Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/livep...
[linux-2.6-block.git] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/striper.h>
36 #include <linux/ceph/decode.h>
37 #include <linux/parser.h>
38 #include <linux/bsearch.h>
39
40 #include <linux/kernel.h>
41 #include <linux/device.h>
42 #include <linux/module.h>
43 #include <linux/blk-mq.h>
44 #include <linux/fs.h>
45 #include <linux/blkdev.h>
46 #include <linux/slab.h>
47 #include <linux/idr.h>
48 #include <linux/workqueue.h>
49
50 #include "rbd_types.h"
51
52 #define RBD_DEBUG       /* Activate rbd_assert() calls */
53
54 /*
55  * Increment the given counter and return its updated value.
56  * If the counter is already 0 it will not be incremented.
57  * If the counter is already at its maximum value returns
58  * -EINVAL without updating it.
59  */
60 static int atomic_inc_return_safe(atomic_t *v)
61 {
62         unsigned int counter;
63
64         counter = (unsigned int)__atomic_add_unless(v, 1, 0);
65         if (counter <= (unsigned int)INT_MAX)
66                 return (int)counter;
67
68         atomic_dec(v);
69
70         return -EINVAL;
71 }
72
73 /* Decrement the counter.  Return the resulting value, or -EINVAL */
74 static int atomic_dec_return_safe(atomic_t *v)
75 {
76         int counter;
77
78         counter = atomic_dec_return(v);
79         if (counter >= 0)
80                 return counter;
81
82         atomic_inc(v);
83
84         return -EINVAL;
85 }
86
87 #define RBD_DRV_NAME "rbd"
88
89 #define RBD_MINORS_PER_MAJOR            256
90 #define RBD_SINGLE_MAJOR_PART_SHIFT     4
91
92 #define RBD_MAX_PARENT_CHAIN_LEN        16
93
94 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
95 #define RBD_MAX_SNAP_NAME_LEN   \
96                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
97
98 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
99
100 #define RBD_SNAP_HEAD_NAME      "-"
101
102 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
103
104 /* This allows a single page to hold an image name sent by OSD */
105 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
106 #define RBD_IMAGE_ID_LEN_MAX    64
107
108 #define RBD_OBJ_PREFIX_LEN_MAX  64
109
110 #define RBD_NOTIFY_TIMEOUT      5       /* seconds */
111 #define RBD_RETRY_DELAY         msecs_to_jiffies(1000)
112
113 /* Feature bits */
114
115 #define RBD_FEATURE_LAYERING            (1ULL<<0)
116 #define RBD_FEATURE_STRIPINGV2          (1ULL<<1)
117 #define RBD_FEATURE_EXCLUSIVE_LOCK      (1ULL<<2)
118 #define RBD_FEATURE_DATA_POOL           (1ULL<<7)
119 #define RBD_FEATURE_OPERATIONS          (1ULL<<8)
120
121 #define RBD_FEATURES_ALL        (RBD_FEATURE_LAYERING |         \
122                                  RBD_FEATURE_STRIPINGV2 |       \
123                                  RBD_FEATURE_EXCLUSIVE_LOCK |   \
124                                  RBD_FEATURE_DATA_POOL |        \
125                                  RBD_FEATURE_OPERATIONS)
126
127 /* Features supported by this (client software) implementation. */
128
129 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
130
131 /*
132  * An RBD device name will be "rbd#", where the "rbd" comes from
133  * RBD_DRV_NAME above, and # is a unique integer identifier.
134  */
135 #define DEV_NAME_LEN            32
136
137 /*
138  * block device image metadata (in-memory version)
139  */
140 struct rbd_image_header {
141         /* These six fields never change for a given rbd image */
142         char *object_prefix;
143         __u8 obj_order;
144         u64 stripe_unit;
145         u64 stripe_count;
146         s64 data_pool_id;
147         u64 features;           /* Might be changeable someday? */
148
149         /* The remaining fields need to be updated occasionally */
150         u64 image_size;
151         struct ceph_snap_context *snapc;
152         char *snap_names;       /* format 1 only */
153         u64 *snap_sizes;        /* format 1 only */
154 };
155
156 /*
157  * An rbd image specification.
158  *
159  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
160  * identify an image.  Each rbd_dev structure includes a pointer to
161  * an rbd_spec structure that encapsulates this identity.
162  *
163  * Each of the id's in an rbd_spec has an associated name.  For a
164  * user-mapped image, the names are supplied and the id's associated
165  * with them are looked up.  For a layered image, a parent image is
166  * defined by the tuple, and the names are looked up.
167  *
168  * An rbd_dev structure contains a parent_spec pointer which is
169  * non-null if the image it represents is a child in a layered
170  * image.  This pointer will refer to the rbd_spec structure used
171  * by the parent rbd_dev for its own identity (i.e., the structure
172  * is shared between the parent and child).
173  *
174  * Since these structures are populated once, during the discovery
175  * phase of image construction, they are effectively immutable so
176  * we make no effort to synchronize access to them.
177  *
178  * Note that code herein does not assume the image name is known (it
179  * could be a null pointer).
180  */
181 struct rbd_spec {
182         u64             pool_id;
183         const char      *pool_name;
184
185         const char      *image_id;
186         const char      *image_name;
187
188         u64             snap_id;
189         const char      *snap_name;
190
191         struct kref     kref;
192 };
193
194 /*
195  * an instance of the client.  multiple devices may share an rbd client.
196  */
197 struct rbd_client {
198         struct ceph_client      *client;
199         struct kref             kref;
200         struct list_head        node;
201 };
202
203 struct rbd_img_request;
204
205 enum obj_request_type {
206         OBJ_REQUEST_NODATA = 1,
207         OBJ_REQUEST_BIO,        /* pointer into provided bio (list) */
208         OBJ_REQUEST_BVECS,      /* pointer into provided bio_vec array */
209         OBJ_REQUEST_OWN_BVECS,  /* private bio_vec array, doesn't own pages */
210 };
211
212 enum obj_operation_type {
213         OBJ_OP_READ = 1,
214         OBJ_OP_WRITE,
215         OBJ_OP_DISCARD,
216 };
217
218 /*
219  * Writes go through the following state machine to deal with
220  * layering:
221  *
222  *                       need copyup
223  * RBD_OBJ_WRITE_GUARD ---------------> RBD_OBJ_WRITE_COPYUP
224  *        |     ^                              |
225  *        v     \------------------------------/
226  *      done
227  *        ^
228  *        |
229  * RBD_OBJ_WRITE_FLAT
230  *
231  * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether
232  * there is a parent or not.
233  */
234 enum rbd_obj_write_state {
235         RBD_OBJ_WRITE_FLAT = 1,
236         RBD_OBJ_WRITE_GUARD,
237         RBD_OBJ_WRITE_COPYUP,
238 };
239
240 struct rbd_obj_request {
241         struct ceph_object_extent ex;
242         union {
243                 bool                    tried_parent;   /* for reads */
244                 enum rbd_obj_write_state write_state;   /* for writes */
245         };
246
247         struct rbd_img_request  *img_request;
248         struct ceph_file_extent *img_extents;
249         u32                     num_img_extents;
250
251         union {
252                 struct ceph_bio_iter    bio_pos;
253                 struct {
254                         struct ceph_bvec_iter   bvec_pos;
255                         u32                     bvec_count;
256                         u32                     bvec_idx;
257                 };
258         };
259         struct bio_vec          *copyup_bvecs;
260         u32                     copyup_bvec_count;
261
262         struct ceph_osd_request *osd_req;
263
264         u64                     xferred;        /* bytes transferred */
265         int                     result;
266
267         struct kref             kref;
268 };
269
270 enum img_req_flags {
271         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
272         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
273 };
274
275 struct rbd_img_request {
276         struct rbd_device       *rbd_dev;
277         enum obj_operation_type op_type;
278         enum obj_request_type   data_type;
279         unsigned long           flags;
280         union {
281                 u64                     snap_id;        /* for reads */
282                 struct ceph_snap_context *snapc;        /* for writes */
283         };
284         union {
285                 struct request          *rq;            /* block request */
286                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
287         };
288         spinlock_t              completion_lock;
289         u64                     xferred;/* aggregate bytes transferred */
290         int                     result; /* first nonzero obj_request result */
291
292         struct list_head        object_extents; /* obj_req.ex structs */
293         u32                     obj_request_count;
294         u32                     pending_count;
295
296         struct kref             kref;
297 };
298
299 #define for_each_obj_request(ireq, oreq) \
300         list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item)
301 #define for_each_obj_request_safe(ireq, oreq, n) \
302         list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item)
303
304 enum rbd_watch_state {
305         RBD_WATCH_STATE_UNREGISTERED,
306         RBD_WATCH_STATE_REGISTERED,
307         RBD_WATCH_STATE_ERROR,
308 };
309
310 enum rbd_lock_state {
311         RBD_LOCK_STATE_UNLOCKED,
312         RBD_LOCK_STATE_LOCKED,
313         RBD_LOCK_STATE_RELEASING,
314 };
315
316 /* WatchNotify::ClientId */
317 struct rbd_client_id {
318         u64 gid;
319         u64 handle;
320 };
321
322 struct rbd_mapping {
323         u64                     size;
324         u64                     features;
325 };
326
327 /*
328  * a single device
329  */
330 struct rbd_device {
331         int                     dev_id;         /* blkdev unique id */
332
333         int                     major;          /* blkdev assigned major */
334         int                     minor;
335         struct gendisk          *disk;          /* blkdev's gendisk and rq */
336
337         u32                     image_format;   /* Either 1 or 2 */
338         struct rbd_client       *rbd_client;
339
340         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
341
342         spinlock_t              lock;           /* queue, flags, open_count */
343
344         struct rbd_image_header header;
345         unsigned long           flags;          /* possibly lock protected */
346         struct rbd_spec         *spec;
347         struct rbd_options      *opts;
348         char                    *config_info;   /* add{,_single_major} string */
349
350         struct ceph_object_id   header_oid;
351         struct ceph_object_locator header_oloc;
352
353         struct ceph_file_layout layout;         /* used for all rbd requests */
354
355         struct mutex            watch_mutex;
356         enum rbd_watch_state    watch_state;
357         struct ceph_osd_linger_request *watch_handle;
358         u64                     watch_cookie;
359         struct delayed_work     watch_dwork;
360
361         struct rw_semaphore     lock_rwsem;
362         enum rbd_lock_state     lock_state;
363         char                    lock_cookie[32];
364         struct rbd_client_id    owner_cid;
365         struct work_struct      acquired_lock_work;
366         struct work_struct      released_lock_work;
367         struct delayed_work     lock_dwork;
368         struct work_struct      unlock_work;
369         wait_queue_head_t       lock_waitq;
370
371         struct workqueue_struct *task_wq;
372
373         struct rbd_spec         *parent_spec;
374         u64                     parent_overlap;
375         atomic_t                parent_ref;
376         struct rbd_device       *parent;
377
378         /* Block layer tags. */
379         struct blk_mq_tag_set   tag_set;
380
381         /* protects updating the header */
382         struct rw_semaphore     header_rwsem;
383
384         struct rbd_mapping      mapping;
385
386         struct list_head        node;
387
388         /* sysfs related */
389         struct device           dev;
390         unsigned long           open_count;     /* protected by lock */
391 };
392
393 /*
394  * Flag bits for rbd_dev->flags:
395  * - REMOVING (which is coupled with rbd_dev->open_count) is protected
396  *   by rbd_dev->lock
397  * - BLACKLISTED is protected by rbd_dev->lock_rwsem
398  */
399 enum rbd_dev_flags {
400         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
401         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
402         RBD_DEV_FLAG_BLACKLISTED, /* our ceph_client is blacklisted */
403 };
404
405 static DEFINE_MUTEX(client_mutex);      /* Serialize client creation */
406
407 static LIST_HEAD(rbd_dev_list);    /* devices */
408 static DEFINE_SPINLOCK(rbd_dev_list_lock);
409
410 static LIST_HEAD(rbd_client_list);              /* clients */
411 static DEFINE_SPINLOCK(rbd_client_list_lock);
412
413 /* Slab caches for frequently-allocated structures */
414
415 static struct kmem_cache        *rbd_img_request_cache;
416 static struct kmem_cache        *rbd_obj_request_cache;
417
418 static int rbd_major;
419 static DEFINE_IDA(rbd_dev_id_ida);
420
421 static struct workqueue_struct *rbd_wq;
422
423 /*
424  * single-major requires >= 0.75 version of userspace rbd utility.
425  */
426 static bool single_major = true;
427 module_param(single_major, bool, 0444);
428 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)");
429
430 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
431                        size_t count);
432 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
433                           size_t count);
434 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
435                                     size_t count);
436 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
437                                        size_t count);
438 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
439
440 static int rbd_dev_id_to_minor(int dev_id)
441 {
442         return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
443 }
444
445 static int minor_to_rbd_dev_id(int minor)
446 {
447         return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
448 }
449
450 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
451 {
452         return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
453                rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
454 }
455
456 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
457 {
458         bool is_lock_owner;
459
460         down_read(&rbd_dev->lock_rwsem);
461         is_lock_owner = __rbd_is_lock_owner(rbd_dev);
462         up_read(&rbd_dev->lock_rwsem);
463         return is_lock_owner;
464 }
465
466 static ssize_t rbd_supported_features_show(struct bus_type *bus, char *buf)
467 {
468         return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
469 }
470
471 static BUS_ATTR(add, 0200, NULL, rbd_add);
472 static BUS_ATTR(remove, 0200, NULL, rbd_remove);
473 static BUS_ATTR(add_single_major, 0200, NULL, rbd_add_single_major);
474 static BUS_ATTR(remove_single_major, 0200, NULL, rbd_remove_single_major);
475 static BUS_ATTR(supported_features, 0444, rbd_supported_features_show, NULL);
476
477 static struct attribute *rbd_bus_attrs[] = {
478         &bus_attr_add.attr,
479         &bus_attr_remove.attr,
480         &bus_attr_add_single_major.attr,
481         &bus_attr_remove_single_major.attr,
482         &bus_attr_supported_features.attr,
483         NULL,
484 };
485
486 static umode_t rbd_bus_is_visible(struct kobject *kobj,
487                                   struct attribute *attr, int index)
488 {
489         if (!single_major &&
490             (attr == &bus_attr_add_single_major.attr ||
491              attr == &bus_attr_remove_single_major.attr))
492                 return 0;
493
494         return attr->mode;
495 }
496
497 static const struct attribute_group rbd_bus_group = {
498         .attrs = rbd_bus_attrs,
499         .is_visible = rbd_bus_is_visible,
500 };
501 __ATTRIBUTE_GROUPS(rbd_bus);
502
503 static struct bus_type rbd_bus_type = {
504         .name           = "rbd",
505         .bus_groups     = rbd_bus_groups,
506 };
507
508 static void rbd_root_dev_release(struct device *dev)
509 {
510 }
511
512 static struct device rbd_root_dev = {
513         .init_name =    "rbd",
514         .release =      rbd_root_dev_release,
515 };
516
517 static __printf(2, 3)
518 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
519 {
520         struct va_format vaf;
521         va_list args;
522
523         va_start(args, fmt);
524         vaf.fmt = fmt;
525         vaf.va = &args;
526
527         if (!rbd_dev)
528                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
529         else if (rbd_dev->disk)
530                 printk(KERN_WARNING "%s: %s: %pV\n",
531                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
532         else if (rbd_dev->spec && rbd_dev->spec->image_name)
533                 printk(KERN_WARNING "%s: image %s: %pV\n",
534                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
535         else if (rbd_dev->spec && rbd_dev->spec->image_id)
536                 printk(KERN_WARNING "%s: id %s: %pV\n",
537                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
538         else    /* punt */
539                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
540                         RBD_DRV_NAME, rbd_dev, &vaf);
541         va_end(args);
542 }
543
544 #ifdef RBD_DEBUG
545 #define rbd_assert(expr)                                                \
546                 if (unlikely(!(expr))) {                                \
547                         printk(KERN_ERR "\nAssertion failure in %s() "  \
548                                                 "at line %d:\n\n"       \
549                                         "\trbd_assert(%s);\n\n",        \
550                                         __func__, __LINE__, #expr);     \
551                         BUG();                                          \
552                 }
553 #else /* !RBD_DEBUG */
554 #  define rbd_assert(expr)      ((void) 0)
555 #endif /* !RBD_DEBUG */
556
557 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
558
559 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
560 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
561 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
562 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
563 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
564                                         u64 snap_id);
565 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
566                                 u8 *order, u64 *snap_size);
567 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
568                 u64 *snap_features);
569
570 static int rbd_open(struct block_device *bdev, fmode_t mode)
571 {
572         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
573         bool removing = false;
574
575         spin_lock_irq(&rbd_dev->lock);
576         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
577                 removing = true;
578         else
579                 rbd_dev->open_count++;
580         spin_unlock_irq(&rbd_dev->lock);
581         if (removing)
582                 return -ENOENT;
583
584         (void) get_device(&rbd_dev->dev);
585
586         return 0;
587 }
588
589 static void rbd_release(struct gendisk *disk, fmode_t mode)
590 {
591         struct rbd_device *rbd_dev = disk->private_data;
592         unsigned long open_count_before;
593
594         spin_lock_irq(&rbd_dev->lock);
595         open_count_before = rbd_dev->open_count--;
596         spin_unlock_irq(&rbd_dev->lock);
597         rbd_assert(open_count_before > 0);
598
599         put_device(&rbd_dev->dev);
600 }
601
602 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
603 {
604         int ro;
605
606         if (get_user(ro, (int __user *)arg))
607                 return -EFAULT;
608
609         /* Snapshots can't be marked read-write */
610         if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
611                 return -EROFS;
612
613         /* Let blkdev_roset() handle it */
614         return -ENOTTY;
615 }
616
617 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
618                         unsigned int cmd, unsigned long arg)
619 {
620         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
621         int ret;
622
623         switch (cmd) {
624         case BLKROSET:
625                 ret = rbd_ioctl_set_ro(rbd_dev, arg);
626                 break;
627         default:
628                 ret = -ENOTTY;
629         }
630
631         return ret;
632 }
633
634 #ifdef CONFIG_COMPAT
635 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
636                                 unsigned int cmd, unsigned long arg)
637 {
638         return rbd_ioctl(bdev, mode, cmd, arg);
639 }
640 #endif /* CONFIG_COMPAT */
641
642 static const struct block_device_operations rbd_bd_ops = {
643         .owner                  = THIS_MODULE,
644         .open                   = rbd_open,
645         .release                = rbd_release,
646         .ioctl                  = rbd_ioctl,
647 #ifdef CONFIG_COMPAT
648         .compat_ioctl           = rbd_compat_ioctl,
649 #endif
650 };
651
652 /*
653  * Initialize an rbd client instance.  Success or not, this function
654  * consumes ceph_opts.  Caller holds client_mutex.
