faafd7ff43d6ef53110ab3663cc7ac322214cc8c
[linux-2.6-block.git] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/striper.h>
36 #include <linux/ceph/decode.h>
37 #include <linux/fs_parser.h>
38 #include <linux/bsearch.h>
39
40 #include <linux/kernel.h>
41 #include <linux/device.h>
42 #include <linux/module.h>
43 #include <linux/blk-mq.h>
44 #include <linux/fs.h>
45 #include <linux/blkdev.h>
46 #include <linux/slab.h>
47 #include <linux/idr.h>
48 #include <linux/workqueue.h>
49
50 #include "rbd_types.h"
51
52 #define RBD_DEBUG       /* Activate rbd_assert() calls */
53
54 /*
55  * Increment the given counter and return its updated value.
56  * If the counter is already 0 it will not be incremented.
57  * If the counter is already at its maximum value returns
58  * -EINVAL without updating it.
59  */
60 static int atomic_inc_return_safe(atomic_t *v)
61 {
62         unsigned int counter;
63
64         counter = (unsigned int)atomic_fetch_add_unless(v, 1, 0);
65         if (counter <= (unsigned int)INT_MAX)
66                 return (int)counter;
67
68         atomic_dec(v);
69
70         return -EINVAL;
71 }
72
73 /* Decrement the counter.  Return the resulting value, or -EINVAL */
74 static int atomic_dec_return_safe(atomic_t *v)
75 {
76         int counter;
77
78         counter = atomic_dec_return(v);
79         if (counter >= 0)
80                 return counter;
81
82         atomic_inc(v);
83
84         return -EINVAL;
85 }
86
87 #define RBD_DRV_NAME "rbd"
88
89 #define RBD_MINORS_PER_MAJOR            256
90 #define RBD_SINGLE_MAJOR_PART_SHIFT     4
91
92 #define RBD_MAX_PARENT_CHAIN_LEN        16
93
94 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
95 #define RBD_MAX_SNAP_NAME_LEN   \
96                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
97
98 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
99
100 #define RBD_SNAP_HEAD_NAME      "-"
101
102 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
103
104 /* This allows a single page to hold an image name sent by OSD */
105 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
106 #define RBD_IMAGE_ID_LEN_MAX    64
107
108 #define RBD_OBJ_PREFIX_LEN_MAX  64
109
110 #define RBD_NOTIFY_TIMEOUT      5       /* seconds */
111 #define RBD_RETRY_DELAY         msecs_to_jiffies(1000)
112
113 /* Feature bits */
114
115 #define RBD_FEATURE_LAYERING            (1ULL<<0)
116 #define RBD_FEATURE_STRIPINGV2          (1ULL<<1)
117 #define RBD_FEATURE_EXCLUSIVE_LOCK      (1ULL<<2)
118 #define RBD_FEATURE_OBJECT_MAP          (1ULL<<3)
119 #define RBD_FEATURE_FAST_DIFF           (1ULL<<4)
120 #define RBD_FEATURE_DEEP_FLATTEN        (1ULL<<5)
121 #define RBD_FEATURE_DATA_POOL           (1ULL<<7)
122 #define RBD_FEATURE_OPERATIONS          (1ULL<<8)
123
124 #define RBD_FEATURES_ALL        (RBD_FEATURE_LAYERING |         \
125                                  RBD_FEATURE_STRIPINGV2 |       \
126                                  RBD_FEATURE_EXCLUSIVE_LOCK |   \
127                                  RBD_FEATURE_OBJECT_MAP |       \
128                                  RBD_FEATURE_FAST_DIFF |        \
129                                  RBD_FEATURE_DEEP_FLATTEN |     \
130                                  RBD_FEATURE_DATA_POOL |        \
131                                  RBD_FEATURE_OPERATIONS)
132
133 /* Features supported by this (client software) implementation. */
134
135 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
136
137 /*
138  * An RBD device name will be "rbd#", where the "rbd" comes from
139  * RBD_DRV_NAME above, and # is a unique integer identifier.
140  */
141 #define DEV_NAME_LEN            32
142
143 /*
144  * block device image metadata (in-memory version)
145  */
146 struct rbd_image_header {
147         /* These six fields never change for a given rbd image */
148         char *object_prefix;
149         __u8 obj_order;
150         u64 stripe_unit;
151         u64 stripe_count;
152         s64 data_pool_id;
153         u64 features;           /* Might be changeable someday? */
154
155         /* The remaining fields need to be updated occasionally */
156         u64 image_size;
157         struct ceph_snap_context *snapc;
158         char *snap_names;       /* format 1 only */
159         u64 *snap_sizes;        /* format 1 only */
160 };
161
162 /*
163  * An rbd image specification.
164  *
165  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
166  * identify an image.  Each rbd_dev structure includes a pointer to
167  * an rbd_spec structure that encapsulates this identity.
168  *
169  * Each of the id's in an rbd_spec has an associated name.  For a
170  * user-mapped image, the names are supplied and the id's associated
171  * with them are looked up.  For a layered image, a parent image is
172  * defined by the tuple, and the names are looked up.
173  *
174  * An rbd_dev structure contains a parent_spec pointer which is
175  * non-null if the image it represents is a child in a layered
176  * image.  This pointer will refer to the rbd_spec structure used
177  * by the parent rbd_dev for its own identity (i.e., the structure
178  * is shared between the parent and child).
179  *
180  * Since these structures are populated once, during the discovery
181  * phase of image construction, they are effectively immutable so
182  * we make no effort to synchronize access to them.
183  *
184  * Note that code herein does not assume the image name is known (it
185  * could be a null pointer).
186  */
187 struct rbd_spec {
188         u64             pool_id;
189         const char      *pool_name;
190         const char      *pool_ns;       /* NULL if default, never "" */
191
192         const char      *image_id;
193         const char      *image_name;
194
195         u64             snap_id;
196         const char      *snap_name;
197
198         struct kref     kref;
199 };
200
201 /*
202  * an instance of the client.  multiple devices may share an rbd client.
203  */
204 struct rbd_client {
205         struct ceph_client      *client;
206         struct kref             kref;
207         struct list_head        node;
208 };
209
210 struct pending_result {
211         int                     result;         /* first nonzero result */
212         int                     num_pending;
213 };
214
215 struct rbd_img_request;
216
217 enum obj_request_type {
218         OBJ_REQUEST_NODATA = 1,
219         OBJ_REQUEST_BIO,        /* pointer into provided bio (list) */
220         OBJ_REQUEST_BVECS,      /* pointer into provided bio_vec array */
221         OBJ_REQUEST_OWN_BVECS,  /* private bio_vec array, doesn't own pages */
222 };
223
224 enum obj_operation_type {
225         OBJ_OP_READ = 1,
226         OBJ_OP_WRITE,
227         OBJ_OP_DISCARD,
228         OBJ_OP_ZEROOUT,
229 };
230
231 #define RBD_OBJ_FLAG_DELETION                   (1U << 0)
232 #define RBD_OBJ_FLAG_COPYUP_ENABLED             (1U << 1)
233 #define RBD_OBJ_FLAG_COPYUP_ZEROS               (1U << 2)
234 #define RBD_OBJ_FLAG_MAY_EXIST                  (1U << 3)
235 #define RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT       (1U << 4)
236
237 enum rbd_obj_read_state {
238         RBD_OBJ_READ_START = 1,
239         RBD_OBJ_READ_OBJECT,
240         RBD_OBJ_READ_PARENT,
241 };
242
243 /*
244  * Writes go through the following state machine to deal with
245  * layering:
246  *
247  *            . . . . . RBD_OBJ_WRITE_GUARD. . . . . . . . . . . . . .
248  *            .                 |                                    .
249  *            .                 v                                    .
250  *            .    RBD_OBJ_WRITE_READ_FROM_PARENT. . .               .
251  *            .                 |                    .               .
252  *            .                 v                    v (deep-copyup  .
253  *    (image  .   RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC   .  not needed)  .
254  * flattened) v                 |                    .               .
255  *            .                 v                    .               .
256  *            . . . .RBD_OBJ_WRITE_COPYUP_OPS. . . . .      (copyup  .
257  *                              |                        not needed) v
258  *                              v                                    .
259  *                            done . . . . . . . . . . . . . . . . . .
260  *                              ^
261  *                              |
262  *                     RBD_OBJ_WRITE_FLAT
263  *
264  * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether
265  * assert_exists guard is needed or not (in some cases it's not needed
266  * even if there is a parent).
267  */
268 enum rbd_obj_write_state {
269         RBD_OBJ_WRITE_START = 1,
270         RBD_OBJ_WRITE_PRE_OBJECT_MAP,
271         RBD_OBJ_WRITE_OBJECT,
272         __RBD_OBJ_WRITE_COPYUP,
273         RBD_OBJ_WRITE_COPYUP,
274         RBD_OBJ_WRITE_POST_OBJECT_MAP,
275 };
276
277 enum rbd_obj_copyup_state {
278         RBD_OBJ_COPYUP_START = 1,
279         RBD_OBJ_COPYUP_READ_PARENT,
280         __RBD_OBJ_COPYUP_OBJECT_MAPS,
281         RBD_OBJ_COPYUP_OBJECT_MAPS,
282         __RBD_OBJ_COPYUP_WRITE_OBJECT,
283         RBD_OBJ_COPYUP_WRITE_OBJECT,
284 };
285
286 struct rbd_obj_request {
287         struct ceph_object_extent ex;
288         unsigned int            flags;  /* RBD_OBJ_FLAG_* */
289         union {
290                 enum rbd_obj_read_state  read_state;    /* for reads */
291                 enum rbd_obj_write_state write_state;   /* for writes */
292         };
293
294         struct rbd_img_request  *img_request;
295         struct ceph_file_extent *img_extents;
296         u32                     num_img_extents;
297
298         union {
299                 struct ceph_bio_iter    bio_pos;
300                 struct {
301                         struct ceph_bvec_iter   bvec_pos;
302                         u32                     bvec_count;
303                         u32                     bvec_idx;
304                 };
305         };
306
307         enum rbd_obj_copyup_state copyup_state;
308         struct bio_vec          *copyup_bvecs;
309         u32                     copyup_bvec_count;
310
311         struct list_head        osd_reqs;       /* w/ r_private_item */
312
313         struct mutex            state_mutex;
314         struct pending_result   pending;
315         struct kref             kref;
316 };
317
318 enum img_req_flags {
319         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
320         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
321 };
322
323 enum rbd_img_state {
324         RBD_IMG_START = 1,
325         RBD_IMG_EXCLUSIVE_LOCK,
326         __RBD_IMG_OBJECT_REQUESTS,
327         RBD_IMG_OBJECT_REQUESTS,
328 };
329
330 struct rbd_img_request {
331         struct rbd_device       *rbd_dev;
332         enum obj_operation_type op_type;
333         enum obj_request_type   data_type;
334         unsigned long           flags;
335         enum rbd_img_state      state;
336         union {
337                 u64                     snap_id;        /* for reads */
338                 struct ceph_snap_context *snapc;        /* for writes */
339         };
340         struct rbd_obj_request  *obj_request;   /* obj req initiator */
341
342         struct list_head        lock_item;
343         struct list_head        object_extents; /* obj_req.ex structs */
344
345         struct mutex            state_mutex;
346         struct pending_result   pending;
347         struct work_struct      work;
348         int                     work_result;
349 };
350
351 #define for_each_obj_request(ireq, oreq) \
352         list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item)
353 #define for_each_obj_request_safe(ireq, oreq, n) \
354         list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item)
355
356 enum rbd_watch_state {
357         RBD_WATCH_STATE_UNREGISTERED,
358         RBD_WATCH_STATE_REGISTERED,
359         RBD_WATCH_STATE_ERROR,
360 };
361
362 enum rbd_lock_state {
363         RBD_LOCK_STATE_UNLOCKED,
364         RBD_LOCK_STATE_LOCKED,
365         RBD_LOCK_STATE_QUIESCING,
366 };
367
368 /* WatchNotify::ClientId */
369 struct rbd_client_id {
370         u64 gid;
371         u64 handle;
372 };
373
374 struct rbd_mapping {
375         u64                     size;
376 };
377
378 /*
379  * a single device
380  */
381 struct rbd_device {
382         int                     dev_id;         /* blkdev unique id */
383
384         int                     major;          /* blkdev assigned major */
385         int                     minor;
386         struct gendisk          *disk;          /* blkdev's gendisk and rq */
387
388         u32                     image_format;   /* Either 1 or 2 */
389         struct rbd_client       *rbd_client;
390
391         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
392
393         spinlock_t              lock;           /* queue, flags, open_count */
394
395         struct rbd_image_header header;
396         unsigned long           flags;          /* possibly lock protected */
397         struct rbd_spec         *spec;
398         struct rbd_options      *opts;
399         char                    *config_info;   /* add{,_single_major} string */
400
401         struct ceph_object_id   header_oid;
402         struct ceph_object_locator header_oloc;
403
404         struct ceph_file_layout layout;         /* used for all rbd requests */
405
406         struct mutex            watch_mutex;
407         enum rbd_watch_state    watch_state;
408         struct ceph_osd_linger_request *watch_handle;
409         u64                     watch_cookie;
410         struct delayed_work     watch_dwork;
411
412         struct rw_semaphore     lock_rwsem;
413         enum rbd_lock_state     lock_state;
414         char                    lock_cookie[32];
415         struct rbd_client_id    owner_cid;
416         struct work_struct      acquired_lock_work;
417         struct work_struct      released_lock_work;
418         struct delayed_work     lock_dwork;
419         struct work_struct      unlock_work;
420         spinlock_t              lock_lists_lock;
421         struct list_head        acquiring_list;
422         struct list_head        running_list;
423         struct completion       acquire_wait;
424         int                     acquire_err;
425         struct completion       quiescing_wait;
426
427         spinlock_t              object_map_lock;
428         u8                      *object_map;
429         u64                     object_map_size;        /* in objects */
430         u64                     object_map_flags;
431
432         struct workqueue_struct *task_wq;
433
434         struct rbd_spec         *parent_spec;
435         u64                     parent_overlap;
436         atomic_t                parent_ref;
437         struct rbd_device       *parent;
438
439         /* Block layer tags. */
440         struct blk_mq_tag_set   tag_set;
441
442         /* protects updating the header */
443         struct rw_semaphore     header_rwsem;
444
445         struct rbd_mapping      mapping;
446
447         struct list_head        node;
448
449         /* sysfs related */
450         struct device           dev;
451         unsigned long           open_count;     /* protected by lock */
452 };
453
454 /*
455  * Flag bits for rbd_dev->flags:
456  * - REMOVING (which is coupled with rbd_dev->open_count) is protected
457  *   by rbd_dev->lock
458  */
459 enum rbd_dev_flags {
460         RBD_DEV_FLAG_EXISTS,    /* rbd_dev_device_setup() ran */
461         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
462         RBD_DEV_FLAG_READONLY,  /* -o ro or snapshot */
463 };
464
465 static DEFINE_MUTEX(client_mutex);      /* Serialize client creation */
466
467 static LIST_HEAD(rbd_dev_list);    /* devices */
468 static DEFINE_SPINLOCK(rbd_dev_list_lock);
469
470 static LIST_HEAD(rbd_client_list);              /* clients */
471 static DEFINE_SPINLOCK(rbd_client_list_lock);
472
473 /* Slab caches for frequently-allocated structures */
474
475 static struct kmem_cache        *rbd_img_request_cache;
476 static struct kmem_cache        *rbd_obj_request_cache;
477
478 static int rbd_major;
479 static DEFINE_IDA(rbd_dev_id_ida);
480
481 static struct workqueue_struct *rbd_wq;
482
483 static struct ceph_snap_context rbd_empty_snapc = {
484         .nref = REFCOUNT_INIT(1),
485 };
486
487 /*
488  * single-major requires >= 0.75 version of userspace rbd utility.
489  */
490 static bool single_major = true;
491 module_param(single_major, bool, 0444);
492 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)");
493
494 static ssize_t add_store(const struct bus_type *bus, const char *buf, size_t count);
495 static ssize_t remove_store(const struct bus_type *bus, const char *buf,
496                             size_t count);
497 static ssize_t add_single_major_store(const struct bus_type *bus, const char *buf,
498                                       size_t count);
499 static ssize_t remove_single_major_store(const struct bus_type *bus, const char *buf,
500                                          size_t count);
501 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
502
503 static int rbd_dev_id_to_minor(int dev_id)
504 {
505         return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
506 }
507
508 static int minor_to_rbd_dev_id(int minor)
509 {
510         return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
511 }
512
513 static bool rbd_is_ro(struct rbd_device *rbd_dev)
514 {
515         return test_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
516 }
517
518 static bool rbd_is_snap(struct rbd_device *rbd_dev)
519 {
520         return rbd_dev->spec->snap_id != CEPH_NOSNAP;
521 }
522
523 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
524 {
525         lockdep_assert_held(&rbd_dev->lock_rwsem);
526
527         return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
528                rbd_dev->lock_state == RBD_LOCK_STATE_QUIESCING;
529 }
530
531 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
532 {
533         bool is_lock_owner;
534
535         down_read(&rbd_dev->lock_rwsem);
536         is_lock_owner = __rbd_is_lock_owner(rbd_dev);
537         up_read(&rbd_dev->lock_rwsem);
538         return is_lock_owner;
539 }
540
541 static ssize_t supported_features_show(const struct bus_type *bus, char *buf)
542 {
543         return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
544 }
545
546 static BUS_ATTR_WO(add);
547 static BUS_ATTR_WO(remove);
548 static BUS_ATTR_WO(add_single_major);
549 static BUS_ATTR_WO(remove_single_major);
550 static BUS_ATTR_RO(supported_features);
551
552 static struct attribute *rbd_bus_attrs[] = {
553         &bus_attr_add.attr,
554         &bus_attr_remove.attr,
555         &bus_attr_add_single_major.attr,
556         &bus_attr_remove_single_major.attr,
557         &bus_attr_supported_features.attr,
558         NULL,
559 };
560
561 static umode_t rbd_bus_is_visible(struct kobject *kobj,
562                                   struct attribute *attr, int index)
563 {
564         if (!single_major &&
565             (attr == &bus_attr_add_single_major.attr ||
566              attr == &bus_attr_remove_single_major.attr))
567                 return 0;
568
569         return attr->mode;
570 }
571
572 static const struct attribute_group rbd_bus_group = {
573         .attrs = rbd_bus_attrs,
574         .is_visible = rbd_bus_is_visible,
575 };
576 __ATTRIBUTE_GROUPS(rbd_bus);
577
578 static const struct bus_type rbd_bus_type = {
579         .name           = "rbd",
580         .bus_groups     = rbd_bus_groups,
581 };
582
583 static void rbd_root_dev_release(struct device *dev)
584 {
585 }
586
587 static struct device rbd_root_dev = {
588         .init_name =    "rbd",
589         .release =      rbd_root_dev_release,
590 };
591
592 static __printf(2, 3)
593 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
594 {
595         struct va_format vaf;
596         va_list args;
597
598         va_start(args, fmt);
599         vaf.fmt = fmt;
600         vaf.va = &args;
601
602         if (!rbd_dev)
603                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
604         else if (rbd_dev->disk)
605                 printk(KERN_WARNING "%s: %s: %pV\n",
606                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
607         else if (rbd_dev->spec && rbd_dev->spec->image_name)
608                 printk(KERN_WARNING "%s: image %s: %pV\n",
609                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
610         else if (rbd_dev->spec && rbd_dev->spec->image_id)
611                 printk(KERN_WARNING "%s: id %s: %pV\n",
612                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
613         else    /* punt */
614                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
615                         RBD_DRV_NAME, rbd_dev, &vaf);
616         va_end(args);
617 }
618
619 #ifdef RBD_DEBUG
620 #define rbd_assert(expr)                                                \
621                 if (unlikely(!(expr))) {                                \
622                         printk(KERN_ERR "\nAssertion failure in %s() "  \
623                                                 "at line %d:\n\n"       \
624                                         "\trbd_assert(%s);\n\n",        \
625                                         __func__, __LINE__, #expr);     \
626                         BUG();                                          \
627                 }
628 #else /* !RBD_DEBUG */
629 #  define rbd_assert(expr)      ((void) 0)
630 #endif /* !RBD_DEBUG */
631
632 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
633
634 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
635 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev,
636                                      struct rbd_image_header *header);
637 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
638                                         u64 snap_id);
639 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
640                                 u8 *order, u64 *snap_size);
641 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev);
642
643 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result);
644 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result);
645
646 /*
647  * Return true if nothing else is pending.
648  */
649 static bool pending_result_dec(struct pending_result *pending, int *result)
650 {
651         rbd_assert(pending->num_pending > 0);
652
653         if (*result && !pending->result)
654                 pending->result = *result;
655         if (--pending->num_pending)
656                 return false;
657
658         *result = pending->result;
659         return true;
660 }
661
662 static int rbd_open(struct gendisk *disk, blk_mode_t mode)
663 {
664         struct rbd_device *rbd_dev = disk->private_data;
665         bool removing = false;
666
667         spin_lock_irq(&rbd_dev->lock);
668         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
669                 removing = true;
670         else
671                 rbd_dev->open_count++;
672         spin_unlock_irq(&rbd_dev->lock);
673         if (removing)
674                 return -ENOENT;
675
676         (void) get_device(&rbd_dev->dev);
677
678         return 0;
679 }
680
681 static void rbd_release(struct gendisk *disk)
682 {
683         struct rbd_device *rbd_dev = disk->private_data;
684         unsigned long open_count_before;
685
686         spin_lock_irq(&rbd_dev->lock);
687         open_count_before = rbd_dev->open_count--;
688         spin_unlock_irq(&rbd_dev->lock);
689         rbd_assert(open_count_before > 0);
690
691         put_device(&rbd_dev->dev);
692 }
693
694 static const struct block_device_operations rbd_bd_ops = {
695         .owner                  = THIS_MODULE,
696         .open                   = rbd_open,
697         .release                = rbd_release,
698 };
699
700 /*
701  * Initialize an rbd client instance.  Success or not, this function
702  * consumes ceph_opts.  Caller holds client_mutex.
703  */
704 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
705 {
706         struct rbd_client *rbdc;
707         int ret = -ENOMEM;
708
709         dout("%s:\n", __func__);
710         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
711         if (!rbdc)
712                 goto out_opt;
713
714         kref_init(&rbdc->kref);
715         INIT_LIST_HEAD(&rbdc->node);
716
717         rbdc->client = ceph_create_client(ceph_opts, rbdc);
718         if (IS_ERR(rbdc->client))
719                 goto out_rbdc;
720         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
721
722         ret = ceph_open_session(rbdc->client);
723         if (ret < 0)
724                 goto out_client;
725
726         spin_lock(&rbd_client_list_lock);
727         list_add_tail(&rbdc->node, &rbd_client_list);
728         spin_unlock(&rbd_client_list_lock);
729
730         dout("%s: rbdc %p\n", __func__, rbdc);
731
732         return rbdc;
733 out_client:
734         ceph_destroy_client(rbdc->client);
735 out_rbdc:
736         kfree(rbdc);
737 out_opt:
738         if (ceph_opts)
739                 ceph_destroy_options(ceph_opts);
740         dout("%s: error %d\n", __func__, ret);
741
742         return ERR_PTR(ret);
743 }
744
745 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
746 {
747         kref_get(&rbdc->kref);
748
749         return rbdc;
750 }
751
752 /*
753  * Find a ceph client with specific addr and configuration.  If
754  * found, bump its reference count.
755  */
756 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
757 {
758         struct rbd_client *rbdc = NULL, *iter;
759
760         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
761                 return NULL;
762
763         spin_lock(&rbd_client_list_lock);
764         list_for_each_entry(iter, &rbd_client_list, node) {
765                 if (!ceph_compare_options(ceph_opts, iter->client)) {
766                         __rbd_get_client(iter);
767
768                         rbdc = iter;
769                         break;
770                 }
771         }
772         spin_unlock(&rbd_client_list_lock);
773
774         return rbdc;
775 }
776
777 /*
778  * (Per device) rbd map options
779  */
780 enum {
781         Opt_queue_depth,
782         Opt_alloc_size,
783         Opt_lock_timeout,
784         /* int args above */
785         Opt_pool_ns,
786         Opt_compression_hint,
787         /* string args above */
788         Opt_read_only,
789         Opt_read_write,
790         Opt_lock_on_read,
791         Opt_exclusive,
792         Opt_notrim,
793 };
794
795 enum {
796         Opt_compression_hint_none,
797         Opt_compression_hint_compressible,
798         Opt_compression_hint_incompressible,
799 };
800
801 static const struct constant_table rbd_param_compression_hint[] = {
802         {"none",                Opt_compression_hint_none},
803         {"compressible",        Opt_compression_hint_compressible},
804         {"incompressible",      Opt_compression_hint_incompressible},
805         {}
806 };
807
808 static const struct fs_parameter_spec rbd_parameters[] = {
809         fsparam_u32     ("alloc_size",                  Opt_alloc_size),
810         fsparam_enum    ("compression_hint",            Opt_compression_hint,
811                          rbd_param_compression_hint),
812         fsparam_flag    ("exclusive",                   Opt_exclusive),
813         fsparam_flag    ("lock_on_read",                Opt_lock_on_read),
814         fsparam_u32     ("lock_timeout",                Opt_lock_timeout),
815         fsparam_flag    ("notrim",                      Opt_notrim),
816         fsparam_string  ("_pool_ns",                    Opt_pool_ns),
817         fsparam_u32     ("queue_depth",                 Opt_queue_depth),
818         fsparam_flag    ("read_only",                   Opt_read_only),
819         fsparam_flag    ("read_write",                  Opt_read_write),
820         fsparam_flag    ("ro",                          Opt_read_only),
821         fsparam_flag    ("rw",                          Opt_read_write),
822         {}
823 };
824
825 struct rbd_options {
826         int     queue_depth;
827         int     alloc_size;
828         unsigned long   lock_timeout;
829         bool    read_only;
830         bool    lock_on_read;
831         bool    exclusive;
832         bool    trim;
833
834         u32 alloc_hint_flags;  /* CEPH_OSD_OP_ALLOC_HINT_FLAG_* */
835 };
836
837 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_DEFAULT_RQ
838 #define RBD_ALLOC_SIZE_DEFAULT  (64 * 1024)
839 #define RBD_LOCK_TIMEOUT_DEFAULT 0  /* no timeout */
840 #define RBD_READ_ONLY_DEFAULT   false
841 #define RBD_LOCK_ON_READ_DEFAULT false
842 #define RBD_EXCLUSIVE_DEFAULT   false
843 #define RBD_TRIM_DEFAULT        true
844
845 struct rbd_parse_opts_ctx {
846         struct rbd_spec         *spec;
847         struct ceph_options     *copts;
848         struct rbd_options      *opts;
849 };
850
851 static char* obj_op_name(enum obj_operation_type op_type)
852 {
853         switch (op_type) {
854         case OBJ_OP_READ:
855                 return "read";
856         case OBJ_OP_WRITE:
857                 return "write";
858         case OBJ_OP_DISCARD:
859                 return "discard";
860         case OBJ_OP_ZEROOUT:
861                 return "zeroout";
862         default:
863                 return "???";
864         }
865 }
866
867 /*
868  * Destroy ceph client
869  *
870  * Caller must hold rbd_client_list_lock.
871  */
872 static void rbd_client_release(struct kref *kref)
873 {
874         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
875
876         dout("%s: rbdc %p\n", __func__, rbdc);
877         spin_lock(&rbd_client_list_lock);
878         list_del(&rbdc->node);
879         spin_unlock(&rbd_client_list_lock);
880
881         ceph_destroy_client(rbdc->client);
882         kfree(rbdc);
883 }
884
885 /*
886  * Drop reference to ceph client node. If it's not referenced anymore, release
887  * it.
888  */
889 static void rbd_put_client(struct rbd_client *rbdc)
890 {
891         if (rbdc)
892                 kref_put(&rbdc->kref, rbd_client_release);
893 }
894
895 /*
896  * Get a ceph client with specific addr and configuration, if one does
897  * not exist create it.  Either way, ceph_opts is consumed by this
898  * function.
899  */
900 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
901 {
902         struct rbd_client *rbdc;
903         int ret;
904
905         mutex_lock(&client_mutex);
906         rbdc = rbd_client_find(ceph_opts);
907         if (rbdc) {
908                 ceph_destroy_options(ceph_opts);
909
910                 /*
911                  * Using an existing client.  Make sure ->pg_pools is up to
912                  * date before we look up the pool id in do_rbd_add().
913                  */
914                 ret = ceph_wait_for_latest_osdmap(rbdc->client,
915                                         rbdc->client->options->mount_timeout);
916                 if (ret) {
917                         rbd_warn(NULL, "failed to get latest osdmap: %d", ret);
918                         rbd_put_client(rbdc);
919                         rbdc = ERR_PTR(ret);
920                 }
921         } else {
922                 rbdc = rbd_client_create(ceph_opts);
923         }
924         mutex_unlock(&client_mutex);
925
926         return rbdc;
927 }
928
929 static bool rbd_image_format_valid(u32 image_format)
930 {
931         return image_format == 1 || image_format == 2;
932 }
933
934 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
935 {
936         size_t size;
937         u32 snap_count;
938
939         /* The header has to start with the magic rbd header text */
940         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
941                 return false;
942
943         /* The bio layer requires at least sector-sized I/O */
944
945         if (ondisk->options.order < SECTOR_SHIFT)
946                 return false;
947
948         /* If we use u64 in a few spots we may be able to loosen this */
949
950         if (ondisk->options.order > 8 * sizeof (int) - 1)
951                 return false;
952
953         /*
954          * The size of a snapshot header has to fit in a size_t, and
955          * that limits the number of snapshots.
956          */
957         snap_count = le32_to_cpu(ondisk->snap_count);
958         size = SIZE_MAX - sizeof (struct ceph_snap_context);
959         if (snap_count > size / sizeof (__le64))
960                 return false;
961
962         /*
963          * Not only that, but the size of the entire the snapshot
964          * header must also be representable in a size_t.
