = 0; i < n_sg - 1; i++) {
2720                         uint64_t ndp_off;
2721                         ndp_off = (i + 1) * sizeof(struct fit_sg_descriptor);
2722
2723                         sg_list[i].next_desc_ptr = dma_address + ndp_off;
2724                 }
2725                 sg_list[i].next_desc_ptr = 0LL;
2726         }
2727
2728         return sg_list;
2729 }
2730
2731 static void skd_free_sg_list(struct skd_device *skdev,
2732                              struct fit_sg_descriptor *sg_list,
2733                              dma_addr_t dma_addr)
2734 {
2735         if (WARN_ON_ONCE(!sg_list))
2736                 return;
2737
2738         skd_free_dma(skdev, skdev->sglist_cache, sg_list, dma_addr,
2739                      DMA_TO_DEVICE);
2740 }
2741
2742 static int skd_init_request(struct blk_mq_tag_set *set, struct request *rq,
2743                             unsigned int hctx_idx, unsigned int numa_node)
2744 {
2745         struct skd_device *skdev = set->driver_data;
2746         struct skd_request_context *skreq = blk_mq_rq_to_pdu(rq);
2747
2748         skreq->state = SKD_REQ_STATE_IDLE;
2749         skreq->sg = (void *)(skreq + 1);
2750         sg_init_table(skreq->sg, skd_sgs_per_request);
2751         skreq->sksg_list = skd_cons_sg_list(skdev, skd_sgs_per_request,
2752                                             &skreq->sksg_dma_address);
2753
2754         return skreq->sksg_list ? 0 : -ENOMEM;
2755 }
2756
2757 static void skd_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2758                              unsigned int hctx_idx)
2759 {
2760         struct skd_device *skdev = set->driver_data;
2761         struct skd_request_context *skreq = blk_mq_rq_to_pdu(rq);
2762
2763         skd_free_sg_list(skdev, skreq->sksg_list, skreq->sksg_dma_address);
2764 }
2765
2766 static int skd_cons_sksb(struct skd_device *skdev)
2767 {
2768         int rc = 0;
2769         struct skd_special_context *skspcl;
2770
2771         skspcl = &skdev->internal_skspcl;
2772
2773         skspcl->req.id = 0 + SKD_ID_INTERNAL;
2774         skspcl->req.state = SKD_REQ_STATE_IDLE;
2775
2776         skspcl->data_buf = skd_alloc_dma(skdev, skdev->databuf_cache,
2777                                          &skspcl->db_dma_address,
2778                                          GFP_DMA | __GFP_ZERO,
2779                                          DMA_BIDIRECTIONAL);
2780         if (skspcl->data_buf == NULL) {
2781                 rc = -ENOMEM;
2782                 goto err_out;
2783         }
2784
2785         skspcl->msg_buf = skd_alloc_dma(skdev, skdev->msgbuf_cache,
2786                                         &skspcl->mb_dma_address,
2787                                         GFP_DMA | __GFP_ZERO, DMA_TO_DEVICE);
2788         if (skspcl->msg_buf == NULL) {
2789                 rc = -ENOMEM;
2790                 goto err_out;
2791         }
2792
2793         skspcl->req.sksg_list = skd_cons_sg_list(skdev, 1,
2794                                                  &skspcl->req.sksg_dma_address);
2795         if (skspcl->req.sksg_list == NULL) {
2796                 rc = -ENOMEM;
2797                 goto err_out;
2798         }
2799
2800         if (!skd_format_internal_skspcl(skdev)) {
2801                 rc = -EINVAL;
2802                 goto err_out;
2803         }
2804
2805 err_out:
2806         return rc;
2807 }
2808
2809 static const struct blk_mq_ops skd_mq_ops = {
2810         .queue_rq       = skd_mq_queue_rq,
2811         .complete       = skd_complete_rq,
2812         .timeout        = skd_timed_out,
2813         .init_request   = skd_init_request,
2814         .exit_request   = skd_exit_request,
2815 };
2816
2817 static int skd_cons_disk(struct skd_device *skdev)
2818 {
2819         int rc = 0;
2820         struct gendisk *disk;
2821         struct request_queue *q;
2822         unsigned long flags;
2823
2824         disk = alloc_disk(SKD_MINORS_PER_DEVICE);
2825         if (!disk) {
2826                 rc = -ENOMEM;
2827                 goto err_out;
2828         }
2829
2830         skdev->disk = disk;
2831         sprintf(disk->disk_name, DRV_NAME "%u", skdev->devno);
2832
2833         disk->major = skdev->major;
2834         disk->first_minor = skdev->devno * SKD_MINORS_PER_DEVICE;
2835         disk->fops = &skd_blockdev_ops;
2836         disk->private_data = skdev;
2837
2838         memset(&skdev->tag_set, 0, sizeof(skdev->tag_set));