655  */
656 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
657 {
658         struct rbd_client *rbdc;
659         int ret = -ENOMEM;
660
661         dout("%s:\n", __func__);
662         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
663         if (!rbdc)
664                 goto out_opt;
665
666         kref_init(&rbdc->kref);
667         INIT_LIST_HEAD(&rbdc->node);
668
669         rbdc->client = ceph_create_client(ceph_opts, rbdc);
670         if (IS_ERR(rbdc->client))
671                 goto out_rbdc;
672         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
673
674         ret = ceph_open_session(rbdc->client);
675         if (ret < 0)
676                 goto out_client;
677
678         spin_lock(&rbd_client_list_lock);
679         list_add_tail(&rbdc->node, &rbd_client_list);
680         spin_unlock(&rbd_client_list_lock);
681
682         dout("%s: rbdc %p\n", __func__, rbdc);
683
684         return rbdc;
685 out_client:
686         ceph_destroy_client(rbdc->client);
687 out_rbdc:
688         kfree(rbdc);
689 out_opt:
690         if (ceph_opts)
691                 ceph_destroy_options(ceph_opts);
692         dout("%s: error %d\n", __func__, ret);
693
694         return ERR_PTR(ret);
695 }
696
697 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
698 {
699         kref_get(&rbdc->kref);
700
701         return rbdc;
702 }
703
704 /*
705  * Find a ceph client with specific addr and configuration.  If
706  * found, bump its reference count.
707  */
708 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
709 {
710         struct rbd_client *client_node;
711         bool found = false;
712
713         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
714                 return NULL;
715
716         spin_lock(&rbd_client_list_lock);
717         list_for_each_entry(client_node, &rbd_client_list, node) {
718                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
719                         __rbd_get_client(client_node);
720
721                         found = true;
722                         break;
723                 }
724         }
725         spin_unlock(&rbd_client_list_lock);
726
727         return found ? client_node : NULL;
728 }
729
730 /*
731  * (Per device) rbd map options
732  */
733 enum {
734         Opt_queue_depth,
735         Opt_lock_timeout,
736         Opt_last_int,
737         /* int args above */
738         Opt_last_string,
739         /* string args above */
740         Opt_read_only,
741         Opt_read_write,
742         Opt_lock_on_read,
743         Opt_exclusive,
744         Opt_notrim,
745         Opt_err
746 };
747
748 static match_table_t rbd_opts_tokens = {
749         {Opt_queue_depth, "queue_depth=%d"},
750         {Opt_lock_timeout, "lock_timeout=%d"},
751         /* int args above */
752         /* string args above */
753         {Opt_read_only, "read_only"},
754         {Opt_read_only, "ro"},          /* Alternate spelling */
755         {Opt_read_write, "read_write"},
756         {Opt_read_write, "rw"},         /* Alternate spelling */
757         {Opt_lock_on_read, "lock_on_read"},
758         {Opt_exclusive, "exclusive"},
759         {Opt_notrim, "notrim"},
760         {Opt_err, NULL}
761 };
762
763 struct rbd_options {
764         int     queue_depth;
765         unsigned long   lock_timeout;
766         bool    read_only;
767         bool    lock_on_read;
768         bool    exclusive;
769         bool    trim;
770 };
771
772 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ
773 #define RBD_LOCK_TIMEOUT_DEFAULT 0  /* no timeout */
774 #define RBD_READ_ONLY_DEFAULT   false
775 #define RBD_LOCK_ON_READ_DEFAULT false
776 #define RBD_EXCLUSIVE_DEFAULT   false
777 #define RBD_TRIM_DEFAULT        true
778
779 static int parse_rbd_opts_token(char *c, void *private)
780 {
781         struct rbd_options *rbd_opts = private;
782         substring_t argstr[MAX_OPT_ARGS];
783         int token, intval, ret;
784
785         token = match_token(c, rbd_opts_tokens, argstr);
786         if (token < Opt_last_int) {
787                 ret = match_int(&argstr[0], &intval);
788                 if (ret < 0) {
789                         pr_err("bad mount option arg (not int) at '%s'\n", c);
790                         return ret;
791                 }
792                 dout("got int token %d val %d\n", token, intval);
793         } else if (token > Opt_last_int && token < Opt_last_string) {
794                 dout("got string token %d val %s\n", token, argstr[0].from);
795         } else {
796                 dout("got token %d\n", token);
797         }
798
799         switch (token) {
800         case Opt_queue_depth:
801                 if (intval < 1) {
802                         pr_err("queue_depth out of range\n");
803                         return -EINVAL;
804                 }
805                 rbd_opts->queue_depth = intval;
806                 break;
807         case Opt_lock_timeout:
808                 /* 0 is "wait forever" (i.e. infinite timeout) */
809                 if (intval < 0 || intval > INT_MAX / 1000) {
810                         pr_err("lock_timeout out of range\n");
811                         return -EINVAL;
812                 }
813                 rbd_opts->lock_timeout = msecs_to_jiffies(intval * 1000);
814                 break;
815         case Opt_read_only:
816                 rbd_opts->read_only = true;
817                 break;
818         case Opt_read_write:
819                 rbd_opts->read_only = false;
820                 break;
821         case Opt_lock_on_read:
822                 rbd_opts->lock_on_read = true;
823                 break;
824         case Opt_exclusive:
825                 rbd_opts->exclusive = true;
826                 break;
827         case Opt_notrim:
828                 rbd_opts->trim = false;
829                 break;
830         default:
831                 /* libceph prints "bad option" msg */
832                 return -EINVAL;
833         }
834
835         return 0;
836 }
837
838 static char* obj_op_name(enum obj_operation_type op_type)
839 {
840         switch (op_type) {
841         case OBJ_OP_READ:
842                 return "read";
843         case OBJ_OP_WRITE:
844                 return "write";
845         case OBJ_OP_DISCARD:
846                 return "discard";
847         default:
848                 return "???";
849         }
850 }
851
852 /*
853  * Destroy ceph client
854  *
855  * Caller must hold rbd_client_list_lock.
856  */
857 static void rbd_client_release(struct kref *kref)
858 {
859         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
860
861         dout("%s: rbdc %p\n", __func__, rbdc);
862         spin_lock(&rbd_client_list_lock);
863         list_del(&rbdc->node);
864         spin_unlock(&rbd_client_list_lock);
865
866         ceph_destroy_client(rbdc->client);
867         kfree(rbdc);
868 }
869
870 /*
871  * Drop reference to ceph client node. If it's not referenced anymore, release
872  * it.
873  */
874 static void rbd_put_client(struct rbd_client *rbdc)
875 {
876         if (rbdc)
877                 kref_put(&rbdc->kref, rbd_client_release);
878 }
879
880 static int wait_for_latest_osdmap(struct ceph_client *client)
881 {
882         u64 newest_epoch;
883         int ret;
884
885         ret = ceph_monc_get_version(&client->monc, "osdmap", &newest_epoch);
886         if (ret)
887                 return ret;
888
889         if (client->osdc.osdmap->epoch >= newest_epoch)
890                 return 0;
891
892         ceph_osdc_maybe_request_map(&client->osdc);
893         return ceph_monc_wait_osdmap(&client->monc, newest_epoch,
894                                      client->options->mount_timeout);
895 }
896
897 /*
898  * Get a ceph client with specific addr and configuration, if one does
899  * not exist create it.  Either way, ceph_opts is consumed by this
900  * function.
901  */
902 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
903 {
904         struct rbd_client *rbdc;
905         int ret;
906
907         mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
908         rbdc = rbd_client_find(ceph_opts);
909         if (rbdc) {
910                 ceph_destroy_options(ceph_opts);
911
912                 /*
913                  * Using an existing client.  Make sure ->pg_pools is up to
914                  * date before we look up the pool id in do_rbd_add().
915                  */
916                 ret = wait_for_latest_osdmap(rbdc->client);
917                 if (ret) {
918                         rbd_warn(NULL, "failed to get latest osdmap: %d", ret);
919                         rbd_put_client(rbdc);
920                         rbdc = ERR_PTR(ret);
921                 }
922         } else {
923                 rbdc = rbd_client_create(ceph_opts);
924         }
925         mutex_unlock(&client_mutex);
926
927         return rbdc;
928 }
929
930 static bool rbd_image_format_valid(u32 image_format)
931 {
932         return image_format == 1 || image_format == 2;
933 }
934
935 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
936 {
937         size_t size;
938         u32 snap_count;
939
940         /* The header has to start with the magic rbd header text */
941         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
942                 return false;
943
944         /* The bio layer requires at least sector-sized I/O */
945
946         if (ondisk->options.order < SECTOR_SHIFT)
947                 return false;
948
949         /* If we use u64 in a few spots we may be able to loosen this */
950
951         if (ondisk->options.order > 8 * sizeof (int) - 1)
952                 return false;
953
954         /*
955          * The size of a snapshot header has to fit in a size_t, and
956          * that limits the number of snapshots.
957          */
958         snap_count = le32_to_cpu(ondisk->snap_count);
959         size = SIZE_MAX - sizeof (struct ceph_snap_context);
960         if (snap_count > size / sizeof (__le64))
961                 return false;
962
963         /*
964          * Not only that, but the size of the entire the snapshot
965          * header must also be representable in a size_t.
966          */
967         size -= snap_count * sizeof (__le64);
968         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
969                 return false;
970
971         return true;
972 }
973
974 /*
975  * returns the size of an object in the image
976  */
977 static u32 rbd_obj_bytes(struct rbd_image_header *header)
978 {
979         return 1U << header->obj_order;
980 }
981
982 static void rbd_init_layout(struct rbd_device *rbd_dev)
983 {
984         if (rbd_dev->header.stripe_unit == 0 ||
985             rbd_dev->header.stripe_count == 0) {
986                 rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
987                 rbd_dev->header.stripe_count = 1;
988         }
989
990         rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
991         rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
992         rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
993         rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
994                           rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
995         RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
996 }
997
998 /*
999  * Fill an rbd image header with information from the given format 1
1000  * on-disk header.
1001  */
1002 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
1003                                  struct rbd_image_header_ondisk *ondisk)
1004 {
1005         struct rbd_image_header *header = &rbd_dev->header;
1006         bool first_time = header->object_prefix == NULL;
1007         struct ceph_snap_context *snapc;
1008         char *object_prefix = NULL;
1009         char *snap_names = NULL;
1010         u64 *snap_sizes = NULL;
1011         u32 snap_count;
1012         int ret = -ENOMEM;
1013         u32 i;
1014
1015         /* Allocate this now to avoid having to handle failure below */
1016
1017         if (first_time) {
1018                 object_prefix = kstrndup(ondisk->object_prefix,
1019                                          sizeof(ondisk->object_prefix),
1020                                          GFP_KERNEL);
1021                 if (!object_prefix)
1022                         return -ENOMEM;
1023         }
1024
1025         /* Allocate the snapshot context and fill it in */
1026
1027         snap_count = le32_to_cpu(ondisk->snap_count);
1028         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1029         if (!snapc)
1030                 goto out_err;
1031         snapc->seq = le64_to_cpu(ondisk->snap_seq);
1032         if (snap_count) {
1033                 struct rbd_image_snap_ondisk *snaps;
1034                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1035
1036                 /* We'll keep a copy of the snapshot names... */
1037
1038                 if (snap_names_len > (u64)SIZE_MAX)
1039                         goto out_2big;
1040                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1041                 if (!snap_names)
1042                         goto out_err;
1043
1044                 /* ...as well as the array of their sizes. */
1045                 snap_sizes = kmalloc_array(snap_count,
1046                                            sizeof(*header->snap_sizes),
1047                                            GFP_KERNEL);
1048                 if (!snap_sizes)
1049                         goto out_err;
1050
1051                 /*
1052                  * Copy the names, and fill in each snapshot's id
1053                  * and size.
1054                  *
1055                  * Note that rbd_dev_v1_header_info() guarantees the
1056                  * ondisk buffer we're working with has
1057                  * snap_names_len bytes beyond the end of the
1058                  * snapshot id array, this memcpy() is safe.