965          */
966         size -= snap_count * sizeof (__le64);
967         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
968                 return false;
969
970         return true;
971 }
972
973 /*
974  * returns the size of an object in the image
975  */
976 static u32 rbd_obj_bytes(struct rbd_image_header *header)
977 {
978         return 1U << header->obj_order;
979 }
980
981 static void rbd_init_layout(struct rbd_device *rbd_dev)
982 {
983         if (rbd_dev->header.stripe_unit == 0 ||
984             rbd_dev->header.stripe_count == 0) {
985                 rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
986                 rbd_dev->header.stripe_count = 1;
987         }
988
989         rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
990         rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
991         rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
992         rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
993                           rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
994         RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
995 }
996
997 static void rbd_image_header_cleanup(struct rbd_image_header *header)
998 {
999         kfree(header->object_prefix);
1000         ceph_put_snap_context(header->snapc);
1001         kfree(header->snap_sizes);
1002         kfree(header->snap_names);
1003
1004         memset(header, 0, sizeof(*header));
1005 }
1006
1007 /*
1008  * Fill an rbd image header with information from the given format 1
1009  * on-disk header.
1010  */
1011 static int rbd_header_from_disk(struct rbd_image_header *header,
1012                                 struct rbd_image_header_ondisk *ondisk,
1013                                 bool first_time)
1014 {
1015         struct ceph_snap_context *snapc;
1016         char *object_prefix = NULL;
1017         char *snap_names = NULL;
1018         u64 *snap_sizes = NULL;
1019         u32 snap_count;
1020         int ret = -ENOMEM;
1021         u32 i;
1022
1023         /* Allocate this now to avoid having to handle failure below */
1024
1025         if (first_time) {
1026                 object_prefix = kstrndup(ondisk->object_prefix,
1027                                          sizeof(ondisk->object_prefix),
1028                                          GFP_KERNEL);
1029                 if (!object_prefix)
1030                         return -ENOMEM;
1031         }
1032
1033         /* Allocate the snapshot context and fill it in */
1034
1035         snap_count = le32_to_cpu(ondisk->snap_count);
1036         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1037         if (!snapc)
1038                 goto out_err;
1039         snapc->seq = le64_to_cpu(ondisk->snap_seq);
1040         if (snap_count) {
1041                 struct rbd_image_snap_ondisk *snaps;
1042                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1043
1044                 /* We'll keep a copy of the snapshot names... */
1045
1046                 if (snap_names_len > (u64)SIZE_MAX)
1047                         goto out_2big;
1048                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1049                 if (!snap_names)
1050                         goto out_err;
1051
1052                 /* ...as well as the array of their sizes. */
1053                 snap_sizes = kmalloc_array(snap_count,
1054                                            sizeof(*header->snap_sizes),
1055                                            GFP_KERNEL);
1056                 if (!snap_sizes)
1057                         goto out_err;
1058
1059                 /*
1060                  * Copy the names, and fill in each snapshot's id
1061                  * and size.
1062                  *
1063                  * Note that rbd_dev_v1_header_info() guarantees the
1064                  * ondisk buffer we're working with has
1065                  * snap_names_len bytes beyond the end of the
1066                  * snapshot id array, this memcpy() is safe.
1067                  */
1068                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1069                 snaps = ondisk->snaps;
1070                 for (i = 0; i < snap_count; i++) {
1071                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1072                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1073                 }
1074         }
1075
1076         /* We won't fail any more, fill in the header */
1077
1078         if (first_time) {
1079                 header->object_prefix = object_prefix;
1080                 header->obj_order = ondisk->options.order;
1081         }
1082
1083         /* The remaining fields always get updated (when we refresh) */
1084
1085         header->image_size = le64_to_cpu(ondisk->image_size);
1086         header->snapc = snapc;
1087         header->snap_names = snap_names;
1088         header->snap_sizes = snap_sizes;
1089
1090         return 0;
1091 out_2big:
1092         ret = -EIO;
1093 out_err:
1094         kfree(snap_sizes);
1095         kfree(snap_names);
1096         ceph_put_snap_context(snapc);
1097         kfree(object_prefix);
1098
1099         return ret;
1100 }
1101
1102 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1103 {
1104         const char *snap_name;
1105
1106         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1107
1108         /* Skip over names until we find the one we are looking for */
1109
1110         snap_name = rbd_dev->header.snap_names;
1111         while (which--)
1112                 snap_name += strlen(snap_name) + 1;
1113
1114         return kstrdup(snap_name, GFP_KERNEL);
1115 }
1116
1117 /*
1118  * Snapshot id comparison function for use with qsort()/bsearch().
1119  * Note that result is for snapshots in *descending* order.
1120  */
1121 static int snapid_compare_reverse(const void *s1, const void *s2)
1122 {
1123         u64 snap_id1 = *(u64 *)s1;
1124         u64 snap_id2 = *(u64 *)s2;
1125
1126         if (snap_id1 < snap_id2)
1127                 return 1;
1128         return snap_id1 == snap_id2 ? 0 : -1;
1129 }
1130
1131 /*
1132  * Search a snapshot context to see if the given snapshot id is
1133  * present.
1134  *
1135  * Returns the position of the snapshot id in the array if it's found,
1136  * or BAD_SNAP_INDEX otherwise.
1137  *
1138  * Note: The snapshot array is in kept sorted (by the osd) in
1139  * reverse order, highest snapshot id first.
1140  */
1141 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1142 {
1143         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1144         u64 *found;
1145
1146         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1147                                 sizeof (snap_id), snapid_compare_reverse);
1148
1149         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1150 }
1151
1152 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1153                                         u64 snap_id)
1154 {
1155         u32 which;
1156         const char *snap_name;
1157
1158         which = rbd_dev_snap_index(rbd_dev, snap_id);
1159         if (which == BAD_SNAP_INDEX)
1160                 return ERR_PTR(-ENOENT);
1161
1162         snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1163         return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1164 }
1165
1166 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1167 {
1168         if (snap_id == CEPH_NOSNAP)
1169                 return RBD_SNAP_HEAD_NAME;
1170
1171         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1172         if (rbd_dev->image_format == 1)
1173                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1174
1175         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1176 }
1177
1178 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1179                                 u64 *snap_size)
1180 {
1181         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1182         if (snap_id == CEPH_NOSNAP) {
1183                 *snap_size = rbd_dev->header.image_size;
1184         } else if (rbd_dev->image_format == 1) {
1185                 u32 which;
1186
1187                 which = rbd_dev_snap_index(rbd_dev, snap_id);
1188                 if (which == BAD_SNAP_INDEX)
1189                         return -ENOENT;
1190
1191                 *snap_size = rbd_dev->header.snap_sizes[which];
1192         } else {
1193                 u64 size = 0;
1194                 int ret;
1195
1196                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1197                 if (ret)
1198                         return ret;
1199
1200                 *snap_size = size;
1201         }
1202         return 0;
1203 }
1204
1205 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1206 {
1207         u64 snap_id = rbd_dev->spec->snap_id;
1208         u64 size = 0;
1209         int ret;
1210
1211         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1212         if (ret)
1213                 return ret;
1214
1215         rbd_dev->mapping.size = size;
1216         return 0;
1217 }
1218
1219 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1220 {
1221         rbd_dev->mapping.size = 0;
1222 }
1223
1224 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes)
1225 {
1226         struct ceph_bio_iter it = *bio_pos;
1227
1228         ceph_bio_iter_advance(&it, off);
1229         ceph_bio_iter_advance_step(&it, bytes, ({
1230                 memzero_bvec(&bv);
1231         }));
1232 }
1233
1234 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes)
1235 {
1236         struct ceph_bvec_iter it = *bvec_pos;
1237
1238         ceph_bvec_iter_advance(&it, off);
1239         ceph_bvec_iter_advance_step(&it, bytes, ({
1240                 memzero_bvec(&bv);
1241         }));
1242 }
1243
1244 /*
1245  * Zero a range in @obj_req data buffer defined by a bio (list) or
1246  * (private) bio_vec array.
1247  *
1248  * @off is relative to the start of the data buffer.
1249  */
1250 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off,
1251                                u32 bytes)
1252 {
1253         dout("%s %p data buf %u~%u\n", __func__, obj_req, off, bytes);
1254
1255         switch (obj_req->img_request->data_type) {
1256         case OBJ_REQUEST_BIO:
1257                 zero_bios(&obj_req->bio_pos, off, bytes);
1258                 break;
1259         case OBJ_REQUEST_BVECS:
1260         case OBJ_REQUEST_OWN_BVECS:
1261                 zero_bvecs(&obj_req->bvec_pos, off, bytes);
1262                 break;
1263         default:
1264                 BUG();
1265         }
1266 }
1267
1268 static void rbd_obj_request_destroy(struct kref *kref);
1269 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1270 {
1271         rbd_assert(obj_request != NULL);
1272         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1273                 kref_read(&obj_request->kref));
1274         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1275 }
1276
1277 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1278                                         struct rbd_obj_request *obj_request)
1279 {
1280         rbd_assert(obj_request->img_request == NULL);
1281
1282         /* Image request now owns object's original reference */
1283         obj_request->img_request = img_request;
1284         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1285 }
1286
1287 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1288                                         struct rbd_obj_request *obj_request)
1289 {
1290         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1291         list_del(&obj_request->ex.oe_item);
1292         rbd_assert(obj_request->img_request == img_request);
1293         rbd_obj_request_put(obj_request);
1294 }
1295
1296 static void rbd_osd_submit(struct ceph_osd_request *osd_req)
1297 {
1298         struct rbd_obj_request *obj_req = osd_req->r_priv;
1299
1300         dout("%s osd_req %p for obj_req %p objno %llu %llu~%llu\n",
1301              __func__, osd_req, obj_req, obj_req->ex.oe_objno,
1302              obj_req->ex.oe_off, obj_req->ex.oe_len);
1303         ceph_osdc_start_request(osd_req->r_osdc, osd_req);
1304 }
1305
1306 /*
1307  * The default/initial value for all image request flags is 0.  Each
1308  * is conditionally set to 1 at image request initialization time
1309  * and currently never change thereafter.
1310  */
1311 static void img_request_layered_set(struct rbd_img_request *img_request)
1312 {
1313         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1314 }
1315
1316 static bool img_request_layered_test(struct rbd_img_request *img_request)
1317 {
1318         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1319 }
1320
1321 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req)
1322 {
1323         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1324
1325         return !obj_req->ex.oe_off &&
1326                obj_req->ex.oe_len == rbd_dev->layout.object_size;
1327 }
1328
1329 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req)
1330 {
1331         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1332
1333         return obj_req->ex.oe_off + obj_req->ex.oe_len ==
1334                                         rbd_dev->layout.object_size;
1335 }
1336
1337 /*
1338  * Must be called after rbd_obj_calc_img_extents().
1339  */
1340 static void rbd_obj_set_copyup_enabled(struct rbd_obj_request *obj_req)
1341 {
1342         rbd_assert(obj_req->img_request->snapc);
1343
1344         if (obj_req->img_request->op_type == OBJ_OP_DISCARD) {
1345                 dout("%s %p objno %llu discard\n", __func__, obj_req,
1346                      obj_req->ex.oe_objno);
1347                 return;
1348         }
1349
1350         if (!obj_req->num_img_extents) {
1351                 dout("%s %p objno %llu not overlapping\n", __func__, obj_req,
1352                      obj_req->ex.oe_objno);
1353                 return;
1354         }
1355
1356         if (rbd_obj_is_entire(obj_req) &&
1357             !obj_req->img_request->snapc->num_snaps) {
1358                 dout("%s %p objno %llu entire\n", __func__, obj_req,
1359                      obj_req->ex.oe_objno);
1360                 return;
1361         }
1362
1363         obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
1364 }
1365
1366 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req)
1367 {
1368         return ceph_file_extents_bytes(obj_req->img_extents,
1369                                        obj_req->num_img_extents);
1370 }
1371
1372 static bool rbd_img_is_write(struct rbd_img_request *img_req)
1373 {
1374         switch (img_req->op_type) {
1375         case OBJ_OP_READ:
1376                 return false;
1377         case OBJ_OP_WRITE:
1378         case OBJ_OP_DISCARD:
1379         case OBJ_OP_ZEROOUT:
1380                 return true;
1381         default:
1382                 BUG();
1383         }
1384 }
1385
1386 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1387 {
1388         struct rbd_obj_request *obj_req = osd_req->r_priv;
1389         int result;
1390
1391         dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1392              osd_req->r_result, obj_req);
1393
1394         /*
1395          * Writes aren't allowed to return a data payload.  In some
1396          * guarded write cases (e.g. stat + zero on an empty object)
1397          * a stat response makes it through, but we don't care.
1398          */
1399         if (osd_req->r_result > 0 && rbd_img_is_write(obj_req->img_request))
1400                 result = 0;
1401         else
1402                 result = osd_req->r_result;
1403
1404         rbd_obj_handle_request(obj_req, result);
1405 }
1406
1407 static void rbd_osd_format_read(struct ceph_osd_request *osd_req)
1408 {
1409         struct rbd_obj_request *obj_request = osd_req->r_priv;
1410         struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1411         struct ceph_options *opt = rbd_dev->rbd_client->client->options;
1412
1413         osd_req->r_flags = CEPH_OSD_FLAG_READ | opt->read_from_replica;
1414         osd_req->r_snapid = obj_request->img_request->snap_id;
1415 }
1416
1417 static void rbd_osd_format_write(struct ceph_osd_request *osd_req)
1418 {
1419         struct rbd_obj_request *obj_request = osd_req->r_priv;
1420
1421         osd_req->r_flags = CEPH_OSD_FLAG_WRITE;
1422         ktime_get_real_ts64(&osd_req->r_mtime);
1423         osd_req->r_data_offset = obj_request->ex.oe_off;
1424 }
1425
1426 static struct ceph_osd_request *
1427 __rbd_obj_add_osd_request(struct rbd_obj_request *obj_req,
1428                           struct ceph_snap_context *snapc, int num_ops)
1429 {
1430         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1431         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1432         struct ceph_osd_request *req;
1433         const char *name_format = rbd_dev->image_format == 1 ?
1434                                       RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1435         int ret;
1436
1437         req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO);
1438         if (!req)
1439                 return ERR_PTR(-ENOMEM);
1440
1441         list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
1442         req->r_callback = rbd_osd_req_callback;
1443         req->r_priv = obj_req;
1444
1445         /*
1446          * Data objects may be stored in a separate pool, but always in
1447          * the same namespace in that pool as the header in its pool.
1448          */
1449         ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
1450         req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1451
1452         ret = ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1453                                rbd_dev->header.object_prefix,
1454                                obj_req->ex.oe_objno);
1455         if (ret)
1456                 return ERR_PTR(ret);
1457
1458         return req;
1459 }
1460
1461 static struct ceph_osd_request *
1462 rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, int num_ops)
1463 {
1464         rbd_assert(obj_req->img_request->snapc);
1465         return __rbd_obj_add_osd_request(obj_req, obj_req->img_request->snapc,
1466                                          num_ops);
1467 }
1468
1469 static struct rbd_obj_request *rbd_obj_request_create(void)
1470 {
1471         struct rbd_obj_request *obj_request;
1472
1473         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
1474         if (!obj_request)
1475                 return NULL;
1476
1477         ceph_object_extent_init(&obj_request->ex);
1478         INIT_LIST_HEAD(&obj_request->osd_reqs);
1479         mutex_init(&obj_request->state_mutex);
1480         kref_init(&obj_request->kref);
1481
1482         dout("%s %p\n", __func__, obj_request);
1483         return obj_request;
1484 }
1485
1486 static void rbd_obj_request_destroy(struct kref *kref)
1487 {
1488         struct rbd_obj_request *obj_request;
1489         struct ceph_osd_request *osd_req;
1490         u32 i;
1491
1492         obj_request = container_of(kref, struct rbd_obj_request, kref);
1493
1494         dout("%s: obj %p\n", __func__, obj_request);
1495
1496         while (!list_empty(&obj_request->osd_reqs)) {
1497                 osd_req = list_first_entry(&obj_request->osd_reqs,
1498                                     struct ceph_osd_request, r_private_item);
1499                 list_del_init(&osd_req->r_private_item);
1500                 ceph_osdc_put_request(osd_req);
1501         }
1502
1503         switch (obj_request->img_request->data_type) {
1504         case OBJ_REQUEST_NODATA:
1505         case OBJ_REQUEST_BIO:
1506         case OBJ_REQUEST_BVECS:
1507                 break;          /* Nothing to do */
1508         case OBJ_REQUEST_OWN_BVECS:
1509                 kfree(obj_request->bvec_pos.bvecs);
1510                 break;
1511         default:
1512                 BUG();
1513         }
1514
1515         kfree(obj_request->img_extents);
1516         if (obj_request->copyup_bvecs) {
1517                 for (i = 0; i < obj_request->copyup_bvec_count; i++) {
1518                         if (obj_request->copyup_bvecs[i].bv_page)
1519                                 __free_page(obj_request->copyup_bvecs[i].bv_page);
1520                 }
1521                 kfree(obj_request->copyup_bvecs);
1522         }
1523
1524         kmem_cache_free(rbd_obj_request_cache, obj_request);
1525 }
1526
1527 /* It's OK to call this for a device with no parent */
1528
1529 static void rbd_spec_put(struct rbd_spec *spec);
1530 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1531 {
1532         rbd_dev_remove_parent(rbd_dev);
1533         rbd_spec_put(rbd_dev->parent_spec);
1534         rbd_dev->parent_spec = NULL;
1535         rbd_dev->parent_overlap = 0;
1536 }
1537
1538 /*
1539  * Parent image reference counting is used to determine when an
1540  * image's parent fields can be safely torn down--after there are no
1541  * more in-flight requests to the parent image.  When the last
1542  * reference is dropped, cleaning them up is safe.
1543  */
1544 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1545 {
1546         int counter;
1547
1548         if (!rbd_dev->parent_spec)
1549                 return;
1550
1551         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1552         if (counter > 0)
1553                 return;
1554
1555         /* Last reference; clean up parent data structures */
1556
1557         if (!counter)
1558                 rbd_dev_unparent(rbd_dev);
1559         else
1560                 rbd_warn(rbd_dev, "parent reference underflow");
1561 }
1562
1563 /*
1564  * If an image has a non-zero parent overlap, get a reference to its
1565  * parent.
1566  *
1567  * Returns true if the rbd device has a parent with a non-zero
1568  * overlap and a reference for it was successfully taken, or
1569  * false otherwise.
1570  */
1571 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1572 {
1573         int counter = 0;
1574
1575         if (!rbd_dev->parent_spec)
1576                 return false;
1577
1578         if (rbd_dev->parent_overlap)
1579                 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1580
1581         if (counter < 0)
1582                 rbd_warn(rbd_dev, "parent reference overflow");
1583
1584         return counter > 0;
1585 }
1586
1587 static void rbd_img_request_init(struct rbd_img_request *img_request,
1588                                  struct rbd_device *rbd_dev,
1589                                  enum obj_operation_type op_type)
1590 {
1591         memset(img_request, 0, sizeof(*img_request));
1592
1593         img_request->rbd_dev = rbd_dev;
1594         img_request->op_type = op_type;
1595
1596         INIT_LIST_HEAD(&img_request->lock_item);
1597         INIT_LIST_HEAD(&img_request->object_extents);
1598         mutex_init(&img_request->state_mutex);
1599 }
1600
1601 /*
1602  * Only snap_id is captured here, for reads.  For writes, snapshot
1603  * context is captured in rbd_img_object_requests() after exclusive
1604  * lock is ensured to be held.
1605  */
1606 static void rbd_img_capture_header(struct rbd_img_request *img_req)
1607 {
1608         struct rbd_device *rbd_dev = img_req->rbd_dev;
1609
1610         lockdep_assert_held(&rbd_dev->header_rwsem);
1611
1612         if (!rbd_img_is_write(img_req))
1613                 img_req->snap_id = rbd_dev->spec->snap_id;
1614
1615         if (rbd_dev_parent_get(rbd_dev))
1616                 img_request_layered_set(img_req);
1617 }
1618
1619 static void rbd_img_request_destroy(struct rbd_img_request *img_request)
1620 {
1621         struct rbd_obj_request *obj_request;
1622         struct rbd_obj_request *next_obj_request;
1623
1624         dout("%s: img %p\n", __func__, img_request);
1625
1626         WARN_ON(!list_empty(&img_request->lock_item));
1627         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1628                 rbd_img_obj_request_del(img_request, obj_request);
1629
1630         if (img_request_layered_test(img_request))
1631                 rbd_dev_parent_put(img_request->rbd_dev);
1632
1633         if (rbd_img_is_write(img_request))
1634                 ceph_put_snap_context(img_request->snapc);
1635
1636         if (test_bit(IMG_REQ_CHILD, &img_request->flags))
1637                 kmem_cache_free(rbd_img_request_cache, img_request);
1638 }
1639
1640 #define BITS_PER_OBJ    2
1641 #define OBJS_PER_BYTE   (BITS_PER_BYTE / BITS_PER_OBJ)
1642 #define OBJ_MASK        ((1 << BITS_PER_OBJ) - 1)
1643
1644 static void __rbd_object_map_index(struct rbd_device *rbd_dev, u64 objno,
1645                                    u64 *index, u8 *shift)
1646 {
1647         u32 off;
1648
1649         rbd_assert(objno < rbd_dev->object_map_size);
1650         *index = div_u64_rem(objno, OBJS_PER_BYTE, &off);
1651         *shift = (OBJS_PER_BYTE - off - 1) * BITS_PER_OBJ;
1652 }
1653
1654 static u8 __rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1655 {
1656         u64 index;
1657         u8 shift;
1658
1659         lockdep_assert_held(&rbd_dev->object_map_lock);
1660         __rbd_object_map_index(rbd_dev, objno, &index, &shift);
1661         return (rbd_dev->object_map[index] >> shift) & OBJ_MASK;
1662 }
1663
1664 static void __rbd_object_map_set(struct rbd_device *rbd_dev, u64 objno, u8 val)
1665 {
1666         u64 index;
1667         u8 shift;
1668         u8 *p;
1669
1670         lockdep_assert_held(&rbd_dev->object_map_lock);
1671         rbd_assert(!(val & ~OBJ_MASK));
1672
1673         __rbd_object_map_index(rbd_dev, objno, &index, &shift);
1674         p = &rbd_dev->object_map[index];
1675         *p = (*p & ~(OBJ_MASK << shift)) | (val << shift);
1676 }
1677
1678 static u8 rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1679 {
1680         u8 state;
1681
1682         spin_lock(&rbd_dev->object_map_lock);
1683         state = __rbd_object_map_get(rbd_dev, objno);
1684         spin_unlock(&rbd_dev->object_map_lock);
1685         return state;
1686 }
1687
1688 static bool use_object_map(struct rbd_device *rbd_dev)
1689 {
1690         /*
1691          * An image mapped read-only can't use the object map -- it isn't
1692          * loaded because the header lock isn't acquired.  Someone else can
1693          * write to the image and update the object map behind our back.
1694          *
1695          * A snapshot can't be written to, so using the object map is always
1696          * safe.
1697          */
1698         if (!rbd_is_snap(rbd_dev) && rbd_is_ro(rbd_dev))
1699                 return false;
1700
1701         return ((rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) &&
1702                 !(rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID));
1703 }
1704
1705 static bool rbd_object_map_may_exist(struct rbd_device *rbd_dev, u64 objno)
1706 {
1707         u8 state;
1708
1709         /* fall back to default logic if object map is disabled or invalid */
1710         if (!use_object_map(rbd_dev))
1711                 return true;
1712
1713         state = rbd_object_map_get(rbd_dev, objno);
1714         return state != OBJECT_NONEXISTENT;
1715 }
1716
1717 static void rbd_object_map_name(struct rbd_device *rbd_dev, u64 snap_id,
1718                                 struct ceph_object_id *oid)
1719 {
1720         if (snap_id == CEPH_NOSNAP)
1721                 ceph_oid_printf(oid, "%s%s", RBD_OBJECT_MAP_PREFIX,
1722                                 rbd_dev->spec->image_id);
1723         else
1724                 ceph_oid_printf(oid, "%s%s.%016llx", RBD_OBJECT_MAP_PREFIX,
1725                                 rbd_dev->spec->image_id, snap_id);
1726 }
1727
1728 static int rbd_object_map_lock(struct rbd_device *rbd_dev)
1729 {
1730         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1731         CEPH_DEFINE_OID_ONSTACK(oid);
1732         u8 lock_type;
1733         char *lock_tag;
1734         struct ceph_locker *lockers;
1735         u32 num_lockers;
1736         bool broke_lock = false;
1737         int ret;
1738
1739         rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1740
1741 again:
1742         ret = ceph_cls_lock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1743                             CEPH_CLS_LOCK_EXCLUSIVE, "", "", "", 0);
1744         if (ret != -EBUSY || broke_lock) {
1745                 if (ret == -EEXIST)
1746                         ret = 0; /* already locked by myself */
1747                 if (ret)
1748                         rbd_warn(rbd_dev, "failed to lock object map: %d", ret);
1749                 return ret;
1750         }
1751
1752         ret = ceph_cls_lock_info(osdc, &oid, &rbd_dev->header_oloc,
1753                                  RBD_LOCK_NAME, &lock_type, &lock_tag,
1754                                  &lockers, &num_lockers);
1755         if (ret) {
1756                 if (ret == -ENOENT)
1757                         goto again;
1758
1759                 rbd_warn(rbd_dev, "failed to get object map lockers: %d", ret);
1760                 return ret;
1761         }
1762
1763         kfree(lock_tag);
1764         if (num_lockers == 0)
1765                 goto again;
1766
1767         rbd_warn(rbd_dev, "breaking object map lock owned by %s%llu",
1768                  ENTITY_NAME(lockers[0].id.name));
1769
1770         ret = ceph_cls_break_lock(osdc, &oid, &rbd_dev->header_oloc,
1771                                   RBD_LOCK_NAME, lockers[0].id.cookie,
1772                                   &lockers[0].id.name);
1773         ceph_free_lockers(lockers, num_lockers);
1774         if (ret) {
1775                 if (ret == -ENOENT)
1776                         goto again;
1777
1778                 rbd_warn(rbd_dev, "failed to break object map lock: %d", ret);
1779                 return ret;
1780         }
1781
1782         broke_lock = true;
1783         goto again;
1784 }
1785
1786 static void rbd_object_map_unlock(struct rbd_device *rbd_dev)
1787 {
1788         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1789         CEPH_DEFINE_OID_ONSTACK(oid);
1790         int ret;
1791
1792         rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1793
1794         ret = ceph_cls_unlock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1795                               "");
1796         if (ret && ret != -ENOENT)
1797                 rbd_warn(rbd_dev, "failed to unlock object map: %d", ret);
1798 }
1799
1800 static int decode_object_map_header(void **p, void *end, u64 *object_map_size)
1801 {
1802         u8 struct_v;
1803         u32 struct_len;
1804         u32 header_len;
1805         void *header_end;
1806         int ret;
1807
1808         ceph_decode_32_safe(p, end, header_len, e_inval);
1809         header_end = *p + header_len;
1810
1811         ret = ceph_start_decoding(p, end, 1, "BitVector header", &struct_v,
1812                                   &struct_len);
1813         if (ret)
1814                 return ret;
1815
1816         ceph_decode_64_safe(p, end, *object_map_size, e_inval);
1817
1818         *p = header_end;
1819         return 0;
1820
1821 e_inval:
1822         return -EINVAL;
1823 }
1824
1825 static int __rbd_object_map_load(struct rbd_device *rbd_dev)
1826 {
1827         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1828         CEPH_DEFINE_OID_ONSTACK(oid);
1829         struct page **pages;
1830         void *p, *end;
1831         size_t reply_len;
1832         u64 num_objects;
1833         u64 object_map_bytes;
1834         u64 object_map_size;
1835         int num_pages;
1836         int ret;
1837
1838         rbd_assert(!rbd_dev->object_map && !rbd_dev->object_map_size);
1839
1840         num_objects = ceph_get_num_objects(&rbd_dev->layout,
1841                                            rbd_dev->mapping.size);
1842         object_map_bytes = DIV_ROUND_UP_ULL(num_objects * BITS_PER_OBJ,
1843                                             BITS_PER_BYTE);
1844         num_pages = calc_pages_for(0, object_map_bytes) + 1;
1845         pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
1846         if (IS_ERR(pages))
1847                 return PTR_ERR(pages);
1848
1849         reply_len = num_pages * PAGE_SIZE;
1850         rbd_object_map_name(rbd_dev, rbd_dev->spec->snap_id, &oid);
1851         ret = ceph_osdc_call(osdc, &oid, &rbd_dev->header_oloc,
1852                              "rbd", "object_map_load", CEPH_OSD_FLAG_READ,
1853                              NULL, 0, pages, &reply_len);
1854         if (ret)
1855                 goto out;
1856
1857         p = page_address(pages[0]);
1858         end = p + min(reply_len, (size_t)PAGE_SIZE);
1859         ret = decode_object_map_header(&p, end, &object_map_size);
1860         if (ret)
1861                 goto out;
1862
1863         if (object_map_size != num_objects) {
1864                 rbd_warn(rbd_dev, "object map size mismatch: %llu vs %llu",
1865                          object_map_size, num_objects);
1866                 ret = -EINVAL;
1867                 goto out;
1868         }
1869
1870         if (offset_in_page(p) + object_map_bytes > reply_len) {
1871                 ret = -EINVAL;
1872                 goto out;
1873         }
1874
1875         rbd_dev->object_map = kvmalloc(object_map_bytes, GFP_KERNEL);
1876         if (!rbd_dev->object_map) {
1877                 ret = -ENOMEM;
1878                 goto out;
1879         }
1880
1881         rbd_dev->object_map_size = object_map_size;
1882         ceph_copy_from_page_vector(pages, rbd_dev->object_map,
1883                                    offset_in_page(p), object_map_bytes);
1884
1885 out:
1886         ceph_release_page_vector(pages, num_pages);
1887         return ret;
1888 }
1889
1890 static void rbd_object_map_free(struct rbd_device *rbd_dev)
1891 {
1892         kvfree(rbd_dev->object_map);
1893         rbd_dev->object_map = NULL;
1894         rbd_dev->object_map_size = 0;
1895 }
1896
1897 static int rbd_object_map_load(struct rbd_device *rbd_dev)
1898 {
1899         int ret;
1900
1901         ret = __rbd_object_map_load(rbd_dev);
1902         if (ret)
1903                 return ret;
1904
1905         ret = rbd_dev_v2_get_flags(rbd_dev);
1906         if (ret) {
1907                 rbd_object_map_free(rbd_dev);
1908                 return ret;
1909         }
1910
1911         if (rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID)
1912                 rbd_warn(rbd_dev, "object map is invalid");
1913
1914         return 0;
1915 }
1916
1917 static int rbd_object_map_open(struct rbd_device *rbd_dev)
1918 {
1919         int ret;
1920
1921         ret = rbd_object_map_lock(rbd_dev);
1922         if (ret)
1923                 return ret;
1924
1925         ret = rbd_object_map_load(rbd_dev);
1926         if (ret) {
1927                 rbd_object_map_unlock(rbd_dev);
1928                 return ret;
1929         }
1930
1931         return 0;
1932 }
1933
1934 static void rbd_object_map_close(struct rbd_device *rbd_dev)
1935 {
1936         rbd_object_map_free(rbd_dev);
1937         rbd_object_map_unlock(rbd_dev);
1938 }
1939
1940 /*
1941  * This function needs snap_id (or more precisely just something to
1942  * distinguish between HEAD and snapshot object maps), new_state and
1943  * current_state that were passed to rbd_object_map_update().