2839         skdev->tag_set.ops = &skd_mq_ops;
2840         skdev->tag_set.nr_hw_queues = 1;
2841         skdev->tag_set.queue_depth = skd_max_queue_depth;
2842         skdev->tag_set.cmd_size = sizeof(struct skd_request_context) +
2843                 skdev->sgs_per_request * sizeof(struct scatterlist);
2844         skdev->tag_set.numa_node = NUMA_NO_NODE;
2845         skdev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE |
2846                 BLK_ALLOC_POLICY_TO_MQ_FLAG(BLK_TAG_ALLOC_FIFO);
2847         skdev->tag_set.driver_data = skdev;
2848         rc = blk_mq_alloc_tag_set(&skdev->tag_set);
2849         if (rc)
2850                 goto err_out;
2851         q = blk_mq_init_queue(&skdev->tag_set);
2852         if (IS_ERR(q)) {
2853                 blk_mq_free_tag_set(&skdev->tag_set);
2854                 rc = PTR_ERR(q);
2855                 goto err_out;
2856         }
2857         q->queuedata = skdev;
2858
2859         skdev->queue = q;
2860         disk->queue = q;
2861
2862         blk_queue_write_cache(q, true, true);
2863         blk_queue_max_segments(q, skdev->sgs_per_request);
2864         blk_queue_max_hw_sectors(q, SKD_N_MAX_SECTORS);
2865
2866         /* set optimal I/O size to 8KB */
2867         blk_queue_io_opt(q, 8192);
2868
2869         blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2870         blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2871
2872         blk_queue_rq_timeout(q, 8 * HZ);
2873
2874         spin_lock_irqsave(&skdev->lock, flags);
2875         dev_dbg(&skdev->pdev->dev, "stopping queue\n");
2876         blk_mq_stop_hw_queues(skdev->queue);
2877         spin_unlock_irqrestore(&skdev->lock, flags);
2878
2879 err_out:
2880         return rc;
2881 }
2882
2883 #define SKD_N_DEV_TABLE         16u
2884 static u32 skd_next_devno;
2885
2886 static struct skd_device *skd_construct(struct pci_dev *pdev)
2887 {
2888         struct skd_device *skdev;
2889         int blk_major = skd_major;
2890         size_t size;
2891         int rc;
2892
2893         skdev = kzalloc(sizeof(*skdev), GFP_KERNEL);
2894
2895         if (!skdev) {
2896                 dev_err(&pdev->dev, "memory alloc failure\n");
2897                 return NULL;
2898         }
2899
2900         skdev->state = SKD_DRVR_STATE_LOAD;
2901         skdev->pdev = pdev;
2902         skdev->devno = skd_next_devno++;
2903         skdev->major = blk_major;
2904         skdev->dev_max_queue_depth = 0;
2905
2906         skdev->num_req_context = skd_max_queue_depth;
2907         skdev->num_fitmsg_context = skd_max_queue_depth;
2908         skdev->cur_max_queue_depth = 1;
2909         skdev->queue_low_water_mark = 1;
2910         skdev->proto_ver = 99;
2911         skdev->sgs_per_request = skd_sgs_per_request;
2912         skdev->dbg_level = skd_dbg_level;
2913
2914         spin_lock_init(&skdev->lock);
2915
2916         INIT_WORK(&skdev->start_queue, skd_start_queue);
2917         INIT_WORK(&skdev->completion_worker, skd_completion_worker);
2918
2919         size = max(SKD_N_FITMSG_BYTES, SKD_N_SPECIAL_FITMSG_BYTES);
2920         skdev->msgbuf_cache = kmem_cache_create("skd-msgbuf", size, 0,
2921                                                 SLAB_HWCACHE_ALIGN, NULL);
2922         if (!skdev->msgbuf_cache)
2923                 goto err_out;
2924         WARN_ONCE(kmem_cache_size(skdev->msgbuf_cache) < size,
2925                   "skd-msgbuf: %d < %zd\n",
2926                   kmem_cache_size(skdev->msgbuf_cache), size);
2927         size = skd_sgs_per_request * sizeof(struct fit_sg_descriptor);
2928         skdev->sglist_cache = kmem_cache_create("skd-sglist", size, 0,
2929                                                 SLAB_HWCACHE_ALIGN, NULL);
2930         if (!skdev->sglist_cache)
2931                 goto err_out;
2932         WARN_ONCE(kmem_cache_size(skdev->sglist_cache) < size,
2933                   "skd-sglist: %d < %zd\n",
2934                   kmem_cache_size(skdev->sglist_cache), size);
2935         size = SKD_N_INTERNAL_BYTES;
2936         skdev->databuf_cache = kmem_cache_create("skd-databuf", size, 0,
2937                                                  SLAB_HWCACHE_ALIGN, NULL);
2938         if (!skdev->databuf_cache)
2939                 goto err_out;
2940         WARN_ONCE(kmem_cache_size(skdev->databuf_cache) < size,
2941                   "skd-databuf: %d < %zd\n",