1059                  */
1060                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1061                 snaps = ondisk->snaps;
1062                 for (i = 0; i < snap_count; i++) {
1063                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1064                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1065                 }
1066         }
1067
1068         /* We won't fail any more, fill in the header */
1069
1070         if (first_time) {
1071                 header->object_prefix = object_prefix;
1072                 header->obj_order = ondisk->options.order;
1073                 rbd_init_layout(rbd_dev);
1074         } else {
1075                 ceph_put_snap_context(header->snapc);
1076                 kfree(header->snap_names);
1077                 kfree(header->snap_sizes);
1078         }
1079
1080         /* The remaining fields always get updated (when we refresh) */
1081
1082         header->image_size = le64_to_cpu(ondisk->image_size);
1083         header->snapc = snapc;
1084         header->snap_names = snap_names;
1085         header->snap_sizes = snap_sizes;
1086
1087         return 0;
1088 out_2big:
1089         ret = -EIO;
1090 out_err:
1091         kfree(snap_sizes);
1092         kfree(snap_names);
1093         ceph_put_snap_context(snapc);
1094         kfree(object_prefix);
1095
1096         return ret;
1097 }
1098
1099 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1100 {
1101         const char *snap_name;
1102
1103         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1104
1105         /* Skip over names until we find the one we are looking for */
1106
1107         snap_name = rbd_dev->header.snap_names;
1108         while (which--)
1109                 snap_name += strlen(snap_name) + 1;
1110
1111         return kstrdup(snap_name, GFP_KERNEL);
1112 }
1113
1114 /*
1115  * Snapshot id comparison function for use with qsort()/bsearch().
1116  * Note that result is for snapshots in *descending* order.
1117  */
1118 static int snapid_compare_reverse(const void *s1, const void *s2)
1119 {
1120         u64 snap_id1 = *(u64 *)s1;
1121         u64 snap_id2 = *(u64 *)s2;
1122
1123         if (snap_id1 < snap_id2)
1124                 return 1;
1125         return snap_id1 == snap_id2 ? 0 : -1;
1126 }
1127
1128 /*
1129  * Search a snapshot context to see if the given snapshot id is
1130  * present.
1131  *
1132  * Returns the position of the snapshot id in the array if it's found,
1133  * or BAD_SNAP_INDEX otherwise.
1134  *
1135  * Note: The snapshot array is in kept sorted (by the osd) in
1136  * reverse order, highest snapshot id first.
1137  */
1138 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1139 {
1140         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1141         u64 *found;
1142
1143         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1144                                 sizeof (snap_id), snapid_compare_reverse);
1145
1146         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1147 }
1148
1149 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1150                                         u64 snap_id)
1151 {
1152         u32 which;
1153         const char *snap_name;
1154
1155         which = rbd_dev_snap_index(rbd_dev, snap_id);
1156         if (which == BAD_SNAP_INDEX)
1157                 return ERR_PTR(-ENOENT);
1158
1159         snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1160         return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1161 }
1162
1163 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1164 {
1165         if (snap_id == CEPH_NOSNAP)
1166                 return RBD_SNAP_HEAD_NAME;
1167
1168         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1169         if (rbd_dev->image_format == 1)
1170                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1171
1172         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1173 }
1174
1175 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1176                                 u64 *snap_size)
1177 {
1178         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1179         if (snap_id == CEPH_NOSNAP) {
1180                 *snap_size = rbd_dev->header.image_size;
1181         } else if (rbd_dev->image_format == 1) {
1182                 u32 which;
1183
1184                 which = rbd_dev_snap_index(rbd_dev, snap_id);
1185                 if (which == BAD_SNAP_INDEX)
1186                         return -ENOENT;
1187
1188                 *snap_size = rbd_dev->header.snap_sizes[which];
1189         } else {
1190                 u64 size = 0;
1191                 int ret;
1192
1193                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1194                 if (ret)
1195                         return ret;
1196
1197                 *snap_size = size;
1198         }
1199         return 0;
1200 }
1201
1202 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1203                         u64 *snap_features)
1204 {
1205         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1206         if (snap_id == CEPH_NOSNAP) {
1207                 *snap_features = rbd_dev->header.features;
1208         } else if (rbd_dev->image_format == 1) {
1209                 *snap_features = 0;     /* No features for format 1 */
1210         } else {
1211                 u64 features = 0;
1212                 int ret;
1213
1214                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1215                 if (ret)
1216                         return ret;
1217
1218                 *snap_features = features;
1219         }
1220         return 0;
1221 }
1222
1223 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1224 {
1225         u64 snap_id = rbd_dev->spec->snap_id;
1226         u64 size = 0;
1227         u64 features = 0;
1228         int ret;
1229
1230         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1231         if (ret)
1232                 return ret;
1233         ret = rbd_snap_features(rbd_dev, snap_id, &features);
1234         if (ret)
1235                 return ret;
1236
1237         rbd_dev->mapping.size = size;
1238         rbd_dev->mapping.features = features;
1239
1240         return 0;
1241 }
1242
1243 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1244 {
1245         rbd_dev->mapping.size = 0;
1246         rbd_dev->mapping.features = 0;
1247 }
1248
1249 static void zero_bvec(struct bio_vec *bv)
1250 {
1251         void *buf;
1252         unsigned long flags;
1253
1254         buf = bvec_kmap_irq(bv, &flags);
1255         memset(buf, 0, bv->bv_len);
1256         flush_dcache_page(bv->bv_page);
1257         bvec_kunmap_irq(buf, &flags);
1258 }
1259
1260 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes)
1261 {
1262         struct ceph_bio_iter it = *bio_pos;
1263
1264         ceph_bio_iter_advance(&it, off);
1265         ceph_bio_iter_advance_step(&it, bytes, ({
1266                 zero_bvec(&bv);
1267         }));
1268 }
1269
1270 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes)
1271 {
1272         struct ceph_bvec_iter it = *bvec_pos;
1273
1274         ceph_bvec_iter_advance(&it, off);
1275         ceph_bvec_iter_advance_step(&it, bytes, ({
1276                 zero_bvec(&bv);
1277         }));
1278 }
1279
1280 /*
1281  * Zero a range in @obj_req data buffer defined by a bio (list) or
1282  * (private) bio_vec array.
1283  *
1284  * @off is relative to the start of the data buffer.
1285  */
1286 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off,
1287                                u32 bytes)
1288 {
1289         switch (obj_req->img_request->data_type) {
1290         case OBJ_REQUEST_BIO:
1291                 zero_bios(&obj_req->bio_pos, off, bytes);
1292                 break;
1293         case OBJ_REQUEST_BVECS:
1294         case OBJ_REQUEST_OWN_BVECS:
1295                 zero_bvecs(&obj_req->bvec_pos, off, bytes);
1296                 break;
1297         default:
1298                 rbd_assert(0);
1299         }
1300 }
1301
1302 static void rbd_obj_request_destroy(struct kref *kref);
1303 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1304 {
1305         rbd_assert(obj_request != NULL);
1306         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1307                 kref_read(&obj_request->kref));
1308         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1309 }
1310
1311 static void rbd_img_request_get(struct rbd_img_request *img_request)
1312 {
1313         dout("%s: img %p (was %d)\n", __func__, img_request,
1314              kref_read(&img_request->kref));
1315         kref_get(&img_request->kref);
1316 }
1317
1318 static void rbd_img_request_destroy(struct kref *kref);
1319 static void rbd_img_request_put(struct rbd_img_request *img_request)
1320 {
1321         rbd_assert(img_request != NULL);
1322         dout("%s: img %p (was %d)\n", __func__, img_request,
1323                 kref_read(&img_request->kref));
1324         kref_put(&img_request->kref, rbd_img_request_destroy);
1325 }
1326
1327 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1328                                         struct rbd_obj_request *obj_request)
1329 {
1330         rbd_assert(obj_request->img_request == NULL);
1331
1332         /* Image request now owns object's original reference */
1333         obj_request->img_request = img_request;
1334         img_request->obj_request_count++;
1335         img_request->pending_count++;
1336         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1337 }
1338
1339 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1340                                         struct rbd_obj_request *obj_request)
1341 {
1342         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1343         list_del(&obj_request->ex.oe_item);
1344         rbd_assert(img_request->obj_request_count > 0);
1345         img_request->obj_request_count--;
1346         rbd_assert(obj_request->img_request == img_request);
1347         rbd_obj_request_put(obj_request);
1348 }
1349
1350 static void rbd_obj_request_submit(struct rbd_obj_request *obj_request)
1351 {
1352         struct ceph_osd_request *osd_req = obj_request->osd_req;
1353
1354         dout("%s %p object_no %016llx %llu~%llu osd_req %p\n", __func__,
1355              obj_request, obj_request->ex.oe_objno, obj_request->ex.oe_off,
1356              obj_request->ex.oe_len, osd_req);
1357         ceph_osdc_start_request(osd_req->r_osdc, osd_req, false);
1358 }
1359
1360 /*
1361  * The default/initial value for all image request flags is 0.  Each
1362  * is conditionally set to 1 at image request initialization time
1363  * and currently never change thereafter.
1364  */
1365 static void img_request_layered_set(struct rbd_img_request *img_request)
1366 {
1367         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1368         smp_mb();
1369 }
1370
1371 static void img_request_layered_clear(struct rbd_img_request *img_request)
1372 {
1373         clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1374         smp_mb();
1375 }
1376
1377 static bool img_request_layered_test(struct rbd_img_request *img_request)
1378 {
1379         smp_mb();
1380         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1381 }
1382
1383 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req)
1384 {
1385         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1386
1387         return !obj_req->ex.oe_off &&
1388                obj_req->ex.oe_len == rbd_dev->layout.object_size;
1389 }
1390
1391 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req)
1392 {
1393         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1394
1395         return obj_req->ex.oe_off + obj_req->ex.oe_len ==
1396                                         rbd_dev->layout.object_size;
1397 }
1398
1399 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req)
1400 {
1401         return ceph_file_extents_bytes(obj_req->img_extents,
1402                                        obj_req->num_img_extents);
1403 }
1404
1405 static bool rbd_img_is_write(struct rbd_img_request *img_req)
1406 {
1407         switch (img_req->op_type) {
1408         case OBJ_OP_READ:
1409                 return false;
1410         case OBJ_OP_WRITE:
1411         case OBJ_OP_DISCARD:
1412                 return true;
1413         default:
1414                 BUG();
1415         }
1416 }
1417
1418 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req);
1419
1420 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1421 {
1422         struct rbd_obj_request *obj_req = osd_req->r_priv;
1423
1424         dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1425              osd_req->r_result, obj_req);
1426         rbd_assert(osd_req == obj_req->osd_req);
1427
1428         obj_req->result = osd_req->r_result < 0 ? osd_req->r_result : 0;
1429         if (!obj_req->result && !rbd_img_is_write(obj_req->img_request))
1430                 obj_req->xferred = osd_req->r_result;
1431         else
1432                 /*
1433                  * Writes aren't allowed to return a data payload.  In some
1434                  * guarded write cases (e.g. stat + zero on an empty object)
1435                  * a stat response makes it through, but we don't care.
1436                  */
1437                 obj_req->xferred = 0;
1438
1439         rbd_obj_handle_request(obj_req);
1440 }
1441
1442 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1443 {
1444         struct ceph_osd_request *osd_req = obj_request->osd_req;
1445
1446         osd_req->r_flags = CEPH_OSD_FLAG_READ;
1447         osd_req->r_snapid = obj_request->img_request->snap_id;
1448 }
1449
1450 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1451 {
1452         struct ceph_osd_request *osd_req = obj_request->osd_req;
1453
1454         osd_req->r_flags = CEPH_OSD_FLAG_WRITE;
1455         ktime_get_real_ts(&osd_req->r_mtime);
1456         osd_req->r_data_offset = obj_request->ex.oe_off;
1457 }
1458
1459 static struct ceph_osd_request *
1460 rbd_osd_req_create(struct rbd_obj_request *obj_req, unsigned int num_ops)
1461 {
1462         struct rbd_img_request *img_req = obj_req->img_request;
1463         struct rbd_device *rbd_dev = img_req->rbd_dev;
1464         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1465         struct ceph_osd_request *req;
1466         const char *name_format = rbd_dev->image_format == 1 ?
1467                                       RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1468
1469         req = ceph_osdc_alloc_request(osdc,
1470                         (rbd_img_is_write(img_req) ? img_req->snapc : NULL),
1471                         num_ops, false, GFP_NOIO);
1472         if (!req)
1473                 return NULL;
1474
1475         req->r_callback = rbd_osd_req_callback;
1476         req->r_priv = obj_req;
1477
1478         req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1479         if (ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1480                         rbd_dev->header.object_prefix, obj_req->ex.oe_objno))
1481                 goto err_req;
1482
1483         if (ceph_osdc_alloc_messages(req, GFP_NOIO))
1484                 goto err_req;
1485
1486         return req;
1487
1488 err_req:
1489         ceph_osdc_put_request(req);
1490         return NULL;
1491 }
1492
1493 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1494 {
1495         ceph_osdc_put_request(osd_req);
1496 }
1497
1498 static struct rbd_obj_request *rbd_obj_request_create(void)
1499 {
1500         struct rbd_obj_request *obj_request;
1501
1502         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
1503         if (!obj_request)
1504                 return NULL;
1505
1506         ceph_object_extent_init(&obj_request->ex);
1507         kref_init(&obj_request->kref);
1508
1509         dout("%s %p\n", __func__, obj_request);
1510         return obj_request;
1511 }
1512
1513 static void rbd_obj_request_destroy(struct kref *kref)
1514 {
1515         struct rbd_obj_request *obj_request;
1516         u32 i;
1517
1518         obj_request = container_of(kref, struct rbd_obj_request, kref);
1519
1520         dout("%s: obj %p\n", __func__, obj_request);
1521
1522         if (obj_request->osd_req)
1523                 rbd_osd_req_destroy(obj_request->osd_req);
1524
1525         switch (obj_request->img_request->data_type) {
1526         case OBJ_REQUEST_NODATA:
1527         case OBJ_REQUEST_BIO:
1528         case OBJ_REQUEST_BVECS:
1529                 break;          /* Nothing to do */
1530         case OBJ_REQUEST_OWN_BVECS:
1531                 kfree(obj_request->bvec_pos.bvecs);
1532                 break;
1533         default:
1534                 rbd_assert(0);
1535         }
1536
1537         kfree(obj_request->img_extents);
1538         if (obj_request->copyup_bvecs) {
1539                 for (i = 0; i < obj_request->copyup_bvec_count; i++) {
1540                         if (obj_request->copyup_bvecs[i].bv_page)
1541                                 __free_page(obj_request->copyup_bvecs[i].bv_page);
1542                 }
1543                 kfree(obj_request->copyup_bvecs);
1544         }
1545
1546         kmem_cache_free(rbd_obj_request_cache, obj_request);
1547 }
1548
1549 /* It's OK to call this for a device with no parent */
1550
1551 static void rbd_spec_put(struct rbd_spec *spec);
1552 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1553 {
1554         rbd_dev_remove_parent(rbd_dev);
1555         rbd_spec_put(rbd_dev->parent_spec);
1556         rbd_dev->parent_spec = NULL;
1557         rbd_dev->parent_overlap = 0;
1558 }
1559
1560 /*
1561  * Parent image reference counting is used to determine when an
1562  * image's parent fields can be safely torn down--after there are no
1563  * more in-flight requests to the parent image.  When the last
1564  * reference is dropped, cleaning them up is safe.
1565  */
1566 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1567 {
1568         int counter;
1569
1570         if (!rbd_dev->parent_spec)
1571                 return;
1572
1573         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1574         if (counter > 0)
1575                 return;
1576
1577         /* Last reference; clean up parent data structures */
1578
1579         if (!counter)
1580                 rbd_dev_unparent(rbd_dev);
1581         else
1582                 rbd_warn(rbd_dev, "parent reference underflow");
1583 }
1584
1585 /*
1586  * If an image has a non-zero parent overlap, get a reference to its
1587  * parent.
1588  *
1589  * Returns true if the rbd device has a parent with a non-zero
1590  * overlap and a reference for it was successfully taken, or
1591  * false otherwise.
1592  */
1593 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1594 {
1595         int counter = 0;
1596
1597         if (!rbd_dev->parent_spec)
1598                 return false;
1599
1600         down_read(&rbd_dev->header_rwsem);
1601         if (rbd_dev->parent_overlap)
1602                 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1603         up_read(&rbd_dev->header_rwsem);
1604
1605         if (counter < 0)
1606                 rbd_warn(rbd_dev, "parent reference overflow");
1607
1608         return counter > 0;
1609 }
1610
1611 /*
1612  * Caller is responsible for filling in the list of object requests
1613  * that comprises the image request, and the Linux request pointer
1614  * (if there is one).