1944  *
1945  * To avoid allocating and stashing a context we piggyback on the OSD
1946  * request.  A HEAD update has two ops (assert_locked).  For new_state
1947  * and current_state we decode our own object_map_update op, encoded in
1948  * rbd_cls_object_map_update().
1949  */
1950 static int rbd_object_map_update_finish(struct rbd_obj_request *obj_req,
1951                                         struct ceph_osd_request *osd_req)
1952 {
1953         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1954         struct ceph_osd_data *osd_data;
1955         u64 objno;
1956         u8 state, new_state, current_state;
1957         bool has_current_state;
1958         void *p;
1959
1960         if (osd_req->r_result)
1961                 return osd_req->r_result;
1962
1963         /*
1964          * Nothing to do for a snapshot object map.
1965          */
1966         if (osd_req->r_num_ops == 1)
1967                 return 0;
1968
1969         /*
1970          * Update in-memory HEAD object map.
1971          */
1972         rbd_assert(osd_req->r_num_ops == 2);
1973         osd_data = osd_req_op_data(osd_req, 1, cls, request_data);
1974         rbd_assert(osd_data->type == CEPH_OSD_DATA_TYPE_PAGES);
1975
1976         p = page_address(osd_data->pages[0]);
1977         objno = ceph_decode_64(&p);
1978         rbd_assert(objno == obj_req->ex.oe_objno);
1979         rbd_assert(ceph_decode_64(&p) == objno + 1);
1980         new_state = ceph_decode_8(&p);
1981         has_current_state = ceph_decode_8(&p);
1982         if (has_current_state)
1983                 current_state = ceph_decode_8(&p);
1984
1985         spin_lock(&rbd_dev->object_map_lock);
1986         state = __rbd_object_map_get(rbd_dev, objno);
1987         if (!has_current_state || current_state == state ||
1988             (current_state == OBJECT_EXISTS && state == OBJECT_EXISTS_CLEAN))
1989                 __rbd_object_map_set(rbd_dev, objno, new_state);
1990         spin_unlock(&rbd_dev->object_map_lock);
1991
1992         return 0;
1993 }
1994
1995 static void rbd_object_map_callback(struct ceph_osd_request *osd_req)
1996 {
1997         struct rbd_obj_request *obj_req = osd_req->r_priv;
1998         int result;
1999
2000         dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
2001              osd_req->r_result, obj_req);
2002
2003         result = rbd_object_map_update_finish(obj_req, osd_req);
2004         rbd_obj_handle_request(obj_req, result);
2005 }
2006
2007 static bool update_needed(struct rbd_device *rbd_dev, u64 objno, u8 new_state)
2008 {
2009         u8 state = rbd_object_map_get(rbd_dev, objno);
2010
2011         if (state == new_state ||
2012             (new_state == OBJECT_PENDING && state == OBJECT_NONEXISTENT) ||
2013             (new_state == OBJECT_NONEXISTENT && state != OBJECT_PENDING))
2014                 return false;
2015
2016         return true;
2017 }
2018
2019 static int rbd_cls_object_map_update(struct ceph_osd_request *req,
2020                                      int which, u64 objno, u8 new_state,
2021                                      const u8 *current_state)
2022 {
2023         struct page **pages;
2024         void *p, *start;
2025         int ret;
2026
2027         ret = osd_req_op_cls_init(req, which, "rbd", "object_map_update");
2028         if (ret)
2029                 return ret;
2030
2031         pages = ceph_alloc_page_vector(1, GFP_NOIO);
2032         if (IS_ERR(pages))
2033                 return PTR_ERR(pages);
2034
2035         p = start = page_address(pages[0]);
2036         ceph_encode_64(&p, objno);
2037         ceph_encode_64(&p, objno + 1);
2038         ceph_encode_8(&p, new_state);
2039         if (current_state) {
2040                 ceph_encode_8(&p, 1);
2041                 ceph_encode_8(&p, *current_state);
2042         } else {
2043                 ceph_encode_8(&p, 0);
2044         }
2045
2046         osd_req_op_cls_request_data_pages(req, which, pages, p - start, 0,
2047                                           false, true);
2048         return 0;
2049 }
2050
2051 /*
2052  * Return:
2053  *   0 - object map update sent
2054  *   1 - object map update isn't needed
2055  *  <0 - error
2056  */
2057 static int rbd_object_map_update(struct rbd_obj_request *obj_req, u64 snap_id,
2058                                  u8 new_state, const u8 *current_state)
2059 {
2060         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2061         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2062         struct ceph_osd_request *req;
2063         int num_ops = 1;
2064         int which = 0;
2065         int ret;
2066
2067         if (snap_id == CEPH_NOSNAP) {
2068                 if (!update_needed(rbd_dev, obj_req->ex.oe_objno, new_state))
2069                         return 1;
2070
2071                 num_ops++; /* assert_locked */
2072         }
2073
2074         req = ceph_osdc_alloc_request(osdc, NULL, num_ops, false, GFP_NOIO);
2075         if (!req)
2076                 return -ENOMEM;
2077
2078         list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
2079         req->r_callback = rbd_object_map_callback;
2080         req->r_priv = obj_req;
2081
2082         rbd_object_map_name(rbd_dev, snap_id, &req->r_base_oid);
2083         ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
2084         req->r_flags = CEPH_OSD_FLAG_WRITE;
2085         ktime_get_real_ts64(&req->r_mtime);
2086
2087         if (snap_id == CEPH_NOSNAP) {
2088                 /*
2089                  * Protect against possible race conditions during lock
2090                  * ownership transitions.
2091                  */
2092                 ret = ceph_cls_assert_locked(req, which++, RBD_LOCK_NAME,
2093                                              CEPH_CLS_LOCK_EXCLUSIVE, "", "");
2094                 if (ret)
2095                         return ret;
2096         }
2097
2098         ret = rbd_cls_object_map_update(req, which, obj_req->ex.oe_objno,
2099                                         new_state, current_state);
2100         if (ret)
2101                 return ret;
2102
2103         ret = ceph_osdc_alloc_messages(req, GFP_NOIO);
2104         if (ret)
2105                 return ret;
2106
2107         ceph_osdc_start_request(osdc, req);
2108         return 0;
2109 }
2110
2111 static void prune_extents(struct ceph_file_extent *img_extents,
2112                           u32 *num_img_extents, u64 overlap)
2113 {
2114         u32 cnt = *num_img_extents;
2115
2116         /* drop extents completely beyond the overlap */
2117         while (cnt && img_extents[cnt - 1].fe_off >= overlap)
2118                 cnt--;
2119
2120         if (cnt) {
2121                 struct ceph_file_extent *ex = &img_extents[cnt - 1];
2122
2123                 /* trim final overlapping extent */
2124                 if (ex->fe_off + ex->fe_len > overlap)
2125                         ex->fe_len = overlap - ex->fe_off;
2126         }
2127
2128         *num_img_extents = cnt;
2129 }
2130
2131 /*
2132  * Determine the byte range(s) covered by either just the object extent
2133  * or the entire object in the parent image.
2134  */
2135 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req,
2136                                     bool entire)
2137 {
2138         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2139         int ret;
2140
2141         if (!rbd_dev->parent_overlap)
2142                 return 0;
2143
2144         ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno,
2145                                   entire ? 0 : obj_req->ex.oe_off,
2146                                   entire ? rbd_dev->layout.object_size :
2147                                                         obj_req->ex.oe_len,
2148                                   &obj_req->img_extents,
2149                                   &obj_req->num_img_extents);
2150         if (ret)
2151                 return ret;
2152
2153         prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
2154                       rbd_dev->parent_overlap);
2155         return 0;
2156 }
2157
2158 static void rbd_osd_setup_data(struct ceph_osd_request *osd_req, int which)
2159 {
2160         struct rbd_obj_request *obj_req = osd_req->r_priv;
2161
2162         switch (obj_req->img_request->data_type) {
2163         case OBJ_REQUEST_BIO:
2164                 osd_req_op_extent_osd_data_bio(osd_req, which,
2165                                                &obj_req->bio_pos,
2166                                                obj_req->ex.oe_len);
2167                 break;
2168         case OBJ_REQUEST_BVECS:
2169         case OBJ_REQUEST_OWN_BVECS:
2170                 rbd_assert(obj_req->bvec_pos.iter.bi_size ==
2171                                                         obj_req->ex.oe_len);
2172                 rbd_assert(obj_req->bvec_idx == obj_req->bvec_count);
2173                 osd_req_op_extent_osd_data_bvec_pos(osd_req, which,
2174                                                     &obj_req->bvec_pos);
2175                 break;
2176         default:
2177                 BUG();
2178         }
2179 }
2180
2181 static int rbd_osd_setup_stat(struct ceph_osd_request *osd_req, int which)
2182 {
2183         struct page **pages;
2184
2185         /*
2186          * The response data for a STAT call consists of:
2187          *     le64 length;
2188          *     struct {
2189          *         le32 tv_sec;
2190          *         le32 tv_nsec;
2191          *     } mtime;
2192          */
2193         pages = ceph_alloc_page_vector(1, GFP_NOIO);
2194         if (IS_ERR(pages))
2195                 return PTR_ERR(pages);
2196
2197         osd_req_op_init(osd_req, which, CEPH_OSD_OP_STAT, 0);
2198         osd_req_op_raw_data_in_pages(osd_req, which, pages,
2199                                      8 + sizeof(struct ceph_timespec),
2200                                      0, false, true);
2201         return 0;
2202 }
2203
2204 static int rbd_osd_setup_copyup(struct ceph_osd_request *osd_req, int which,
2205                                 u32 bytes)
2206 {
2207         struct rbd_obj_request *obj_req = osd_req->r_priv;
2208         int ret;
2209
2210         ret = osd_req_op_cls_init(osd_req, which, "rbd", "copyup");
2211         if (ret)
2212                 return ret;
2213
2214         osd_req_op_cls_request_data_bvecs(osd_req, which, obj_req->copyup_bvecs,
2215                                           obj_req->copyup_bvec_count, bytes);
2216         return 0;
2217 }
2218
2219 static int rbd_obj_init_read(struct rbd_obj_request *obj_req)
2220 {
2221         obj_req->read_state = RBD_OBJ_READ_START;
2222         return 0;
2223 }
2224
2225 static void __rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2226                                       int which)
2227 {
2228         struct rbd_obj_request *obj_req = osd_req->r_priv;
2229         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2230         u16 opcode;
2231
2232         if (!use_object_map(rbd_dev) ||
2233             !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) {
2234                 osd_req_op_alloc_hint_init(osd_req, which++,
2235                                            rbd_dev->layout.object_size,
2236                                            rbd_dev->layout.object_size,
2237                                            rbd_dev->opts->alloc_hint_flags);
2238         }
2239
2240         if (rbd_obj_is_entire(obj_req))
2241                 opcode = CEPH_OSD_OP_WRITEFULL;
2242         else
2243                 opcode = CEPH_OSD_OP_WRITE;
2244
2245         osd_req_op_extent_init(osd_req, which, opcode,
2246                                obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2247         rbd_osd_setup_data(osd_req, which);
2248 }
2249
2250 static int rbd_obj_init_write(struct rbd_obj_request *obj_req)
2251 {
2252         int ret;
2253
2254         /* reverse map the entire object onto the parent */
2255         ret = rbd_obj_calc_img_extents(obj_req, true);
2256         if (ret)
2257                 return ret;
2258
2259         obj_req->write_state = RBD_OBJ_WRITE_START;
2260         return 0;
2261 }
2262
2263 static u16 truncate_or_zero_opcode(struct rbd_obj_request *obj_req)
2264 {
2265         return rbd_obj_is_tail(obj_req) ? CEPH_OSD_OP_TRUNCATE :
2266                                           CEPH_OSD_OP_ZERO;
2267 }
2268
2269 static void __rbd_osd_setup_discard_ops(struct ceph_osd_request *osd_req,
2270                                         int which)
2271 {
2272         struct rbd_obj_request *obj_req = osd_req->r_priv;
2273
2274         if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) {
2275                 rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2276                 osd_req_op_init(osd_req, which, CEPH_OSD_OP_DELETE, 0);
2277         } else {
2278                 osd_req_op_extent_init(osd_req, which,
2279                                        truncate_or_zero_opcode(obj_req),
2280                                        obj_req->ex.oe_off, obj_req->ex.oe_len,
2281                                        0, 0);
2282         }
2283 }
2284
2285 static int rbd_obj_init_discard(struct rbd_obj_request *obj_req)
2286 {
2287         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2288         u64 off, next_off;
2289         int ret;
2290
2291         /*
2292          * Align the range to alloc_size boundary and punt on discards
2293          * that are too small to free up any space.
2294          *
2295          * alloc_size == object_size && is_tail() is a special case for
2296          * filestore with filestore_punch_hole = false, needed to allow
2297          * truncate (in addition to delete).
2298          */
2299         if (rbd_dev->opts->alloc_size != rbd_dev->layout.object_size ||
2300             !rbd_obj_is_tail(obj_req)) {
2301                 off = round_up(obj_req->ex.oe_off, rbd_dev->opts->alloc_size);
2302                 next_off = round_down(obj_req->ex.oe_off + obj_req->ex.oe_len,
2303                                       rbd_dev->opts->alloc_size);
2304                 if (off >= next_off)
2305                         return 1;
2306
2307                 dout("%s %p %llu~%llu -> %llu~%llu\n", __func__,
2308                      obj_req, obj_req->ex.oe_off, obj_req->ex.oe_len,
2309                      off, next_off - off);
2310                 obj_req->ex.oe_off = off;
2311                 obj_req->ex.oe_len = next_off - off;
2312         }
2313
2314         /* reverse map the entire object onto the parent */
2315         ret = rbd_obj_calc_img_extents(obj_req, true);
2316         if (ret)
2317                 return ret;
2318
2319         obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2320         if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents)
2321                 obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2322
2323         obj_req->write_state = RBD_OBJ_WRITE_START;
2324         return 0;
2325 }
2326
2327 static void __rbd_osd_setup_zeroout_ops(struct ceph_osd_request *osd_req,
2328                                         int which)
2329 {
2330         struct rbd_obj_request *obj_req = osd_req->r_priv;
2331         u16 opcode;
2332
2333         if (rbd_obj_is_entire(obj_req)) {
2334                 if (obj_req->num_img_extents) {
2335                         if (!(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2336                                 osd_req_op_init(osd_req, which++,
2337                                                 CEPH_OSD_OP_CREATE, 0);
2338                         opcode = CEPH_OSD_OP_TRUNCATE;
2339                 } else {
2340                         rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2341                         osd_req_op_init(osd_req, which++,
2342                                         CEPH_OSD_OP_DELETE, 0);
2343                         opcode = 0;
2344                 }
2345         } else {
2346                 opcode = truncate_or_zero_opcode(obj_req);
2347         }
2348
2349         if (opcode)
2350                 osd_req_op_extent_init(osd_req, which, opcode,
2351                                        obj_req->ex.oe_off, obj_req->ex.oe_len,
2352                                        0, 0);
2353 }
2354
2355 static int rbd_obj_init_zeroout(struct rbd_obj_request *obj_req)
2356 {
2357         int ret;
2358
2359         /* reverse map the entire object onto the parent */
2360         ret = rbd_obj_calc_img_extents(obj_req, true);
2361         if (ret)
2362                 return ret;
2363
2364         if (!obj_req->num_img_extents) {
2365                 obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2366                 if (rbd_obj_is_entire(obj_req))
2367                         obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2368         }
2369
2370         obj_req->write_state = RBD_OBJ_WRITE_START;
2371         return 0;
2372 }
2373
2374 static int count_write_ops(struct rbd_obj_request *obj_req)
2375 {
2376         struct rbd_img_request *img_req = obj_req->img_request;
2377
2378         switch (img_req->op_type) {
2379         case OBJ_OP_WRITE:
2380                 if (!use_object_map(img_req->rbd_dev) ||
2381                     !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST))
2382                         return 2; /* setallochint + write/writefull */
2383
2384                 return 1; /* write/writefull */
2385         case OBJ_OP_DISCARD:
2386                 return 1; /* delete/truncate/zero */
2387         case OBJ_OP_ZEROOUT:
2388                 if (rbd_obj_is_entire(obj_req) && obj_req->num_img_extents &&
2389                     !(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2390                         return 2; /* create + truncate */
2391
2392                 return 1; /* delete/truncate/zero */
2393         default:
2394                 BUG();
2395         }
2396 }
2397
2398 static void rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2399                                     int which)
2400 {
2401         struct rbd_obj_request *obj_req = osd_req->r_priv;
2402
2403         switch (obj_req->img_request->op_type) {
2404         case OBJ_OP_WRITE:
2405                 __rbd_osd_setup_write_ops(osd_req, which);
2406                 break;
2407         case OBJ_OP_DISCARD:
2408                 __rbd_osd_setup_discard_ops(osd_req, which);
2409                 break;
2410         case OBJ_OP_ZEROOUT:
2411                 __rbd_osd_setup_zeroout_ops(osd_req, which);
2412                 break;
2413         default:
2414                 BUG();
2415         }
2416 }
2417
2418 /*
2419  * Prune the list of object requests (adjust offset and/or length, drop
2420  * redundant requests).  Prepare object request state machines and image
2421  * request state machine for execution.
2422  */
2423 static int __rbd_img_fill_request(struct rbd_img_request *img_req)
2424 {
2425         struct rbd_obj_request *obj_req, *next_obj_req;
2426         int ret;
2427
2428         for_each_obj_request_safe(img_req, obj_req, next_obj_req) {
2429                 switch (img_req->op_type) {
2430                 case OBJ_OP_READ:
2431                         ret = rbd_obj_init_read(obj_req);
2432                         break;
2433                 case OBJ_OP_WRITE:
2434                         ret = rbd_obj_init_write(obj_req);
2435                         break;
2436                 case OBJ_OP_DISCARD:
2437                         ret = rbd_obj_init_discard(obj_req);
2438                         break;
2439                 case OBJ_OP_ZEROOUT:
2440                         ret = rbd_obj_init_zeroout(obj_req);
2441                         break;
2442                 default:
2443                         BUG();
2444                 }
2445                 if (ret < 0)
2446                         return ret;
2447                 if (ret > 0) {
2448                         rbd_img_obj_request_del(img_req, obj_req);
2449                         continue;
2450                 }
2451         }
2452
2453         img_req->state = RBD_IMG_START;
2454         return 0;
2455 }
2456
2457 union rbd_img_fill_iter {
2458         struct ceph_bio_iter    bio_iter;
2459         struct ceph_bvec_iter   bvec_iter;
2460 };
2461
2462 struct rbd_img_fill_ctx {
2463         enum obj_request_type   pos_type;
2464         union rbd_img_fill_iter *pos;
2465         union rbd_img_fill_iter iter;
2466         ceph_object_extent_fn_t set_pos_fn;
2467         ceph_object_extent_fn_t count_fn;
2468         ceph_object_extent_fn_t copy_fn;
2469 };
2470
2471 static struct ceph_object_extent *alloc_object_extent(void *arg)
2472 {
2473         struct rbd_img_request *img_req = arg;
2474         struct rbd_obj_request *obj_req;
2475
2476         obj_req = rbd_obj_request_create();
2477         if (!obj_req)
2478                 return NULL;
2479
2480         rbd_img_obj_request_add(img_req, obj_req);
2481         return &obj_req->ex;
2482 }
2483
2484 /*
2485  * While su != os && sc == 1 is technically not fancy (it's the same
2486  * layout as su == os && sc == 1), we can't use the nocopy path for it
2487  * because ->set_pos_fn() should be called only once per object.
2488  * ceph_file_to_extents() invokes action_fn once per stripe unit, so
2489  * treat su != os && sc == 1 as fancy.
2490  */
2491 static bool rbd_layout_is_fancy(struct ceph_file_layout *l)
2492 {
2493         return l->stripe_unit != l->object_size;
2494 }
2495
2496 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req,
2497                                        struct ceph_file_extent *img_extents,
2498                                        u32 num_img_extents,
2499                                        struct rbd_img_fill_ctx *fctx)
2500 {
2501         u32 i;
2502         int ret;
2503
2504         img_req->data_type = fctx->pos_type;
2505
2506         /*
2507          * Create object requests and set each object request's starting
2508          * position in the provided bio (list) or bio_vec array.
2509          */
2510         fctx->iter = *fctx->pos;
2511         for (i = 0; i < num_img_extents; i++) {
2512                 ret = ceph_file_to_extents(&img_req->rbd_dev->layout,
2513                                            img_extents[i].fe_off,
2514                                            img_extents[i].fe_len,
2515                                            &img_req->object_extents,
2516                                            alloc_object_extent, img_req,
2517                                            fctx->set_pos_fn, &fctx->iter);
2518                 if (ret)
2519                         return ret;
2520         }
2521
2522         return __rbd_img_fill_request(img_req);
2523 }
2524
2525 /*
2526  * Map a list of image extents to a list of object extents, create the
2527  * corresponding object requests (normally each to a different object,
2528  * but not always) and add them to @img_req.  For each object request,
2529  * set up its data descriptor to point to the corresponding chunk(s) of
2530  * @fctx->pos data buffer.
2531  *
2532  * Because ceph_file_to_extents() will merge adjacent object extents
2533  * together, each object request's data descriptor may point to multiple
2534  * different chunks of @fctx->pos data buffer.
2535  *
2536  * @fctx->pos data buffer is assumed to be large enough.
2537  */
2538 static int rbd_img_fill_request(struct rbd_img_request *img_req,
2539                                 struct ceph_file_extent *img_extents,
2540                                 u32 num_img_extents,
2541                                 struct rbd_img_fill_ctx *fctx)
2542 {
2543         struct rbd_device *rbd_dev = img_req->rbd_dev;
2544         struct rbd_obj_request *obj_req;
2545         u32 i;
2546         int ret;
2547
2548         if (fctx->pos_type == OBJ_REQUEST_NODATA ||
2549             !rbd_layout_is_fancy(&rbd_dev->layout))
2550                 return rbd_img_fill_request_nocopy(img_req, img_extents,
2551                                                    num_img_extents, fctx);
2552
2553         img_req->data_type = OBJ_REQUEST_OWN_BVECS;
2554
2555         /*
2556          * Create object requests and determine ->bvec_count for each object
2557          * request.  Note that ->bvec_count sum over all object requests may
2558          * be greater than the number of bio_vecs in the provided bio (list)
2559          * or bio_vec array because when mapped, those bio_vecs can straddle
2560          * stripe unit boundaries.
2561          */
2562         fctx->iter = *fctx->pos;
2563         for (i = 0; i < num_img_extents; i++) {
2564                 ret = ceph_file_to_extents(&rbd_dev->layout,
2565                                            img_extents[i].fe_off,
2566                                            img_extents[i].fe_len,
2567                                            &img_req->object_extents,
2568                                            alloc_object_extent, img_req,
2569                                            fctx->count_fn, &fctx->iter);
2570                 if (ret)
2571                         return ret;
2572         }
2573
2574         for_each_obj_request(img_req, obj_req) {
2575                 obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count,
2576                                               sizeof(*obj_req->bvec_pos.bvecs),
2577                                               GFP_NOIO);
2578                 if (!obj_req->bvec_pos.bvecs)
2579                         return -ENOMEM;
2580         }
2581
2582         /*
2583          * Fill in each object request's private bio_vec array, splitting and
2584          * rearranging the provided bio_vecs in stripe unit chunks as needed.
2585          */
2586         fctx->iter = *fctx->pos;
2587         for (i = 0; i < num_img_extents; i++) {
2588                 ret = ceph_iterate_extents(&rbd_dev->layout,
2589                                            img_extents[i].fe_off,
2590                                            img_extents[i].fe_len,
2591                                            &img_req->object_extents,
2592                                            fctx->copy_fn, &fctx->iter);
2593                 if (ret)
2594                         return ret;
2595         }
2596
2597         return __rbd_img_fill_request(img_req);
2598 }
2599
2600 static int rbd_img_fill_nodata(struct rbd_img_request *img_req,
2601                                u64 off, u64 len)
2602 {
2603         struct ceph_file_extent ex = { off, len };
2604         union rbd_img_fill_iter dummy = {};
2605         struct rbd_img_fill_ctx fctx = {
2606                 .pos_type = OBJ_REQUEST_NODATA,
2607                 .pos = &dummy,
2608         };
2609
2610         return rbd_img_fill_request(img_req, &ex, 1, &fctx);
2611 }
2612
2613 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2614 {
2615         struct rbd_obj_request *obj_req =
2616             container_of(ex, struct rbd_obj_request, ex);
2617         struct ceph_bio_iter *it = arg;
2618
2619         dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2620         obj_req->bio_pos = *it;
2621         ceph_bio_iter_advance(it, bytes);
2622 }
2623
2624 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2625 {
2626         struct rbd_obj_request *obj_req =
2627             container_of(ex, struct rbd_obj_request, ex);
2628         struct ceph_bio_iter *it = arg;
2629
2630         dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2631         ceph_bio_iter_advance_step(it, bytes, ({
2632                 obj_req->bvec_count++;
2633         }));
2634
2635 }
2636
2637 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2638 {
2639         struct rbd_obj_request *obj_req =
2640             container_of(ex, struct rbd_obj_request, ex);
2641         struct ceph_bio_iter *it = arg;
2642
2643         dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2644         ceph_bio_iter_advance_step(it, bytes, ({
2645                 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2646                 obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2647         }));
2648 }
2649
2650 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2651                                    struct ceph_file_extent *img_extents,
2652                                    u32 num_img_extents,
2653                                    struct ceph_bio_iter *bio_pos)
2654 {
2655         struct rbd_img_fill_ctx fctx = {
2656                 .pos_type = OBJ_REQUEST_BIO,
2657                 .pos = (union rbd_img_fill_iter *)bio_pos,
2658                 .set_pos_fn = set_bio_pos,
2659                 .count_fn = count_bio_bvecs,
2660                 .copy_fn = copy_bio_bvecs,
2661         };
2662
2663         return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2664                                     &fctx);
2665 }
2666
2667 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2668                                  u64 off, u64 len, struct bio *bio)
2669 {
2670         struct ceph_file_extent ex = { off, len };
2671         struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter };
2672
2673         return __rbd_img_fill_from_bio(img_req, &ex, 1, &it);
2674 }
2675
2676 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2677 {
2678         struct rbd_obj_request *obj_req =
2679             container_of(ex, struct rbd_obj_request, ex);
2680         struct ceph_bvec_iter *it = arg;
2681
2682         obj_req->bvec_pos = *it;
2683         ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes);
2684         ceph_bvec_iter_advance(it, bytes);
2685 }
2686
2687 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2688 {
2689         struct rbd_obj_request *obj_req =
2690             container_of(ex, struct rbd_obj_request, ex);
2691         struct ceph_bvec_iter *it = arg;
2692
2693         ceph_bvec_iter_advance_step(it, bytes, ({
2694                 obj_req->bvec_count++;
2695         }));
2696 }
2697
2698 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2699 {
2700         struct rbd_obj_request *obj_req =
2701             container_of(ex, struct rbd_obj_request, ex);
2702         struct ceph_bvec_iter *it = arg;
2703
2704         ceph_bvec_iter_advance_step(it, bytes, ({
2705                 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2706                 obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2707         }));
2708 }
2709
2710 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2711                                      struct ceph_file_extent *img_extents,
2712                                      u32 num_img_extents,
2713                                      struct ceph_bvec_iter *bvec_pos)
2714 {
2715         struct rbd_img_fill_ctx fctx = {
2716                 .pos_type = OBJ_REQUEST_BVECS,
2717                 .pos = (union rbd_img_fill_iter *)bvec_pos,
2718                 .set_pos_fn = set_bvec_pos,
2719                 .count_fn = count_bvecs,
2720                 .copy_fn = copy_bvecs,
2721         };
2722
2723         return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2724                                     &fctx);
2725 }
2726
2727 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2728                                    struct ceph_file_extent *img_extents,
2729                                    u32 num_img_extents,
2730                                    struct bio_vec *bvecs)
2731 {
2732         struct ceph_bvec_iter it = {
2733                 .bvecs = bvecs,
2734                 .iter = { .bi_size = ceph_file_extents_bytes(img_extents,
2735                                                              num_img_extents) },
2736         };
2737
2738         return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents,
2739                                          &it);
2740 }
2741
2742 static void rbd_img_handle_request_work(struct work_struct *work)
2743 {
2744         struct rbd_img_request *img_req =
2745             container_of(work, struct rbd_img_request, work);
2746
2747         rbd_img_handle_request(img_req, img_req->work_result);
2748 }
2749
2750 static void rbd_img_schedule(struct rbd_img_request *img_req, int result)
2751 {
2752         INIT_WORK(&img_req->work, rbd_img_handle_request_work);
2753         img_req->work_result = result;
2754         queue_work(rbd_wq, &img_req->work);
2755 }
2756
2757 static bool rbd_obj_may_exist(struct rbd_obj_request *obj_req)
2758 {
2759         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2760
2761         if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) {
2762                 obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2763                 return true;
2764         }
2765
2766         dout("%s %p objno %llu assuming dne\n", __func__, obj_req,
2767              obj_req->ex.oe_objno);
2768         return false;
2769 }
2770
2771 static int rbd_obj_read_object(struct rbd_obj_request *obj_req)
2772 {
2773         struct ceph_osd_request *osd_req;
2774         int ret;
2775
2776         osd_req = __rbd_obj_add_osd_request(obj_req, NULL, 1);
2777         if (IS_ERR(osd_req))
2778                 return PTR_ERR(osd_req);
2779
2780         osd_req_op_extent_init(osd_req, 0, CEPH_OSD_OP_READ,
2781                                obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2782         rbd_osd_setup_data(osd_req, 0);
2783         rbd_osd_format_read(osd_req);
2784
2785         ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2786         if (ret)
2787                 return ret;
2788
2789         rbd_osd_submit(osd_req);
2790         return 0;
2791 }
2792
2793 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req)
2794 {
2795         struct rbd_img_request *img_req = obj_req->img_request;
2796         struct rbd_device *parent = img_req->rbd_dev->parent;
2797         struct rbd_img_request *child_img_req;
2798         int ret;
2799
2800         child_img_req = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2801         if (!child_img_req)
2802                 return -ENOMEM;
2803
2804         rbd_img_request_init(child_img_req, parent, OBJ_OP_READ);
2805         __set_bit(IMG_REQ_CHILD, &child_img_req->flags);
2806         child_img_req->obj_request = obj_req;
2807
2808         down_read(&parent->header_rwsem);
2809         rbd_img_capture_header(child_img_req);
2810         up_read(&parent->header_rwsem);
2811
2812         dout("%s child_img_req %p for obj_req %p\n", __func__, child_img_req,
2813              obj_req);
2814
2815         if (!rbd_img_is_write(img_req)) {
2816                 switch (img_req->data_type) {
2817                 case OBJ_REQUEST_BIO:
2818                         ret = __rbd_img_fill_from_bio(child_img_req,
2819                                                       obj_req->img_extents,
2820                                                       obj_req->num_img_extents,
2821                                                       &obj_req->bio_pos);
2822                         break;
2823                 case OBJ_REQUEST_BVECS:
2824                 case OBJ_REQUEST_OWN_BVECS:
2825                         ret = __rbd_img_fill_from_bvecs(child_img_req,
2826                                                       obj_req->img_extents,
2827                                                       obj_req->num_img_extents,
2828                                                       &obj_req->bvec_pos);
2829                         break;
2830                 default:
2831                         BUG();
2832                 }
2833         } else {
2834                 ret = rbd_img_fill_from_bvecs(child_img_req,
2835                                               obj_req->img_extents,
2836                                               obj_req->num_img_extents,
2837                                               obj_req->copyup_bvecs);
2838         }
2839         if (ret) {
2840                 rbd_img_request_destroy(child_img_req);
2841                 return ret;
2842         }
2843
2844         /* avoid parent chain recursion */
2845         rbd_img_schedule(child_img_req, 0);
2846         return 0;
2847 }
2848
2849 static bool rbd_obj_advance_read(struct rbd_obj_request *obj_req, int *result)
2850 {
2851         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2852         int ret;
2853
2854 again:
2855         switch (obj_req->read_state) {
2856         case RBD_OBJ_READ_START:
2857                 rbd_assert(!*result);
2858
2859                 if (!rbd_obj_may_exist(obj_req)) {
2860                         *result = -ENOENT;
2861                         obj_req->read_state = RBD_OBJ_READ_OBJECT;
2862                         goto again;
2863                 }
2864
2865                 ret = rbd_obj_read_object(obj_req);
2866                 if (ret) {
2867                         *result = ret;
2868                         return true;
2869                 }
2870                 obj_req->read_state = RBD_OBJ_READ_OBJECT;
2871                 return false;
2872         case RBD_OBJ_READ_OBJECT:
2873                 if (*result == -ENOENT && rbd_dev->parent_overlap) {
2874                         /* reverse map this object extent onto the parent */
2875                         ret = rbd_obj_calc_img_extents(obj_req, false);
2876                         if (ret) {
2877                                 *result = ret;
2878                                 return true;
2879                         }
2880                         if (obj_req->num_img_extents) {
2881                                 ret = rbd_obj_read_from_parent(obj_req);
2882                                 if (ret) {
2883                                         *result = ret;
2884                                         return true;
2885                                 }
2886                                 obj_req->read_state = RBD_OBJ_READ_PARENT;
2887                                 return false;
2888                         }
2889                 }
2890
2891                 /*
2892                  * -ENOENT means a hole in the image -- zero-fill the entire
2893                  * length of the request.  A short read also implies zero-fill
2894                  * to the end of the request.