2942                   kmem_cache_size(skdev->databuf_cache), size);
2943
2944         dev_dbg(&skdev->pdev->dev, "skcomp\n");
2945         rc = skd_cons_skcomp(skdev);
2946         if (rc < 0)
2947                 goto err_out;
2948
2949         dev_dbg(&skdev->pdev->dev, "skmsg\n");
2950         rc = skd_cons_skmsg(skdev);
2951         if (rc < 0)
2952                 goto err_out;
2953
2954         dev_dbg(&skdev->pdev->dev, "sksb\n");
2955         rc = skd_cons_sksb(skdev);
2956         if (rc < 0)
2957                 goto err_out;
2958
2959         dev_dbg(&skdev->pdev->dev, "disk\n");
2960         rc = skd_cons_disk(skdev);
2961         if (rc < 0)
2962                 goto err_out;
2963
2964         dev_dbg(&skdev->pdev->dev, "VICTORY\n");
2965         return skdev;
2966
2967 err_out:
2968         dev_dbg(&skdev->pdev->dev, "construct failed\n");
2969         skd_destruct(skdev);
2970         return NULL;
2971 }
2972
2973 /*
2974  *****************************************************************************
2975  * DESTRUCT (FREE)
2976  *****************************************************************************
2977  */
2978
2979 static void skd_free_skcomp(struct skd_device *skdev)
2980 {
2981         if (skdev->skcomp_table)
2982                 dma_free_coherent(&skdev->pdev->dev, SKD_SKCOMP_SIZE,
2983                                   skdev->skcomp_table, skdev->cq_dma_address);
2984
2985         skdev->skcomp_table = NULL;
2986         skdev->cq_dma_address = 0;
2987 }
2988
2989 static void skd_free_skmsg(struct skd_device *skdev)
2990 {
2991         u32 i;
2992
2993         if (skdev->skmsg_table == NULL)
2994                 return;
2995
2996         for (i = 0; i < skdev->num_fitmsg_context; i++) {
2997                 struct skd_fitmsg_context *skmsg;
2998
2999                 skmsg = &skdev->skmsg_table[i];
3000
3001                 if (skmsg->msg_buf != NULL) {
3002                         dma_free_coherent(&skdev->pdev->dev, SKD_N_FITMSG_BYTES,
3003                                           skmsg->msg_buf,
3004                                             skmsg->mb_dma_address);
3005                 }
3006                 skmsg->msg_buf = NULL;
3007                 skmsg->mb_dma_address = 0;
3008         }
3009
3010         kfree(skdev->skmsg_table);
3011         skdev->skmsg_table = NULL;
3012 }
3013
3014 static void skd_free_sksb(struct skd_device *skdev)
3015 {
3016         struct skd_special_context *skspcl = &skdev->internal_skspcl;
3017
3018         skd_free_dma(skdev, skdev->databuf_cache, skspcl->data_buf,
3019                      skspcl->db_dma_address, DMA_BIDIRECTIONAL);
3020
3021         skspcl->data_buf = NULL;
3022         skspcl->db_dma_address = 0;
3023
3024         skd_free_dma(skdev, skdev->msgbuf_cache, skspcl->msg_buf,
3025                      skspcl->mb_dma_address, DMA_TO_DEVICE);
3026
3027         skspcl->msg_buf = NULL;
3028         skspcl->mb_dma_address = 0;
3029
3030         skd_free_sg_list(skdev, skspcl->req.sksg_list,
3031                          skspcl->req.sksg_dma_address);
3032
3033         skspcl->req.sksg_list = NULL;
3034         skspcl->req.sksg_dma_address = 0;
3035 }
3036
3037 static void skd_free_disk(struct skd_device *skdev)
3038 {
3039         struct gendisk *disk = skdev->disk;
3040
3041         if (disk && (disk->flags & GENHD_FL_UP))
3042                 del_gendisk(disk);
3043
3044         if (skdev->queue) {
3045                 blk_cleanup_queue(skdev->queue);
3046                 skdev->queue = NULL;
3047                 if (disk)
3048                         disk->queue = NULL;
3049         }
3050
3051         if (skdev->tag_set.tags)
3052                 blk_mq_free_tag_set(&skdev->tag_set);
3053
3054         put_disk(disk);
3055         skdev->disk = NULL;
3056 }
3057
3058 static void skd_destruct(struct skd_device *skdev)
3059 {
3060         if (skdev == NULL)
3061                 return;
3062
3063         cancel_work_sync(&skdev->start_queue);
3064
3065         dev_dbg(&skdev->pdev->dev, "disk\n");
3066         skd_free_disk(skdev);
3067
3068         dev_dbg(&skdev->pdev->dev, "sksb\n");
3069         skd_free_sksb(skdev);
3070
3071         dev_dbg(&skdev->pdev->dev, "skmsg\n");
3072         skd_free_skmsg(skdev);
3073
3074         dev_dbg(&skdev->pdev->dev, "skcomp\n");
3075         skd_free_skcomp(skdev);
3076