1615  */
1616 static struct rbd_img_request *rbd_img_request_create(
1617                                         struct rbd_device *rbd_dev,
1618                                         enum obj_operation_type op_type,
1619                                         struct ceph_snap_context *snapc)
1620 {
1621         struct rbd_img_request *img_request;
1622
1623         img_request = kmem_cache_zalloc(rbd_img_request_cache, GFP_NOIO);
1624         if (!img_request)
1625                 return NULL;
1626
1627         img_request->rbd_dev = rbd_dev;
1628         img_request->op_type = op_type;
1629         if (!rbd_img_is_write(img_request))
1630                 img_request->snap_id = rbd_dev->spec->snap_id;
1631         else
1632                 img_request->snapc = snapc;
1633
1634         if (rbd_dev_parent_get(rbd_dev))
1635                 img_request_layered_set(img_request);
1636
1637         spin_lock_init(&img_request->completion_lock);
1638         INIT_LIST_HEAD(&img_request->object_extents);
1639         kref_init(&img_request->kref);
1640
1641         dout("%s: rbd_dev %p %s -> img %p\n", __func__, rbd_dev,
1642              obj_op_name(op_type), img_request);
1643         return img_request;
1644 }
1645
1646 static void rbd_img_request_destroy(struct kref *kref)
1647 {
1648         struct rbd_img_request *img_request;
1649         struct rbd_obj_request *obj_request;
1650         struct rbd_obj_request *next_obj_request;
1651
1652         img_request = container_of(kref, struct rbd_img_request, kref);
1653
1654         dout("%s: img %p\n", __func__, img_request);
1655
1656         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1657                 rbd_img_obj_request_del(img_request, obj_request);
1658         rbd_assert(img_request->obj_request_count == 0);
1659
1660         if (img_request_layered_test(img_request)) {
1661                 img_request_layered_clear(img_request);
1662                 rbd_dev_parent_put(img_request->rbd_dev);
1663         }
1664
1665         if (rbd_img_is_write(img_request))
1666                 ceph_put_snap_context(img_request->snapc);
1667
1668         kmem_cache_free(rbd_img_request_cache, img_request);
1669 }
1670
1671 static void prune_extents(struct ceph_file_extent *img_extents,
1672                           u32 *num_img_extents, u64 overlap)
1673 {
1674         u32 cnt = *num_img_extents;
1675
1676         /* drop extents completely beyond the overlap */
1677         while (cnt && img_extents[cnt - 1].fe_off >= overlap)
1678                 cnt--;
1679
1680         if (cnt) {
1681                 struct ceph_file_extent *ex = &img_extents[cnt - 1];
1682
1683                 /* trim final overlapping extent */
1684                 if (ex->fe_off + ex->fe_len > overlap)
1685                         ex->fe_len = overlap - ex->fe_off;
1686         }
1687
1688         *num_img_extents = cnt;
1689 }
1690
1691 /*
1692  * Determine the byte range(s) covered by either just the object extent
1693  * or the entire object in the parent image.
1694  */
1695 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req,
1696                                     bool entire)
1697 {
1698         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1699         int ret;
1700
1701         if (!rbd_dev->parent_overlap)
1702                 return 0;
1703
1704         ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno,
1705                                   entire ? 0 : obj_req->ex.oe_off,
1706                                   entire ? rbd_dev->layout.object_size :
1707                                                         obj_req->ex.oe_len,
1708                                   &obj_req->img_extents,
1709                                   &obj_req->num_img_extents);
1710         if (ret)
1711                 return ret;
1712
1713         prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
1714                       rbd_dev->parent_overlap);
1715         return 0;
1716 }
1717
1718 static void rbd_osd_req_setup_data(struct rbd_obj_request *obj_req, u32 which)
1719 {
1720         switch (obj_req->img_request->data_type) {
1721         case OBJ_REQUEST_BIO:
1722                 osd_req_op_extent_osd_data_bio(obj_req->osd_req, which,
1723                                                &obj_req->bio_pos,
1724                                                obj_req->ex.oe_len);
1725                 break;
1726         case OBJ_REQUEST_BVECS:
1727         case OBJ_REQUEST_OWN_BVECS:
1728                 rbd_assert(obj_req->bvec_pos.iter.bi_size ==
1729                                                         obj_req->ex.oe_len);
1730                 rbd_assert(obj_req->bvec_idx == obj_req->bvec_count);
1731                 osd_req_op_extent_osd_data_bvec_pos(obj_req->osd_req, which,
1732                                                     &obj_req->bvec_pos);
1733                 break;
1734         default:
1735                 rbd_assert(0);
1736         }
1737 }
1738
1739 static int rbd_obj_setup_read(struct rbd_obj_request *obj_req)
1740 {
1741         obj_req->osd_req = rbd_osd_req_create(obj_req, 1);
1742         if (!obj_req->osd_req)
1743                 return -ENOMEM;
1744
1745         osd_req_op_extent_init(obj_req->osd_req, 0, CEPH_OSD_OP_READ,
1746                                obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
1747         rbd_osd_req_setup_data(obj_req, 0);
1748
1749         rbd_osd_req_format_read(obj_req);
1750         return 0;
1751 }
1752
1753 static int __rbd_obj_setup_stat(struct rbd_obj_request *obj_req,
1754                                 unsigned int which)
1755 {
1756         struct page **pages;
1757
1758         /*
1759          * The response data for a STAT call consists of:
1760          *     le64 length;
1761          *     struct {
1762          *         le32 tv_sec;
1763          *         le32 tv_nsec;
1764          *     } mtime;
1765          */
1766         pages = ceph_alloc_page_vector(1, GFP_NOIO);
1767         if (IS_ERR(pages))
1768                 return PTR_ERR(pages);
1769
1770         osd_req_op_init(obj_req->osd_req, which, CEPH_OSD_OP_STAT, 0);
1771         osd_req_op_raw_data_in_pages(obj_req->osd_req, which, pages,
1772                                      8 + sizeof(struct ceph_timespec),
1773                                      0, false, true);
1774         return 0;
1775 }
1776
1777 static void __rbd_obj_setup_write(struct rbd_obj_request *obj_req,
1778                                   unsigned int which)
1779 {
1780         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1781         u16 opcode;
1782
1783         osd_req_op_alloc_hint_init(obj_req->osd_req, which++,
1784                                    rbd_dev->layout.object_size,
1785                                    rbd_dev->layout.object_size);
1786
1787         if (rbd_obj_is_entire(obj_req))
1788                 opcode = CEPH_OSD_OP_WRITEFULL;
1789         else
1790                 opcode = CEPH_OSD_OP_WRITE;
1791
1792         osd_req_op_extent_init(obj_req->osd_req, which, opcode,
1793                                obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
1794         rbd_osd_req_setup_data(obj_req, which++);
1795
1796         rbd_assert(which == obj_req->osd_req->r_num_ops);
1797         rbd_osd_req_format_write(obj_req);
1798 }
1799
1800 static int rbd_obj_setup_write(struct rbd_obj_request *obj_req)
1801 {
1802         unsigned int num_osd_ops, which = 0;
1803         int ret;
1804
1805         /* reverse map the entire object onto the parent */
1806         ret = rbd_obj_calc_img_extents(obj_req, true);
1807         if (ret)
1808                 return ret;
1809
1810         if (obj_req->num_img_extents) {
1811                 obj_req->write_state = RBD_OBJ_WRITE_GUARD;
1812                 num_osd_ops = 3; /* stat + setallochint + write/writefull */
1813         } else {
1814                 obj_req->write_state = RBD_OBJ_WRITE_FLAT;
1815                 num_osd_ops = 2; /* setallochint + write/writefull */
1816         }
1817
1818         obj_req->osd_req = rbd_osd_req_create(obj_req, num_osd_ops);
1819         if (!obj_req->osd_req)
1820                 return -ENOMEM;
1821
1822         if (obj_req->num_img_extents) {
1823                 ret = __rbd_obj_setup_stat(obj_req, which++);
1824                 if (ret)
1825                         return ret;
1826         }
1827
1828         __rbd_obj_setup_write(obj_req, which);
1829         return 0;
1830 }
1831
1832 static void __rbd_obj_setup_discard(struct rbd_obj_request *obj_req,
1833                                     unsigned int which)
1834 {
1835         u16 opcode;
1836
1837         if (rbd_obj_is_entire(obj_req)) {
1838                 if (obj_req->num_img_extents) {
1839                         osd_req_op_init(obj_req->osd_req, which++,
1840                                         CEPH_OSD_OP_CREATE, 0);
1841                         opcode = CEPH_OSD_OP_TRUNCATE;
1842                 } else {
1843                         osd_req_op_init(obj_req->osd_req, which++,
1844                                         CEPH_OSD_OP_DELETE, 0);
1845                         opcode = 0;
1846                 }
1847         } else if (rbd_obj_is_tail(obj_req)) {
1848                 opcode = CEPH_OSD_OP_TRUNCATE;
1849         } else {
1850                 opcode = CEPH_OSD_OP_ZERO;
1851         }
1852
1853         if (opcode)
1854                 osd_req_op_extent_init(obj_req->osd_req, which++, opcode,
1855                                        obj_req->ex.oe_off, obj_req->ex.oe_len,
1856                                        0, 0);
1857
1858         rbd_assert(which == obj_req->osd_req->r_num_ops);
1859         rbd_osd_req_format_write(obj_req);
1860 }
1861
1862 static int rbd_obj_setup_discard(struct rbd_obj_request *obj_req)
1863 {
1864         unsigned int num_osd_ops, which = 0;
1865         int ret;
1866
1867         /* reverse map the entire object onto the parent */
1868         ret = rbd_obj_calc_img_extents(obj_req, true);
1869         if (ret)
1870                 return ret;
1871
1872         if (rbd_obj_is_entire(obj_req)) {
1873                 obj_req->write_state = RBD_OBJ_WRITE_FLAT;
1874                 if (obj_req->num_img_extents)
1875                         num_osd_ops = 2; /* create + truncate */
1876                 else
1877                         num_osd_ops = 1; /* delete */
1878         } else {
1879                 if (obj_req->num_img_extents) {
1880                         obj_req->write_state = RBD_OBJ_WRITE_GUARD;
1881                         num_osd_ops = 2; /* stat + truncate/zero */
1882                 } else {
1883                         obj_req->write_state = RBD_OBJ_WRITE_FLAT;
1884                         num_osd_ops = 1; /* truncate/zero */
1885                 }
1886         }
1887
1888         obj_req->osd_req = rbd_osd_req_create(obj_req, num_osd_ops);
1889         if (!obj_req->osd_req)
1890                 return -ENOMEM;
1891
1892         if (!rbd_obj_is_entire(obj_req) && obj_req->num_img_extents) {
1893                 ret = __rbd_obj_setup_stat(obj_req, which++);
1894                 if (ret)
1895                         return ret;
1896         }
1897
1898         __rbd_obj_setup_discard(obj_req, which);
1899         return 0;
1900 }
1901
1902 /*
1903  * For each object request in @img_req, allocate an OSD request, add
1904  * individual OSD ops and prepare them for submission.  The number of
1905  * OSD ops depends on op_type and the overlap point (if any).
1906  */
1907 static int __rbd_img_fill_request(struct rbd_img_request *img_req)
1908 {
1909         struct rbd_obj_request *obj_req;
1910         int ret;
1911
1912         for_each_obj_request(img_req, obj_req) {
1913                 switch (img_req->op_type) {
1914                 case OBJ_OP_READ:
1915                         ret = rbd_obj_setup_read(obj_req);
1916                         break;
1917                 case OBJ_OP_WRITE:
1918                         ret = rbd_obj_setup_write(obj_req);
1919                         break;
1920                 case OBJ_OP_DISCARD:
1921                         ret = rbd_obj_setup_discard(obj_req);
1922                         break;
1923                 default:
1924                         rbd_assert(0);
1925                 }
1926                 if (ret)
1927                         return ret;
1928         }
1929
1930         return 0;
1931 }
1932
1933 union rbd_img_fill_iter {
1934         struct ceph_bio_iter    bio_iter;
1935         struct ceph_bvec_iter   bvec_iter;
1936 };
1937
1938 struct rbd_img_fill_ctx {
1939         enum obj_request_type   pos_type;
1940         union rbd_img_fill_iter *pos;
1941         union rbd_img_fill_iter iter;
1942         ceph_object_extent_fn_t set_pos_fn;
1943         ceph_object_extent_fn_t count_fn;
1944         ceph_object_extent_fn_t copy_fn;
1945 };
1946
1947 static struct ceph_object_extent *alloc_object_extent(void *arg)
1948 {
1949         struct rbd_img_request *img_req = arg;
1950         struct rbd_obj_request *obj_req;
1951
1952         obj_req = rbd_obj_request_create();
1953         if (!obj_req)
1954                 return NULL;
1955
1956         rbd_img_obj_request_add(img_req, obj_req);
1957         return &obj_req->ex;
1958 }
1959
1960 /*
1961  * While su != os && sc == 1 is technically not fancy (it's the same
1962  * layout as su == os && sc == 1), we can't use the nocopy path for it
1963  * because ->set_pos_fn() should be called only once per object.
1964  * ceph_file_to_extents() invokes action_fn once per stripe unit, so
1965  * treat su != os && sc == 1 as fancy.
1966  */
1967 static bool rbd_layout_is_fancy(struct ceph_file_layout *l)
1968 {
1969         return l->stripe_unit != l->object_size;
1970 }
1971
1972 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req,
1973                                        struct ceph_file_extent *img_extents,
1974                                        u32 num_img_extents,
1975                                        struct rbd_img_fill_ctx *fctx)
1976 {
1977         u32 i;
1978         int ret;
1979
1980         img_req->data_type = fctx->pos_type;
1981
1982         /*
1983          * Create object requests and set each object request's starting
1984          * position in the provided bio (list) or bio_vec array.
1985          */
1986         fctx->iter = *fctx->pos;
1987         for (i = 0; i < num_img_extents; i++) {
1988                 ret = ceph_file_to_extents(&img_req->rbd_dev->layout,
1989                                            img_extents[i].fe_off,
1990                                            img_extents[i].fe_len,
1991                                            &img_req->object_extents,
1992                                            alloc_object_extent, img_req,
1993                                            fctx->set_pos_fn, &fctx->iter);
1994                 if (ret)
1995                         return ret;
1996         }
1997
1998         return __rbd_img_fill_request(img_req);
1999 }
2000
2001 /*
2002  * Map a list of image extents to a list of object extents, create the
2003  * corresponding object requests (normally each to a different object,
2004  * but not always) and add them to @img_req.  For each object request,
2005  * set up its data descriptor to point to the corresponding chunk(s) of
2006  * @fctx->pos data buffer.
2007  *
2008  * Because ceph_file_to_extents() will merge adjacent object extents
2009  * together, each object request's data descriptor may point to multiple
2010  * different chunks of @fctx->pos data buffer.
2011  *
2012  * @fctx->pos data buffer is assumed to be large enough.
2013  */
2014 static int rbd_img_fill_request(struct rbd_img_request *img_req,
2015                                 struct ceph_file_extent *img_extents,
2016                                 u32 num_img_extents,
2017                                 struct rbd_img_fill_ctx *fctx)
2018 {
2019         struct rbd_device *rbd_dev = img_req->rbd_dev;
2020         struct rbd_obj_request *obj_req;
2021         u32 i;
2022         int ret;
2023
2024         if (fctx->pos_type == OBJ_REQUEST_NODATA ||
2025             !rbd_layout_is_fancy(&rbd_dev->layout))
2026                 return rbd_img_fill_request_nocopy(img_req, img_extents,
2027                                                    num_img_extents, fctx);
2028
2029         img_req->data_type = OBJ_REQUEST_OWN_BVECS;
2030
2031         /*
2032          * Create object requests and determine ->bvec_count for each object
2033          * request.  Note that ->bvec_count sum over all object requests may
2034          * be greater than the number of bio_vecs in the provided bio (list)
2035          * or bio_vec array because when mapped, those bio_vecs can straddle
2036          * stripe unit boundaries.