2895                  */
2896                 if (*result == -ENOENT) {
2897                         rbd_obj_zero_range(obj_req, 0, obj_req->ex.oe_len);
2898                         *result = 0;
2899                 } else if (*result >= 0) {
2900                         if (*result < obj_req->ex.oe_len)
2901                                 rbd_obj_zero_range(obj_req, *result,
2902                                                 obj_req->ex.oe_len - *result);
2903                         else
2904                                 rbd_assert(*result == obj_req->ex.oe_len);
2905                         *result = 0;
2906                 }
2907                 return true;
2908         case RBD_OBJ_READ_PARENT:
2909                 /*
2910                  * The parent image is read only up to the overlap -- zero-fill
2911                  * from the overlap to the end of the request.
2912                  */
2913                 if (!*result) {
2914                         u32 obj_overlap = rbd_obj_img_extents_bytes(obj_req);
2915
2916                         if (obj_overlap < obj_req->ex.oe_len)
2917                                 rbd_obj_zero_range(obj_req, obj_overlap,
2918                                             obj_req->ex.oe_len - obj_overlap);
2919                 }
2920                 return true;
2921         default:
2922                 BUG();
2923         }
2924 }
2925
2926 static bool rbd_obj_write_is_noop(struct rbd_obj_request *obj_req)
2927 {
2928         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2929
2930         if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno))
2931                 obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2932
2933         if (!(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST) &&
2934             (obj_req->flags & RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT)) {
2935                 dout("%s %p noop for nonexistent\n", __func__, obj_req);
2936                 return true;
2937         }
2938
2939         return false;
2940 }
2941
2942 /*
2943  * Return:
2944  *   0 - object map update sent
2945  *   1 - object map update isn't needed
2946  *  <0 - error
2947  */
2948 static int rbd_obj_write_pre_object_map(struct rbd_obj_request *obj_req)
2949 {
2950         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2951         u8 new_state;
2952
2953         if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
2954                 return 1;
2955
2956         if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
2957                 new_state = OBJECT_PENDING;
2958         else
2959                 new_state = OBJECT_EXISTS;
2960
2961         return rbd_object_map_update(obj_req, CEPH_NOSNAP, new_state, NULL);
2962 }
2963
2964 static int rbd_obj_write_object(struct rbd_obj_request *obj_req)
2965 {
2966         struct ceph_osd_request *osd_req;
2967         int num_ops = count_write_ops(obj_req);
2968         int which = 0;
2969         int ret;
2970
2971         if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)
2972                 num_ops++; /* stat */
2973
2974         osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
2975         if (IS_ERR(osd_req))
2976                 return PTR_ERR(osd_req);
2977
2978         if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
2979                 ret = rbd_osd_setup_stat(osd_req, which++);
2980                 if (ret)
2981                         return ret;
2982         }
2983
2984         rbd_osd_setup_write_ops(osd_req, which);
2985         rbd_osd_format_write(osd_req);
2986
2987         ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2988         if (ret)
2989                 return ret;
2990
2991         rbd_osd_submit(osd_req);
2992         return 0;
2993 }
2994
2995 /*
2996  * copyup_bvecs pages are never highmem pages
2997  */
2998 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes)
2999 {
3000         struct ceph_bvec_iter it = {
3001                 .bvecs = bvecs,
3002                 .iter = { .bi_size = bytes },
3003         };
3004
3005         ceph_bvec_iter_advance_step(&it, bytes, ({
3006                 if (memchr_inv(bvec_virt(&bv), 0, bv.bv_len))
3007                         return false;
3008         }));
3009         return true;
3010 }
3011
3012 #define MODS_ONLY       U32_MAX
3013
3014 static int rbd_obj_copyup_empty_snapc(struct rbd_obj_request *obj_req,
3015                                       u32 bytes)
3016 {
3017         struct ceph_osd_request *osd_req;
3018         int ret;
3019
3020         dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3021         rbd_assert(bytes > 0 && bytes != MODS_ONLY);
3022
3023         osd_req = __rbd_obj_add_osd_request(obj_req, &rbd_empty_snapc, 1);
3024         if (IS_ERR(osd_req))
3025                 return PTR_ERR(osd_req);
3026
3027         ret = rbd_osd_setup_copyup(osd_req, 0, bytes);
3028         if (ret)
3029                 return ret;
3030
3031         rbd_osd_format_write(osd_req);
3032
3033         ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3034         if (ret)
3035                 return ret;
3036
3037         rbd_osd_submit(osd_req);
3038         return 0;
3039 }
3040
3041 static int rbd_obj_copyup_current_snapc(struct rbd_obj_request *obj_req,
3042                                         u32 bytes)
3043 {
3044         struct ceph_osd_request *osd_req;
3045         int num_ops = count_write_ops(obj_req);
3046         int which = 0;
3047         int ret;
3048
3049         dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3050
3051         if (bytes != MODS_ONLY)
3052                 num_ops++; /* copyup */
3053
3054         osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
3055         if (IS_ERR(osd_req))
3056                 return PTR_ERR(osd_req);
3057
3058         if (bytes != MODS_ONLY) {
3059                 ret = rbd_osd_setup_copyup(osd_req, which++, bytes);
3060                 if (ret)
3061                         return ret;
3062         }
3063
3064         rbd_osd_setup_write_ops(osd_req, which);
3065         rbd_osd_format_write(osd_req);
3066
3067         ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3068         if (ret)
3069                 return ret;
3070
3071         rbd_osd_submit(osd_req);
3072         return 0;
3073 }
3074
3075 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap)
3076 {
3077         u32 i;
3078
3079         rbd_assert(!obj_req->copyup_bvecs);
3080         obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap);
3081         obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count,
3082                                         sizeof(*obj_req->copyup_bvecs),
3083                                         GFP_NOIO);
3084         if (!obj_req->copyup_bvecs)
3085                 return -ENOMEM;
3086
3087         for (i = 0; i < obj_req->copyup_bvec_count; i++) {
3088                 unsigned int len = min(obj_overlap, (u64)PAGE_SIZE);
3089                 struct page *page = alloc_page(GFP_NOIO);
3090
3091                 if (!page)
3092                         return -ENOMEM;
3093
3094                 bvec_set_page(&obj_req->copyup_bvecs[i], page, len, 0);
3095                 obj_overlap -= len;
3096         }
3097
3098         rbd_assert(!obj_overlap);
3099         return 0;
3100 }
3101
3102 /*
3103  * The target object doesn't exist.  Read the data for the entire
3104  * target object up to the overlap point (if any) from the parent,
3105  * so we can use it for a copyup.
3106  */
3107 static int rbd_obj_copyup_read_parent(struct rbd_obj_request *obj_req)
3108 {
3109         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3110         int ret;
3111
3112         rbd_assert(obj_req->num_img_extents);
3113         prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
3114                       rbd_dev->parent_overlap);
3115         if (!obj_req->num_img_extents) {
3116                 /*
3117                  * The overlap has become 0 (most likely because the
3118                  * image has been flattened).  Re-submit the original write
3119                  * request -- pass MODS_ONLY since the copyup isn't needed
3120                  * anymore.
3121                  */
3122                 return rbd_obj_copyup_current_snapc(obj_req, MODS_ONLY);
3123         }
3124
3125         ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req));
3126         if (ret)
3127                 return ret;
3128
3129         return rbd_obj_read_from_parent(obj_req);
3130 }
3131
3132 static void rbd_obj_copyup_object_maps(struct rbd_obj_request *obj_req)
3133 {
3134         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3135         struct ceph_snap_context *snapc = obj_req->img_request->snapc;
3136         u8 new_state;
3137         u32 i;
3138         int ret;
3139
3140         rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3141
3142         if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3143                 return;
3144
3145         if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3146                 return;
3147
3148         for (i = 0; i < snapc->num_snaps; i++) {
3149                 if ((rbd_dev->header.features & RBD_FEATURE_FAST_DIFF) &&
3150                     i + 1 < snapc->num_snaps)
3151                         new_state = OBJECT_EXISTS_CLEAN;
3152                 else
3153                         new_state = OBJECT_EXISTS;
3154
3155                 ret = rbd_object_map_update(obj_req, snapc->snaps[i],
3156                                             new_state, NULL);
3157                 if (ret < 0) {
3158                         obj_req->pending.result = ret;
3159                         return;
3160                 }
3161
3162                 rbd_assert(!ret);
3163                 obj_req->pending.num_pending++;
3164         }
3165 }
3166
3167 static void rbd_obj_copyup_write_object(struct rbd_obj_request *obj_req)
3168 {
3169         u32 bytes = rbd_obj_img_extents_bytes(obj_req);
3170         int ret;
3171
3172         rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3173
3174         /*
3175          * Only send non-zero copyup data to save some I/O and network
3176          * bandwidth -- zero copyup data is equivalent to the object not
3177          * existing.
3178          */
3179         if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3180                 bytes = 0;
3181
3182         if (obj_req->img_request->snapc->num_snaps && bytes > 0) {
3183                 /*
3184                  * Send a copyup request with an empty snapshot context to
3185                  * deep-copyup the object through all existing snapshots.
3186                  * A second request with the current snapshot context will be
3187                  * sent for the actual modification.
3188                  */
3189                 ret = rbd_obj_copyup_empty_snapc(obj_req, bytes);
3190                 if (ret) {
3191                         obj_req->pending.result = ret;
3192                         return;
3193                 }
3194
3195                 obj_req->pending.num_pending++;
3196                 bytes = MODS_ONLY;
3197         }
3198
3199         ret = rbd_obj_copyup_current_snapc(obj_req, bytes);
3200         if (ret) {
3201                 obj_req->pending.result = ret;
3202                 return;
3203         }
3204
3205         obj_req->pending.num_pending++;
3206 }
3207
3208 static bool rbd_obj_advance_copyup(struct rbd_obj_request *obj_req, int *result)
3209 {
3210         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3211         int ret;
3212
3213 again:
3214         switch (obj_req->copyup_state) {
3215         case RBD_OBJ_COPYUP_START:
3216                 rbd_assert(!*result);
3217
3218                 ret = rbd_obj_copyup_read_parent(obj_req);
3219                 if (ret) {
3220                         *result = ret;
3221                         return true;
3222                 }
3223                 if (obj_req->num_img_extents)
3224                         obj_req->copyup_state = RBD_OBJ_COPYUP_READ_PARENT;
3225                 else
3226                         obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3227                 return false;
3228         case RBD_OBJ_COPYUP_READ_PARENT:
3229                 if (*result)
3230                         return true;
3231
3232                 if (is_zero_bvecs(obj_req->copyup_bvecs,
3233                                   rbd_obj_img_extents_bytes(obj_req))) {
3234                         dout("%s %p detected zeros\n", __func__, obj_req);
3235                         obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ZEROS;
3236                 }
3237
3238                 rbd_obj_copyup_object_maps(obj_req);
3239                 if (!obj_req->pending.num_pending) {
3240                         *result = obj_req->pending.result;
3241                         obj_req->copyup_state = RBD_OBJ_COPYUP_OBJECT_MAPS;
3242                         goto again;
3243                 }
3244                 obj_req->copyup_state = __RBD_OBJ_COPYUP_OBJECT_MAPS;
3245                 return false;
3246         case __RBD_OBJ_COPYUP_OBJECT_MAPS:
3247                 if (!pending_result_dec(&obj_req->pending, result))
3248                         return false;
3249                 fallthrough;
3250         case RBD_OBJ_COPYUP_OBJECT_MAPS:
3251                 if (*result) {
3252                         rbd_warn(rbd_dev, "snap object map update failed: %d",
3253                                  *result);
3254                         return true;
3255                 }
3256
3257                 rbd_obj_copyup_write_object(obj_req);
3258                 if (!obj_req->pending.num_pending) {
3259                         *result = obj_req->pending.result;
3260                         obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3261                         goto again;
3262                 }
3263                 obj_req->copyup_state = __RBD_OBJ_COPYUP_WRITE_OBJECT;
3264                 return false;
3265         case __RBD_OBJ_COPYUP_WRITE_OBJECT:
3266                 if (!pending_result_dec(&obj_req->pending, result))
3267                         return false;
3268                 fallthrough;
3269         case RBD_OBJ_COPYUP_WRITE_OBJECT:
3270                 return true;
3271         default:
3272                 BUG();
3273         }
3274 }
3275
3276 /*
3277  * Return:
3278  *   0 - object map update sent
3279  *   1 - object map update isn't needed
3280  *  <0 - error
3281  */
3282 static int rbd_obj_write_post_object_map(struct rbd_obj_request *obj_req)
3283 {
3284         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3285         u8 current_state = OBJECT_PENDING;
3286
3287         if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3288                 return 1;
3289
3290         if (!(obj_req->flags & RBD_OBJ_FLAG_DELETION))
3291                 return 1;
3292
3293         return rbd_object_map_update(obj_req, CEPH_NOSNAP, OBJECT_NONEXISTENT,
3294                                      &current_state);
3295 }
3296
3297 static bool rbd_obj_advance_write(struct rbd_obj_request *obj_req, int *result)
3298 {
3299         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3300         int ret;
3301
3302 again:
3303         switch (obj_req->write_state) {
3304         case RBD_OBJ_WRITE_START:
3305                 rbd_assert(!*result);
3306
3307                 rbd_obj_set_copyup_enabled(obj_req);
3308                 if (rbd_obj_write_is_noop(obj_req))
3309                         return true;
3310
3311                 ret = rbd_obj_write_pre_object_map(obj_req);
3312                 if (ret < 0) {
3313                         *result = ret;
3314                         return true;
3315                 }
3316                 obj_req->write_state = RBD_OBJ_WRITE_PRE_OBJECT_MAP;
3317                 if (ret > 0)
3318                         goto again;
3319                 return false;
3320         case RBD_OBJ_WRITE_PRE_OBJECT_MAP:
3321                 if (*result) {
3322                         rbd_warn(rbd_dev, "pre object map update failed: %d",
3323                                  *result);
3324                         return true;
3325                 }
3326                 ret = rbd_obj_write_object(obj_req);
3327                 if (ret) {
3328                         *result = ret;
3329                         return true;
3330                 }
3331                 obj_req->write_state = RBD_OBJ_WRITE_OBJECT;
3332                 return false;
3333         case RBD_OBJ_WRITE_OBJECT:
3334                 if (*result == -ENOENT) {
3335                         if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
3336                                 *result = 0;
3337                                 obj_req->copyup_state = RBD_OBJ_COPYUP_START;
3338                                 obj_req->write_state = __RBD_OBJ_WRITE_COPYUP;
3339                                 goto again;
3340                         }
3341                         /*
3342                          * On a non-existent object:
3343                          *   delete - -ENOENT, truncate/zero - 0
3344                          */
3345                         if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
3346                                 *result = 0;
3347                 }
3348                 if (*result)
3349                         return true;
3350
3351                 obj_req->write_state = RBD_OBJ_WRITE_COPYUP;
3352                 goto again;
3353         case __RBD_OBJ_WRITE_COPYUP:
3354                 if (!rbd_obj_advance_copyup(obj_req, result))
3355                         return false;
3356                 fallthrough;
3357         case RBD_OBJ_WRITE_COPYUP:
3358                 if (*result) {
3359                         rbd_warn(rbd_dev, "copyup failed: %d", *result);
3360                         return true;
3361                 }
3362                 ret = rbd_obj_write_post_object_map(obj_req);
3363                 if (ret < 0) {
3364                         *result = ret;
3365                         return true;
3366                 }
3367                 obj_req->write_state = RBD_OBJ_WRITE_POST_OBJECT_MAP;
3368                 if (ret > 0)
3369                         goto again;
3370                 return false;
3371         case RBD_OBJ_WRITE_POST_OBJECT_MAP:
3372                 if (*result)
3373                         rbd_warn(rbd_dev, "post object map update failed: %d",
3374                                  *result);
3375                 return true;
3376         default:
3377                 BUG();
3378         }
3379 }
3380
3381 /*
3382  * Return true if @obj_req is completed.
3383  */
3384 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req,
3385                                      int *result)
3386 {
3387         struct rbd_img_request *img_req = obj_req->img_request;
3388         struct rbd_device *rbd_dev = img_req->rbd_dev;
3389         bool done;
3390
3391         mutex_lock(&obj_req->state_mutex);
3392         if (!rbd_img_is_write(img_req))
3393                 done = rbd_obj_advance_read(obj_req, result);
3394         else
3395                 done = rbd_obj_advance_write(obj_req, result);
3396         mutex_unlock(&obj_req->state_mutex);
3397
3398         if (done && *result) {
3399                 rbd_assert(*result < 0);
3400                 rbd_warn(rbd_dev, "%s at objno %llu %llu~%llu result %d",
3401                          obj_op_name(img_req->op_type), obj_req->ex.oe_objno,
3402                          obj_req->ex.oe_off, obj_req->ex.oe_len, *result);
3403         }
3404         return done;
3405 }
3406
3407 /*
3408  * This is open-coded in rbd_img_handle_request() to avoid parent chain
3409  * recursion.
3410  */
3411 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result)
3412 {
3413         if (__rbd_obj_handle_request(obj_req, &result))
3414                 rbd_img_handle_request(obj_req->img_request, result);
3415 }
3416
3417 static bool need_exclusive_lock(struct rbd_img_request *img_req)
3418 {
3419         struct rbd_device *rbd_dev = img_req->rbd_dev;
3420
3421         if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK))
3422                 return false;
3423
3424         if (rbd_is_ro(rbd_dev))
3425                 return false;
3426
3427         rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags));
3428         if (rbd_dev->opts->lock_on_read ||
3429             (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3430                 return true;
3431
3432         return rbd_img_is_write(img_req);
3433 }
3434
3435 static bool rbd_lock_add_request(struct rbd_img_request *img_req)
3436 {
3437         struct rbd_device *rbd_dev = img_req->rbd_dev;
3438         bool locked;
3439
3440         lockdep_assert_held(&rbd_dev->lock_rwsem);
3441         locked = rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED;
3442         spin_lock(&rbd_dev->lock_lists_lock);
3443         rbd_assert(list_empty(&img_req->lock_item));
3444         if (!locked)
3445                 list_add_tail(&img_req->lock_item, &rbd_dev->acquiring_list);
3446         else
3447                 list_add_tail(&img_req->lock_item, &rbd_dev->running_list);
3448         spin_unlock(&rbd_dev->lock_lists_lock);
3449         return locked;
3450 }
3451
3452 static void rbd_lock_del_request(struct rbd_img_request *img_req)
3453 {
3454         struct rbd_device *rbd_dev = img_req->rbd_dev;
3455         bool need_wakeup = false;
3456
3457         lockdep_assert_held(&rbd_dev->lock_rwsem);
3458         spin_lock(&rbd_dev->lock_lists_lock);
3459         if (!list_empty(&img_req->lock_item)) {
3460                 rbd_assert(!list_empty(&rbd_dev->running_list));
3461                 list_del_init(&img_req->lock_item);
3462                 need_wakeup = (rbd_dev->lock_state == RBD_LOCK_STATE_QUIESCING &&
3463                                list_empty(&rbd_dev->running_list));
3464         }
3465         spin_unlock(&rbd_dev->lock_lists_lock);
3466         if (need_wakeup)
3467                 complete(&rbd_dev->quiescing_wait);
3468 }
3469
3470 static int rbd_img_exclusive_lock(struct rbd_img_request *img_req)
3471 {
3472         struct rbd_device *rbd_dev = img_req->rbd_dev;
3473
3474         if (!need_exclusive_lock(img_req))
3475                 return 1;
3476
3477         if (rbd_lock_add_request(img_req))
3478                 return 1;
3479
3480         /*
3481          * Note the use of mod_delayed_work() in rbd_acquire_lock()
3482          * and cancel_delayed_work() in wake_lock_waiters().
3483          */
3484         dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3485         queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3486         return 0;
3487 }
3488
3489 static void rbd_img_object_requests(struct rbd_img_request *img_req)
3490 {
3491         struct rbd_device *rbd_dev = img_req->rbd_dev;
3492         struct rbd_obj_request *obj_req;
3493
3494         rbd_assert(!img_req->pending.result && !img_req->pending.num_pending);
3495         rbd_assert(!need_exclusive_lock(img_req) ||
3496                    __rbd_is_lock_owner(rbd_dev));
3497
3498         if (rbd_img_is_write(img_req)) {
3499                 rbd_assert(!img_req->snapc);
3500                 down_read(&rbd_dev->header_rwsem);
3501                 img_req->snapc = ceph_get_snap_context(rbd_dev->header.snapc);
3502                 up_read(&rbd_dev->header_rwsem);
3503         }
3504
3505         for_each_obj_request(img_req, obj_req) {
3506                 int result = 0;
3507
3508                 if (__rbd_obj_handle_request(obj_req, &result)) {
3509                         if (result) {
3510                                 img_req->pending.result = result;
3511                                 return;
3512                         }
3513                 } else {
3514                         img_req->pending.num_pending++;
3515                 }
3516         }
3517 }
3518
3519 static bool rbd_img_advance(struct rbd_img_request *img_req, int *result)
3520 {
3521         int ret;
3522
3523 again:
3524         switch (img_req->state) {
3525         case RBD_IMG_START:
3526                 rbd_assert(!*result);
3527
3528                 ret = rbd_img_exclusive_lock(img_req);
3529                 if (ret < 0) {
3530                         *result = ret;
3531                         return true;
3532                 }
3533                 img_req->state = RBD_IMG_EXCLUSIVE_LOCK;
3534                 if (ret > 0)
3535                         goto again;
3536                 return false;
3537         case RBD_IMG_EXCLUSIVE_LOCK:
3538                 if (*result)
3539                         return true;
3540
3541                 rbd_img_object_requests(img_req);
3542                 if (!img_req->pending.num_pending) {
3543                         *result = img_req->pending.result;
3544                         img_req->state = RBD_IMG_OBJECT_REQUESTS;
3545                         goto again;
3546                 }
3547                 img_req->state = __RBD_IMG_OBJECT_REQUESTS;
3548                 return false;
3549         case __RBD_IMG_OBJECT_REQUESTS:
3550                 if (!pending_result_dec(&img_req->pending, result))
3551                         return false;
3552                 fallthrough;
3553         case RBD_IMG_OBJECT_REQUESTS:
3554                 return true;
3555         default:
3556                 BUG();
3557         }
3558 }
3559
3560 /*
3561  * Return true if @img_req is completed.