3077         kmem_cache_destroy(skdev->databuf_cache);
3078         kmem_cache_destroy(skdev->sglist_cache);
3079         kmem_cache_destroy(skdev->msgbuf_cache);
3080
3081         dev_dbg(&skdev->pdev->dev, "skdev\n");
3082         kfree(skdev);
3083 }
3084
3085 /*
3086  *****************************************************************************
3087  * BLOCK DEVICE (BDEV) GLUE
3088  *****************************************************************************
3089  */
3090
3091 static int skd_bdev_getgeo(struct block_device *bdev, struct hd_geometry *geo)
3092 {
3093         struct skd_device *skdev;
3094         u64 capacity;
3095
3096         skdev = bdev->bd_disk->private_data;
3097
3098         dev_dbg(&skdev->pdev->dev, "%s: CMD[%s] getgeo device\n",
3099                 bdev->bd_disk->disk_name, current->comm);
3100
3101         if (skdev->read_cap_is_valid) {
3102                 capacity = get_capacity(skdev->disk);
3103                 geo->heads = 64;
3104                 geo->sectors = 255;
3105                 geo->cylinders = (capacity) / (255 * 64);
3106
3107                 return 0;
3108         }
3109         return -EIO;
3110 }
3111
3112 static int skd_bdev_attach(struct device *parent, struct skd_device *skdev)
3113 {
3114         dev_dbg(&skdev->pdev->dev, "add_disk\n");
3115         device_add_disk(parent, skdev->disk, NULL);
3116         return 0;
3117 }
3118
3119 static const struct block_device_operations skd_blockdev_ops = {
3120         .owner          = THIS_MODULE,
3121         .getgeo         = skd_bdev_getgeo,
3122 };
3123
3124 /*
3125  *****************************************************************************
3126  * PCIe DRIVER GLUE
3127  *****************************************************************************
3128  */
3129
3130 static const struct pci_device_id skd_pci_tbl[] = {
3131         { PCI_VENDOR_ID_STEC, PCI_DEVICE_ID_S1120,
3132           PCI_ANY_ID, PCI_ANY_ID, 0, 0, },
3133         { 0 }                     /* terminate list */
3134 };
3135
3136 MODULE_DEVICE_TABLE(pci, skd_pci_tbl);
3137
3138 static char *skd_pci_info(struct skd_device *skdev, char *str)
3139 {
3140         int pcie_reg;
3141
3142         strcpy(str, "PCIe (");
3143         pcie_reg = pci_find_capability(skdev->pdev, PCI_CAP_ID_EXP);
3144
3145         if (pcie_reg) {
3146
3147                 char lwstr[6];
3148                 uint16_t pcie_lstat, lspeed, lwidth;
3149
3150                 pcie_reg += 0x12;
3151                 pci_read_config_word(skdev->pdev, pcie_reg, &pcie_lstat);
3152                 lspeed = pcie_lstat & (0xF);
3153                 lwidth = (pcie_lstat & 0x3F0) >> 4;
3154
3155                 if (lspeed == 1)
3156                         strcat(str, "2.5GT/s ");
3157                 else if (lspeed == 2)
3158                         strcat(str, "5.0GT/s ");
3159                 else
3160                         strcat(str, "<unknown> ");
3161                 snprintf(lwstr, sizeof(lwstr), "%dX)", lwidth);
3162                 strcat(str, lwstr);
3163         }
3164         return str;
3165 }
3166
3167 static int skd_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3168 {
3169         int i;
3170         int rc = 0;
3171         char pci_str[32];
3172         struct skd_device *skdev;
3173
3174         dev_dbg(&pdev->dev, "vendor=%04X device=%04x\n", pdev->vendor,
3175                 pdev->device);
3176
3177         rc = pci_enable_device(pdev);
3178         if (rc)
3179                 return rc;
3180         rc = pci_request_regions(pdev, DRV_NAME);
3181         if (rc)
3182                 goto err_out;
3183         rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3184         if (rc)
3185                 rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3186         if (rc) {
3187                 dev_err(&pdev->dev, "DMA mask error %d\n", rc);
3188                 goto err_out_regions;
3189         }
3190
3191         if (!skd_major) {
3192                 rc = register_blkdev(0, DRV_NAME);
3193                 if (rc < 0)
3194                         goto err_out_regions;
3195                 BUG_ON(!rc);
3196                 skd_major = rc;
3197         }
3198
3199         skdev = skd_construct(pdev);
3200         if (skdev == NULL) {
3201                 rc = -ENOMEM;
3202                 goto err_out_regions;
3203         }
3204
3205         skd_pci_info(skdev, pci_str);