2037          */
2038         fctx->iter = *fctx->pos;
2039         for (i = 0; i < num_img_extents; i++) {
2040                 ret = ceph_file_to_extents(&rbd_dev->layout,
2041                                            img_extents[i].fe_off,
2042                                            img_extents[i].fe_len,
2043                                            &img_req->object_extents,
2044                                            alloc_object_extent, img_req,
2045                                            fctx->count_fn, &fctx->iter);
2046                 if (ret)
2047                         return ret;
2048         }
2049
2050         for_each_obj_request(img_req, obj_req) {
2051                 obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count,
2052                                               sizeof(*obj_req->bvec_pos.bvecs),
2053                                               GFP_NOIO);
2054                 if (!obj_req->bvec_pos.bvecs)
2055                         return -ENOMEM;
2056         }
2057
2058         /*
2059          * Fill in each object request's private bio_vec array, splitting and
2060          * rearranging the provided bio_vecs in stripe unit chunks as needed.
2061          */
2062         fctx->iter = *fctx->pos;
2063         for (i = 0; i < num_img_extents; i++) {
2064                 ret = ceph_iterate_extents(&rbd_dev->layout,
2065                                            img_extents[i].fe_off,
2066                                            img_extents[i].fe_len,
2067                                            &img_req->object_extents,
2068                                            fctx->copy_fn, &fctx->iter);
2069                 if (ret)
2070                         return ret;
2071         }
2072
2073         return __rbd_img_fill_request(img_req);
2074 }
2075
2076 static int rbd_img_fill_nodata(struct rbd_img_request *img_req,
2077                                u64 off, u64 len)
2078 {
2079         struct ceph_file_extent ex = { off, len };
2080         union rbd_img_fill_iter dummy;
2081         struct rbd_img_fill_ctx fctx = {
2082                 .pos_type = OBJ_REQUEST_NODATA,
2083                 .pos = &dummy,
2084         };
2085
2086         return rbd_img_fill_request(img_req, &ex, 1, &fctx);
2087 }
2088
2089 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2090 {
2091         struct rbd_obj_request *obj_req =
2092             container_of(ex, struct rbd_obj_request, ex);
2093         struct ceph_bio_iter *it = arg;
2094
2095         dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2096         obj_req->bio_pos = *it;
2097         ceph_bio_iter_advance(it, bytes);
2098 }
2099
2100 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2101 {
2102         struct rbd_obj_request *obj_req =
2103             container_of(ex, struct rbd_obj_request, ex);
2104         struct ceph_bio_iter *it = arg;
2105
2106         dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2107         ceph_bio_iter_advance_step(it, bytes, ({
2108                 obj_req->bvec_count++;
2109         }));
2110
2111 }
2112
2113 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2114 {
2115         struct rbd_obj_request *obj_req =
2116             container_of(ex, struct rbd_obj_request, ex);
2117         struct ceph_bio_iter *it = arg;
2118
2119         dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2120         ceph_bio_iter_advance_step(it, bytes, ({
2121                 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2122                 obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2123         }));
2124 }
2125
2126 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2127                                    struct ceph_file_extent *img_extents,
2128                                    u32 num_img_extents,
2129                                    struct ceph_bio_iter *bio_pos)
2130 {
2131         struct rbd_img_fill_ctx fctx = {
2132                 .pos_type = OBJ_REQUEST_BIO,
2133                 .pos = (union rbd_img_fill_iter *)bio_pos,
2134                 .set_pos_fn = set_bio_pos,
2135                 .count_fn = count_bio_bvecs,
2136                 .copy_fn = copy_bio_bvecs,
2137         };
2138
2139         return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2140                                     &fctx);
2141 }
2142
2143 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2144                                  u64 off, u64 len, struct bio *bio)
2145 {
2146         struct ceph_file_extent ex = { off, len };
2147         struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter };
2148
2149         return __rbd_img_fill_from_bio(img_req, &ex, 1, &it);
2150 }
2151
2152 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2153 {
2154         struct rbd_obj_request *obj_req =
2155             container_of(ex, struct rbd_obj_request, ex);
2156         struct ceph_bvec_iter *it = arg;
2157
2158         obj_req->bvec_pos = *it;
2159         ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes);
2160         ceph_bvec_iter_advance(it, bytes);
2161 }
2162
2163 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2164 {
2165         struct rbd_obj_request *obj_req =
2166             container_of(ex, struct rbd_obj_request, ex);
2167         struct ceph_bvec_iter *it = arg;
2168
2169         ceph_bvec_iter_advance_step(it, bytes, ({
2170                 obj_req->bvec_count++;
2171         }));
2172 }
2173
2174 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2175 {
2176         struct rbd_obj_request *obj_req =
2177             container_of(ex, struct rbd_obj_request, ex);
2178         struct ceph_bvec_iter *it = arg;
2179
2180         ceph_bvec_iter_advance_step(it, bytes, ({
2181                 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2182                 obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2183         }));
2184 }
2185
2186 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2187                                      struct ceph_file_extent *img_extents,
2188                                      u32 num_img_extents,
2189                                      struct ceph_bvec_iter *bvec_pos)
2190 {
2191         struct rbd_img_fill_ctx fctx = {
2192                 .pos_type = OBJ_REQUEST_BVECS,
2193                 .pos = (union rbd_img_fill_iter *)bvec_pos,
2194                 .set_pos_fn = set_bvec_pos,
2195                 .count_fn = count_bvecs,
2196                 .copy_fn = copy_bvecs,
2197         };
2198
2199         return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2200                                     &fctx);
2201 }
2202
2203 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2204                                    struct ceph_file_extent *img_extents,
2205                                    u32 num_img_extents,
2206                                    struct bio_vec *bvecs)
2207 {
2208         struct ceph_bvec_iter it = {
2209                 .bvecs = bvecs,
2210                 .iter = { .bi_size = ceph_file_extents_bytes(img_extents,
2211                                                              num_img_extents) },
2212         };
2213
2214         return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents,
2215                                          &it);
2216 }
2217
2218 static void rbd_img_request_submit(struct rbd_img_request *img_request)
2219 {
2220         struct rbd_obj_request *obj_request;
2221
2222         dout("%s: img %p\n", __func__, img_request);
2223
2224         rbd_img_request_get(img_request);
2225         for_each_obj_request(img_request, obj_request)
2226                 rbd_obj_request_submit(obj_request);
2227
2228         rbd_img_request_put(img_request);
2229 }
2230
2231 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req)
2232 {
2233         struct rbd_img_request *img_req = obj_req->img_request;
2234         struct rbd_img_request *child_img_req;
2235         int ret;
2236
2237         child_img_req = rbd_img_request_create(img_req->rbd_dev->parent,
2238                                                OBJ_OP_READ, NULL);
2239         if (!child_img_req)
2240                 return -ENOMEM;
2241
2242         __set_bit(IMG_REQ_CHILD, &child_img_req->flags);
2243         child_img_req->obj_request = obj_req;
2244
2245         if (!rbd_img_is_write(img_req)) {
2246                 switch (img_req->data_type) {
2247                 case OBJ_REQUEST_BIO:
2248                         ret = __rbd_img_fill_from_bio(child_img_req,
2249                                                       obj_req->img_extents,
2250                                                       obj_req->num_img_extents,
2251                                                       &obj_req->bio_pos);
2252                         break;
2253                 case OBJ_REQUEST_BVECS:
2254                 case OBJ_REQUEST_OWN_BVECS:
2255                         ret = __rbd_img_fill_from_bvecs(child_img_req,
2256                                                       obj_req->img_extents,
2257                                                       obj_req->num_img_extents,
2258                                                       &obj_req->bvec_pos);
2259                         break;
2260                 default:
2261                         rbd_assert(0);
2262                 }
2263         } else {
2264                 ret = rbd_img_fill_from_bvecs(child_img_req,
2265                                               obj_req->img_extents,
2266                                               obj_req->num_img_extents,
2267                                               obj_req->copyup_bvecs);
2268         }
2269         if (ret) {
2270                 rbd_img_request_put(child_img_req);
2271                 return ret;
2272         }
2273
2274         rbd_img_request_submit(child_img_req);
2275         return 0;
2276 }
2277
2278 static bool rbd_obj_handle_read(struct rbd_obj_request *obj_req)
2279 {
2280         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2281         int ret;
2282
2283         if (obj_req->result == -ENOENT &&
2284             rbd_dev->parent_overlap && !obj_req->tried_parent) {
2285                 /* reverse map this object extent onto the parent */
2286                 ret = rbd_obj_calc_img_extents(obj_req, false);
2287                 if (ret) {
2288                         obj_req->result = ret;
2289                         return true;
2290                 }
2291
2292                 if (obj_req->num_img_extents) {
2293                         obj_req->tried_parent = true;
2294                         ret = rbd_obj_read_from_parent(obj_req);
2295                         if (ret) {
2296                                 obj_req->result = ret;
2297                                 return true;
2298                         }
2299                         return false;
2300                 }
2301         }
2302
2303         /*
2304          * -ENOENT means a hole in the image -- zero-fill the entire
2305          * length of the request.  A short read also implies zero-fill
2306          * to the end of the request.  In both cases we update xferred
2307          * count to indicate the whole request was satisfied.
2308          */
2309         if (obj_req->result == -ENOENT ||
2310             (!obj_req->result && obj_req->xferred < obj_req->ex.oe_len)) {
2311                 rbd_assert(!obj_req->xferred || !obj_req->result);
2312                 rbd_obj_zero_range(obj_req, obj_req->xferred,
2313                                    obj_req->ex.oe_len - obj_req->xferred);
2314                 obj_req->result = 0;
2315                 obj_req->xferred = obj_req->ex.oe_len;
2316         }
2317
2318         return true;
2319 }
2320
2321 /*
2322  * copyup_bvecs pages are never highmem pages
2323  */
2324 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes)
2325 {
2326         struct ceph_bvec_iter it = {
2327                 .bvecs = bvecs,
2328                 .iter = { .bi_size = bytes },
2329         };
2330
2331         ceph_bvec_iter_advance_step(&it, bytes, ({
2332                 if (memchr_inv(page_address(bv.bv_page) + bv.bv_offset, 0,
2333                                bv.bv_len))
2334                         return false;
2335         }));
2336         return true;
2337 }
2338
2339 static int rbd_obj_issue_copyup(struct rbd_obj_request *obj_req, u32 bytes)
2340 {
2341         unsigned int num_osd_ops = obj_req->osd_req->r_num_ops;
2342
2343         dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
2344         rbd_assert(obj_req->osd_req->r_ops[0].op == CEPH_OSD_OP_STAT);
2345         rbd_osd_req_destroy(obj_req->osd_req);
2346
2347         /*
2348          * Create a copyup request with the same number of OSD ops as
2349          * the original request.  The original request was stat + op(s),
2350          * the new copyup request will be copyup + the same op(s).
2351          */
2352         obj_req->osd_req = rbd_osd_req_create(obj_req, num_osd_ops);
2353         if (!obj_req->osd_req)
2354                 return -ENOMEM;
2355
2356         /*
2357          * Only send non-zero copyup data to save some I/O and network
2358          * bandwidth -- zero copyup data is equivalent to the object not
2359          * existing.
2360          */
2361         if (is_zero_bvecs(obj_req->copyup_bvecs, bytes)) {
2362                 dout("%s obj_req %p detected zeroes\n", __func__, obj_req);
2363                 bytes = 0;
2364         }
2365
2366         osd_req_op_cls_init(obj_req->osd_req, 0, CEPH_OSD_OP_CALL, "rbd",
2367                             "copyup");
2368         osd_req_op_cls_request_data_bvecs(obj_req->osd_req, 0,
2369                                           obj_req->copyup_bvecs,
2370                                           obj_req->copyup_bvec_count,
2371                                           bytes);
2372
2373         switch (obj_req->img_request->op_type) {
2374         case OBJ_OP_WRITE:
2375                 __rbd_obj_setup_write(obj_req, 1);
2376                 break;
2377         case OBJ_OP_DISCARD:
2378                 rbd_assert(!rbd_obj_is_entire(obj_req));
2379                 __rbd_obj_setup_discard(obj_req, 1);
2380                 break;
2381         default:
2382                 rbd_assert(0);
2383         }
2384
2385         rbd_obj_request_submit(obj_req);
2386         return 0;
2387 }
2388
2389 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap)
2390 {
2391         u32 i;
2392
2393         rbd_assert(!obj_req->copyup_bvecs);
2394         obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap);
2395         obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count,
2396                                         sizeof(*obj_req->copyup_bvecs),
2397                                         GFP_NOIO);
2398         if (!obj_req->copyup_bvecs)
2399                 return -ENOMEM;
2400
2401         for (i = 0; i < obj_req->copyup_bvec_count; i++) {
2402                 unsigned int len = min(obj_overlap, (u64)PAGE_SIZE);
2403
2404                 obj_req->copyup_bvecs[i].bv_page = alloc_page(GFP_NOIO);
2405                 if (!obj_req->copyup_bvecs[i].bv_page)
2406                         return -ENOMEM;
2407
2408                 obj_req->copyup_bvecs[i].bv_offset = 0;
2409                 obj_req->copyup_bvecs[i].bv_len = len;
2410                 obj_overlap -= len;
2411         }
2412
2413         rbd_assert(!obj_overlap);
2414         return 0;
2415 }
2416
2417 static int rbd_obj_handle_write_guard(struct rbd_obj_request *obj_req)
2418 {
2419         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2420         int ret;
2421
2422         rbd_assert(obj_req->num_img_extents);
2423         prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
2424                       rbd_dev->parent_overlap);
2425         if (!obj_req->num_img_extents) {
2426                 /*
2427                  * The overlap has become 0 (most likely because the
2428                  * image has been flattened).  Use rbd_obj_issue_copyup()
2429                  * to re-submit the original write request -- the copyup
2430                  * operation itself will be a no-op, since someone must
2431                  * have populated the child object while we weren't
2432                  * looking.  Move to WRITE_FLAT state as we'll be done
2433                  * with the operation once the null copyup completes.
2434                  */
2435                 obj_req->write_state = RBD_OBJ_WRITE_FLAT;
2436                 return rbd_obj_issue_copyup(obj_req, 0);
2437         }
2438
2439         ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req));
2440         if (ret)
2441                 return ret;
2442
2443         obj_req->write_state = RBD_OBJ_WRITE_COPYUP;
2444         return rbd_obj_read_from_parent(obj_req);
2445 }
2446
2447 static bool rbd_obj_handle_write(struct rbd_obj_request *obj_req)
2448 {
2449         int ret;
2450
2451 again:
2452         switch (obj_req->write_state) {
2453         case RBD_OBJ_WRITE_GUARD:
2454                 rbd_assert(!obj_req->xferred);
2455                 if (obj_req->result == -ENOENT) {
2456                         /*
2457                          * The target object doesn't exist.  Read the data for
2458                          * the entire target object up to the overlap point (if
2459                          * any) from the parent, so we can use it for a copyup.
2460                          */
2461                         ret = rbd_obj_handle_write_guard(obj_req);
2462                         if (ret) {
2463                                 obj_req->result = ret;
2464                                 return true;
2465                         }
2466                         return false;
2467                 }
2468                 /* fall through */
2469         case RBD_OBJ_WRITE_FLAT:
2470                 if (!obj_req->result)
2471                         /*
2472                          * There is no such thing as a successful short
2473                          * write -- indicate the whole request was satisfied.