3562  */
3563 static bool __rbd_img_handle_request(struct rbd_img_request *img_req,
3564                                      int *result)
3565 {
3566         struct rbd_device *rbd_dev = img_req->rbd_dev;
3567         bool done;
3568
3569         if (need_exclusive_lock(img_req)) {
3570                 down_read(&rbd_dev->lock_rwsem);
3571                 mutex_lock(&img_req->state_mutex);
3572                 done = rbd_img_advance(img_req, result);
3573                 if (done)
3574                         rbd_lock_del_request(img_req);
3575                 mutex_unlock(&img_req->state_mutex);
3576                 up_read(&rbd_dev->lock_rwsem);
3577         } else {
3578                 mutex_lock(&img_req->state_mutex);
3579                 done = rbd_img_advance(img_req, result);
3580                 mutex_unlock(&img_req->state_mutex);
3581         }
3582
3583         if (done && *result) {
3584                 rbd_assert(*result < 0);
3585                 rbd_warn(rbd_dev, "%s%s result %d",
3586                       test_bit(IMG_REQ_CHILD, &img_req->flags) ? "child " : "",
3587                       obj_op_name(img_req->op_type), *result);
3588         }
3589         return done;
3590 }
3591
3592 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result)
3593 {
3594 again:
3595         if (!__rbd_img_handle_request(img_req, &result))
3596                 return;
3597
3598         if (test_bit(IMG_REQ_CHILD, &img_req->flags)) {
3599                 struct rbd_obj_request *obj_req = img_req->obj_request;
3600
3601                 rbd_img_request_destroy(img_req);
3602                 if (__rbd_obj_handle_request(obj_req, &result)) {
3603                         img_req = obj_req->img_request;
3604                         goto again;
3605                 }
3606         } else {
3607                 struct request *rq = blk_mq_rq_from_pdu(img_req);
3608
3609                 rbd_img_request_destroy(img_req);
3610                 blk_mq_end_request(rq, errno_to_blk_status(result));
3611         }
3612 }
3613
3614 static const struct rbd_client_id rbd_empty_cid;
3615
3616 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
3617                           const struct rbd_client_id *rhs)
3618 {
3619         return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
3620 }
3621
3622 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
3623 {
3624         struct rbd_client_id cid;
3625
3626         mutex_lock(&rbd_dev->watch_mutex);
3627         cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
3628         cid.handle = rbd_dev->watch_cookie;
3629         mutex_unlock(&rbd_dev->watch_mutex);
3630         return cid;
3631 }
3632
3633 /*
3634  * lock_rwsem must be held for write
3635  */
3636 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
3637                               const struct rbd_client_id *cid)
3638 {
3639         dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
3640              rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
3641              cid->gid, cid->handle);
3642         rbd_dev->owner_cid = *cid; /* struct */
3643 }
3644
3645 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
3646 {
3647         mutex_lock(&rbd_dev->watch_mutex);
3648         sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
3649         mutex_unlock(&rbd_dev->watch_mutex);
3650 }
3651
3652 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie)
3653 {
3654         struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3655
3656         rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
3657         strcpy(rbd_dev->lock_cookie, cookie);
3658         rbd_set_owner_cid(rbd_dev, &cid);
3659         queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
3660 }
3661
3662 /*
3663  * lock_rwsem must be held for write
3664  */
3665 static int rbd_lock(struct rbd_device *rbd_dev)
3666 {
3667         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3668         char cookie[32];
3669         int ret;
3670
3671         WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
3672                 rbd_dev->lock_cookie[0] != '\0');
3673
3674         format_lock_cookie(rbd_dev, cookie);
3675         ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3676                             RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
3677                             RBD_LOCK_TAG, "", 0);
3678         if (ret && ret != -EEXIST)
3679                 return ret;
3680
3681         __rbd_lock(rbd_dev, cookie);
3682         return 0;
3683 }
3684
3685 /*
3686  * lock_rwsem must be held for write
3687  */
3688 static void rbd_unlock(struct rbd_device *rbd_dev)
3689 {
3690         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3691         int ret;
3692
3693         WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
3694                 rbd_dev->lock_cookie[0] == '\0');
3695
3696         ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3697                               RBD_LOCK_NAME, rbd_dev->lock_cookie);
3698         if (ret && ret != -ENOENT)
3699                 rbd_warn(rbd_dev, "failed to unlock header: %d", ret);
3700
3701         /* treat errors as the image is unlocked */
3702         rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
3703         rbd_dev->lock_cookie[0] = '\0';
3704         rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3705         queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
3706 }
3707
3708 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
3709                                 enum rbd_notify_op notify_op,
3710                                 struct page ***preply_pages,
3711                                 size_t *preply_len)
3712 {
3713         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3714         struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3715         char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN];
3716         int buf_size = sizeof(buf);
3717         void *p = buf;
3718
3719         dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
3720
3721         /* encode *LockPayload NotifyMessage (op + ClientId) */
3722         ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
3723         ceph_encode_32(&p, notify_op);
3724         ceph_encode_64(&p, cid.gid);
3725         ceph_encode_64(&p, cid.handle);
3726
3727         return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
3728                                 &rbd_dev->header_oloc, buf, buf_size,
3729                                 RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
3730 }
3731
3732 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
3733                                enum rbd_notify_op notify_op)
3734 {
3735         __rbd_notify_op_lock(rbd_dev, notify_op, NULL, NULL);
3736 }
3737
3738 static void rbd_notify_acquired_lock(struct work_struct *work)
3739 {
3740         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3741                                                   acquired_lock_work);
3742
3743         rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
3744 }
3745
3746 static void rbd_notify_released_lock(struct work_struct *work)
3747 {
3748         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3749                                                   released_lock_work);
3750
3751         rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
3752 }
3753
3754 static int rbd_request_lock(struct rbd_device *rbd_dev)
3755 {
3756         struct page **reply_pages;
3757         size_t reply_len;
3758         bool lock_owner_responded = false;
3759         int ret;
3760
3761         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3762
3763         ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
3764                                    &reply_pages, &reply_len);
3765         if (ret && ret != -ETIMEDOUT) {
3766                 rbd_warn(rbd_dev, "failed to request lock: %d", ret);
3767                 goto out;
3768         }
3769
3770         if (reply_len > 0 && reply_len <= PAGE_SIZE) {
3771                 void *p = page_address(reply_pages[0]);
3772                 void *const end = p + reply_len;
3773                 u32 n;
3774
3775                 ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
3776                 while (n--) {
3777                         u8 struct_v;
3778                         u32 len;
3779
3780                         ceph_decode_need(&p, end, 8 + 8, e_inval);
3781                         p += 8 + 8; /* skip gid and cookie */
3782
3783                         ceph_decode_32_safe(&p, end, len, e_inval);
3784                         if (!len)
3785                                 continue;
3786
3787                         if (lock_owner_responded) {
3788                                 rbd_warn(rbd_dev,
3789                                          "duplicate lock owners detected");
3790                                 ret = -EIO;
3791                                 goto out;
3792                         }
3793
3794                         lock_owner_responded = true;
3795                         ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
3796                                                   &struct_v, &len);
3797                         if (ret) {
3798                                 rbd_warn(rbd_dev,
3799                                          "failed to decode ResponseMessage: %d",
3800                                          ret);
3801                                 goto e_inval;
3802                         }
3803
3804                         ret = ceph_decode_32(&p);
3805                 }
3806         }
3807
3808         if (!lock_owner_responded) {
3809                 rbd_warn(rbd_dev, "no lock owners detected");
3810                 ret = -ETIMEDOUT;
3811         }
3812
3813 out:
3814         ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3815         return ret;
3816
3817 e_inval:
3818         ret = -EINVAL;
3819         goto out;
3820 }
3821
3822 /*
3823  * Either image request state machine(s) or rbd_add_acquire_lock()
3824  * (i.e. "rbd map").
3825  */
3826 static void wake_lock_waiters(struct rbd_device *rbd_dev, int result)
3827 {
3828         struct rbd_img_request *img_req;
3829
3830         dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3831         lockdep_assert_held_write(&rbd_dev->lock_rwsem);
3832
3833         cancel_delayed_work(&rbd_dev->lock_dwork);
3834         if (!completion_done(&rbd_dev->acquire_wait)) {
3835                 rbd_assert(list_empty(&rbd_dev->acquiring_list) &&
3836                            list_empty(&rbd_dev->running_list));
3837                 rbd_dev->acquire_err = result;
3838                 complete_all(&rbd_dev->acquire_wait);
3839                 return;
3840         }
3841
3842         while (!list_empty(&rbd_dev->acquiring_list)) {
3843                 img_req = list_first_entry(&rbd_dev->acquiring_list,
3844                                            struct rbd_img_request, lock_item);
3845                 mutex_lock(&img_req->state_mutex);
3846                 rbd_assert(img_req->state == RBD_IMG_EXCLUSIVE_LOCK);
3847                 if (!result)
3848                         list_move_tail(&img_req->lock_item,
3849                                        &rbd_dev->running_list);
3850                 else
3851                         list_del_init(&img_req->lock_item);
3852                 rbd_img_schedule(img_req, result);
3853                 mutex_unlock(&img_req->state_mutex);
3854         }
3855 }
3856
3857 static bool locker_equal(const struct ceph_locker *lhs,
3858                          const struct ceph_locker *rhs)
3859 {
3860         return lhs->id.name.type == rhs->id.name.type &&
3861                lhs->id.name.num == rhs->id.name.num &&
3862                !strcmp(lhs->id.cookie, rhs->id.cookie) &&
3863                ceph_addr_equal_no_type(&lhs->info.addr, &rhs->info.addr);
3864 }
3865
3866 static void free_locker(struct ceph_locker *locker)
3867 {
3868         if (locker)
3869                 ceph_free_lockers(locker, 1);
3870 }
3871
3872 static struct ceph_locker *get_lock_owner_info(struct rbd_device *rbd_dev)
3873 {
3874         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3875         struct ceph_locker *lockers;
3876         u32 num_lockers;
3877         u8 lock_type;
3878         char *lock_tag;
3879         u64 handle;
3880         int ret;
3881
3882         ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
3883                                  &rbd_dev->header_oloc, RBD_LOCK_NAME,
3884                                  &lock_type, &lock_tag, &lockers, &num_lockers);
3885         if (ret) {
3886                 rbd_warn(rbd_dev, "failed to get header lockers: %d", ret);
3887                 return ERR_PTR(ret);
3888         }
3889
3890         if (num_lockers == 0) {
3891                 dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
3892                 lockers = NULL;
3893                 goto out;
3894         }
3895
3896         if (strcmp(lock_tag, RBD_LOCK_TAG)) {
3897                 rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
3898                          lock_tag);
3899                 goto err_busy;
3900         }
3901
3902         if (lock_type != CEPH_CLS_LOCK_EXCLUSIVE) {
3903                 rbd_warn(rbd_dev, "incompatible lock type detected");
3904                 goto err_busy;
3905         }
3906
3907         WARN_ON(num_lockers != 1);
3908         ret = sscanf(lockers[0].id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu",
3909                      &handle);
3910         if (ret != 1) {
3911                 rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
3912                          lockers[0].id.cookie);
3913                 goto err_busy;
3914         }
3915         if (ceph_addr_is_blank(&lockers[0].info.addr)) {
3916                 rbd_warn(rbd_dev, "locker has a blank address");
3917                 goto err_busy;
3918         }
3919
3920         dout("%s rbd_dev %p got locker %s%llu@%pISpc/%u handle %llu\n",
3921              __func__, rbd_dev, ENTITY_NAME(lockers[0].id.name),
3922              &lockers[0].info.addr.in_addr,
3923              le32_to_cpu(lockers[0].info.addr.nonce), handle);
3924
3925 out:
3926         kfree(lock_tag);
3927         return lockers;
3928
3929 err_busy:
3930         kfree(lock_tag);
3931         ceph_free_lockers(lockers, num_lockers);
3932         return ERR_PTR(-EBUSY);
3933 }
3934
3935 static int find_watcher(struct rbd_device *rbd_dev,
3936                         const struct ceph_locker *locker)
3937 {
3938         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3939         struct ceph_watch_item *watchers;
3940         u32 num_watchers;
3941         u64 cookie;
3942         int i;
3943         int ret;
3944
3945         ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
3946                                       &rbd_dev->header_oloc, &watchers,
3947                                       &num_watchers);
3948         if (ret) {
3949                 rbd_warn(rbd_dev, "failed to get watchers: %d", ret);
3950                 return ret;
3951         }
3952
3953         sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
3954         for (i = 0; i < num_watchers; i++) {
3955                 /*
3956                  * Ignore addr->type while comparing.  This mimics
3957                  * entity_addr_t::get_legacy_str() + strcmp().
3958                  */
3959                 if (ceph_addr_equal_no_type(&watchers[i].addr,
3960                                             &locker->info.addr) &&
3961                     watchers[i].cookie == cookie) {
3962                         struct rbd_client_id cid = {
3963                                 .gid = le64_to_cpu(watchers[i].name.num),
3964                                 .handle = cookie,
3965                         };
3966
3967                         dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
3968                              rbd_dev, cid.gid, cid.handle);
3969                         rbd_set_owner_cid(rbd_dev, &cid);
3970                         ret = 1;
3971                         goto out;
3972                 }
3973         }
3974
3975         dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
3976         ret = 0;
3977 out:
3978         kfree(watchers);
3979         return ret;
3980 }
3981
3982 /*
3983  * lock_rwsem must be held for write
3984  */
3985 static int rbd_try_lock(struct rbd_device *rbd_dev)
3986 {
3987         struct ceph_client *client = rbd_dev->rbd_client->client;
3988         struct ceph_locker *locker, *refreshed_locker;
3989         int ret;
3990
3991         for (;;) {
3992                 locker = refreshed_locker = NULL;
3993
3994                 ret = rbd_lock(rbd_dev);
3995                 if (!ret)
3996                         goto out;
3997                 if (ret != -EBUSY) {
3998                         rbd_warn(rbd_dev, "failed to lock header: %d", ret);
3999                         goto out;
4000                 }
4001
4002                 /* determine if the current lock holder is still alive */
4003                 locker = get_lock_owner_info(rbd_dev);
4004                 if (IS_ERR(locker)) {
4005                         ret = PTR_ERR(locker);
4006                         locker = NULL;
4007                         goto out;
4008                 }
4009                 if (!locker)
4010                         goto again;
4011
4012                 ret = find_watcher(rbd_dev, locker);
4013                 if (ret)
4014                         goto out; /* request lock or error */
4015
4016                 refreshed_locker = get_lock_owner_info(rbd_dev);
4017                 if (IS_ERR(refreshed_locker)) {
4018                         ret = PTR_ERR(refreshed_locker);
4019                         refreshed_locker = NULL;
4020                         goto out;
4021                 }
4022                 if (!refreshed_locker ||
4023                     !locker_equal(locker, refreshed_locker))
4024                         goto again;
4025
4026                 rbd_warn(rbd_dev, "breaking header lock owned by %s%llu",
4027                          ENTITY_NAME(locker->id.name));
4028
4029                 ret = ceph_monc_blocklist_add(&client->monc,
4030                                               &locker->info.addr);
4031                 if (ret) {
4032                         rbd_warn(rbd_dev, "failed to blocklist %s%llu: %d",
4033                                  ENTITY_NAME(locker->id.name), ret);
4034                         goto out;
4035                 }
4036
4037                 ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
4038                                           &rbd_dev->header_oloc, RBD_LOCK_NAME,
4039                                           locker->id.cookie, &locker->id.name);
4040                 if (ret && ret != -ENOENT) {
4041                         rbd_warn(rbd_dev, "failed to break header lock: %d",
4042                                  ret);
4043                         goto out;
4044                 }
4045
4046 again:
4047                 free_locker(refreshed_locker);
4048                 free_locker(locker);
4049         }
4050
4051 out:
4052         free_locker(refreshed_locker);
4053         free_locker(locker);
4054         return ret;
4055 }
4056
4057 static int rbd_post_acquire_action(struct rbd_device *rbd_dev)
4058 {
4059         int ret;
4060
4061         ret = rbd_dev_refresh(rbd_dev);
4062         if (ret)
4063                 return ret;
4064
4065         if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) {
4066                 ret = rbd_object_map_open(rbd_dev);
4067                 if (ret)
4068                         return ret;
4069         }
4070
4071         return 0;
4072 }
4073
4074 /*
4075  * Return:
4076  *   0 - lock acquired
4077  *   1 - caller should call rbd_request_lock()
4078  *  <0 - error
4079  */
4080 static int rbd_try_acquire_lock(struct rbd_device *rbd_dev)
4081 {
4082         int ret;
4083
4084         down_read(&rbd_dev->lock_rwsem);
4085         dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
4086              rbd_dev->lock_state);
4087         if (__rbd_is_lock_owner(rbd_dev)) {
4088                 up_read(&rbd_dev->lock_rwsem);
4089                 return 0;
4090         }
4091
4092         up_read(&rbd_dev->lock_rwsem);
4093         down_write(&rbd_dev->lock_rwsem);
4094         dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
4095              rbd_dev->lock_state);
4096         if (__rbd_is_lock_owner(rbd_dev)) {
4097                 up_write(&rbd_dev->lock_rwsem);
4098                 return 0;
4099         }
4100
4101         ret = rbd_try_lock(rbd_dev);
4102         if (ret < 0) {
4103                 rbd_warn(rbd_dev, "failed to acquire lock: %d", ret);
4104                 goto out;
4105         }
4106         if (ret > 0) {
4107                 up_write(&rbd_dev->lock_rwsem);
4108                 return ret;
4109         }
4110
4111         rbd_assert(rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED);
4112         rbd_assert(list_empty(&rbd_dev->running_list));
4113
4114         ret = rbd_post_acquire_action(rbd_dev);
4115         if (ret) {
4116                 rbd_warn(rbd_dev, "post-acquire action failed: %d", ret);
4117                 /*
4118                  * Can't stay in RBD_LOCK_STATE_LOCKED because
4119                  * rbd_lock_add_request() would let the request through,
4120                  * assuming that e.g. object map is locked and loaded.
4121                  */
4122                 rbd_unlock(rbd_dev);
4123         }
4124
4125 out:
4126         wake_lock_waiters(rbd_dev, ret);
4127         up_write(&rbd_dev->lock_rwsem);
4128         return ret;
4129 }
4130
4131 static void rbd_acquire_lock(struct work_struct *work)
4132 {
4133         struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4134                                             struct rbd_device, lock_dwork);
4135         int ret;
4136
4137         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4138 again:
4139         ret = rbd_try_acquire_lock(rbd_dev);
4140         if (ret <= 0) {
4141                 dout("%s rbd_dev %p ret %d - done\n", __func__, rbd_dev, ret);
4142                 return;
4143         }
4144
4145         ret = rbd_request_lock(rbd_dev);
4146         if (ret == -ETIMEDOUT) {
4147                 goto again; /* treat this as a dead client */
4148         } else if (ret == -EROFS) {
4149                 rbd_warn(rbd_dev, "peer will not release lock");
4150                 down_write(&rbd_dev->lock_rwsem);
4151                 wake_lock_waiters(rbd_dev, ret);
4152                 up_write(&rbd_dev->lock_rwsem);
4153         } else if (ret < 0) {
4154                 rbd_warn(rbd_dev, "error requesting lock: %d", ret);
4155                 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4156                                  RBD_RETRY_DELAY);
4157         } else {
4158                 /*
4159                  * lock owner acked, but resend if we don't see them
4160                  * release the lock
4161                  */
4162                 dout("%s rbd_dev %p requeuing lock_dwork\n", __func__,
4163                      rbd_dev);
4164                 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4165                     msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
4166         }
4167 }
4168
4169 static bool rbd_quiesce_lock(struct rbd_device *rbd_dev)
4170 {
4171         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4172         lockdep_assert_held_write(&rbd_dev->lock_rwsem);
4173
4174         if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
4175                 return false;
4176
4177         /*
4178          * Ensure that all in-flight IO is flushed.
4179          */
4180         rbd_dev->lock_state = RBD_LOCK_STATE_QUIESCING;
4181         rbd_assert(!completion_done(&rbd_dev->quiescing_wait));
4182         if (list_empty(&rbd_dev->running_list))
4183                 return true;
4184
4185         up_write(&rbd_dev->lock_rwsem);
4186         wait_for_completion(&rbd_dev->quiescing_wait);
4187
4188         down_write(&rbd_dev->lock_rwsem);
4189         if (rbd_dev->lock_state != RBD_LOCK_STATE_QUIESCING)
4190                 return false;
4191
4192         rbd_assert(list_empty(&rbd_dev->running_list));
4193         return true;
4194 }
4195
4196 static void rbd_pre_release_action(struct rbd_device *rbd_dev)
4197 {
4198         if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)
4199                 rbd_object_map_close(rbd_dev);
4200 }
4201
4202 static void __rbd_release_lock(struct rbd_device *rbd_dev)
4203 {
4204         rbd_assert(list_empty(&rbd_dev->running_list));
4205
4206         rbd_pre_release_action(rbd_dev);
4207         rbd_unlock(rbd_dev);
4208 }
4209
4210 /*
4211  * lock_rwsem must be held for write
4212  */
4213 static void rbd_release_lock(struct rbd_device *rbd_dev)
4214 {
4215         if (!rbd_quiesce_lock(rbd_dev))
4216                 return;
4217
4218         __rbd_release_lock(rbd_dev);
4219
4220         /*
4221          * Give others a chance to grab the lock - we would re-acquire
4222          * almost immediately if we got new IO while draining the running
4223          * list otherwise.  We need to ack our own notifications, so this
4224          * lock_dwork will be requeued from rbd_handle_released_lock() by
4225          * way of maybe_kick_acquire().
4226          */
4227         cancel_delayed_work(&rbd_dev->lock_dwork);
4228 }
4229
4230 static void rbd_release_lock_work(struct work_struct *work)
4231 {
4232         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
4233                                                   unlock_work);
4234
4235         down_write(&rbd_dev->lock_rwsem);
4236         rbd_release_lock(rbd_dev);
4237         up_write(&rbd_dev->lock_rwsem);
4238 }
4239
4240 static void maybe_kick_acquire(struct rbd_device *rbd_dev)
4241 {
4242         bool have_requests;
4243
4244         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4245         if (__rbd_is_lock_owner(rbd_dev))
4246                 return;
4247
4248         spin_lock(&rbd_dev->lock_lists_lock);
4249         have_requests = !list_empty(&rbd_dev->acquiring_list);
4250         spin_unlock(&rbd_dev->lock_lists_lock);
4251         if (have_requests || delayed_work_pending(&rbd_dev->lock_dwork)) {
4252                 dout("%s rbd_dev %p kicking lock_dwork\n", __func__, rbd_dev);
4253                 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4254         }
4255 }
4256
4257 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
4258                                      void **p)
4259 {
4260         struct rbd_client_id cid = { 0 };
4261
4262         if (struct_v >= 2) {
4263                 cid.gid = ceph_decode_64(p);
4264                 cid.handle = ceph_decode_64(p);
4265         }
4266
4267         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4268              cid.handle);
4269         if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4270                 down_write(&rbd_dev->lock_rwsem);
4271                 if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4272                         dout("%s rbd_dev %p cid %llu-%llu == owner_cid\n",
4273                              __func__, rbd_dev, cid.gid, cid.handle);
4274                 } else {
4275                         rbd_set_owner_cid(rbd_dev, &cid);
4276                 }
4277                 downgrade_write(&rbd_dev->lock_rwsem);
4278         } else {
4279                 down_read(&rbd_dev->lock_rwsem);
4280         }
4281
4282         maybe_kick_acquire(rbd_dev);
4283         up_read(&rbd_dev->lock_rwsem);
4284 }
4285
4286 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
4287                                      void **p)
4288 {
4289         struct rbd_client_id cid = { 0 };
4290
4291         if (struct_v >= 2) {
4292                 cid.gid = ceph_decode_64(p);
4293                 cid.handle = ceph_decode_64(p);
4294         }
4295
4296         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4297              cid.handle);
4298         if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4299                 down_write(&rbd_dev->lock_rwsem);
4300                 if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4301                         dout("%s rbd_dev %p cid %llu-%llu != owner_cid %llu-%llu\n",
4302                              __func__, rbd_dev, cid.gid, cid.handle,
4303                              rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
4304                 } else {
4305                         rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4306                 }
4307                 downgrade_write(&rbd_dev->lock_rwsem);
4308         } else {
4309                 down_read(&rbd_dev->lock_rwsem);
4310         }
4311
4312         maybe_kick_acquire(rbd_dev);
4313         up_read(&rbd_dev->lock_rwsem);
4314 }
4315
4316 /*
4317  * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
4318  * ResponseMessage is needed.
4319  */
4320 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
4321                                    void **p)
4322 {
4323         struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
4324         struct rbd_client_id cid = { 0 };
4325         int result = 1;
4326
4327         if (struct_v >= 2) {
4328                 cid.gid = ceph_decode_64(p);
4329                 cid.handle = ceph_decode_64(p);
4330         }
4331
4332         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4333              cid.handle);
4334         if (rbd_cid_equal(&cid, &my_cid))
4335                 return result;
4336
4337         down_read(&rbd_dev->lock_rwsem);
4338         if (__rbd_is_lock_owner(rbd_dev)) {
4339                 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
4340                     rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid))
4341                         goto out_unlock;
4342
4343                 /*
4344                  * encode ResponseMessage(0) so the peer can detect
4345                  * a missing owner
4346                  */
4347                 result = 0;
4348
4349                 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
4350                         if (!rbd_dev->opts->exclusive) {
4351                                 dout("%s rbd_dev %p queueing unlock_work\n",
4352                                      __func__, rbd_dev);
4353                                 queue_work(rbd_dev->task_wq,
4354                                            &rbd_dev->unlock_work);
4355                         } else {
4356                                 /* refuse to release the lock */
4357                                 result = -EROFS;
4358                         }
4359                 }
4360         }
4361
4362 out_unlock:
4363         up_read(&rbd_dev->lock_rwsem);
4364         return result;
4365 }
4366
4367 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
4368                                      u64 notify_id, u64 cookie, s32 *result)
4369 {
4370         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4371         char buf[4 + CEPH_ENCODING_START_BLK_LEN];
4372         int buf_size = sizeof(buf);
4373         int ret;
4374
4375         if (result) {
4376                 void *p = buf;
4377
4378                 /* encode ResponseMessage */
4379                 ceph_start_encoding(&p, 1, 1,
4380                                     buf_size - CEPH_ENCODING_START_BLK_LEN);
4381                 ceph_encode_32(&p, *result);
4382         } else {
4383                 buf_size = 0;
4384         }
4385
4386         ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
4387                                    &rbd_dev->header_oloc, notify_id, cookie,
4388                                    buf, buf_size);
4389         if (ret)
4390                 rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
4391 }
4392
4393 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
4394                                    u64 cookie)
4395 {
4396         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4397         __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
4398 }
4399
4400 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
4401                                           u64 notify_id, u64 cookie, s32 result)
4402 {
4403         dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
4404         __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
4405 }
4406
4407 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
4408                          u64 notifier_id, void *data, size_t data_len)
4409 {
4410         struct rbd_device *rbd_dev = arg;
4411         void *p = data;
4412         void *const end = p + data_len;
4413         u8 struct_v = 0;
4414         u32 len;
4415         u32 notify_op;
4416         int ret;
4417
4418         dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
4419              __func__, rbd_dev, cookie, notify_id, data_len);
4420         if (data_len) {
4421                 ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
4422                                           &struct_v, &len);
4423                 if (ret) {
4424                         rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
4425                                  ret);
4426                         return;
4427                 }
4428
4429                 notify_op = ceph_decode_32(&p);
4430         } else {
4431                 /* legacy notification for header updates */
4432                 notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
4433                 len = 0;
4434         }
4435
4436         dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
4437         switch (notify_op) {
4438         case RBD_NOTIFY_OP_ACQUIRED_LOCK:
4439                 rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
4440                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4441                 break;
4442         case RBD_NOTIFY_OP_RELEASED_LOCK:
4443                 rbd_handle_released_lock(rbd_dev, struct_v, &p);
4444                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4445                 break;
4446         case RBD_NOTIFY_OP_REQUEST_LOCK:
4447                 ret = rbd_handle_request_lock(rbd_dev, struct_v, &p);
4448                 if (ret <= 0)
4449                         rbd_acknowledge_notify_result(rbd_dev, notify_id,
4450                                                       cookie, ret);
4451                 else
4452                         rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4453                 break;
4454         case RBD_NOTIFY_OP_HEADER_UPDATE:
4455                 ret = rbd_dev_refresh(rbd_dev);
4456                 if (ret)
4457                         rbd_warn(rbd_dev, "refresh failed: %d", ret);
4458
4459                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4460                 break;
4461         default:
4462                 if (rbd_is_lock_owner(rbd_dev))
4463                         rbd_acknowledge_notify_result(rbd_dev, notify_id,
4464                                                       cookie, -EOPNOTSUPP);
4465                 else
4466                         rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4467                 break;
4468         }
4469 }
4470
4471 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
4472
4473 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
4474 {
4475         struct rbd_device *rbd_dev = arg;
4476
4477         rbd_warn(rbd_dev, "encountered watch error: %d", err);
4478
4479         down_write(&rbd_dev->lock_rwsem);
4480         rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4481         up_write(&rbd_dev->lock_rwsem);
4482
4483         mutex_lock(&rbd_dev->watch_mutex);
4484         if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
4485                 __rbd_unregister_watch(rbd_dev);
4486                 rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
4487
4488                 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
4489         }
4490         mutex_unlock(&rbd_dev->watch_mutex);
4491 }
4492
4493 /*
4494  * watch_mutex must be locked
4495  */
4496 static int __rbd_register_watch(struct rbd_device *rbd_dev)
4497 {
4498         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4499         struct ceph_osd_linger_request *handle;
4500
4501         rbd_assert(!rbd_dev->watch_handle);
4502         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4503
4504         handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
4505                                  &rbd_dev->header_oloc, rbd_watch_cb,
4506                                  rbd_watch_errcb, rbd_dev);
4507         if (IS_ERR(handle))
4508                 return PTR_ERR(handle);
4509
4510         rbd_dev->watch_handle = handle;
4511         return 0;
4512 }
4513
4514 /*
4515  * watch_mutex must be locked
4516  */
4517 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
4518 {
4519         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4520         int ret;
4521
4522         rbd_assert(rbd_dev->watch_handle);
4523         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4524
4525         ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
4526         if (ret)
4527                 rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
4528
4529         rbd_dev->watch_handle = NULL;
4530 }
4531
4532 static int rbd_register_watch(struct rbd_device *rbd_dev)
4533 {
4534         int ret;
4535
4536         mutex_lock(&rbd_dev->watch_mutex);
4537         rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
4538         ret = __rbd_register_watch(rbd_dev);
4539         if (ret)
4540                 goto out;
4541
4542         rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4543         rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4544
4545 out:
4546         mutex_unlock(&rbd_dev->watch_mutex);
4547         return ret;
4548 }
4549
4550 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
4551 {
4552         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4553
4554         cancel_work_sync(&rbd_dev->acquired_lock_work);
4555         cancel_work_sync(&rbd_dev->released_lock_work);
4556         cancel_delayed_work_sync(&rbd_dev->lock_dwork);
4557         cancel_work_sync(&rbd_dev->unlock_work);
4558 }
4559
4560 /*
4561  * header_rwsem must not be held to avoid a deadlock with
4562  * rbd_dev_refresh() when flushing notifies.
4563  */
4564 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
4565 {
4566         cancel_tasks_sync(rbd_dev);
4567
4568         mutex_lock(&rbd_dev->watch_mutex);
4569         if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
4570                 __rbd_unregister_watch(rbd_dev);
4571         rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4572         mutex_unlock(&rbd_dev->watch_mutex);
4573
4574         cancel_delayed_work_sync(&rbd_dev->watch_dwork);
4575         ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
4576 }
4577
4578 /*
4579  * lock_rwsem must be held for write
4580  */
4581 static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
4582 {
4583         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4584         char cookie[32];
4585         int ret;
4586
4587         if (!rbd_quiesce_lock(rbd_dev))
4588                 return;
4589
4590         format_lock_cookie(rbd_dev, cookie);
4591         ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid,
4592                                   &rbd_dev->header_oloc, RBD_LOCK_NAME,
4593                                   CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie,
4594                                   RBD_LOCK_TAG, cookie);
4595         if (ret) {
4596                 if (ret != -EOPNOTSUPP)
4597                         rbd_warn(rbd_dev, "failed to update lock cookie: %d",
4598                                  ret);
4599
4600                 if (rbd_dev->opts->exclusive)
4601                         rbd_warn(rbd_dev,
4602                              "temporarily releasing lock on exclusive mapping");
4603
4604                 /*
4605                  * Lock cookie cannot be updated on older OSDs, so do
4606                  * a manual release and queue an acquire.