3206         dev_info(&pdev->dev, "%s 64bit\n", pci_str);
3207
3208         pci_set_master(pdev);
3209         rc = pci_enable_pcie_error_reporting(pdev);
3210         if (rc) {
3211                 dev_err(&pdev->dev,
3212                         "bad enable of PCIe error reporting rc=%d\n", rc);
3213                 skdev->pcie_error_reporting_is_enabled = 0;
3214         } else
3215                 skdev->pcie_error_reporting_is_enabled = 1;
3216
3217         pci_set_drvdata(pdev, skdev);
3218
3219         for (i = 0; i < SKD_MAX_BARS; i++) {
3220                 skdev->mem_phys[i] = pci_resource_start(pdev, i);
3221                 skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
3222                 skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
3223                                             skdev->mem_size[i]);
3224                 if (!skdev->mem_map[i]) {
3225                         dev_err(&pdev->dev,
3226                                 "Unable to map adapter memory!\n");
3227                         rc = -ENODEV;
3228                         goto err_out_iounmap;
3229                 }
3230                 dev_dbg(&pdev->dev, "mem_map=%p, phyd=%016llx, size=%d\n",
3231                         skdev->mem_map[i], (uint64_t)skdev->mem_phys[i],
3232                         skdev->mem_size[i]);
3233         }
3234
3235         rc = skd_acquire_irq(skdev);
3236         if (rc) {
3237                 dev_err(&pdev->dev, "interrupt resource error %d\n", rc);
3238                 goto err_out_iounmap;
3239         }
3240
3241         rc = skd_start_timer(skdev);
3242         if (rc)
3243                 goto err_out_timer;
3244
3245         init_waitqueue_head(&skdev->waitq);
3246
3247         skd_start_device(skdev);
3248
3249         rc = wait_event_interruptible_timeout(skdev->waitq,
3250                                               (skdev->gendisk_on),
3251                                               (SKD_START_WAIT_SECONDS * HZ));
3252         if (skdev->gendisk_on > 0) {
3253                 /* device came on-line after reset */
3254                 skd_bdev_attach(&pdev->dev, skdev);
3255                 rc = 0;
3256         } else {
3257                 /* we timed out, something is wrong with the device,
3258                    don't add the disk structure */
3259                 dev_err(&pdev->dev, "error: waiting for s1120 timed out %d!\n",
3260                         rc);
3261                 /* in case of no error; we timeout with ENXIO */
3262                 if (!rc)
3263                         rc = -ENXIO;
3264                 goto err_out_timer;
3265         }
3266
3267         return rc;
3268
3269 err_out_timer:
3270         skd_stop_device(skdev);
3271         skd_release_irq(skdev);
3272
3273 err_out_iounmap:
3274         for (i = 0; i < SKD_MAX_BARS; i++)
3275                 if (skdev->mem_map[i])
3276                         iounmap(skdev->mem_map[i]);
3277
3278         if (skdev->pcie_error_reporting_is_enabled)
3279                 pci_disable_pcie_error_reporting(pdev);
3280
3281         skd_destruct(skdev);
3282
3283 err_out_regions:
3284         pci_release_regions(pdev);
3285
3286 err_out:
3287         pci_disable_device(pdev);
3288         pci_set_drvdata(pdev, NULL);
3289         return rc;
3290 }
3291
3292 static void skd_pci_remove(struct pci_dev *pdev)
3293 {
3294         int i;
3295         struct skd_device *skdev;
3296
3297         skdev = pci_get_drvdata(pdev);
3298         if (!skdev) {
3299                 dev_err(&pdev->dev, "no device data for PCI\n");
3300                 return;
3301         }
3302         skd_stop_device(skdev);
3303         skd_release_irq(skdev);
3304
3305         for (i = 0; i < SKD_MAX_BARS; i++)
3306                 if (skdev->mem_map[i])
3307                         iounmap(skdev->mem_map[i]);
3308
3309         if (skdev->pcie_error_reporting_is_enabled)
3310                 pci_disable_pcie_error_reporting(pdev);
3311
3312         skd_destruct(skdev);
3313
3314         pci_release_regions(pdev);
3315         pci_disable_device(pdev);
3316         pci_set_drvdata(pdev, NULL);
3317
3318         return;
3319 }
3320
3321 static int skd_pci_suspend(struct pci_dev *pdev, pm_message_t state)
3322 {
3323         int i;
3324         struct skd_device *skdev;
3325
3326         skdev = pci_get_drvdata(pdev);