2474                          */
2475                         obj_req->xferred = obj_req->ex.oe_len;
2476                 return true;
2477         case RBD_OBJ_WRITE_COPYUP:
2478                 obj_req->write_state = RBD_OBJ_WRITE_GUARD;
2479                 if (obj_req->result)
2480                         goto again;
2481
2482                 rbd_assert(obj_req->xferred);
2483                 ret = rbd_obj_issue_copyup(obj_req, obj_req->xferred);
2484                 if (ret) {
2485                         obj_req->result = ret;
2486                         return true;
2487                 }
2488                 return false;
2489         default:
2490                 BUG();
2491         }
2492 }
2493
2494 /*
2495  * Returns true if @obj_req is completed, or false otherwise.
2496  */
2497 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req)
2498 {
2499         switch (obj_req->img_request->op_type) {
2500         case OBJ_OP_READ:
2501                 return rbd_obj_handle_read(obj_req);
2502         case OBJ_OP_WRITE:
2503                 return rbd_obj_handle_write(obj_req);
2504         case OBJ_OP_DISCARD:
2505                 if (rbd_obj_handle_write(obj_req)) {
2506                         /*
2507                          * Hide -ENOENT from delete/truncate/zero -- discarding
2508                          * a non-existent object is not a problem.
2509                          */
2510                         if (obj_req->result == -ENOENT) {
2511                                 obj_req->result = 0;
2512                                 obj_req->xferred = obj_req->ex.oe_len;
2513                         }
2514                         return true;
2515                 }
2516                 return false;
2517         default:
2518                 BUG();
2519         }
2520 }
2521
2522 static void rbd_obj_end_request(struct rbd_obj_request *obj_req)
2523 {
2524         struct rbd_img_request *img_req = obj_req->img_request;
2525
2526         rbd_assert((!obj_req->result &&
2527                     obj_req->xferred == obj_req->ex.oe_len) ||
2528                    (obj_req->result < 0 && !obj_req->xferred));
2529         if (!obj_req->result) {
2530                 img_req->xferred += obj_req->xferred;
2531                 return;
2532         }
2533
2534         rbd_warn(img_req->rbd_dev,
2535                  "%s at objno %llu %llu~%llu result %d xferred %llu",
2536                  obj_op_name(img_req->op_type), obj_req->ex.oe_objno,
2537                  obj_req->ex.oe_off, obj_req->ex.oe_len, obj_req->result,
2538                  obj_req->xferred);
2539         if (!img_req->result) {
2540                 img_req->result = obj_req->result;
2541                 img_req->xferred = 0;
2542         }
2543 }
2544
2545 static void rbd_img_end_child_request(struct rbd_img_request *img_req)
2546 {
2547         struct rbd_obj_request *obj_req = img_req->obj_request;
2548
2549         rbd_assert(test_bit(IMG_REQ_CHILD, &img_req->flags));
2550         rbd_assert((!img_req->result &&
2551                     img_req->xferred == rbd_obj_img_extents_bytes(obj_req)) ||
2552                    (img_req->result < 0 && !img_req->xferred));
2553
2554         obj_req->result = img_req->result;
2555         obj_req->xferred = img_req->xferred;
2556         rbd_img_request_put(img_req);
2557 }
2558
2559 static void rbd_img_end_request(struct rbd_img_request *img_req)
2560 {
2561         rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags));
2562         rbd_assert((!img_req->result &&
2563                     img_req->xferred == blk_rq_bytes(img_req->rq)) ||
2564                    (img_req->result < 0 && !img_req->xferred));
2565
2566         blk_mq_end_request(img_req->rq,
2567                            errno_to_blk_status(img_req->result));
2568         rbd_img_request_put(img_req);
2569 }
2570
2571 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req)
2572 {
2573         struct rbd_img_request *img_req;
2574
2575 again:
2576         if (!__rbd_obj_handle_request(obj_req))
2577                 return;
2578
2579         img_req = obj_req->img_request;
2580         spin_lock(&img_req->completion_lock);
2581         rbd_obj_end_request(obj_req);
2582         rbd_assert(img_req->pending_count);
2583         if (--img_req->pending_count) {
2584                 spin_unlock(&img_req->completion_lock);
2585                 return;
2586         }
2587
2588         spin_unlock(&img_req->completion_lock);
2589         if (test_bit(IMG_REQ_CHILD, &img_req->flags)) {
2590                 obj_req = img_req->obj_request;
2591                 rbd_img_end_child_request(img_req);
2592                 goto again;
2593         }
2594         rbd_img_end_request(img_req);
2595 }
2596
2597 static const struct rbd_client_id rbd_empty_cid;
2598
2599 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
2600                           const struct rbd_client_id *rhs)
2601 {
2602         return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
2603 }
2604
2605 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
2606 {
2607         struct rbd_client_id cid;
2608
2609         mutex_lock(&rbd_dev->watch_mutex);
2610         cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
2611         cid.handle = rbd_dev->watch_cookie;
2612         mutex_unlock(&rbd_dev->watch_mutex);
2613         return cid;
2614 }
2615
2616 /*
2617  * lock_rwsem must be held for write
2618  */
2619 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
2620                               const struct rbd_client_id *cid)
2621 {
2622         dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
2623              rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
2624              cid->gid, cid->handle);
2625         rbd_dev->owner_cid = *cid; /* struct */
2626 }
2627
2628 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
2629 {
2630         mutex_lock(&rbd_dev->watch_mutex);
2631         sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
2632         mutex_unlock(&rbd_dev->watch_mutex);
2633 }
2634
2635 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie)
2636 {
2637         struct rbd_client_id cid = rbd_get_cid(rbd_dev);
2638
2639         strcpy(rbd_dev->lock_cookie, cookie);
2640         rbd_set_owner_cid(rbd_dev, &cid);
2641         queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
2642 }
2643
2644 /*
2645  * lock_rwsem must be held for write
2646  */
2647 static int rbd_lock(struct rbd_device *rbd_dev)
2648 {
2649         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2650         char cookie[32];
2651         int ret;
2652
2653         WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
2654                 rbd_dev->lock_cookie[0] != '\0');
2655
2656         format_lock_cookie(rbd_dev, cookie);
2657         ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
2658                             RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
2659                             RBD_LOCK_TAG, "", 0);
2660         if (ret)
2661                 return ret;
2662
2663         rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
2664         __rbd_lock(rbd_dev, cookie);
2665         return 0;
2666 }
2667
2668 /*
2669  * lock_rwsem must be held for write
2670  */
2671 static void rbd_unlock(struct rbd_device *rbd_dev)
2672 {
2673         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2674         int ret;
2675
2676         WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
2677                 rbd_dev->lock_cookie[0] == '\0');
2678
2679         ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
2680                               RBD_LOCK_NAME, rbd_dev->lock_cookie);
2681         if (ret && ret != -ENOENT)
2682                 rbd_warn(rbd_dev, "failed to unlock: %d", ret);
2683
2684         /* treat errors as the image is unlocked */
2685         rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
2686         rbd_dev->lock_cookie[0] = '\0';
2687         rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
2688         queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
2689 }
2690
2691 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
2692                                 enum rbd_notify_op notify_op,
2693                                 struct page ***preply_pages,
2694                                 size_t *preply_len)
2695 {
2696         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2697         struct rbd_client_id cid = rbd_get_cid(rbd_dev);
2698         char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN];
2699         int buf_size = sizeof(buf);
2700         void *p = buf;
2701
2702         dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
2703
2704         /* encode *LockPayload NotifyMessage (op + ClientId) */
2705         ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
2706         ceph_encode_32(&p, notify_op);
2707         ceph_encode_64(&p, cid.gid);
2708         ceph_encode_64(&p, cid.handle);
2709
2710         return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
2711                                 &rbd_dev->header_oloc, buf, buf_size,
2712                                 RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
2713 }
2714
2715 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
2716                                enum rbd_notify_op notify_op)
2717 {
2718         struct page **reply_pages;
2719         size_t reply_len;
2720
2721         __rbd_notify_op_lock(rbd_dev, notify_op, &reply_pages, &reply_len);
2722         ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
2723 }
2724
2725 static void rbd_notify_acquired_lock(struct work_struct *work)
2726 {
2727         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
2728                                                   acquired_lock_work);
2729
2730         rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
2731 }
2732
2733 static void rbd_notify_released_lock(struct work_struct *work)
2734 {
2735         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
2736                                                   released_lock_work);
2737
2738         rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
2739 }
2740
2741 static int rbd_request_lock(struct rbd_device *rbd_dev)
2742 {
2743         struct page **reply_pages;
2744         size_t reply_len;
2745         bool lock_owner_responded = false;
2746         int ret;
2747
2748         dout("%s rbd_dev %p\n", __func__, rbd_dev);
2749
2750         ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
2751                                    &reply_pages, &reply_len);
2752         if (ret && ret != -ETIMEDOUT) {
2753                 rbd_warn(rbd_dev, "failed to request lock: %d", ret);
2754                 goto out;
2755         }
2756
2757         if (reply_len > 0 && reply_len <= PAGE_SIZE) {
2758                 void *p = page_address(reply_pages[0]);
2759                 void *const end = p + reply_len;
2760                 u32 n;
2761
2762                 ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
2763                 while (n--) {
2764                         u8 struct_v;
2765                         u32 len;
2766
2767                         ceph_decode_need(&p, end, 8 + 8, e_inval);
2768                         p += 8 + 8; /* skip gid and cookie */
2769
2770                         ceph_decode_32_safe(&p, end, len, e_inval);
2771                         if (!len)
2772                                 continue;
2773
2774                         if (lock_owner_responded) {
2775                                 rbd_warn(rbd_dev,
2776                                          "duplicate lock owners detected");
2777                                 ret = -EIO;
2778                                 goto out;
2779                         }
2780
2781                         lock_owner_responded = true;
2782                         ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
2783                                                   &struct_v, &len);
2784                         if (ret) {
2785                                 rbd_warn(rbd_dev,
2786                                          "failed to decode ResponseMessage: %d",
2787                                          ret);
2788                                 goto e_inval;
2789                         }
2790
2791                         ret = ceph_decode_32(&p);
2792                 }
2793         }
2794
2795         if (!lock_owner_responded) {
2796                 rbd_warn(rbd_dev, "no lock owners detected");
2797                 ret = -ETIMEDOUT;
2798         }
2799
2800 out:
2801         ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
2802         return ret;
2803
2804 e_inval:
2805         ret = -EINVAL;
2806         goto out;
2807 }
2808
2809 static void wake_requests(struct rbd_device *rbd_dev, bool wake_all)
2810 {
2811         dout("%s rbd_dev %p wake_all %d\n", __func__, rbd_dev, wake_all);
2812
2813         cancel_delayed_work(&rbd_dev->lock_dwork);
2814         if (wake_all)
2815                 wake_up_all(&rbd_dev->lock_waitq);
2816         else
2817                 wake_up(&rbd_dev->lock_waitq);
2818 }
2819
2820 static int get_lock_owner_info(struct rbd_device *rbd_dev,
2821                                struct ceph_locker **lockers, u32 *num_lockers)
2822 {
2823         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2824         u8 lock_type;
2825         char *lock_tag;
2826         int ret;
2827
2828         dout("%s rbd_dev %p\n", __func__, rbd_dev);
2829
2830         ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
2831                                  &rbd_dev->header_oloc, RBD_LOCK_NAME,
2832                                  &lock_type, &lock_tag, lockers, num_lockers);
2833         if (ret)
2834                 return ret;
2835
2836         if (*num_lockers == 0) {
2837                 dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
2838                 goto out;
2839         }
2840
2841         if (strcmp(lock_tag, RBD_LOCK_TAG)) {
2842                 rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
2843                          lock_tag);
2844                 ret = -EBUSY;
2845                 goto out;
2846         }
2847
2848         if (lock_type == CEPH_CLS_LOCK_SHARED) {
2849                 rbd_warn(rbd_dev, "shared lock type detected");
2850                 ret = -EBUSY;
2851                 goto out;
2852         }
2853
2854         if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX,
2855                     strlen(RBD_LOCK_COOKIE_PREFIX))) {
2856                 rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
2857                          (*lockers)[0].id.cookie);
2858                 ret = -EBUSY;
2859                 goto out;
2860         }
2861
2862 out:
2863         kfree(lock_tag);
2864         return ret;
2865 }
2866
2867 static int find_watcher(struct rbd_device *rbd_dev,
2868                         const struct ceph_locker *locker)
2869 {
2870         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2871         struct ceph_watch_item *watchers;
2872         u32 num_watchers;
2873         u64 cookie;
2874         int i;
2875         int ret;
2876
2877         ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
2878                                       &rbd_dev->header_oloc, &watchers,
2879                                       &num_watchers);
2880         if (ret)
2881                 return ret;
2882
2883         sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
2884         for (i = 0; i < num_watchers; i++) {
2885                 if (!memcmp(&watchers[i].addr, &locker->info.addr,
2886                             sizeof(locker->info.addr)) &&
2887                     watchers[i].cookie == cookie) {
2888                         struct rbd_client_id cid = {
2889                                 .gid = le64_to_cpu(watchers[i].name.num),
2890                                 .handle = cookie,
2891                         };
2892
2893                         dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
2894                              rbd_dev, cid.gid, cid.handle);
2895                         rbd_set_owner_cid(rbd_dev, &cid);
2896                         ret = 1;
2897                         goto out;
2898                 }
2899         }
2900
2901         dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
2902         ret = 0;
2903 out:
2904         kfree(watchers);
2905         return ret;
2906 }
2907
2908 /*
2909  * lock_rwsem must be held for write
2910  */
2911 static int rbd_try_lock(struct rbd_device *rbd_dev)
2912 {
2913         struct ceph_client *client = rbd_dev->rbd_client->client;
2914         struct ceph_locker *lockers;
2915         u32 num_lockers;
2916         int ret;
2917
2918         for (;;) {
2919                 ret = rbd_lock(rbd_dev);
2920                 if (ret != -EBUSY)
2921                         return ret;
2922
2923                 /* determine if the current lock holder is still alive */
2924                 ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers);
2925                 if (ret)
2926                         return ret;
2927
2928                 if (num_lockers == 0)
2929                         goto again;
2930
2931                 ret = find_watcher(rbd_dev, lockers);
2932                 if (ret) {
2933                         if (ret > 0)
2934                                 ret = 0; /* have to request lock */
2935                         goto out;
2936                 }
2937
2938                 rbd_warn(rbd_dev, "%s%llu seems dead, breaking lock",
2939                          ENTITY_NAME(lockers[0].id.name));
2940
2941                 ret = ceph_monc_blacklist_add(&client->monc,
2942                                               &lockers[0].info.addr);
2943                 if (ret) {
2944                         rbd_warn(rbd_dev, "blacklist of %s%llu failed: %d",
2945                                  ENTITY_NAME(lockers[0].id.name), ret);
2946                         goto out;
2947                 }
2948
2949                 ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
2950                                           &rbd_dev->header_oloc, RBD_LOCK_NAME,
2951                                           lockers[0].id.cookie,
2952                                           &lockers[0].id.name);
2953                 if (ret && ret != -ENOENT)
2954                         goto out;
2955
2956 again:
2957                 ceph_free_lockers(lockers, num_lockers);
2958         }
2959
2960 out:
2961         ceph_free_lockers(lockers, num_lockers);
2962         return ret;
2963 }
2964
2965 /*
2966  * ret is set only if lock_state is RBD_LOCK_STATE_UNLOCKED
2967  */
2968 static enum rbd_lock_state rbd_try_acquire_lock(struct rbd_device *rbd_dev,
2969                                                 int *pret)
2970 {
2971         enum rbd_lock_state lock_state;
2972
2973         down_read(&rbd_dev->lock_rwsem);
2974         dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
2975              rbd_dev->lock_state);
2976         if (__rbd_is_lock_owner(rbd_dev)) {
2977                 lock_state = rbd_dev->lock_state;
2978                 up_read(&rbd_dev->lock_rwsem);
2979                 return lock_state;
2980         }
2981
2982         up_read(&rbd_dev->lock_rwsem);
2983         down_write(&rbd_dev->lock_rwsem);
2984         dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
2985              rbd_dev->lock_state);
2986         if (!__rbd_is_lock_owner(rbd_dev)) {
2987                 *pret = rbd_try_lock(rbd_dev);
2988                 if (*pret)
2989                         rbd_warn(rbd_dev, "failed to acquire lock: %d", *pret);
2990         }
2991
2992         lock_state = rbd_dev->lock_state;
2993         up_write(&rbd_dev->lock_rwsem);
2994         return lock_state;
2995 }
2996
2997 static void rbd_acquire_lock(struct work_struct *work)
2998 {
2999         struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
3000                                             struct rbd_device, lock_dwork);
3001         enum rbd_lock_state lock_state;
3002         int ret = 0;
3003
3004         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3005 again:
3006         lock_state = rbd_try_acquire_lock(rbd_dev, &ret);
3007         if (lock_state != RBD_LOCK_STATE_UNLOCKED || ret == -EBLACKLISTED) {
3008                 if (lock_state == RBD_LOCK_STATE_LOCKED)
3009                         wake_requests(rbd_dev, true);
3010                 dout("%s rbd_dev %p lock_state %d ret %d - done\n", __func__,
3011                      rbd_dev, lock_state, ret);
3012                 return;
3013         }
3014
3015         ret = rbd_request_lock(rbd_dev);
3016         if (ret == -ETIMEDOUT) {
3017                 goto again; /* treat this as a dead client */
3018         } else if (ret == -EROFS) {
3019                 rbd_warn(rbd_dev, "peer will not release lock");
3020                 /*
3021                  * If this is rbd_add_acquire_lock(), we want to fail
3022                  * immediately -- reuse BLACKLISTED flag.  Otherwise we
3023                  * want to block.