4607                  */
4608                 __rbd_release_lock(rbd_dev);
4609                 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4610         } else {
4611                 __rbd_lock(rbd_dev, cookie);
4612                 wake_lock_waiters(rbd_dev, 0);
4613         }
4614 }
4615
4616 static void rbd_reregister_watch(struct work_struct *work)
4617 {
4618         struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4619                                             struct rbd_device, watch_dwork);
4620         int ret;
4621
4622         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4623
4624         mutex_lock(&rbd_dev->watch_mutex);
4625         if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
4626                 mutex_unlock(&rbd_dev->watch_mutex);
4627                 return;
4628         }
4629
4630         ret = __rbd_register_watch(rbd_dev);
4631         if (ret) {
4632                 rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
4633                 if (ret != -EBLOCKLISTED && ret != -ENOENT) {
4634                         queue_delayed_work(rbd_dev->task_wq,
4635                                            &rbd_dev->watch_dwork,
4636                                            RBD_RETRY_DELAY);
4637                         mutex_unlock(&rbd_dev->watch_mutex);
4638                         return;
4639                 }
4640
4641                 mutex_unlock(&rbd_dev->watch_mutex);
4642                 down_write(&rbd_dev->lock_rwsem);
4643                 wake_lock_waiters(rbd_dev, ret);
4644                 up_write(&rbd_dev->lock_rwsem);
4645                 return;
4646         }
4647
4648         rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4649         rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4650         mutex_unlock(&rbd_dev->watch_mutex);
4651
4652         down_write(&rbd_dev->lock_rwsem);
4653         if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
4654                 rbd_reacquire_lock(rbd_dev);
4655         up_write(&rbd_dev->lock_rwsem);
4656
4657         ret = rbd_dev_refresh(rbd_dev);
4658         if (ret)
4659                 rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret);
4660 }
4661
4662 /*
4663  * Synchronous osd object method call.  Returns the number of bytes
4664  * returned in the outbound buffer, or a negative error code.
4665  */
4666 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
4667                              struct ceph_object_id *oid,
4668                              struct ceph_object_locator *oloc,
4669                              const char *method_name,
4670                              const void *outbound,
4671                              size_t outbound_size,
4672                              void *inbound,
4673                              size_t inbound_size)
4674 {
4675         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4676         struct page *req_page = NULL;
4677         struct page *reply_page;
4678         int ret;
4679
4680         /*
4681          * Method calls are ultimately read operations.  The result
4682          * should placed into the inbound buffer provided.  They
4683          * also supply outbound data--parameters for the object
4684          * method.  Currently if this is present it will be a
4685          * snapshot id.
4686          */
4687         if (outbound) {
4688                 if (outbound_size > PAGE_SIZE)
4689                         return -E2BIG;
4690
4691                 req_page = alloc_page(GFP_KERNEL);
4692                 if (!req_page)
4693                         return -ENOMEM;
4694
4695                 memcpy(page_address(req_page), outbound, outbound_size);
4696         }
4697
4698         reply_page = alloc_page(GFP_KERNEL);
4699         if (!reply_page) {
4700                 if (req_page)
4701                         __free_page(req_page);
4702                 return -ENOMEM;
4703         }
4704
4705         ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
4706                              CEPH_OSD_FLAG_READ, req_page, outbound_size,
4707                              &reply_page, &inbound_size);
4708         if (!ret) {
4709                 memcpy(inbound, page_address(reply_page), inbound_size);
4710                 ret = inbound_size;
4711         }
4712
4713         if (req_page)
4714                 __free_page(req_page);
4715         __free_page(reply_page);
4716         return ret;
4717 }
4718
4719 static void rbd_queue_workfn(struct work_struct *work)
4720 {
4721         struct rbd_img_request *img_request =
4722             container_of(work, struct rbd_img_request, work);
4723         struct rbd_device *rbd_dev = img_request->rbd_dev;
4724         enum obj_operation_type op_type = img_request->op_type;
4725         struct request *rq = blk_mq_rq_from_pdu(img_request);
4726         u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
4727         u64 length = blk_rq_bytes(rq);
4728         u64 mapping_size;
4729         int result;
4730
4731         /* Ignore/skip any zero-length requests */
4732         if (!length) {
4733                 dout("%s: zero-length request\n", __func__);
4734                 result = 0;
4735                 goto err_img_request;
4736         }
4737
4738         blk_mq_start_request(rq);
4739
4740         down_read(&rbd_dev->header_rwsem);
4741         mapping_size = rbd_dev->mapping.size;
4742         rbd_img_capture_header(img_request);
4743         up_read(&rbd_dev->header_rwsem);
4744
4745         if (offset + length > mapping_size) {
4746                 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
4747                          length, mapping_size);
4748                 result = -EIO;
4749                 goto err_img_request;
4750         }
4751
4752         dout("%s rbd_dev %p img_req %p %s %llu~%llu\n", __func__, rbd_dev,
4753              img_request, obj_op_name(op_type), offset, length);
4754
4755         if (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_ZEROOUT)
4756                 result = rbd_img_fill_nodata(img_request, offset, length);
4757         else
4758                 result = rbd_img_fill_from_bio(img_request, offset, length,
4759                                                rq->bio);
4760         if (result)
4761                 goto err_img_request;
4762
4763         rbd_img_handle_request(img_request, 0);
4764         return;
4765
4766 err_img_request:
4767         rbd_img_request_destroy(img_request);
4768         if (result)
4769                 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
4770                          obj_op_name(op_type), length, offset, result);
4771         blk_mq_end_request(rq, errno_to_blk_status(result));
4772 }
4773
4774 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
4775                 const struct blk_mq_queue_data *bd)
4776 {
4777         struct rbd_device *rbd_dev = hctx->queue->queuedata;
4778         struct rbd_img_request *img_req = blk_mq_rq_to_pdu(bd->rq);
4779         enum obj_operation_type op_type;
4780
4781         switch (req_op(bd->rq)) {
4782         case REQ_OP_DISCARD:
4783                 op_type = OBJ_OP_DISCARD;
4784                 break;
4785         case REQ_OP_WRITE_ZEROES:
4786                 op_type = OBJ_OP_ZEROOUT;
4787                 break;
4788         case REQ_OP_WRITE:
4789                 op_type = OBJ_OP_WRITE;
4790                 break;
4791         case REQ_OP_READ:
4792                 op_type = OBJ_OP_READ;
4793                 break;
4794         default:
4795                 rbd_warn(rbd_dev, "unknown req_op %d", req_op(bd->rq));
4796                 return BLK_STS_IOERR;
4797         }
4798
4799         rbd_img_request_init(img_req, rbd_dev, op_type);
4800
4801         if (rbd_img_is_write(img_req)) {
4802                 if (rbd_is_ro(rbd_dev)) {
4803                         rbd_warn(rbd_dev, "%s on read-only mapping",
4804                                  obj_op_name(img_req->op_type));
4805                         return BLK_STS_IOERR;
4806                 }
4807                 rbd_assert(!rbd_is_snap(rbd_dev));
4808         }
4809
4810         INIT_WORK(&img_req->work, rbd_queue_workfn);
4811         queue_work(rbd_wq, &img_req->work);
4812         return BLK_STS_OK;
4813 }
4814
4815 static void rbd_free_disk(struct rbd_device *rbd_dev)
4816 {
4817         put_disk(rbd_dev->disk);
4818         blk_mq_free_tag_set(&rbd_dev->tag_set);
4819         rbd_dev->disk = NULL;
4820 }
4821
4822 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
4823                              struct ceph_object_id *oid,
4824                              struct ceph_object_locator *oloc,
4825                              void *buf, int buf_len)
4826
4827 {
4828         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4829         struct ceph_osd_request *req;
4830         struct page **pages;
4831         int num_pages = calc_pages_for(0, buf_len);
4832         int ret;
4833
4834         req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
4835         if (!req)
4836                 return -ENOMEM;
4837
4838         ceph_oid_copy(&req->r_base_oid, oid);
4839         ceph_oloc_copy(&req->r_base_oloc, oloc);
4840         req->r_flags = CEPH_OSD_FLAG_READ;
4841
4842         pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
4843         if (IS_ERR(pages)) {
4844                 ret = PTR_ERR(pages);
4845                 goto out_req;
4846         }
4847
4848         osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
4849         osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
4850                                          true);
4851
4852         ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
4853         if (ret)
4854                 goto out_req;
4855
4856         ceph_osdc_start_request(osdc, req);
4857         ret = ceph_osdc_wait_request(osdc, req);
4858         if (ret >= 0)
4859                 ceph_copy_from_page_vector(pages, buf, 0, ret);
4860
4861 out_req:
4862         ceph_osdc_put_request(req);
4863         return ret;
4864 }
4865
4866 /*
4867  * Read the complete header for the given rbd device.  On successful
4868  * return, the rbd_dev->header field will contain up-to-date
4869  * information about the image.
4870  */
4871 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev,
4872                                   struct rbd_image_header *header,
4873                                   bool first_time)
4874 {
4875         struct rbd_image_header_ondisk *ondisk = NULL;
4876         u32 snap_count = 0;
4877         u64 names_size = 0;
4878         u32 want_count;
4879         int ret;
4880
4881         /*
4882          * The complete header will include an array of its 64-bit
4883          * snapshot ids, followed by the names of those snapshots as
4884          * a contiguous block of NUL-terminated strings.  Note that
4885          * the number of snapshots could change by the time we read
4886          * it in, in which case we re-read it.
4887          */
4888         do {
4889                 size_t size;
4890
4891                 kfree(ondisk);
4892
4893                 size = sizeof (*ondisk);
4894                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4895                 size += names_size;
4896                 ondisk = kmalloc(size, GFP_KERNEL);
4897                 if (!ondisk)
4898                         return -ENOMEM;
4899
4900                 ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
4901                                         &rbd_dev->header_oloc, ondisk, size);
4902                 if (ret < 0)
4903                         goto out;
4904                 if ((size_t)ret < size) {
4905                         ret = -ENXIO;
4906                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
4907                                 size, ret);
4908                         goto out;
4909                 }
4910                 if (!rbd_dev_ondisk_valid(ondisk)) {
4911                         ret = -ENXIO;
4912                         rbd_warn(rbd_dev, "invalid header");
4913                         goto out;
4914                 }
4915
4916                 names_size = le64_to_cpu(ondisk->snap_names_len);
4917                 want_count = snap_count;
4918                 snap_count = le32_to_cpu(ondisk->snap_count);
4919         } while (snap_count != want_count);
4920
4921         ret = rbd_header_from_disk(header, ondisk, first_time);
4922 out:
4923         kfree(ondisk);
4924
4925         return ret;
4926 }
4927
4928 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
4929 {
4930         sector_t size;
4931
4932         /*
4933          * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
4934          * try to update its size.  If REMOVING is set, updating size
4935          * is just useless work since the device can't be opened.
4936          */
4937         if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
4938             !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
4939                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
4940                 dout("setting size to %llu sectors", (unsigned long long)size);
4941                 set_capacity_and_notify(rbd_dev->disk, size);
4942         }
4943 }
4944
4945 static const struct blk_mq_ops rbd_mq_ops = {
4946         .queue_rq       = rbd_queue_rq,
4947 };
4948
4949 static int rbd_init_disk(struct rbd_device *rbd_dev)
4950 {
4951         struct gendisk *disk;
4952         unsigned int objset_bytes =
4953             rbd_dev->layout.object_size * rbd_dev->layout.stripe_count;
4954         struct queue_limits lim = {
4955                 .max_hw_sectors         = objset_bytes >> SECTOR_SHIFT,
4956                 .io_opt                 = objset_bytes,
4957                 .io_min                 = rbd_dev->opts->alloc_size,
4958                 .max_segments           = USHRT_MAX,
4959                 .max_segment_size       = UINT_MAX,
4960         };
4961         int err;
4962
4963         memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
4964         rbd_dev->tag_set.ops = &rbd_mq_ops;
4965         rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
4966         rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
4967         rbd_dev->tag_set.nr_hw_queues = num_present_cpus();
4968         rbd_dev->tag_set.cmd_size = sizeof(struct rbd_img_request);
4969
4970         err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
4971         if (err)
4972                 return err;
4973
4974         if (rbd_dev->opts->trim) {
4975                 lim.discard_granularity = rbd_dev->opts->alloc_size;
4976                 lim.max_hw_discard_sectors = objset_bytes >> SECTOR_SHIFT;
4977                 lim.max_write_zeroes_sectors = objset_bytes >> SECTOR_SHIFT;
4978         }
4979
4980         if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
4981                 lim.features |= BLK_FEAT_STABLE_WRITES;
4982
4983         disk = blk_mq_alloc_disk(&rbd_dev->tag_set, &lim, rbd_dev);
4984         if (IS_ERR(disk)) {
4985                 err = PTR_ERR(disk);
4986                 goto out_tag_set;
4987         }
4988
4989         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
4990                  rbd_dev->dev_id);
4991         disk->major = rbd_dev->major;
4992         disk->first_minor = rbd_dev->minor;
4993         if (single_major)
4994                 disk->minors = (1 << RBD_SINGLE_MAJOR_PART_SHIFT);
4995         else
4996                 disk->minors = RBD_MINORS_PER_MAJOR;
4997         disk->fops = &rbd_bd_ops;
4998         disk->private_data = rbd_dev;
4999         rbd_dev->disk = disk;
5000
5001         return 0;
5002 out_tag_set:
5003         blk_mq_free_tag_set(&rbd_dev->tag_set);
5004         return err;
5005 }
5006
5007 /*
5008   sysfs
5009 */
5010
5011 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
5012 {
5013         return container_of(dev, struct rbd_device, dev);
5014 }
5015
5016 static ssize_t rbd_size_show(struct device *dev,
5017                              struct device_attribute *attr, char *buf)
5018 {
5019         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5020
5021         return sprintf(buf, "%llu\n",
5022                 (unsigned long long)rbd_dev->mapping.size);
5023 }
5024
5025 static ssize_t rbd_features_show(struct device *dev,
5026                              struct device_attribute *attr, char *buf)
5027 {
5028         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5029
5030         return sprintf(buf, "0x%016llx\n", rbd_dev->header.features);
5031 }
5032
5033 static ssize_t rbd_major_show(struct device *dev,
5034                               struct device_attribute *attr, char *buf)
5035 {
5036         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5037
5038         if (rbd_dev->major)
5039                 return sprintf(buf, "%d\n", rbd_dev->major);
5040
5041         return sprintf(buf, "(none)\n");
5042 }
5043
5044 static ssize_t rbd_minor_show(struct device *dev,
5045                               struct device_attribute *attr, char *buf)
5046 {
5047         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5048
5049         return sprintf(buf, "%d\n", rbd_dev->minor);
5050 }
5051
5052 static ssize_t rbd_client_addr_show(struct device *dev,
5053                                     struct device_attribute *attr, char *buf)
5054 {
5055         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5056         struct ceph_entity_addr *client_addr =
5057             ceph_client_addr(rbd_dev->rbd_client->client);
5058
5059         return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
5060                        le32_to_cpu(client_addr->nonce));
5061 }
5062
5063 static ssize_t rbd_client_id_show(struct device *dev,
5064                                   struct device_attribute *attr, char *buf)
5065 {
5066         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5067
5068         return sprintf(buf, "client%lld\n",
5069                        ceph_client_gid(rbd_dev->rbd_client->client));
5070 }
5071
5072 static ssize_t rbd_cluster_fsid_show(struct device *dev,
5073                                      struct device_attribute *attr, char *buf)
5074 {
5075         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5076
5077         return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
5078 }
5079
5080 static ssize_t rbd_config_info_show(struct device *dev,
5081                                     struct device_attribute *attr, char *buf)
5082 {
5083         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5084
5085         if (!capable(CAP_SYS_ADMIN))
5086                 return -EPERM;
5087
5088         return sprintf(buf, "%s\n", rbd_dev->config_info);
5089 }
5090
5091 static ssize_t rbd_pool_show(struct device *dev,
5092                              struct device_attribute *attr, char *buf)
5093 {
5094         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5095
5096         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
5097 }
5098
5099 static ssize_t rbd_pool_id_show(struct device *dev,
5100                              struct device_attribute *attr, char *buf)
5101 {
5102         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5103
5104         return sprintf(buf, "%llu\n",
5105                         (unsigned long long) rbd_dev->spec->pool_id);
5106 }
5107
5108 static ssize_t rbd_pool_ns_show(struct device *dev,
5109                                 struct device_attribute *attr, char *buf)
5110 {
5111         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5112
5113         return sprintf(buf, "%s\n", rbd_dev->spec->pool_ns ?: "");
5114 }
5115
5116 static ssize_t rbd_name_show(struct device *dev,
5117                              struct device_attribute *attr, char *buf)
5118 {
5119         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5120
5121         if (rbd_dev->spec->image_name)
5122                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
5123
5124         return sprintf(buf, "(unknown)\n");
5125 }
5126
5127 static ssize_t rbd_image_id_show(struct device *dev,
5128                              struct device_attribute *attr, char *buf)
5129 {
5130         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5131
5132         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
5133 }
5134
5135 /*
5136  * Shows the name of the currently-mapped snapshot (or
5137  * RBD_SNAP_HEAD_NAME for the base image).
5138  */
5139 static ssize_t rbd_snap_show(struct device *dev,
5140                              struct device_attribute *attr,
5141                              char *buf)
5142 {
5143         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5144
5145         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
5146 }
5147
5148 static ssize_t rbd_snap_id_show(struct device *dev,
5149                                 struct device_attribute *attr, char *buf)
5150 {
5151         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5152
5153         return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
5154 }
5155
5156 /*
5157  * For a v2 image, shows the chain of parent images, separated by empty
5158  * lines.  For v1 images or if there is no parent, shows "(no parent
5159  * image)".
5160  */
5161 static ssize_t rbd_parent_show(struct device *dev,
5162                                struct device_attribute *attr,
5163                                char *buf)
5164 {
5165         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5166         ssize_t count = 0;
5167
5168         if (!rbd_dev->parent)
5169                 return sprintf(buf, "(no parent image)\n");
5170
5171         for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
5172                 struct rbd_spec *spec = rbd_dev->parent_spec;
5173
5174                 count += sprintf(&buf[count], "%s"
5175                             "pool_id %llu\npool_name %s\n"
5176                             "pool_ns %s\n"
5177                             "image_id %s\nimage_name %s\n"
5178                             "snap_id %llu\nsnap_name %s\n"
5179                             "overlap %llu\n",
5180                             !count ? "" : "\n", /* first? */
5181                             spec->pool_id, spec->pool_name,
5182                             spec->pool_ns ?: "",
5183                             spec->image_id, spec->image_name ?: "(unknown)",
5184                             spec->snap_id, spec->snap_name,
5185                             rbd_dev->parent_overlap);
5186         }
5187
5188         return count;
5189 }
5190
5191 static ssize_t rbd_image_refresh(struct device *dev,
5192                                  struct device_attribute *attr,
5193                                  const char *buf,
5194                                  size_t size)
5195 {
5196         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5197         int ret;
5198
5199         if (!capable(CAP_SYS_ADMIN))
5200                 return -EPERM;
5201
5202         ret = rbd_dev_refresh(rbd_dev);
5203         if (ret)
5204                 return ret;
5205
5206         return size;
5207 }
5208
5209 static DEVICE_ATTR(size, 0444, rbd_size_show, NULL);
5210 static DEVICE_ATTR(features, 0444, rbd_features_show, NULL);
5211 static DEVICE_ATTR(major, 0444, rbd_major_show, NULL);
5212 static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL);
5213 static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL);
5214 static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL);
5215 static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL);
5216 static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL);
5217 static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL);
5218 static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL);
5219 static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL);
5220 static DEVICE_ATTR(name, 0444, rbd_name_show, NULL);
5221 static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL);
5222 static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh);
5223 static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL);
5224 static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL);
5225 static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL);
5226
5227 static struct attribute *rbd_attrs[] = {
5228         &dev_attr_size.attr,
5229         &dev_attr_features.attr,
5230         &dev_attr_major.attr,
5231         &dev_attr_minor.attr,
5232         &dev_attr_client_addr.attr,
5233         &dev_attr_client_id.attr,
5234         &dev_attr_cluster_fsid.attr,
5235         &dev_attr_config_info.attr,
5236         &dev_attr_pool.attr,
5237         &dev_attr_pool_id.attr,
5238         &dev_attr_pool_ns.attr,
5239         &dev_attr_name.attr,
5240         &dev_attr_image_id.attr,
5241         &dev_attr_current_snap.attr,
5242         &dev_attr_snap_id.attr,
5243         &dev_attr_parent.attr,
5244         &dev_attr_refresh.attr,
5245         NULL
5246 };
5247
5248 static struct attribute_group rbd_attr_group = {
5249         .attrs = rbd_attrs,
5250 };
5251
5252 static const struct attribute_group *rbd_attr_groups[] = {
5253         &rbd_attr_group,
5254         NULL
5255 };
5256
5257 static void rbd_dev_release(struct device *dev);
5258
5259 static const struct device_type rbd_device_type = {
5260         .name           = "rbd",
5261         .groups         = rbd_attr_groups,
5262         .release        = rbd_dev_release,
5263 };
5264
5265 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
5266 {
5267         kref_get(&spec->kref);
5268
5269         return spec;
5270 }
5271
5272 static void rbd_spec_free(struct kref *kref);
5273 static void rbd_spec_put(struct rbd_spec *spec)
5274 {
5275         if (spec)
5276                 kref_put(&spec->kref, rbd_spec_free);
5277 }
5278
5279 static struct rbd_spec *rbd_spec_alloc(void)
5280 {
5281         struct rbd_spec *spec;
5282
5283         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
5284         if (!spec)
5285                 return NULL;
5286
5287         spec->pool_id = CEPH_NOPOOL;
5288         spec->snap_id = CEPH_NOSNAP;
5289         kref_init(&spec->kref);
5290
5291         return spec;
5292 }
5293
5294 static void rbd_spec_free(struct kref *kref)
5295 {
5296         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
5297
5298         kfree(spec->pool_name);
5299         kfree(spec->pool_ns);
5300         kfree(spec->image_id);
5301         kfree(spec->image_name);
5302         kfree(spec->snap_name);
5303         kfree(spec);
5304 }
5305
5306 static void rbd_dev_free(struct rbd_device *rbd_dev)
5307 {
5308         WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
5309         WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
5310
5311         ceph_oid_destroy(&rbd_dev->header_oid);
5312         ceph_oloc_destroy(&rbd_dev->header_oloc);
5313         kfree(rbd_dev->config_info);
5314
5315         rbd_put_client(rbd_dev->rbd_client);
5316         rbd_spec_put(rbd_dev->spec);
5317         kfree(rbd_dev->opts);
5318         kfree(rbd_dev);
5319 }
5320
5321 static void rbd_dev_release(struct device *dev)
5322 {
5323         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5324         bool need_put = !!rbd_dev->opts;
5325
5326         if (need_put) {
5327                 destroy_workqueue(rbd_dev->task_wq);
5328                 ida_free(&rbd_dev_id_ida, rbd_dev->dev_id);
5329         }
5330
5331         rbd_dev_free(rbd_dev);
5332
5333         /*
5334          * This is racy, but way better than putting module outside of
5335          * the release callback.  The race window is pretty small, so
5336          * doing something similar to dm (dm-builtin.c) is overkill.
5337          */
5338         if (need_put)
5339                 module_put(THIS_MODULE);
5340 }
5341
5342 static struct rbd_device *__rbd_dev_create(struct rbd_spec *spec)
5343 {
5344         struct rbd_device *rbd_dev;
5345
5346         rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
5347         if (!rbd_dev)
5348                 return NULL;
5349
5350         spin_lock_init(&rbd_dev->lock);
5351         INIT_LIST_HEAD(&rbd_dev->node);
5352         init_rwsem(&rbd_dev->header_rwsem);
5353
5354         rbd_dev->header.data_pool_id = CEPH_NOPOOL;
5355         ceph_oid_init(&rbd_dev->header_oid);
5356         rbd_dev->header_oloc.pool = spec->pool_id;
5357         if (spec->pool_ns) {
5358                 WARN_ON(!*spec->pool_ns);
5359                 rbd_dev->header_oloc.pool_ns =
5360                     ceph_find_or_create_string(spec->pool_ns,
5361                                                strlen(spec->pool_ns));
5362         }
5363
5364         mutex_init(&rbd_dev->watch_mutex);
5365         rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
5366         INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
5367
5368         init_rwsem(&rbd_dev->lock_rwsem);
5369         rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
5370         INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
5371         INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
5372         INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
5373         INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
5374         spin_lock_init(&rbd_dev->lock_lists_lock);
5375         INIT_LIST_HEAD(&rbd_dev->acquiring_list);
5376         INIT_LIST_HEAD(&rbd_dev->running_list);
5377         init_completion(&rbd_dev->acquire_wait);
5378         init_completion(&rbd_dev->quiescing_wait);
5379
5380         spin_lock_init(&rbd_dev->object_map_lock);
5381
5382         rbd_dev->dev.bus = &rbd_bus_type;
5383         rbd_dev->dev.type = &rbd_device_type;
5384         rbd_dev->dev.parent = &rbd_root_dev;
5385         device_initialize(&rbd_dev->dev);
5386
5387         return rbd_dev;
5388 }
5389
5390 /*
5391  * Create a mapping rbd_dev.
5392  */
5393 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
5394                                          struct rbd_spec *spec,
5395                                          struct rbd_options *opts)
5396 {
5397         struct rbd_device *rbd_dev;
5398
5399         rbd_dev = __rbd_dev_create(spec);
5400         if (!rbd_dev)
5401                 return NULL;
5402
5403         /* get an id and fill in device name */
5404         rbd_dev->dev_id = ida_alloc_max(&rbd_dev_id_ida,
5405                                         minor_to_rbd_dev_id(1 << MINORBITS) - 1,
5406                                         GFP_KERNEL);
5407         if (rbd_dev->dev_id < 0)
5408                 goto fail_rbd_dev;
5409
5410         sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
5411         rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
5412                                                    rbd_dev->name);
5413         if (!rbd_dev->task_wq)
5414                 goto fail_dev_id;
5415
5416         /* we have a ref from do_rbd_add() */
5417         __module_get(THIS_MODULE);
5418
5419         rbd_dev->rbd_client = rbdc;
5420         rbd_dev->spec = spec;
5421         rbd_dev->opts = opts;
5422
5423         dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
5424         return rbd_dev;
5425
5426 fail_dev_id:
5427         ida_free(&rbd_dev_id_ida, rbd_dev->dev_id);
5428 fail_rbd_dev:
5429         rbd_dev_free(rbd_dev);
5430         return NULL;
5431 }
5432
5433 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
5434 {
5435         if (rbd_dev)
5436                 put_device(&rbd_dev->dev);
5437 }
5438
5439 /*
5440  * Get the size and object order for an image snapshot, or if
5441  * snap_id is CEPH_NOSNAP, gets this information for the base
5442  * image.
5443  */
5444 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
5445                                 u8 *order, u64 *snap_size)
5446 {
5447         __le64 snapid = cpu_to_le64(snap_id);
5448         int ret;
5449         struct {
5450                 u8 order;
5451                 __le64 size;
5452         } __attribute__ ((packed)) size_buf = { 0 };
5453
5454         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5455                                   &rbd_dev->header_oloc, "get_size",
5456                                   &snapid, sizeof(snapid),
5457                                   &size_buf, sizeof(size_buf));
5458         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5459         if (ret < 0)
5460                 return ret;
5461         if (ret < sizeof (size_buf))
5462                 return -ERANGE;
5463
5464         if (order) {
5465                 *order = size_buf.order;
5466                 dout("  order %u", (unsigned int)*order);
5467         }
5468         *snap_size = le64_to_cpu(size_buf.size);
5469
5470         dout("  snap_id 0x%016llx snap_size = %llu\n",
5471                 (unsigned long long)snap_id,
5472                 (unsigned long long)*snap_size);
5473
5474         return 0;
5475 }
5476
5477 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev,
5478                                     char **pobject_prefix)
5479 {
5480         size_t size;
5481         void *reply_buf;
5482         char *object_prefix;
5483         int ret;
5484         void *p;
5485
5486         /* Response will be an encoded string, which includes a length */
5487         size = sizeof(__le32) + RBD_OBJ_PREFIX_LEN_MAX;
5488         reply_buf = kzalloc(size, GFP_KERNEL);
5489         if (!reply_buf)
5490                 return -ENOMEM;
5491
5492         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5493                                   &rbd_dev->header_oloc, "get_object_prefix",
5494                                   NULL, 0, reply_buf, size);
5495         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5496         if (ret < 0)
5497                 goto out;
5498
5499         p = reply_buf;
5500         object_prefix = ceph_extract_encoded_string(&p, p + ret, NULL,
5501                                                     GFP_NOIO);
5502         if (IS_ERR(object_prefix)) {
5503                 ret = PTR_ERR(object_prefix);
5504                 goto out;
5505         }
5506         ret = 0;
5507
5508         *pobject_prefix = object_prefix;
5509         dout("  object_prefix = %s\n", object_prefix);
5510 out:
5511         kfree(reply_buf);
5512
5513         return ret;
5514 }
5515
5516 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
5517                                      bool read_only, u64 *snap_features)
5518 {
5519         struct {
5520                 __le64 snap_id;
5521                 u8 read_only;
5522         } features_in;
5523         struct {
5524                 __le64 features;
5525                 __le64 incompat;
5526         } __attribute__ ((packed)) features_buf = { 0 };
5527         u64 unsup;
5528         int ret;
5529
5530         features_in.snap_id = cpu_to_le64(snap_id);
5531         features_in.read_only = read_only;
5532
5533         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5534                                   &rbd_dev->header_oloc, "get_features",
5535                                   &features_in, sizeof(features_in),
5536                                   &features_buf, sizeof(features_buf));
5537         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5538         if (ret < 0)
5539                 return ret;
5540         if (ret < sizeof (features_buf))
5541                 return -ERANGE;
5542
5543         unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
5544         if (unsup) {
5545                 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
5546                          unsup);
5547                 return -ENXIO;
5548         }
5549
5550         *snap_features = le64_to_cpu(features_buf.features);
5551
5552         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
5553                 (unsigned long long)snap_id,
5554                 (unsigned long long)*snap_features,
5555                 (unsigned long long)le64_to_cpu(features_buf.incompat));
5556
5557         return 0;
5558 }
5559
5560 /*
5561  * These are generic image flags, but since they are used only for
5562  * object map, store them in rbd_dev->object_map_flags.