3327         if (!skdev) {
3328                 dev_err(&pdev->dev, "no device data for PCI\n");
3329                 return -EIO;
3330         }
3331
3332         skd_stop_device(skdev);
3333
3334         skd_release_irq(skdev);
3335
3336         for (i = 0; i < SKD_MAX_BARS; i++)
3337                 if (skdev->mem_map[i])
3338                         iounmap(skdev->mem_map[i]);
3339
3340         if (skdev->pcie_error_reporting_is_enabled)
3341                 pci_disable_pcie_error_reporting(pdev);
3342
3343         pci_release_regions(pdev);
3344         pci_save_state(pdev);
3345         pci_disable_device(pdev);
3346         pci_set_power_state(pdev, pci_choose_state(pdev, state));
3347         return 0;
3348 }
3349
3350 static int skd_pci_resume(struct pci_dev *pdev)
3351 {
3352         int i;
3353         int rc = 0;
3354         struct skd_device *skdev;
3355
3356         skdev = pci_get_drvdata(pdev);
3357         if (!skdev) {
3358                 dev_err(&pdev->dev, "no device data for PCI\n");
3359                 return -1;
3360         }
3361
3362         pci_set_power_state(pdev, PCI_D0);
3363         pci_enable_wake(pdev, PCI_D0, 0);
3364         pci_restore_state(pdev);
3365
3366         rc = pci_enable_device(pdev);
3367         if (rc)
3368                 return rc;
3369         rc = pci_request_regions(pdev, DRV_NAME);
3370         if (rc)
3371                 goto err_out;
3372         rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3373         if (rc)
3374                 rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3375         if (rc) {
3376                 dev_err(&pdev->dev, "DMA mask error %d\n", rc);
3377                 goto err_out_regions;
3378         }
3379
3380         pci_set_master(pdev);
3381         rc = pci_enable_pcie_error_reporting(pdev);
3382         if (rc) {
3383                 dev_err(&pdev->dev,
3384                         "bad enable of PCIe error reporting rc=%d\n", rc);
3385                 skdev->pcie_error_reporting_is_enabled = 0;
3386         } else
3387                 skdev->pcie_error_reporting_is_enabled = 1;
3388
3389         for (i = 0; i < SKD_MAX_BARS; i++) {
3390
3391                 skdev->mem_phys[i] = pci_resource_start(pdev, i);
3392                 skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
3393                 skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
3394                                             skdev->mem_size[i]);
3395                 if (!skdev->mem_map[i]) {
3396                         dev_err(&pdev->dev, "Unable to map adapter memory!\n");
3397                         rc = -ENODEV;
3398                         goto err_out_iounmap;
3399                 }
3400                 dev_dbg(&pdev->dev, "mem_map=%p, phyd=%016llx, size=%d\n",
3401                         skdev->mem_map[i], (uint64_t)skdev->mem_phys[i],
3402                         skdev->mem_size[i]);
3403         }
3404         rc = skd_acquire_irq(skdev);
3405         if (rc) {
3406                 dev_err(&pdev->dev, "interrupt resource error %d\n", rc);
3407                 goto err_out_iounmap;
3408         }
3409
3410         rc = skd_start_timer(skdev);
3411         if (rc)
3412                 goto err_out_timer;
3413
3414         init_waitqueue_head(&skdev->waitq);
3415
3416         skd_start_device(skdev);
3417
3418         return rc;
3419
3420 err_out_timer:
3421         skd_stop_device(skdev);
3422         skd_release_irq(skdev);
3423
3424 err_out_iounmap:
3425         for (i = 0; i < SKD_MAX_BARS; i++)
3426                 if (skdev->mem_map[i])
3427                         iounmap(skdev->mem_map[i]);
3428
3429         if (skdev->pcie_error_reporting_is_enabled)
3430                 pci_disable_pcie_error_reporting(pdev);
3431
3432 err_out_regions:
3433         pci_release_regions(pdev);
3434
3435 err_out:
3436         pci_disable_device(pdev);
3437         return rc;
3438 }
3439
3440 static void skd_pci_shutdown(struct pci_dev *pdev)
3441 {
3442         struct skd_device *skdev;
3443
3444         dev_err(&pdev->dev, "%s called\n", __func__);
3445
3446         skdev = pci_get_drvdata(pdev);
3447         if (!skdev) {
3448                 dev_err(&pdev->dev, "no device data for PCI\n");
3449                 return;
3450         }
3451
3452         dev_err(&pdev->dev, "calling stop\n");
3453         skd_stop_device(skdev);
3454 }