3024                  */
3025                 if (!(rbd_dev->disk->flags & GENHD_FL_UP)) {
3026                         set_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags);
3027                         /* wake "rbd map --exclusive" process */
3028                         wake_requests(rbd_dev, false);
3029                 }
3030         } else if (ret < 0) {
3031                 rbd_warn(rbd_dev, "error requesting lock: %d", ret);
3032                 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
3033                                  RBD_RETRY_DELAY);
3034         } else {
3035                 /*
3036                  * lock owner acked, but resend if we don't see them
3037                  * release the lock
3038                  */
3039                 dout("%s rbd_dev %p requeueing lock_dwork\n", __func__,
3040                      rbd_dev);
3041                 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
3042                     msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
3043         }
3044 }
3045
3046 /*
3047  * lock_rwsem must be held for write
3048  */
3049 static bool rbd_release_lock(struct rbd_device *rbd_dev)
3050 {
3051         dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
3052              rbd_dev->lock_state);
3053         if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
3054                 return false;
3055
3056         rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
3057         downgrade_write(&rbd_dev->lock_rwsem);
3058         /*
3059          * Ensure that all in-flight IO is flushed.
3060          *
3061          * FIXME: ceph_osdc_sync() flushes the entire OSD client, which
3062          * may be shared with other devices.
3063          */
3064         ceph_osdc_sync(&rbd_dev->rbd_client->client->osdc);
3065         up_read(&rbd_dev->lock_rwsem);
3066
3067         down_write(&rbd_dev->lock_rwsem);
3068         dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
3069              rbd_dev->lock_state);
3070         if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
3071                 return false;
3072
3073         rbd_unlock(rbd_dev);
3074         /*
3075          * Give others a chance to grab the lock - we would re-acquire
3076          * almost immediately if we got new IO during ceph_osdc_sync()
3077          * otherwise.  We need to ack our own notifications, so this
3078          * lock_dwork will be requeued from rbd_wait_state_locked()
3079          * after wake_requests() in rbd_handle_released_lock().
3080          */
3081         cancel_delayed_work(&rbd_dev->lock_dwork);
3082         return true;
3083 }
3084
3085 static void rbd_release_lock_work(struct work_struct *work)
3086 {
3087         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3088                                                   unlock_work);
3089
3090         down_write(&rbd_dev->lock_rwsem);
3091         rbd_release_lock(rbd_dev);
3092         up_write(&rbd_dev->lock_rwsem);
3093 }
3094
3095 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
3096                                      void **p)
3097 {
3098         struct rbd_client_id cid = { 0 };
3099
3100         if (struct_v >= 2) {
3101                 cid.gid = ceph_decode_64(p);
3102                 cid.handle = ceph_decode_64(p);
3103         }
3104
3105         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3106              cid.handle);
3107         if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
3108                 down_write(&rbd_dev->lock_rwsem);
3109                 if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
3110                         /*
3111                          * we already know that the remote client is
3112                          * the owner
3113                          */
3114                         up_write(&rbd_dev->lock_rwsem);
3115                         return;
3116                 }
3117
3118                 rbd_set_owner_cid(rbd_dev, &cid);
3119                 downgrade_write(&rbd_dev->lock_rwsem);
3120         } else {
3121                 down_read(&rbd_dev->lock_rwsem);
3122         }
3123
3124         if (!__rbd_is_lock_owner(rbd_dev))
3125                 wake_requests(rbd_dev, false);
3126         up_read(&rbd_dev->lock_rwsem);
3127 }
3128
3129 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
3130                                      void **p)
3131 {
3132         struct rbd_client_id cid = { 0 };
3133
3134         if (struct_v >= 2) {
3135                 cid.gid = ceph_decode_64(p);
3136                 cid.handle = ceph_decode_64(p);
3137         }
3138
3139         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3140              cid.handle);
3141         if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
3142                 down_write(&rbd_dev->lock_rwsem);
3143                 if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
3144                         dout("%s rbd_dev %p unexpected owner, cid %llu-%llu != owner_cid %llu-%llu\n",
3145                              __func__, rbd_dev, cid.gid, cid.handle,
3146                              rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
3147                         up_write(&rbd_dev->lock_rwsem);
3148                         return;
3149                 }
3150
3151                 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3152                 downgrade_write(&rbd_dev->lock_rwsem);
3153         } else {
3154                 down_read(&rbd_dev->lock_rwsem);
3155         }
3156
3157         if (!__rbd_is_lock_owner(rbd_dev))
3158                 wake_requests(rbd_dev, false);
3159         up_read(&rbd_dev->lock_rwsem);
3160 }
3161
3162 /*
3163  * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
3164  * ResponseMessage is needed.
3165  */
3166 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
3167                                    void **p)
3168 {
3169         struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
3170         struct rbd_client_id cid = { 0 };
3171         int result = 1;
3172
3173         if (struct_v >= 2) {
3174                 cid.gid = ceph_decode_64(p);
3175                 cid.handle = ceph_decode_64(p);
3176         }
3177
3178         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3179              cid.handle);
3180         if (rbd_cid_equal(&cid, &my_cid))
3181                 return result;
3182
3183         down_read(&rbd_dev->lock_rwsem);
3184         if (__rbd_is_lock_owner(rbd_dev)) {
3185                 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
3186                     rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid))
3187                         goto out_unlock;
3188
3189                 /*
3190                  * encode ResponseMessage(0) so the peer can detect
3191                  * a missing owner
3192                  */
3193                 result = 0;
3194
3195                 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
3196                         if (!rbd_dev->opts->exclusive) {
3197                                 dout("%s rbd_dev %p queueing unlock_work\n",
3198                                      __func__, rbd_dev);
3199                                 queue_work(rbd_dev->task_wq,
3200                                            &rbd_dev->unlock_work);
3201                         } else {
3202                                 /* refuse to release the lock */
3203                                 result = -EROFS;
3204                         }
3205                 }
3206         }
3207
3208 out_unlock:
3209         up_read(&rbd_dev->lock_rwsem);
3210         return result;
3211 }
3212
3213 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
3214                                      u64 notify_id, u64 cookie, s32 *result)
3215 {
3216         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3217         char buf[4 + CEPH_ENCODING_START_BLK_LEN];
3218         int buf_size = sizeof(buf);
3219         int ret;
3220
3221         if (result) {
3222                 void *p = buf;
3223
3224                 /* encode ResponseMessage */
3225                 ceph_start_encoding(&p, 1, 1,
3226                                     buf_size - CEPH_ENCODING_START_BLK_LEN);
3227                 ceph_encode_32(&p, *result);
3228         } else {
3229                 buf_size = 0;
3230         }
3231
3232         ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
3233                                    &rbd_dev->header_oloc, notify_id, cookie,
3234                                    buf, buf_size);
3235         if (ret)
3236                 rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
3237 }
3238
3239 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
3240                                    u64 cookie)
3241 {
3242         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3243         __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
3244 }
3245
3246 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
3247                                           u64 notify_id, u64 cookie, s32 result)
3248 {
3249         dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3250         __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
3251 }
3252
3253 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
3254                          u64 notifier_id, void *data, size_t data_len)
3255 {
3256         struct rbd_device *rbd_dev = arg;
3257         void *p = data;
3258         void *const end = p + data_len;
3259         u8 struct_v = 0;
3260         u32 len;
3261         u32 notify_op;
3262         int ret;
3263
3264         dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
3265              __func__, rbd_dev, cookie, notify_id, data_len);
3266         if (data_len) {
3267                 ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
3268                                           &struct_v, &len);
3269                 if (ret) {
3270                         rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
3271                                  ret);
3272                         return;
3273                 }
3274
3275                 notify_op = ceph_decode_32(&p);
3276         } else {
3277                 /* legacy notification for header updates */
3278                 notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
3279                 len = 0;
3280         }
3281
3282         dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
3283         switch (notify_op) {
3284         case RBD_NOTIFY_OP_ACQUIRED_LOCK:
3285                 rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
3286                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3287                 break;
3288         case RBD_NOTIFY_OP_RELEASED_LOCK:
3289                 rbd_handle_released_lock(rbd_dev, struct_v, &p);
3290                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3291                 break;
3292         case RBD_NOTIFY_OP_REQUEST_LOCK:
3293                 ret = rbd_handle_request_lock(rbd_dev, struct_v, &p);
3294                 if (ret <= 0)
3295                         rbd_acknowledge_notify_result(rbd_dev, notify_id,
3296                                                       cookie, ret);
3297                 else
3298                         rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3299                 break;
3300         case RBD_NOTIFY_OP_HEADER_UPDATE:
3301                 ret = rbd_dev_refresh(rbd_dev);
3302                 if (ret)
3303                         rbd_warn(rbd_dev, "refresh failed: %d", ret);
3304
3305                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3306                 break;
3307         default:
3308                 if (rbd_is_lock_owner(rbd_dev))
3309                         rbd_acknowledge_notify_result(rbd_dev, notify_id,
3310                                                       cookie, -EOPNOTSUPP);
3311                 else
3312                         rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3313                 break;
3314         }
3315 }
3316
3317 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
3318
3319 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
3320 {
3321         struct rbd_device *rbd_dev = arg;
3322
3323         rbd_warn(rbd_dev, "encountered watch error: %d", err);
3324
3325         down_write(&rbd_dev->lock_rwsem);
3326         rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3327         up_write(&rbd_dev->lock_rwsem);
3328
3329         mutex_lock(&rbd_dev->watch_mutex);
3330         if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
3331                 __rbd_unregister_watch(rbd_dev);
3332                 rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
3333
3334                 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
3335         }
3336         mutex_unlock(&rbd_dev->watch_mutex);
3337 }
3338
3339 /*
3340  * watch_mutex must be locked
3341  */
3342 static int __rbd_register_watch(struct rbd_device *rbd_dev)
3343 {
3344         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3345         struct ceph_osd_linger_request *handle;
3346
3347         rbd_assert(!rbd_dev->watch_handle);
3348         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3349
3350         handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
3351                                  &rbd_dev->header_oloc, rbd_watch_cb,
3352                                  rbd_watch_errcb, rbd_dev);
3353         if (IS_ERR(handle))
3354                 return PTR_ERR(handle);
3355
3356         rbd_dev->watch_handle = handle;
3357         return 0;
3358 }
3359
3360 /*
3361  * watch_mutex must be locked
3362  */
3363 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
3364 {
3365         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3366         int ret;
3367
3368         rbd_assert(rbd_dev->watch_handle);
3369         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3370
3371         ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
3372         if (ret)
3373                 rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
3374
3375         rbd_dev->watch_handle = NULL;
3376 }
3377
3378 static int rbd_register_watch(struct rbd_device *rbd_dev)
3379 {
3380         int ret;
3381
3382         mutex_lock(&rbd_dev->watch_mutex);
3383         rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
3384         ret = __rbd_register_watch(rbd_dev);
3385         if (ret)
3386                 goto out;
3387
3388         rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
3389         rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
3390
3391 out:
3392         mutex_unlock(&rbd_dev->watch_mutex);
3393         return ret;
3394 }
3395
3396 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
3397 {
3398         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3399
3400         cancel_delayed_work_sync(&rbd_dev->watch_dwork);
3401         cancel_work_sync(&rbd_dev->acquired_lock_work);
3402         cancel_work_sync(&rbd_dev->released_lock_work);
3403         cancel_delayed_work_sync(&rbd_dev->lock_dwork);
3404         cancel_work_sync(&rbd_dev->unlock_work);
3405 }
3406
3407 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
3408 {
3409         WARN_ON(waitqueue_active(&rbd_dev->lock_waitq));
3410         cancel_tasks_sync(rbd_dev);
3411
3412         mutex_lock(&rbd_dev->watch_mutex);
3413         if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
3414                 __rbd_unregister_watch(rbd_dev);
3415         rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
3416         mutex_unlock(&rbd_dev->watch_mutex);
3417
3418         ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
3419 }
3420
3421 /*
3422  * lock_rwsem must be held for write
3423  */
3424 static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
3425 {
3426         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3427         char cookie[32];
3428         int ret;
3429
3430         WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED);
3431
3432         format_lock_cookie(rbd_dev, cookie);
3433         ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid,
3434                                   &rbd_dev->header_oloc, RBD_LOCK_NAME,
3435                                   CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie,
3436                                   RBD_LOCK_TAG, cookie);
3437         if (ret) {
3438                 if (ret != -EOPNOTSUPP)
3439                         rbd_warn(rbd_dev, "failed to update lock cookie: %d",
3440                                  ret);
3441
3442                 /*
3443                  * Lock cookie cannot be updated on older OSDs, so do
3444                  * a manual release and queue an acquire.
3445                  */
3446                 if (rbd_release_lock(rbd_dev))
3447                         queue_delayed_work(rbd_dev->task_wq,
3448                                            &rbd_dev->lock_dwork, 0);
3449         } else {
3450                 __rbd_lock(rbd_dev, cookie);
3451         }
3452 }
3453
3454 static void rbd_reregister_watch(struct work_struct *work)
3455 {
3456         struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
3457                                             struct rbd_device, watch_dwork);
3458         int ret;
3459
3460         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3461
3462         mutex_lock(&rbd_dev->watch_mutex);
3463         if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
3464                 mutex_unlock(&rbd_dev->watch_mutex);
3465                 return;
3466         }
3467
3468         ret = __rbd_register_watch(rbd_dev);
3469         if (ret) {
3470                 rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
3471                 if (ret == -EBLACKLISTED || ret == -ENOENT) {
3472                         set_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags);
3473                         wake_requests(rbd_dev, true);
3474                 } else {
3475                         queue_delayed_work(rbd_dev->task_wq,
3476                                            &rbd_dev->watch_dwork,
3477                                            RBD_RETRY_DELAY);
3478                 }
3479                 mutex_unlock(&rbd_dev->watch_mutex);
3480                 return;
3481         }
3482
3483         rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
3484         rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
3485         mutex_unlock(&rbd_dev->watch_mutex);
3486
3487         down_write(&rbd_dev->lock_rwsem);
3488         if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
3489                 rbd_reacquire_lock(rbd_dev);
3490         up_write(&rbd_dev->lock_rwsem);
3491
3492         ret = rbd_dev_refresh(rbd_dev);
3493         if (ret)
3494                 rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret);
3495 }
3496
3497 /*
3498  * Synchronous osd object method call.  Returns the number of bytes
3499  * returned in the outbound buffer, or a negative error code.