5563  *
5564  * For the same reason, this function is called only on object map
5565  * (re)load and not on header refresh.
5566  */
5567 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev)
5568 {
5569         __le64 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
5570         __le64 flags;
5571         int ret;
5572
5573         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5574                                   &rbd_dev->header_oloc, "get_flags",
5575                                   &snapid, sizeof(snapid),
5576                                   &flags, sizeof(flags));
5577         if (ret < 0)
5578                 return ret;
5579         if (ret < sizeof(flags))
5580                 return -EBADMSG;
5581
5582         rbd_dev->object_map_flags = le64_to_cpu(flags);
5583         return 0;
5584 }
5585
5586 struct parent_image_info {
5587         u64             pool_id;
5588         const char      *pool_ns;
5589         const char      *image_id;
5590         u64             snap_id;
5591
5592         bool            has_overlap;
5593         u64             overlap;
5594 };
5595
5596 static void rbd_parent_info_cleanup(struct parent_image_info *pii)
5597 {
5598         kfree(pii->pool_ns);
5599         kfree(pii->image_id);
5600
5601         memset(pii, 0, sizeof(*pii));
5602 }
5603
5604 /*
5605  * The caller is responsible for @pii.
5606  */
5607 static int decode_parent_image_spec(void **p, void *end,
5608                                     struct parent_image_info *pii)
5609 {
5610         u8 struct_v;
5611         u32 struct_len;
5612         int ret;
5613
5614         ret = ceph_start_decoding(p, end, 1, "ParentImageSpec",
5615                                   &struct_v, &struct_len);
5616         if (ret)
5617                 return ret;
5618
5619         ceph_decode_64_safe(p, end, pii->pool_id, e_inval);
5620         pii->pool_ns = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5621         if (IS_ERR(pii->pool_ns)) {
5622                 ret = PTR_ERR(pii->pool_ns);
5623                 pii->pool_ns = NULL;
5624                 return ret;
5625         }
5626         pii->image_id = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5627         if (IS_ERR(pii->image_id)) {
5628                 ret = PTR_ERR(pii->image_id);
5629                 pii->image_id = NULL;
5630                 return ret;
5631         }
5632         ceph_decode_64_safe(p, end, pii->snap_id, e_inval);
5633         return 0;
5634
5635 e_inval:
5636         return -EINVAL;
5637 }
5638
5639 static int __get_parent_info(struct rbd_device *rbd_dev,
5640                              struct page *req_page,
5641                              struct page *reply_page,
5642                              struct parent_image_info *pii)
5643 {
5644         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5645         size_t reply_len = PAGE_SIZE;
5646         void *p, *end;
5647         int ret;
5648
5649         ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5650                              "rbd", "parent_get", CEPH_OSD_FLAG_READ,
5651                              req_page, sizeof(u64), &reply_page, &reply_len);
5652         if (ret)
5653                 return ret == -EOPNOTSUPP ? 1 : ret;
5654
5655         p = page_address(reply_page);
5656         end = p + reply_len;
5657         ret = decode_parent_image_spec(&p, end, pii);
5658         if (ret)
5659                 return ret;
5660
5661         ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5662                              "rbd", "parent_overlap_get", CEPH_OSD_FLAG_READ,
5663                              req_page, sizeof(u64), &reply_page, &reply_len);
5664         if (ret)
5665                 return ret;
5666
5667         p = page_address(reply_page);
5668         end = p + reply_len;
5669         ceph_decode_8_safe(&p, end, pii->has_overlap, e_inval);
5670         if (pii->has_overlap)
5671                 ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5672
5673         dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5674              __func__, pii->pool_id, pii->pool_ns, pii->image_id, pii->snap_id,
5675              pii->has_overlap, pii->overlap);
5676         return 0;
5677
5678 e_inval:
5679         return -EINVAL;
5680 }
5681
5682 /*
5683  * The caller is responsible for @pii.
5684  */
5685 static int __get_parent_info_legacy(struct rbd_device *rbd_dev,
5686                                     struct page *req_page,
5687                                     struct page *reply_page,
5688                                     struct parent_image_info *pii)
5689 {
5690         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5691         size_t reply_len = PAGE_SIZE;
5692         void *p, *end;
5693         int ret;
5694
5695         ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5696                              "rbd", "get_parent", CEPH_OSD_FLAG_READ,
5697                              req_page, sizeof(u64), &reply_page, &reply_len);
5698         if (ret)
5699                 return ret;
5700
5701         p = page_address(reply_page);
5702         end = p + reply_len;
5703         ceph_decode_64_safe(&p, end, pii->pool_id, e_inval);
5704         pii->image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5705         if (IS_ERR(pii->image_id)) {
5706                 ret = PTR_ERR(pii->image_id);
5707                 pii->image_id = NULL;
5708                 return ret;
5709         }
5710         ceph_decode_64_safe(&p, end, pii->snap_id, e_inval);
5711         pii->has_overlap = true;
5712         ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5713
5714         dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5715              __func__, pii->pool_id, pii->pool_ns, pii->image_id, pii->snap_id,
5716              pii->has_overlap, pii->overlap);
5717         return 0;
5718
5719 e_inval:
5720         return -EINVAL;
5721 }
5722
5723 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev,
5724                                   struct parent_image_info *pii)
5725 {
5726         struct page *req_page, *reply_page;
5727         void *p;
5728         int ret;
5729
5730         req_page = alloc_page(GFP_KERNEL);
5731         if (!req_page)
5732                 return -ENOMEM;
5733
5734         reply_page = alloc_page(GFP_KERNEL);
5735         if (!reply_page) {
5736                 __free_page(req_page);
5737                 return -ENOMEM;
5738         }
5739
5740         p = page_address(req_page);
5741         ceph_encode_64(&p, rbd_dev->spec->snap_id);
5742         ret = __get_parent_info(rbd_dev, req_page, reply_page, pii);
5743         if (ret > 0)
5744                 ret = __get_parent_info_legacy(rbd_dev, req_page, reply_page,
5745                                                pii);
5746
5747         __free_page(req_page);
5748         __free_page(reply_page);
5749         return ret;
5750 }
5751
5752 static int rbd_dev_setup_parent(struct rbd_device *rbd_dev)
5753 {
5754         struct rbd_spec *parent_spec;
5755         struct parent_image_info pii = { 0 };
5756         int ret;
5757
5758         parent_spec = rbd_spec_alloc();
5759         if (!parent_spec)
5760                 return -ENOMEM;
5761
5762         ret = rbd_dev_v2_parent_info(rbd_dev, &pii);
5763         if (ret)
5764                 goto out_err;
5765
5766         if (pii.pool_id == CEPH_NOPOOL || !pii.has_overlap)
5767                 goto out;       /* No parent?  No problem. */
5768
5769         /* The ceph file layout needs to fit pool id in 32 bits */
5770
5771         ret = -EIO;
5772         if (pii.pool_id > (u64)U32_MAX) {
5773                 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
5774                         (unsigned long long)pii.pool_id, U32_MAX);
5775                 goto out_err;
5776         }
5777
5778         /*
5779          * The parent won't change except when the clone is flattened,
5780          * so we only need to record the parent image spec once.
5781          */
5782         parent_spec->pool_id = pii.pool_id;
5783         if (pii.pool_ns && *pii.pool_ns) {
5784                 parent_spec->pool_ns = pii.pool_ns;
5785                 pii.pool_ns = NULL;
5786         }
5787         parent_spec->image_id = pii.image_id;
5788         pii.image_id = NULL;
5789         parent_spec->snap_id = pii.snap_id;
5790
5791         rbd_assert(!rbd_dev->parent_spec);
5792         rbd_dev->parent_spec = parent_spec;
5793         parent_spec = NULL;     /* rbd_dev now owns this */
5794
5795         /*
5796          * Record the parent overlap.  If it's zero, issue a warning as
5797          * we will proceed as if there is no parent.
5798          */
5799         if (!pii.overlap)
5800                 rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
5801         rbd_dev->parent_overlap = pii.overlap;
5802
5803 out:
5804         ret = 0;
5805 out_err:
5806         rbd_parent_info_cleanup(&pii);
5807         rbd_spec_put(parent_spec);
5808         return ret;
5809 }
5810
5811 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev,
5812                                     u64 *stripe_unit, u64 *stripe_count)
5813 {
5814         struct {
5815                 __le64 stripe_unit;
5816                 __le64 stripe_count;
5817         } __attribute__ ((packed)) striping_info_buf = { 0 };
5818         size_t size = sizeof (striping_info_buf);
5819         int ret;
5820
5821         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5822                                 &rbd_dev->header_oloc, "get_stripe_unit_count",
5823                                 NULL, 0, &striping_info_buf, size);
5824         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5825         if (ret < 0)
5826                 return ret;
5827         if (ret < size)
5828                 return -ERANGE;
5829
5830         *stripe_unit = le64_to_cpu(striping_info_buf.stripe_unit);
5831         *stripe_count = le64_to_cpu(striping_info_buf.stripe_count);
5832         dout("  stripe_unit = %llu stripe_count = %llu\n", *stripe_unit,
5833              *stripe_count);
5834
5835         return 0;
5836 }
5837
5838 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev, s64 *data_pool_id)
5839 {
5840         __le64 data_pool_buf;
5841         int ret;
5842
5843         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5844                                   &rbd_dev->header_oloc, "get_data_pool",
5845                                   NULL, 0, &data_pool_buf,
5846                                   sizeof(data_pool_buf));
5847         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5848         if (ret < 0)
5849                 return ret;
5850         if (ret < sizeof(data_pool_buf))
5851                 return -EBADMSG;
5852
5853         *data_pool_id = le64_to_cpu(data_pool_buf);
5854         dout("  data_pool_id = %lld\n", *data_pool_id);
5855         WARN_ON(*data_pool_id == CEPH_NOPOOL);
5856
5857         return 0;
5858 }
5859
5860 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
5861 {
5862         CEPH_DEFINE_OID_ONSTACK(oid);
5863         size_t image_id_size;
5864         char *image_id;
5865         void *p;
5866         void *end;
5867         size_t size;
5868         void *reply_buf = NULL;
5869         size_t len = 0;
5870         char *image_name = NULL;
5871         int ret;
5872
5873         rbd_assert(!rbd_dev->spec->image_name);
5874
5875         len = strlen(rbd_dev->spec->image_id);
5876         image_id_size = sizeof (__le32) + len;
5877         image_id = kmalloc(image_id_size, GFP_KERNEL);
5878         if (!image_id)
5879                 return NULL;
5880
5881         p = image_id;
5882         end = image_id + image_id_size;
5883         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
5884
5885         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
5886         reply_buf = kmalloc(size, GFP_KERNEL);
5887         if (!reply_buf)
5888                 goto out;
5889
5890         ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
5891         ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5892                                   "dir_get_name", image_id, image_id_size,
5893                                   reply_buf, size);
5894         if (ret < 0)
5895                 goto out;
5896         p = reply_buf;
5897         end = reply_buf + ret;
5898
5899         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
5900         if (IS_ERR(image_name))
5901                 image_name = NULL;
5902         else
5903                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
5904 out:
5905         kfree(reply_buf);
5906         kfree(image_id);
5907
5908         return image_name;
5909 }
5910
5911 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5912 {
5913         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5914         const char *snap_name;
5915         u32 which = 0;
5916
5917         /* Skip over names until we find the one we are looking for */
5918
5919         snap_name = rbd_dev->header.snap_names;
5920         while (which < snapc->num_snaps) {
5921                 if (!strcmp(name, snap_name))
5922                         return snapc->snaps[which];
5923                 snap_name += strlen(snap_name) + 1;
5924                 which++;
5925         }
5926         return CEPH_NOSNAP;
5927 }
5928
5929 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5930 {
5931         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5932         u32 which;
5933         bool found = false;
5934         u64 snap_id;
5935
5936         for (which = 0; !found && which < snapc->num_snaps; which++) {
5937                 const char *snap_name;
5938
5939                 snap_id = snapc->snaps[which];
5940                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
5941                 if (IS_ERR(snap_name)) {
5942                         /* ignore no-longer existing snapshots */
5943                         if (PTR_ERR(snap_name) == -ENOENT)
5944                                 continue;
5945                         else
5946                                 break;
5947                 }
5948                 found = !strcmp(name, snap_name);
5949                 kfree(snap_name);
5950         }
5951         return found ? snap_id : CEPH_NOSNAP;
5952 }
5953
5954 /*
5955  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
5956  * no snapshot by that name is found, or if an error occurs.
5957  */
5958 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5959 {
5960         if (rbd_dev->image_format == 1)
5961                 return rbd_v1_snap_id_by_name(rbd_dev, name);
5962
5963         return rbd_v2_snap_id_by_name(rbd_dev, name);
5964 }
5965
5966 /*
5967  * An image being mapped will have everything but the snap id.
5968  */
5969 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
5970 {
5971         struct rbd_spec *spec = rbd_dev->spec;
5972
5973         rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
5974         rbd_assert(spec->image_id && spec->image_name);
5975         rbd_assert(spec->snap_name);
5976
5977         if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
5978                 u64 snap_id;
5979
5980                 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
5981                 if (snap_id == CEPH_NOSNAP)
5982                         return -ENOENT;
5983
5984                 spec->snap_id = snap_id;
5985         } else {
5986                 spec->snap_id = CEPH_NOSNAP;
5987         }
5988
5989         return 0;
5990 }
5991
5992 /*
5993  * A parent image will have all ids but none of the names.
5994  *
5995  * All names in an rbd spec are dynamically allocated.  It's OK if we
5996  * can't figure out the name for an image id.
5997  */
5998 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
5999 {
6000         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
6001         struct rbd_spec *spec = rbd_dev->spec;
6002         const char *pool_name;
6003         const char *image_name;
6004         const char *snap_name;
6005         int ret;
6006
6007         rbd_assert(spec->pool_id != CEPH_NOPOOL);
6008         rbd_assert(spec->image_id);
6009         rbd_assert(spec->snap_id != CEPH_NOSNAP);
6010
6011         /* Get the pool name; we have to make our own copy of this */
6012
6013         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
6014         if (!pool_name) {
6015                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
6016                 return -EIO;
6017         }
6018         pool_name = kstrdup(pool_name, GFP_KERNEL);
6019         if (!pool_name)
6020                 return -ENOMEM;
6021
6022         /* Fetch the image name; tolerate failure here */
6023
6024         image_name = rbd_dev_image_name(rbd_dev);
6025         if (!image_name)
6026                 rbd_warn(rbd_dev, "unable to get image name");
6027
6028         /* Fetch the snapshot name */
6029
6030         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
6031         if (IS_ERR(snap_name)) {
6032                 ret = PTR_ERR(snap_name);
6033                 goto out_err;
6034         }
6035
6036         spec->pool_name = pool_name;
6037         spec->image_name = image_name;
6038         spec->snap_name = snap_name;
6039
6040         return 0;
6041
6042 out_err:
6043         kfree(image_name);
6044         kfree(pool_name);
6045         return ret;
6046 }
6047
6048 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev,
6049                                    struct ceph_snap_context **psnapc)
6050 {
6051         size_t size;
6052         int ret;
6053         void *reply_buf;
6054         void *p;
6055         void *end;
6056         u64 seq;
6057         u32 snap_count;
6058         struct ceph_snap_context *snapc;
6059         u32 i;
6060
6061         /*
6062          * We'll need room for the seq value (maximum snapshot id),
6063          * snapshot count, and array of that many snapshot ids.
6064          * For now we have a fixed upper limit on the number we're
6065          * prepared to receive.
6066          */
6067         size = sizeof (__le64) + sizeof (__le32) +
6068                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
6069         reply_buf = kzalloc(size, GFP_KERNEL);
6070         if (!reply_buf)
6071                 return -ENOMEM;
6072
6073         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6074                                   &rbd_dev->header_oloc, "get_snapcontext",
6075                                   NULL, 0, reply_buf, size);
6076         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6077         if (ret < 0)
6078                 goto out;
6079
6080         p = reply_buf;
6081         end = reply_buf + ret;
6082         ret = -ERANGE;
6083         ceph_decode_64_safe(&p, end, seq, out);
6084         ceph_decode_32_safe(&p, end, snap_count, out);
6085
6086         /*
6087          * Make sure the reported number of snapshot ids wouldn't go
6088          * beyond the end of our buffer.  But before checking that,
6089          * make sure the computed size of the snapshot context we
6090          * allocate is representable in a size_t.
6091          */
6092         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
6093                                  / sizeof (u64)) {
6094                 ret = -EINVAL;
6095                 goto out;
6096         }
6097         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
6098                 goto out;
6099         ret = 0;
6100
6101         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
6102         if (!snapc) {
6103                 ret = -ENOMEM;
6104                 goto out;
6105         }
6106         snapc->seq = seq;
6107         for (i = 0; i < snap_count; i++)
6108                 snapc->snaps[i] = ceph_decode_64(&p);
6109
6110         *psnapc = snapc;
6111         dout("  snap context seq = %llu, snap_count = %u\n",
6112                 (unsigned long long)seq, (unsigned int)snap_count);
6113 out:
6114         kfree(reply_buf);
6115
6116         return ret;
6117 }
6118
6119 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
6120                                         u64 snap_id)
6121 {
6122         size_t size;
6123         void *reply_buf;
6124         __le64 snapid;
6125         int ret;
6126         void *p;
6127         void *end;
6128         char *snap_name;
6129
6130         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
6131         reply_buf = kmalloc(size, GFP_KERNEL);
6132         if (!reply_buf)
6133                 return ERR_PTR(-ENOMEM);
6134
6135         snapid = cpu_to_le64(snap_id);
6136         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6137                                   &rbd_dev->header_oloc, "get_snapshot_name",
6138                                   &snapid, sizeof(snapid), reply_buf, size);
6139         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6140         if (ret < 0) {
6141                 snap_name = ERR_PTR(ret);
6142                 goto out;
6143         }
6144
6145         p = reply_buf;
6146         end = reply_buf + ret;
6147         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
6148         if (IS_ERR(snap_name))
6149                 goto out;
6150
6151         dout("  snap_id 0x%016llx snap_name = %s\n",
6152                 (unsigned long long)snap_id, snap_name);
6153 out:
6154         kfree(reply_buf);
6155
6156         return snap_name;
6157 }
6158
6159 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev,
6160                                   struct rbd_image_header *header,
6161                                   bool first_time)
6162 {
6163         int ret;
6164
6165         ret = _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
6166                                     first_time ? &header->obj_order : NULL,
6167                                     &header->image_size);
6168         if (ret)
6169                 return ret;
6170
6171         if (first_time) {
6172                 ret = rbd_dev_v2_header_onetime(rbd_dev, header);
6173                 if (ret)
6174                         return ret;
6175         }
6176
6177         ret = rbd_dev_v2_snap_context(rbd_dev, &header->snapc);
6178         if (ret)
6179                 return ret;
6180
6181         return 0;
6182 }
6183
6184 static int rbd_dev_header_info(struct rbd_device *rbd_dev,
6185                                struct rbd_image_header *header,
6186                                bool first_time)
6187 {
6188         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6189         rbd_assert(!header->object_prefix && !header->snapc);
6190
6191         if (rbd_dev->image_format == 1)
6192                 return rbd_dev_v1_header_info(rbd_dev, header, first_time);
6193
6194         return rbd_dev_v2_header_info(rbd_dev, header, first_time);
6195 }
6196
6197 /*
6198  * Skips over white space at *buf, and updates *buf to point to the
6199  * first found non-space character (if any). Returns the length of
6200  * the token (string of non-white space characters) found.  Note
6201  * that *buf must be terminated with '\0'.
6202  */
6203 static inline size_t next_token(const char **buf)
6204 {
6205         /*
6206         * These are the characters that produce nonzero for
6207         * isspace() in the "C" and "POSIX" locales.
6208         */
6209         static const char spaces[] = " \f\n\r\t\v";
6210
6211         *buf += strspn(*buf, spaces);   /* Find start of token */
6212
6213         return strcspn(*buf, spaces);   /* Return token length */
6214 }
6215
6216 /*
6217  * Finds the next token in *buf, dynamically allocates a buffer big
6218  * enough to hold a copy of it, and copies the token into the new
6219  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
6220  * that a duplicate buffer is created even for a zero-length token.
6221  *
6222  * Returns a pointer to the newly-allocated duplicate, or a null
6223  * pointer if memory for the duplicate was not available.  If
6224  * the lenp argument is a non-null pointer, the length of the token
6225  * (not including the '\0') is returned in *lenp.
6226  *
6227  * If successful, the *buf pointer will be updated to point beyond
6228  * the end of the found token.
6229  *
6230  * Note: uses GFP_KERNEL for allocation.
6231  */
6232 static inline char *dup_token(const char **buf, size_t *lenp)
6233 {
6234         char *dup;
6235         size_t len;
6236
6237         len = next_token(buf);
6238         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
6239         if (!dup)
6240                 return NULL;
6241         *(dup + len) = '\0';
6242         *buf += len;
6243
6244         if (lenp)
6245                 *lenp = len;
6246
6247         return dup;
6248 }
6249
6250 static int rbd_parse_param(struct fs_parameter *param,
6251                             struct rbd_parse_opts_ctx *pctx)
6252 {
6253         struct rbd_options *opt = pctx->opts;
6254         struct fs_parse_result result;
6255         struct p_log log = {.prefix = "rbd"};
6256         int token, ret;
6257
6258         ret = ceph_parse_param(param, pctx->copts, NULL);
6259         if (ret != -ENOPARAM)
6260                 return ret;
6261
6262         token = __fs_parse(&log, rbd_parameters, param, &result);
6263         dout("%s fs_parse '%s' token %d\n", __func__, param->key, token);
6264         if (token < 0) {
6265                 if (token == -ENOPARAM)
6266                         return inval_plog(&log, "Unknown parameter '%s'",
6267                                           param->key);
6268                 return token;
6269         }
6270
6271         switch (token) {
6272         case Opt_queue_depth:
6273                 if (result.uint_32 < 1)
6274                         goto out_of_range;
6275                 opt->queue_depth = result.uint_32;
6276                 break;
6277         case Opt_alloc_size:
6278                 if (result.uint_32 < SECTOR_SIZE)
6279                         goto out_of_range;
6280                 if (!is_power_of_2(result.uint_32))
6281                         return inval_plog(&log, "alloc_size must be a power of 2");
6282                 opt->alloc_size = result.uint_32;
6283                 break;
6284         case Opt_lock_timeout:
6285                 /* 0 is "wait forever" (i.e. infinite timeout) */
6286                 if (result.uint_32 > INT_MAX / 1000)
6287                         goto out_of_range;
6288                 opt->lock_timeout = msecs_to_jiffies(result.uint_32 * 1000);
6289                 break;
6290         case Opt_pool_ns:
6291                 kfree(pctx->spec->pool_ns);
6292                 pctx->spec->pool_ns = param->string;
6293                 param->string = NULL;
6294                 break;
6295         case Opt_compression_hint:
6296                 switch (result.uint_32) {
6297                 case Opt_compression_hint_none:
6298                         opt->alloc_hint_flags &=
6299                             ~(CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE |
6300                               CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE);
6301                         break;
6302                 case Opt_compression_hint_compressible:
6303                         opt->alloc_hint_flags |=
6304                             CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6305                         opt->alloc_hint_flags &=
6306                             ~CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6307                         break;
6308                 case Opt_compression_hint_incompressible:
6309                         opt->alloc_hint_flags |=
6310                             CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6311                         opt->alloc_hint_flags &=
6312                             ~CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6313                         break;
6314                 default:
6315                         BUG();
6316                 }
6317                 break;
6318         case Opt_read_only:
6319                 opt->read_only = true;
6320                 break;
6321         case Opt_read_write:
6322                 opt->read_only = false;
6323                 break;
6324         case Opt_lock_on_read:
6325                 opt->lock_on_read = true;
6326                 break;
6327         case Opt_exclusive:
6328                 opt->exclusive = true;
6329                 break;
6330         case Opt_notrim:
6331                 opt->trim = false;
6332                 break;
6333         default:
6334                 BUG();
6335         }
6336
6337         return 0;
6338
6339 out_of_range:
6340         return inval_plog(&log, "%s out of range", param->key);
6341 }
6342
6343 /*
6344  * This duplicates most of generic_parse_monolithic(), untying it from
6345  * fs_context and skipping standard superblock and security options.
6346  */
6347 static int rbd_parse_options(char *options, struct rbd_parse_opts_ctx *pctx)
6348 {
6349         char *key;
6350         int ret = 0;
6351
6352         dout("%s '%s'\n", __func__, options);
6353         while ((key = strsep(&options, ",")) != NULL) {
6354                 if (*key) {
6355                         struct fs_parameter param = {
6356                                 .key    = key,
6357                                 .type   = fs_value_is_flag,
6358                         };
6359                         char *value = strchr(key, '=');
6360                         size_t v_len = 0;
6361
6362                         if (value) {
6363                                 if (value == key)
6364                                         continue;
6365                                 *value++ = 0;
6366                                 v_len = strlen(value);
6367                                 param.string = kmemdup_nul(value, v_len,
6368                                                            GFP_KERNEL);
6369                                 if (!param.string)
6370                                         return -ENOMEM;
6371                                 param.type = fs_value_is_string;
6372                         }
6373                         param.size = v_len;
6374
6375                         ret = rbd_parse_param(&param, pctx);
6376                         kfree(param.string);
6377                         if (ret)
6378                                 break;
6379                 }
6380         }
6381
6382         return ret;
6383 }
6384
6385 /*
6386  * Parse the options provided for an "rbd add" (i.e., rbd image
6387  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
6388  * and the data written is passed here via a NUL-terminated buffer.
6389  * Returns 0 if successful or an error code otherwise.
6390  *
6391  * The information extracted from these options is recorded in
6392  * the other parameters which return dynamically-allocated
6393  * structures:
6394  *  ceph_opts
6395  *      The address of a pointer that will refer to a ceph options
6396  *      structure.  Caller must release the returned pointer using
6397  *      ceph_destroy_options() when it is no longer needed.
6398  *  rbd_opts
6399  *      Address of an rbd options pointer.  Fully initialized by
6400  *      this function; caller must release with kfree().
6401  *  spec
6402  *      Address of an rbd image specification pointer.  Fully
6403  *      initialized by this function based on parsed options.
6404  *      Caller must release with rbd_spec_put().
6405  *
6406  * The options passed take this form:
6407  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
6408  * where:
6409  *  <mon_addrs>
6410  *      A comma-separated list of one or more monitor addresses.
6411  *      A monitor address is an ip address, optionally followed
6412  *      by a port number (separated by a colon).
6413  *        I.e.:  ip1[:port1][,ip2[:port2]...]
6414  *  <options>
6415  *      A comma-separated list of ceph and/or rbd options.
6416  *  <pool_name>
6417  *      The name of the rados pool containing the rbd image.
6418  *  <image_name>
6419  *      The name of the image in that pool to map.
6420  *  <snap_id>
6421  *      An optional snapshot id.  If provided, the mapping will
6422  *      present data from the image at the time that snapshot was
6423  *      created.  The image head is used if no snapshot id is
6424  *      provided.  Snapshot mappings are always read-only.
6425  */
6426 static int rbd_add_parse_args(const char *buf,
6427                                 struct ceph_options **ceph_opts,
6428                                 struct rbd_options **opts,
6429                                 struct rbd_spec **rbd_spec)
6430 {
6431         size_t len;
6432         char *options;
6433         const char *mon_addrs;
6434         char *snap_name;
6435         size_t mon_addrs_size;
6436         struct rbd_parse_opts_ctx pctx = { 0 };
6437         int ret;
6438
6439         /* The first four tokens are required */
6440
6441         len = next_token(&buf);
6442         if (!len) {
6443                 rbd_warn(NULL, "no monitor address(es) provided");
6444                 return -EINVAL;
6445         }
6446         mon_addrs = buf;
6447         mon_addrs_size = len;
6448         buf += len;
6449
6450         ret = -EINVAL;
6451         options = dup_token(&buf, NULL);
6452         if (!options)
6453                 return -ENOMEM;
6454         if (!*options) {
6455                 rbd_warn(NULL, "no options provided");
6456                 goto out_err;
6457         }
6458
6459         pctx.spec = rbd_spec_alloc();
6460         if (!pctx.spec)
6461                 goto out_mem;
6462
6463         pctx.spec->pool_name = dup_token(&buf, NULL);
6464         if (!pctx.spec->pool_name)
6465                 goto out_mem;
6466         if (!*pctx.spec->pool_name) {
6467                 rbd_warn(NULL, "no pool name provided");
6468                 goto out_err;
6469         }
6470
6471         pctx.spec->image_name = dup_token(&buf, NULL);
6472         if (!pctx.spec->image_name)
6473                 goto out_mem;
6474         if (!*pctx.spec->image_name) {
6475                 rbd_warn(NULL, "no image name provided");
6476                 goto out_err;
6477         }
6478
6479         /*
6480          * Snapshot name is optional; default is to use "-"
6481          * (indicating the head/no snapshot).
6482          */
6483         len = next_token(&buf);
6484         if (!len) {
6485                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
6486                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
6487         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
6488                 ret = -ENAMETOOLONG;
6489                 goto out_err;
6490         }
6491         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
6492         if (!snap_name)
6493                 goto out_mem;
6494         *(snap_name + len) = '\0';
6495         pctx.spec->snap_name = snap_name;
6496
6497         pctx.copts = ceph_alloc_options();
6498         if (!pctx.copts)
6499                 goto out_mem;
6500
6501         /* Initialize all rbd options to the defaults */
6502
6503         pctx.opts = kzalloc(sizeof(*pctx.opts), GFP_KERNEL);
6504         if (!pctx.opts)
6505                 goto out_mem;
6506
6507         pctx.opts->read_only = RBD_READ_ONLY_DEFAULT;
6508         pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
6509         pctx.opts->alloc_size = RBD_ALLOC_SIZE_DEFAULT;
6510         pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT;
6511         pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
6512         pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
6513         pctx.opts->trim = RBD_TRIM_DEFAULT;
6514
6515         ret = ceph_parse_mon_ips(mon_addrs, mon_addrs_size, pctx.copts, NULL,
6516                                  ',');
6517         if (ret)
6518                 goto out_err;
6519
6520         ret = rbd_parse_options(options, &pctx);
6521         if (ret)
6522                 goto out_err;
6523
6524         *ceph_opts = pctx.copts;
6525         *opts = pctx.opts;
6526         *rbd_spec = pctx.spec;
6527         kfree(options);
6528         return 0;
6529
6530 out_mem:
6531         ret = -ENOMEM;
6532 out_err:
6533         kfree(pctx.opts);
6534         ceph_destroy_options(pctx.copts);
6535         rbd_spec_put(pctx.spec);
6536         kfree(options);
6537         return ret;
6538 }
6539
6540 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
6541 {
6542         down_write(&rbd_dev->lock_rwsem);
6543         if (__rbd_is_lock_owner(rbd_dev))
6544                 __rbd_release_lock(rbd_dev);
6545         up_write(&rbd_dev->lock_rwsem);
6546 }
6547
6548 /*
6549  * If the wait is interrupted, an error is returned even if the lock
6550  * was successfully acquired.  rbd_dev_image_unlock() will release it
6551  * if needed.