3455
3456 static struct pci_driver skd_driver = {
3457         .name           = DRV_NAME,
3458         .id_table       = skd_pci_tbl,
3459         .probe          = skd_pci_probe,
3460         .remove         = skd_pci_remove,
3461         .suspend        = skd_pci_suspend,
3462         .resume         = skd_pci_resume,
3463         .shutdown       = skd_pci_shutdown,
3464 };
3465
3466 /*
3467  *****************************************************************************
3468  * LOGGING SUPPORT
3469  *****************************************************************************
3470  */
3471
3472 const char *skd_drive_state_to_str(int state)
3473 {
3474         switch (state) {
3475         case FIT_SR_DRIVE_OFFLINE:
3476                 return "OFFLINE";
3477         case FIT_SR_DRIVE_INIT:
3478                 return "INIT";
3479         case FIT_SR_DRIVE_ONLINE:
3480                 return "ONLINE";
3481         case FIT_SR_DRIVE_BUSY:
3482                 return "BUSY";
3483         case FIT_SR_DRIVE_FAULT:
3484                 return "FAULT";
3485         case FIT_SR_DRIVE_DEGRADED:
3486                 return "DEGRADED";
3487         case FIT_SR_PCIE_LINK_DOWN:
3488                 return "INK_DOWN";
3489         case FIT_SR_DRIVE_SOFT_RESET:
3490                 return "SOFT_RESET";
3491         case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
3492                 return "NEED_FW";
3493         case FIT_SR_DRIVE_INIT_FAULT:
3494                 return "INIT_FAULT";
3495         case FIT_SR_DRIVE_BUSY_SANITIZE:
3496                 return "BUSY_SANITIZE";
3497         case FIT_SR_DRIVE_BUSY_ERASE:
3498                 return "BUSY_ERASE";
3499         case FIT_SR_DRIVE_FW_BOOTING:
3500                 return "FW_BOOTING";
3501         default:
3502                 return "???";
3503         }
3504 }
3505
3506 const char *skd_skdev_state_to_str(enum skd_drvr_state state)
3507 {
3508         switch (state) {
3509         case SKD_DRVR_STATE_LOAD:
3510                 return "LOAD";
3511         case SKD_DRVR_STATE_IDLE:
3512                 return "IDLE";
3513         case SKD_DRVR_STATE_BUSY:
3514                 return "BUSY";
3515         case SKD_DRVR_STATE_STARTING:
3516                 return "STARTING";
3517         case SKD_DRVR_STATE_ONLINE:
3518                 return "ONLINE";
3519         case SKD_DRVR_STATE_PAUSING:
3520                 return "PAUSING";
3521         case SKD_DRVR_STATE_PAUSED:
3522                 return "PAUSED";
3523         case SKD_DRVR_STATE_RESTARTING:
3524                 return "RESTARTING";
3525         case SKD_DRVR_STATE_RESUMING:
3526                 return "RESUMING";
3527         case SKD_DRVR_STATE_STOPPING:
3528                 return "STOPPING";
3529         case SKD_DRVR_STATE_SYNCING:
3530                 return "SYNCING";
3531         case SKD_DRVR_STATE_FAULT:
3532                 return "FAULT";
3533         case SKD_DRVR_STATE_DISAPPEARED:
3534                 return "DISAPPEARED";
3535         case SKD_DRVR_STATE_BUSY_ERASE:
3536                 return "BUSY_ERASE";
3537         case SKD_DRVR_STATE_BUSY_SANITIZE:
3538                 return "BUSY_SANITIZE";
3539         case SKD_DRVR_STATE_BUSY_IMMINENT:
3540                 return "BUSY_IMMINENT";
3541         case SKD_DRVR_STATE_WAIT_BOOT:
3542                 return "WAIT_BOOT";
3543
3544         default:
3545                 return "???";
3546         }
3547 }
3548
3549 static const char *skd_skreq_state_to_str(enum skd_req_state state)
3550 {
3551         switch (state) {
3552         case SKD_REQ_STATE_IDLE:
3553                 return "IDLE";
3554         case SKD_REQ_STATE_SETUP:
3555                 return "SETUP";
3556         case SKD_REQ_STATE_BUSY:
3557                 return "BUSY";
3558         case SKD_REQ_STATE_COMPLETED:
3559                 return "COMPLETED";
3560         case SKD_REQ_STATE_TIMEOUT:
3561                 return "TIMEOUT";
3562         default:
3563                 return "???";
3564         }
3565 }
3566
3567 static void skd_log_skdev(struct skd_device *skdev, const char *event)
3568 {
3569         dev_dbg(&skdev->pdev->dev, "skdev=%p event='%s'\n", skdev, event);
3570         dev_dbg(&skdev->pdev->dev, "  drive_state=%s(%d) driver_state=%s(%d)\n",
3571                 skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
3572                 skd_skdev_state_to_str(skdev->state), skdev->state);