6552  */
6553 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
6554 {
6555         long ret;
6556
6557         if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
6558                 if (!rbd_dev->opts->exclusive && !rbd_dev->opts->lock_on_read)
6559                         return 0;
6560
6561                 rbd_warn(rbd_dev, "exclusive-lock feature is not enabled");
6562                 return -EINVAL;
6563         }
6564
6565         if (rbd_is_ro(rbd_dev))
6566                 return 0;
6567
6568         rbd_assert(!rbd_is_lock_owner(rbd_dev));
6569         queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
6570         ret = wait_for_completion_killable_timeout(&rbd_dev->acquire_wait,
6571                             ceph_timeout_jiffies(rbd_dev->opts->lock_timeout));
6572         if (ret > 0) {
6573                 ret = rbd_dev->acquire_err;
6574         } else {
6575                 cancel_delayed_work_sync(&rbd_dev->lock_dwork);
6576                 if (!ret)
6577                         ret = -ETIMEDOUT;
6578
6579                 rbd_warn(rbd_dev, "failed to acquire lock: %ld", ret);
6580         }
6581         if (ret)
6582                 return ret;
6583
6584         return 0;
6585 }
6586
6587 /*
6588  * An rbd format 2 image has a unique identifier, distinct from the
6589  * name given to it by the user.  Internally, that identifier is
6590  * what's used to specify the names of objects related to the image.
6591  *
6592  * A special "rbd id" object is used to map an rbd image name to its
6593  * id.  If that object doesn't exist, then there is no v2 rbd image
6594  * with the supplied name.
6595  *
6596  * This function will record the given rbd_dev's image_id field if
6597  * it can be determined, and in that case will return 0.  If any
6598  * errors occur a negative errno will be returned and the rbd_dev's
6599  * image_id field will be unchanged (and should be NULL).
6600  */
6601 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
6602 {
6603         int ret;
6604         size_t size;
6605         CEPH_DEFINE_OID_ONSTACK(oid);
6606         void *response;
6607         char *image_id;
6608
6609         /*
6610          * When probing a parent image, the image id is already
6611          * known (and the image name likely is not).  There's no
6612          * need to fetch the image id again in this case.  We
6613          * do still need to set the image format though.
6614          */
6615         if (rbd_dev->spec->image_id) {
6616                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
6617
6618                 return 0;
6619         }
6620
6621         /*
6622          * First, see if the format 2 image id file exists, and if
6623          * so, get the image's persistent id from it.
6624          */
6625         ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
6626                                rbd_dev->spec->image_name);
6627         if (ret)
6628                 return ret;
6629
6630         dout("rbd id object name is %s\n", oid.name);
6631
6632         /* Response will be an encoded string, which includes a length */
6633         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
6634         response = kzalloc(size, GFP_NOIO);
6635         if (!response) {
6636                 ret = -ENOMEM;
6637                 goto out;
6638         }
6639
6640         /* If it doesn't exist we'll assume it's a format 1 image */
6641
6642         ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
6643                                   "get_id", NULL, 0,
6644                                   response, size);
6645         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6646         if (ret == -ENOENT) {
6647                 image_id = kstrdup("", GFP_KERNEL);
6648                 ret = image_id ? 0 : -ENOMEM;
6649                 if (!ret)
6650                         rbd_dev->image_format = 1;
6651         } else if (ret >= 0) {
6652                 void *p = response;
6653
6654                 image_id = ceph_extract_encoded_string(&p, p + ret,
6655                                                 NULL, GFP_NOIO);
6656                 ret = PTR_ERR_OR_ZERO(image_id);
6657                 if (!ret)
6658                         rbd_dev->image_format = 2;
6659         }
6660
6661         if (!ret) {
6662                 rbd_dev->spec->image_id = image_id;
6663                 dout("image_id is %s\n", image_id);
6664         }
6665 out:
6666         kfree(response);
6667         ceph_oid_destroy(&oid);
6668         return ret;
6669 }
6670
6671 /*
6672  * Undo whatever state changes are made by v1 or v2 header info
6673  * call.
6674  */
6675 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
6676 {
6677         rbd_dev_parent_put(rbd_dev);
6678         rbd_object_map_free(rbd_dev);
6679         rbd_dev_mapping_clear(rbd_dev);
6680
6681         /* Free dynamic fields from the header, then zero it out */
6682
6683         rbd_image_header_cleanup(&rbd_dev->header);
6684 }
6685
6686 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev,
6687                                      struct rbd_image_header *header)
6688 {
6689         int ret;
6690
6691         ret = rbd_dev_v2_object_prefix(rbd_dev, &header->object_prefix);
6692         if (ret)
6693                 return ret;
6694
6695         /*
6696          * Get the and check features for the image.  Currently the
6697          * features are assumed to never change.
6698          */
6699         ret = _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
6700                                         rbd_is_ro(rbd_dev), &header->features);
6701         if (ret)
6702                 return ret;
6703
6704         /* If the image supports fancy striping, get its parameters */
6705
6706         if (header->features & RBD_FEATURE_STRIPINGV2) {
6707                 ret = rbd_dev_v2_striping_info(rbd_dev, &header->stripe_unit,
6708                                                &header->stripe_count);
6709                 if (ret)
6710                         return ret;
6711         }
6712
6713         if (header->features & RBD_FEATURE_DATA_POOL) {
6714                 ret = rbd_dev_v2_data_pool(rbd_dev, &header->data_pool_id);
6715                 if (ret)
6716                         return ret;
6717         }
6718
6719         return 0;
6720 }
6721
6722 /*
6723  * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
6724  * rbd_dev_image_probe() recursion depth, which means it's also the
6725  * length of the already discovered part of the parent chain.
6726  */
6727 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
6728 {
6729         struct rbd_device *parent = NULL;
6730         int ret;
6731
6732         if (!rbd_dev->parent_spec)
6733                 return 0;
6734
6735         if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
6736                 pr_info("parent chain is too long (%d)\n", depth);
6737                 ret = -EINVAL;
6738                 goto out_err;
6739         }
6740
6741         parent = __rbd_dev_create(rbd_dev->parent_spec);
6742         if (!parent) {
6743                 ret = -ENOMEM;
6744                 goto out_err;
6745         }
6746
6747         /*
6748          * Images related by parent/child relationships always share
6749          * rbd_client and spec/parent_spec, so bump their refcounts.
6750          */
6751         parent->rbd_client = __rbd_get_client(rbd_dev->rbd_client);
6752         parent->spec = rbd_spec_get(rbd_dev->parent_spec);
6753
6754         __set_bit(RBD_DEV_FLAG_READONLY, &parent->flags);
6755
6756         ret = rbd_dev_image_probe(parent, depth);
6757         if (ret < 0)
6758                 goto out_err;
6759
6760         rbd_dev->parent = parent;
6761         atomic_set(&rbd_dev->parent_ref, 1);
6762         return 0;
6763
6764 out_err:
6765         rbd_dev_unparent(rbd_dev);
6766         rbd_dev_destroy(parent);
6767         return ret;
6768 }
6769
6770 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
6771 {
6772         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6773         rbd_free_disk(rbd_dev);
6774         if (!single_major)
6775                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
6776 }
6777
6778 /*
6779  * rbd_dev->header_rwsem must be locked for write and will be unlocked
6780  * upon return.
6781  */
6782 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
6783 {
6784         int ret;
6785
6786         /* Record our major and minor device numbers. */
6787
6788         if (!single_major) {
6789                 ret = register_blkdev(0, rbd_dev->name);
6790                 if (ret < 0)
6791                         goto err_out_unlock;
6792
6793                 rbd_dev->major = ret;
6794                 rbd_dev->minor = 0;
6795         } else {
6796                 rbd_dev->major = rbd_major;
6797                 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
6798         }
6799
6800         /* Set up the blkdev mapping. */
6801
6802         ret = rbd_init_disk(rbd_dev);
6803         if (ret)
6804                 goto err_out_blkdev;
6805
6806         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
6807         set_disk_ro(rbd_dev->disk, rbd_is_ro(rbd_dev));
6808
6809         ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
6810         if (ret)
6811                 goto err_out_disk;
6812
6813         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6814         up_write(&rbd_dev->header_rwsem);
6815         return 0;
6816
6817 err_out_disk:
6818         rbd_free_disk(rbd_dev);
6819 err_out_blkdev:
6820         if (!single_major)
6821                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
6822 err_out_unlock:
6823         up_write(&rbd_dev->header_rwsem);
6824         return ret;
6825 }
6826
6827 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
6828 {
6829         struct rbd_spec *spec = rbd_dev->spec;
6830         int ret;
6831
6832         /* Record the header object name for this rbd image. */
6833
6834         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6835         if (rbd_dev->image_format == 1)
6836                 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6837                                        spec->image_name, RBD_SUFFIX);
6838         else
6839                 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6840                                        RBD_HEADER_PREFIX, spec->image_id);
6841
6842         return ret;
6843 }
6844
6845 static void rbd_print_dne(struct rbd_device *rbd_dev, bool is_snap)
6846 {
6847         if (!is_snap) {
6848                 pr_info("image %s/%s%s%s does not exist\n",
6849                         rbd_dev->spec->pool_name,
6850                         rbd_dev->spec->pool_ns ?: "",
6851                         rbd_dev->spec->pool_ns ? "/" : "",
6852                         rbd_dev->spec->image_name);
6853         } else {
6854                 pr_info("snap %s/%s%s%s@%s does not exist\n",
6855                         rbd_dev->spec->pool_name,
6856                         rbd_dev->spec->pool_ns ?: "",
6857                         rbd_dev->spec->pool_ns ? "/" : "",
6858                         rbd_dev->spec->image_name,
6859                         rbd_dev->spec->snap_name);
6860         }
6861 }
6862
6863 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
6864 {
6865         if (!rbd_is_ro(rbd_dev))
6866                 rbd_unregister_watch(rbd_dev);
6867
6868         rbd_dev_unprobe(rbd_dev);
6869         rbd_dev->image_format = 0;
6870         kfree(rbd_dev->spec->image_id);
6871         rbd_dev->spec->image_id = NULL;
6872 }
6873
6874 /*
6875  * Probe for the existence of the header object for the given rbd
6876  * device.  If this image is the one being mapped (i.e., not a
6877  * parent), initiate a watch on its header object before using that
6878  * object to get detailed information about the rbd image.
6879  *
6880  * On success, returns with header_rwsem held for write if called
6881  * with @depth == 0.
6882  */
6883 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
6884 {
6885         bool need_watch = !rbd_is_ro(rbd_dev);
6886         int ret;
6887
6888         /*
6889          * Get the id from the image id object.  Unless there's an
6890          * error, rbd_dev->spec->image_id will be filled in with
6891          * a dynamically-allocated string, and rbd_dev->image_format
6892          * will be set to either 1 or 2.
6893          */
6894         ret = rbd_dev_image_id(rbd_dev);
6895         if (ret)
6896                 return ret;
6897
6898         ret = rbd_dev_header_name(rbd_dev);
6899         if (ret)
6900                 goto err_out_format;
6901
6902         if (need_watch) {
6903                 ret = rbd_register_watch(rbd_dev);
6904                 if (ret) {
6905                         if (ret == -ENOENT)
6906                                 rbd_print_dne(rbd_dev, false);
6907                         goto err_out_format;
6908                 }
6909         }
6910
6911         if (!depth)
6912                 down_write(&rbd_dev->header_rwsem);
6913
6914         ret = rbd_dev_header_info(rbd_dev, &rbd_dev->header, true);
6915         if (ret) {
6916                 if (ret == -ENOENT && !need_watch)
6917                         rbd_print_dne(rbd_dev, false);
6918                 goto err_out_probe;
6919         }
6920
6921         rbd_init_layout(rbd_dev);
6922
6923         /*
6924          * If this image is the one being mapped, we have pool name and
6925          * id, image name and id, and snap name - need to fill snap id.
6926          * Otherwise this is a parent image, identified by pool, image
6927          * and snap ids - need to fill in names for those ids.
6928          */
6929         if (!depth)
6930                 ret = rbd_spec_fill_snap_id(rbd_dev);
6931         else
6932                 ret = rbd_spec_fill_names(rbd_dev);
6933         if (ret) {
6934                 if (ret == -ENOENT)
6935                         rbd_print_dne(rbd_dev, true);
6936                 goto err_out_probe;
6937         }
6938
6939         ret = rbd_dev_mapping_set(rbd_dev);
6940         if (ret)
6941                 goto err_out_probe;
6942
6943         if (rbd_is_snap(rbd_dev) &&
6944             (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) {
6945                 ret = rbd_object_map_load(rbd_dev);
6946                 if (ret)
6947                         goto err_out_probe;
6948         }
6949
6950         if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
6951                 ret = rbd_dev_setup_parent(rbd_dev);
6952                 if (ret)
6953                         goto err_out_probe;
6954         }
6955
6956         ret = rbd_dev_probe_parent(rbd_dev, depth);
6957         if (ret)
6958                 goto err_out_probe;
6959
6960         dout("discovered format %u image, header name is %s\n",
6961                 rbd_dev->image_format, rbd_dev->header_oid.name);
6962         return 0;
6963
6964 err_out_probe:
6965         if (!depth)
6966                 up_write(&rbd_dev->header_rwsem);
6967         if (need_watch)
6968                 rbd_unregister_watch(rbd_dev);
6969         rbd_dev_unprobe(rbd_dev);
6970 err_out_format:
6971         rbd_dev->image_format = 0;
6972         kfree(rbd_dev->spec->image_id);
6973         rbd_dev->spec->image_id = NULL;
6974         return ret;
6975 }
6976
6977 static void rbd_dev_update_header(struct rbd_device *rbd_dev,
6978                                   struct rbd_image_header *header)
6979 {
6980         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6981         rbd_assert(rbd_dev->header.object_prefix); /* !first_time */
6982
6983         if (rbd_dev->header.image_size != header->image_size) {
6984                 rbd_dev->header.image_size = header->image_size;
6985
6986                 if (!rbd_is_snap(rbd_dev)) {
6987                         rbd_dev->mapping.size = header->image_size;
6988                         rbd_dev_update_size(rbd_dev);
6989                 }
6990         }
6991
6992         ceph_put_snap_context(rbd_dev->header.snapc);
6993         rbd_dev->header.snapc = header->snapc;
6994         header->snapc = NULL;
6995
6996         if (rbd_dev->image_format == 1) {
6997                 kfree(rbd_dev->header.snap_names);
6998                 rbd_dev->header.snap_names = header->snap_names;
6999                 header->snap_names = NULL;
7000
7001                 kfree(rbd_dev->header.snap_sizes);
7002                 rbd_dev->header.snap_sizes = header->snap_sizes;
7003                 header->snap_sizes = NULL;
7004         }
7005 }
7006
7007 static void rbd_dev_update_parent(struct rbd_device *rbd_dev,
7008                                   struct parent_image_info *pii)
7009 {
7010         if (pii->pool_id == CEPH_NOPOOL || !pii->has_overlap) {
7011                 /*
7012                  * Either the parent never existed, or we have
7013                  * record of it but the image got flattened so it no
7014                  * longer has a parent.  When the parent of a
7015                  * layered image disappears we immediately set the
7016                  * overlap to 0.  The effect of this is that all new
7017                  * requests will be treated as if the image had no
7018                  * parent.
7019                  *
7020                  * If !pii.has_overlap, the parent image spec is not
7021                  * applicable.  It's there to avoid duplication in each
7022                  * snapshot record.
7023                  */
7024                 if (rbd_dev->parent_overlap) {
7025                         rbd_dev->parent_overlap = 0;
7026                         rbd_dev_parent_put(rbd_dev);
7027                         pr_info("%s: clone has been flattened\n",
7028                                 rbd_dev->disk->disk_name);
7029                 }
7030         } else {
7031                 rbd_assert(rbd_dev->parent_spec);
7032
7033                 /*
7034                  * Update the parent overlap.  If it became zero, issue
7035                  * a warning as we will proceed as if there is no parent.
7036                  */
7037                 if (!pii->overlap && rbd_dev->parent_overlap)
7038                         rbd_warn(rbd_dev,
7039                                  "clone has become standalone (overlap 0)");
7040                 rbd_dev->parent_overlap = pii->overlap;
7041         }
7042 }
7043
7044 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
7045 {
7046         struct rbd_image_header header = { 0 };
7047         struct parent_image_info pii = { 0 };
7048         int ret;
7049
7050         dout("%s rbd_dev %p\n", __func__, rbd_dev);
7051
7052         ret = rbd_dev_header_info(rbd_dev, &header, false);
7053         if (ret)
7054                 goto out;
7055
7056         /*
7057          * If there is a parent, see if it has disappeared due to the
7058          * mapped image getting flattened.
7059          */
7060         if (rbd_dev->parent) {
7061                 ret = rbd_dev_v2_parent_info(rbd_dev, &pii);
7062                 if (ret)
7063                         goto out;
7064         }
7065
7066         down_write(&rbd_dev->header_rwsem);
7067         rbd_dev_update_header(rbd_dev, &header);
7068         if (rbd_dev->parent)
7069                 rbd_dev_update_parent(rbd_dev, &pii);
7070         up_write(&rbd_dev->header_rwsem);
7071
7072 out:
7073         rbd_parent_info_cleanup(&pii);
7074         rbd_image_header_cleanup(&header);
7075         return ret;
7076 }
7077
7078 static ssize_t do_rbd_add(const char *buf, size_t count)
7079 {
7080         struct rbd_device *rbd_dev = NULL;
7081         struct ceph_options *ceph_opts = NULL;
7082         struct rbd_options *rbd_opts = NULL;
7083         struct rbd_spec *spec = NULL;
7084         struct rbd_client *rbdc;
7085         int rc;
7086
7087         if (!capable(CAP_SYS_ADMIN))
7088                 return -EPERM;
7089
7090         if (!try_module_get(THIS_MODULE))
7091                 return -ENODEV;
7092
7093         /* parse add command */
7094         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
7095         if (rc < 0)
7096                 goto out;
7097
7098         rbdc = rbd_get_client(ceph_opts);
7099         if (IS_ERR(rbdc)) {
7100                 rc = PTR_ERR(rbdc);
7101                 goto err_out_args;
7102         }
7103
7104         /* pick the pool */
7105         rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name);
7106         if (rc < 0) {
7107                 if (rc == -ENOENT)
7108                         pr_info("pool %s does not exist\n", spec->pool_name);
7109                 goto err_out_client;
7110         }
7111         spec->pool_id = (u64)rc;
7112
7113         rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
7114         if (!rbd_dev) {
7115                 rc = -ENOMEM;
7116                 goto err_out_client;
7117         }
7118         rbdc = NULL;            /* rbd_dev now owns this */
7119         spec = NULL;            /* rbd_dev now owns this */
7120         rbd_opts = NULL;        /* rbd_dev now owns this */
7121
7122         /* if we are mapping a snapshot it will be a read-only mapping */
7123         if (rbd_dev->opts->read_only ||
7124             strcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME))
7125                 __set_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
7126
7127         rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
7128         if (!rbd_dev->config_info) {
7129                 rc = -ENOMEM;
7130                 goto err_out_rbd_dev;
7131         }
7132
7133         rc = rbd_dev_image_probe(rbd_dev, 0);
7134         if (rc < 0)
7135                 goto err_out_rbd_dev;
7136
7137         if (rbd_dev->opts->alloc_size > rbd_dev->layout.object_size) {
7138                 rbd_warn(rbd_dev, "alloc_size adjusted to %u",
7139                          rbd_dev->layout.object_size);
7140                 rbd_dev->opts->alloc_size = rbd_dev->layout.object_size;
7141         }
7142
7143         rc = rbd_dev_device_setup(rbd_dev);
7144         if (rc)
7145                 goto err_out_image_probe;
7146
7147         rc = rbd_add_acquire_lock(rbd_dev);
7148         if (rc)
7149                 goto err_out_image_lock;
7150
7151         /* Everything's ready.  Announce the disk to the world. */
7152
7153         rc = device_add(&rbd_dev->dev);
7154         if (rc)
7155                 goto err_out_image_lock;
7156
7157         rc = device_add_disk(&rbd_dev->dev, rbd_dev->disk, NULL);
7158         if (rc)
7159                 goto err_out_cleanup_disk;
7160
7161         spin_lock(&rbd_dev_list_lock);
7162         list_add_tail(&rbd_dev->node, &rbd_dev_list);
7163         spin_unlock(&rbd_dev_list_lock);
7164
7165         pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
7166                 (unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
7167                 rbd_dev->header.features);
7168         rc = count;
7169 out:
7170         module_put(THIS_MODULE);
7171         return rc;
7172
7173 err_out_cleanup_disk:
7174         rbd_free_disk(rbd_dev);
7175 err_out_image_lock:
7176         rbd_dev_image_unlock(rbd_dev);
7177         rbd_dev_device_release(rbd_dev);
7178 err_out_image_probe:
7179         rbd_dev_image_release(rbd_dev);
7180 err_out_rbd_dev:
7181         rbd_dev_destroy(rbd_dev);
7182 err_out_client:
7183         rbd_put_client(rbdc);
7184 err_out_args:
7185         rbd_spec_put(spec);
7186         kfree(rbd_opts);
7187         goto out;
7188 }
7189
7190 static ssize_t add_store(const struct bus_type *bus, const char *buf, size_t count)
7191 {
7192         if (single_major)
7193                 return -EINVAL;
7194
7195         return do_rbd_add(buf, count);
7196 }
7197
7198 static ssize_t add_single_major_store(const struct bus_type *bus, const char *buf,
7199                                       size_t count)
7200 {
7201         return do_rbd_add(buf, count);
7202 }
7203
7204 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
7205 {
7206         while (rbd_dev->parent) {
7207                 struct rbd_device *first = rbd_dev;
7208                 struct rbd_device *second = first->parent;
7209                 struct rbd_device *third;
7210
7211                 /*
7212                  * Follow to the parent with no grandparent and
7213                  * remove it.
7214                  */
7215                 while (second && (third = second->parent)) {
7216                         first = second;
7217                         second = third;
7218                 }
7219                 rbd_assert(second);
7220                 rbd_dev_image_release(second);
7221                 rbd_dev_destroy(second);
7222                 first->parent = NULL;
7223                 first->parent_overlap = 0;
7224
7225                 rbd_assert(first->parent_spec);
7226                 rbd_spec_put(first->parent_spec);
7227                 first->parent_spec = NULL;
7228         }
7229 }
7230
7231 static ssize_t do_rbd_remove(const char *buf, size_t count)
7232 {
7233         struct rbd_device *rbd_dev = NULL;
7234         int dev_id;
7235         char opt_buf[6];
7236         bool force = false;
7237         int ret;
7238
7239         if (!capable(CAP_SYS_ADMIN))
7240                 return -EPERM;
7241
7242         dev_id = -1;
7243         opt_buf[0] = '\0';
7244         sscanf(buf, "%d %5s", &dev_id, opt_buf);
7245         if (dev_id < 0) {
7246                 pr_err("dev_id out of range\n");
7247                 return -EINVAL;
7248         }
7249         if (opt_buf[0] != '\0') {
7250                 if (!strcmp(opt_buf, "force")) {
7251                         force = true;
7252                 } else {
7253                         pr_err("bad remove option at '%s'\n", opt_buf);
7254                         return -EINVAL;
7255                 }
7256         }
7257
7258         ret = -ENOENT;
7259         spin_lock(&rbd_dev_list_lock);
7260         list_for_each_entry(rbd_dev, &rbd_dev_list, node) {
7261                 if (rbd_dev->dev_id == dev_id) {
7262                         ret = 0;
7263                         break;
7264                 }
7265         }
7266         if (!ret) {
7267                 spin_lock_irq(&rbd_dev->lock);
7268                 if (rbd_dev->open_count && !force)
7269                         ret = -EBUSY;
7270                 else if (test_and_set_bit(RBD_DEV_FLAG_REMOVING,
7271                                           &rbd_dev->flags))
7272                         ret = -EINPROGRESS;
7273                 spin_unlock_irq(&rbd_dev->lock);
7274         }
7275         spin_unlock(&rbd_dev_list_lock);
7276         if (ret)
7277                 return ret;
7278
7279         if (force) {
7280                 /*
7281                  * Prevent new IO from being queued and wait for existing
7282                  * IO to complete/fail.
7283                  */
7284                 unsigned int memflags = blk_mq_freeze_queue(rbd_dev->disk->queue);
7285
7286                 blk_mark_disk_dead(rbd_dev->disk);
7287                 blk_mq_unfreeze_queue(rbd_dev->disk->queue, memflags);
7288         }
7289
7290         del_gendisk(rbd_dev->disk);
7291         spin_lock(&rbd_dev_list_lock);
7292         list_del_init(&rbd_dev->node);
7293         spin_unlock(&rbd_dev_list_lock);
7294         device_del(&rbd_dev->dev);
7295
7296         rbd_dev_image_unlock(rbd_dev);
7297         rbd_dev_device_release(rbd_dev);
7298         rbd_dev_image_release(rbd_dev);
7299         rbd_dev_destroy(rbd_dev);
7300         return count;
7301 }
7302
7303 static ssize_t remove_store(const struct bus_type *bus, const char *buf, size_t count)
7304 {
7305         if (single_major)
7306                 return -EINVAL;
7307
7308         return do_rbd_remove(buf, count);
7309 }
7310
7311 static ssize_t remove_single_major_store(const struct bus_type *bus, const char *buf,
7312                                          size_t count)
7313 {
7314         return do_rbd_remove(buf, count);
7315 }
7316
7317 /*
7318  * create control files in sysfs
7319  * /sys/bus/rbd/...
7320  */
7321 static int __init rbd_sysfs_init(void)
7322 {
7323         int ret;
7324
7325         ret = device_register(&rbd_root_dev);
7326         if (ret < 0) {
7327                 put_device(&rbd_root_dev);
7328                 return ret;
7329         }
7330
7331         ret = bus_register(&rbd_bus_type);
7332         if (ret < 0)
7333                 device_unregister(&rbd_root_dev);
7334
7335         return ret;
7336 }
7337
7338 static void __exit rbd_sysfs_cleanup(void)
7339 {
7340         bus_unregister(&rbd_bus_type);
7341         device_unregister(&rbd_root_dev);
7342 }
7343
7344 static int __init rbd_slab_init(void)
7345 {
7346         rbd_assert(!rbd_img_request_cache);
7347         rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
7348         if (!rbd_img_request_cache)
7349                 return -ENOMEM;
7350
7351         rbd_assert(!rbd_obj_request_cache);
7352         rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
7353         if (!rbd_obj_request_cache)
7354                 goto out_err;
7355
7356         return 0;
7357
7358 out_err:
7359         kmem_cache_destroy(rbd_img_request_cache);
7360         rbd_img_request_cache = NULL;
7361         return -ENOMEM;
7362 }
7363
7364 static void rbd_slab_exit(void)
7365 {
7366         rbd_assert(rbd_obj_request_cache);
7367         kmem_cache_destroy(rbd_obj_request_cache);
7368         rbd_obj_request_cache = NULL;
7369
7370         rbd_assert(rbd_img_request_cache);
7371         kmem_cache_destroy(rbd_img_request_cache);
7372         rbd_img_request_cache = NULL;
7373 }
7374
7375 static int __init rbd_init(void)
7376 {
7377         int rc;
7378
7379         if (!libceph_compatible(NULL)) {
7380                 rbd_warn(NULL, "libceph incompatibility (quitting)");
7381                 return -EINVAL;
7382         }
7383
7384         rc = rbd_slab_init();
7385         if (rc)
7386                 return rc;
7387
7388         /*
7389          * The number of active work items is limited by the number of
7390          * rbd devices * queue depth, so leave @max_active at default.
7391          */
7392         rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
7393         if (!rbd_wq) {
7394                 rc = -ENOMEM;
7395                 goto err_out_slab;
7396         }
7397
7398         if (single_major) {
7399                 rbd_major = register_blkdev(0, RBD_DRV_NAME);
7400                 if (rbd_major < 0) {
7401                         rc = rbd_major;
7402                         goto err_out_wq;
7403                 }
7404         }
7405
7406         rc = rbd_sysfs_init();
7407         if (rc)
7408                 goto err_out_blkdev;
7409
7410         if (single_major)
7411                 pr_info("loaded (major %d)\n", rbd_major);
7412         else
7413                 pr_info("loaded\n");
7414
7415         return 0;
7416
7417 err_out_blkdev:
7418         if (single_major)
7419                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
7420 err_out_wq:
7421         destroy_workqueue(rbd_wq);
7422 err_out_slab:
7423         rbd_slab_exit();
7424         return rc;
7425 }
7426
7427 static void __exit rbd_exit(void)
7428 {
7429         ida_destroy(&rbd_dev_id_ida);
7430         rbd_sysfs_cleanup();
7431         if (single_major)
7432                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
7433         destroy_workqueue(rbd_wq);
7434         rbd_slab_exit();
7435 }
7436
7437 module_init(rbd_init);
7438 module_exit(rbd_exit);
7439
7440 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
7441 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
7442 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
7443 /* following authorship retained from original osdblk.c */
7444 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
7445
7446 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
7447 MODULE_LICENSE("GPL");