3573         dev_dbg(&skdev->pdev->dev, "  busy=%d limit=%d dev=%d lowat=%d\n",
3574                 skd_in_flight(skdev), skdev->cur_max_queue_depth,
3575                 skdev->dev_max_queue_depth, skdev->queue_low_water_mark);
3576         dev_dbg(&skdev->pdev->dev, "  cycle=%d cycle_ix=%d\n",
3577                 skdev->skcomp_cycle, skdev->skcomp_ix);
3578 }
3579
3580 static void skd_log_skreq(struct skd_device *skdev,
3581                           struct skd_request_context *skreq, const char *event)
3582 {
3583         struct request *req = blk_mq_rq_from_pdu(skreq);
3584         u32 lba = blk_rq_pos(req);
3585         u32 count = blk_rq_sectors(req);
3586
3587         dev_dbg(&skdev->pdev->dev, "skreq=%p event='%s'\n", skreq, event);
3588         dev_dbg(&skdev->pdev->dev, "  state=%s(%d) id=0x%04x fitmsg=0x%04x\n",
3589                 skd_skreq_state_to_str(skreq->state), skreq->state, skreq->id,
3590                 skreq->fitmsg_id);
3591         dev_dbg(&skdev->pdev->dev, "  sg_dir=%d n_sg=%d\n",
3592                 skreq->data_dir, skreq->n_sg);
3593
3594         dev_dbg(&skdev->pdev->dev,
3595                 "req=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n", req, lba, lba,
3596                 count, count, (int)rq_data_dir(req));
3597 }
3598
3599 /*
3600  *****************************************************************************
3601  * MODULE GLUE
3602  *****************************************************************************
3603  */
3604
3605 static int __init skd_init(void)
3606 {
3607         BUILD_BUG_ON(sizeof(struct fit_completion_entry_v1) != 8);
3608         BUILD_BUG_ON(sizeof(struct fit_comp_error_info) != 32);
3609         BUILD_BUG_ON(sizeof(struct skd_command_header) != 16);
3610         BUILD_BUG_ON(sizeof(struct skd_scsi_request) != 32);
3611         BUILD_BUG_ON(sizeof(struct driver_inquiry_data) != 44);
3612         BUILD_BUG_ON(offsetof(struct skd_msg_buf, fmh) != 0);
3613         BUILD_BUG_ON(offsetof(struct skd_msg_buf, scsi) != 64);
3614         BUILD_BUG_ON(sizeof(struct skd_msg_buf) != SKD_N_FITMSG_BYTES);
3615
3616         switch (skd_isr_type) {
3617         case SKD_IRQ_LEGACY:
3618         case SKD_IRQ_MSI:
3619         case SKD_IRQ_MSIX:
3620                 break;
3621         default:
3622                 pr_err(PFX "skd_isr_type %d invalid, re-set to %d\n",
3623                        skd_isr_type, SKD_IRQ_DEFAULT);
3624                 skd_isr_type = SKD_IRQ_DEFAULT;
3625         }
3626
3627         if (skd_max_queue_depth < 1 ||
3628             skd_max_queue_depth > SKD_MAX_QUEUE_DEPTH) {
3629                 pr_err(PFX "skd_max_queue_depth %d invalid, re-set to %d\n",
3630                        skd_max_queue_depth, SKD_MAX_QUEUE_DEPTH_DEFAULT);
3631                 skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
3632         }
3633
3634         if (skd_max_req_per_msg < 1 ||
3635             skd_max_req_per_msg > SKD_MAX_REQ_PER_MSG) {
3636                 pr_err(PFX "skd_max_req_per_msg %d invalid, re-set to %d\n",
3637                        skd_max_req_per_msg, SKD_MAX_REQ_PER_MSG_DEFAULT);
3638                 skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
3639         }
3640
3641         if (skd_sgs_per_request < 1 || skd_sgs_per_request > 4096) {
3642                 pr_err(PFX "skd_sg_per_request %d invalid, re-set to %d\n",
3643                        skd_sgs_per_request, SKD_N_SG_PER_REQ_DEFAULT);
3644                 skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
3645         }
3646
3647         if (skd_dbg_level < 0 || skd_dbg_level > 2) {
3648                 pr_err(PFX "skd_dbg_level %d invalid, re-set to %d\n",
3649                        skd_dbg_level, 0);
3650                 skd_dbg_level = 0;
3651         }
3652
3653         if (skd_isr_comp_limit < 0) {
3654                 pr_err(PFX "skd_isr_comp_limit %d invalid, set to %d\n",
3655                        skd_isr_comp_limit, 0);
3656                 skd_isr_comp_limit = 0;
3657         }
3658
3659         return pci_register_driver(&skd_driver);
3660 }
3661
3662 static void __exit skd_exit(void)
3663 {
3664         pci_unregister_driver(&skd_driver);
3665
3666         if (skd_major)
3667                 unregister_blkdev(skd_major, DRV_NAME);
3668 }
3669
3670 module_init(skd_init);
3671 module_exit(skd_exit);