3500  */
3501 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3502                              struct ceph_object_id *oid,
3503                              struct ceph_object_locator *oloc,
3504                              const char *method_name,
3505                              const void *outbound,
3506                              size_t outbound_size,
3507                              void *inbound,
3508                              size_t inbound_size)
3509 {
3510         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3511         struct page *req_page = NULL;
3512         struct page *reply_page;
3513         int ret;
3514
3515         /*
3516          * Method calls are ultimately read operations.  The result
3517          * should placed into the inbound buffer provided.  They
3518          * also supply outbound data--parameters for the object
3519          * method.  Currently if this is present it will be a
3520          * snapshot id.
3521          */
3522         if (outbound) {
3523                 if (outbound_size > PAGE_SIZE)
3524                         return -E2BIG;
3525
3526                 req_page = alloc_page(GFP_KERNEL);
3527                 if (!req_page)
3528                         return -ENOMEM;
3529
3530                 memcpy(page_address(req_page), outbound, outbound_size);
3531         }
3532
3533         reply_page = alloc_page(GFP_KERNEL);
3534         if (!reply_page) {
3535                 if (req_page)
3536                         __free_page(req_page);
3537                 return -ENOMEM;
3538         }
3539
3540         ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
3541                              CEPH_OSD_FLAG_READ, req_page, outbound_size,
3542                              reply_page, &inbound_size);
3543         if (!ret) {
3544                 memcpy(inbound, page_address(reply_page), inbound_size);
3545                 ret = inbound_size;
3546         }
3547
3548         if (req_page)
3549                 __free_page(req_page);
3550         __free_page(reply_page);
3551         return ret;
3552 }
3553
3554 /*
3555  * lock_rwsem must be held for read
3556  */
3557 static int rbd_wait_state_locked(struct rbd_device *rbd_dev, bool may_acquire)
3558 {
3559         DEFINE_WAIT(wait);
3560         unsigned long timeout;
3561         int ret = 0;
3562
3563         if (test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags))
3564                 return -EBLACKLISTED;
3565
3566         if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
3567                 return 0;
3568
3569         if (!may_acquire) {
3570                 rbd_warn(rbd_dev, "exclusive lock required");
3571                 return -EROFS;
3572         }
3573
3574         do {
3575                 /*
3576                  * Note the use of mod_delayed_work() in rbd_acquire_lock()
3577                  * and cancel_delayed_work() in wake_requests().
3578                  */
3579                 dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3580                 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3581                 prepare_to_wait_exclusive(&rbd_dev->lock_waitq, &wait,
3582                                           TASK_UNINTERRUPTIBLE);
3583                 up_read(&rbd_dev->lock_rwsem);
3584                 timeout = schedule_timeout(ceph_timeout_jiffies(
3585                                                 rbd_dev->opts->lock_timeout));
3586                 down_read(&rbd_dev->lock_rwsem);
3587                 if (test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)) {
3588                         ret = -EBLACKLISTED;
3589                         break;
3590                 }
3591                 if (!timeout) {
3592                         rbd_warn(rbd_dev, "timed out waiting for lock");
3593                         ret = -ETIMEDOUT;
3594                         break;
3595                 }
3596         } while (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED);
3597
3598         finish_wait(&rbd_dev->lock_waitq, &wait);
3599         return ret;
3600 }
3601
3602 static void rbd_queue_workfn(struct work_struct *work)
3603 {
3604         struct request *rq = blk_mq_rq_from_pdu(work);
3605         struct rbd_device *rbd_dev = rq->q->queuedata;
3606         struct rbd_img_request *img_request;
3607         struct ceph_snap_context *snapc = NULL;
3608         u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3609         u64 length = blk_rq_bytes(rq);
3610         enum obj_operation_type op_type;
3611         u64 mapping_size;
3612         bool must_be_locked;
3613         int result;
3614
3615         switch (req_op(rq)) {
3616         case REQ_OP_DISCARD:
3617         case REQ_OP_WRITE_ZEROES:
3618                 op_type = OBJ_OP_DISCARD;
3619                 break;
3620         case REQ_OP_WRITE:
3621                 op_type = OBJ_OP_WRITE;
3622                 break;
3623         case REQ_OP_READ:
3624                 op_type = OBJ_OP_READ;
3625                 break;
3626         default:
3627                 dout("%s: non-fs request type %d\n", __func__, req_op(rq));
3628                 result = -EIO;
3629                 goto err;
3630         }
3631
3632         /* Ignore/skip any zero-length requests */
3633
3634         if (!length) {
3635                 dout("%s: zero-length request\n", __func__);
3636                 result = 0;
3637                 goto err_rq;
3638         }
3639
3640         rbd_assert(op_type == OBJ_OP_READ ||
3641                    rbd_dev->spec->snap_id == CEPH_NOSNAP);
3642
3643         /*
3644          * Quit early if the mapped snapshot no longer exists.  It's
3645          * still possible the snapshot will have disappeared by the
3646          * time our request arrives at the osd, but there's no sense in
3647          * sending it if we already know.
3648          */
3649         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3650                 dout("request for non-existent snapshot");
3651                 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3652                 result = -ENXIO;
3653                 goto err_rq;
3654         }
3655
3656         if (offset && length > U64_MAX - offset + 1) {
3657                 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
3658                          length);
3659                 result = -EINVAL;
3660                 goto err_rq;    /* Shouldn't happen */
3661         }
3662
3663         blk_mq_start_request(rq);
3664
3665         down_read(&rbd_dev->header_rwsem);
3666         mapping_size = rbd_dev->mapping.size;
3667         if (op_type != OBJ_OP_READ) {
3668                 snapc = rbd_dev->header.snapc;
3669                 ceph_get_snap_context(snapc);
3670         }
3671         up_read(&rbd_dev->header_rwsem);
3672
3673         if (offset + length > mapping_size) {
3674                 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
3675                          length, mapping_size);
3676                 result = -EIO;
3677                 goto err_rq;
3678         }
3679
3680         must_be_locked =
3681             (rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK) &&
3682             (op_type != OBJ_OP_READ || rbd_dev->opts->lock_on_read);
3683         if (must_be_locked) {
3684                 down_read(&rbd_dev->lock_rwsem);
3685                 result = rbd_wait_state_locked(rbd_dev,
3686                                                !rbd_dev->opts->exclusive);
3687                 if (result)
3688                         goto err_unlock;
3689         }
3690
3691         img_request = rbd_img_request_create(rbd_dev, op_type, snapc);
3692         if (!img_request) {
3693                 result = -ENOMEM;
3694                 goto err_unlock;
3695         }
3696         img_request->rq = rq;
3697         snapc = NULL; /* img_request consumes a ref */
3698
3699         if (op_type == OBJ_OP_DISCARD)
3700                 result = rbd_img_fill_nodata(img_request, offset, length);
3701         else
3702                 result = rbd_img_fill_from_bio(img_request, offset, length,
3703                                                rq->bio);
3704         if (result)
3705                 goto err_img_request;
3706
3707         rbd_img_request_submit(img_request);
3708         if (must_be_locked)
3709                 up_read(&rbd_dev->lock_rwsem);
3710         return;
3711
3712 err_img_request:
3713         rbd_img_request_put(img_request);
3714 err_unlock:
3715         if (must_be_locked)
3716                 up_read(&rbd_dev->lock_rwsem);
3717 err_rq:
3718         if (result)
3719                 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
3720                          obj_op_name(op_type), length, offset, result);
3721         ceph_put_snap_context(snapc);
3722 err:
3723         blk_mq_end_request(rq, errno_to_blk_status(result));
3724 }
3725
3726 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
3727                 const struct blk_mq_queue_data *bd)
3728 {
3729         struct request *rq = bd->rq;
3730         struct work_struct *work = blk_mq_rq_to_pdu(rq);
3731
3732         queue_work(rbd_wq, work);
3733         return BLK_STS_OK;
3734 }
3735
3736 static void rbd_free_disk(struct rbd_device *rbd_dev)
3737 {
3738         blk_cleanup_queue(rbd_dev->disk->queue);
3739         blk_mq_free_tag_set(&rbd_dev->tag_set);
3740         put_disk(rbd_dev->disk);
3741         rbd_dev->disk = NULL;
3742 }
3743
3744 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3745                              struct ceph_object_id *oid,
3746                              struct ceph_object_locator *oloc,
3747                              void *buf, int buf_len)
3748
3749 {
3750         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3751         struct ceph_osd_request *req;
3752         struct page **pages;
3753         int num_pages = calc_pages_for(0, buf_len);
3754         int ret;
3755
3756         req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
3757         if (!req)
3758                 return -ENOMEM;
3759
3760         ceph_oid_copy(&req->r_base_oid, oid);
3761         ceph_oloc_copy(&req->r_base_oloc, oloc);
3762         req->r_flags = CEPH_OSD_FLAG_READ;
3763
3764         ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
3765         if (ret)
3766                 goto out_req;
3767
3768         pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
3769         if (IS_ERR(pages)) {
3770                 ret = PTR_ERR(pages);
3771                 goto out_req;
3772         }
3773
3774         osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
3775         osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
3776                                          true);
3777
3778         ceph_osdc_start_request(osdc, req, false);
3779         ret = ceph_osdc_wait_request(osdc, req);
3780         if (ret >= 0)
3781                 ceph_copy_from_page_vector(pages, buf, 0, ret);
3782
3783 out_req:
3784         ceph_osdc_put_request(req);
3785         return ret;
3786 }
3787
3788 /*
3789  * Read the complete header for the given rbd device.  On successful
3790  * return, the rbd_dev->header field will contain up-to-date
3791  * information about the image.
3792  */
3793 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3794 {
3795         struct rbd_image_header_ondisk *ondisk = NULL;
3796         u32 snap_count = 0;
3797         u64 names_size = 0;
3798         u32 want_count;
3799         int ret;
3800
3801         /*
3802          * The complete header will include an array of its 64-bit
3803          * snapshot ids, followed by the names of those snapshots as
3804          * a contiguous block of NUL-terminated strings.  Note that
3805          * the number of snapshots could change by the time we read
3806          * it in, in which case we re-read it.
3807          */
3808         do {
3809                 size_t size;
3810
3811                 kfree(ondisk);
3812
3813                 size = sizeof (*ondisk);
3814                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3815                 size += names_size;
3816                 ondisk = kmalloc(size, GFP_KERNEL);
3817                 if (!ondisk)
3818                         return -ENOMEM;
3819
3820                 ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
3821                                         &rbd_dev->header_oloc, ondisk, size);
3822                 if (ret < 0)
3823                         goto out;
3824                 if ((size_t)ret < size) {
3825                         ret = -ENXIO;
3826                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3827                                 size, ret);
3828                         goto out;
3829                 }
3830                 if (!rbd_dev_ondisk_valid(ondisk)) {
3831                         ret = -ENXIO;
3832                         rbd_warn(rbd_dev, "invalid header");
3833                         goto out;
3834                 }
3835
3836                 names_size = le64_to_cpu(ondisk->snap_names_len);
3837                 want_count = snap_count;
3838                 snap_count = le32_to_cpu(ondisk->snap_count);
3839         } while (snap_count != want_count);
3840
3841         ret = rbd_header_from_disk(rbd_dev, ondisk);
3842 out:
3843         kfree(ondisk);
3844
3845         return ret;
3846 }
3847
3848 /*
3849  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3850  * has disappeared from the (just updated) snapshot context.
3851  */
3852 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3853 {
3854         u64 snap_id;
3855
3856         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3857                 return;
3858
3859         snap_id = rbd_dev->spec->snap_id;
3860         if (snap_id == CEPH_NOSNAP)
3861                 return;
3862
3863         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3864                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3865 }
3866
3867 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3868 {
3869         sector_t size;
3870
3871         /*
3872          * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
3873          * try to update its size.  If REMOVING is set, updating size
3874          * is just useless work since the device can't be opened.
3875          */
3876         if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
3877             !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
3878                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3879                 dout("setting size to %llu sectors", (unsigned long long)size);
3880                 set_capacity(rbd_dev->disk, size);
3881                 revalidate_disk(rbd_dev->disk);
3882         }
3883 }
3884
3885 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3886 {
3887         u64 mapping_size;
3888         int ret;
3889
3890         down_write(&rbd_dev->header_rwsem);
3891         mapping_size = rbd_dev->mapping.size;
3892
3893         ret = rbd_dev_header_info(rbd_dev);
3894         if (ret)
3895                 goto out;
3896
3897         /*
3898          * If there is a parent, see if it has disappeared due to the
3899          * mapped image getting flattened.
3900          */
3901         if (rbd_dev->parent) {
3902                 ret = rbd_dev_v2_parent_info(rbd_dev);
3903                 if (ret)
3904                         goto out;
3905         }
3906
3907         if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
3908                 rbd_dev->mapping.size = rbd_dev->header.image_size;
3909         } else {
3910                 /* validate mapped snapshot's EXISTS flag */
3911                 rbd_exists_validate(rbd_dev);
3912         }
3913
3914 out:
3915         up_write(&rbd_dev->header_rwsem);
3916         if (!ret && mapping_size != rbd_dev->mapping.size)
3917                 rbd_dev_update_size(rbd_dev);
3918
3919         return ret;
3920 }
3921
3922 static int rbd_init_request(struct blk_mq_tag_set *set, struct request *rq,
3923                 unsigned int hctx_idx, unsigned int numa_node)
3924 {
3925         struct work_struct *work = blk_mq_rq_to_pdu(rq);
3926
3927         INIT_WORK(work, rbd_queue_workfn);
3928         return 0;
3929 }
3930
3931 static const struct blk_mq_ops rbd_mq_ops = {
3932         .queue_rq       = rbd_queue_rq,
3933         .init_request   = rbd_init_request,
3934 };
3935
3936 static int rbd_init_disk(struct rbd_device *rbd_dev)
3937 {
3938         struct gendisk *disk;
3939         struct request_queue *q;
3940         unsigned int objset_bytes =
3941             rbd_dev->layout.object_size * rbd_dev->layout.stripe_count;
3942         int err;
3943
3944         /* create gendisk info */
3945         disk = alloc_disk(single_major ?
3946                           (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3947                           RBD_MINORS_PER_MAJOR);
3948         if (!disk)
3949                 return -ENOMEM;
3950
3951         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3952                  rbd_dev->dev_id);
3953         disk->major = rbd_dev->major;
3954         disk->first_minor = rbd_dev->minor;
3955         if (single_major)
3956                 disk->flags |= GENHD_FL_EXT_DEVT;
3957         disk->fops = &rbd_bd_ops;
3958         disk->private_data = rbd_dev;
3959
3960         memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
3961         rbd_dev->tag_set.ops = &rbd_mq_ops;
3962         rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
3963         rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
3964         rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
3965         rbd_dev->tag_set.nr_hw_queues = 1;
3966         rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
3967
3968         err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
3969         if (err)
3970                 goto out_disk;
3971
3972         q = blk_mq_init_queue(&rbd_dev->tag_set);
3973         if (IS_ERR(q)) {
3974                 err = PTR_ERR(q);
3975                 goto out_tag_set;
3976         }
3977
3978         blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
3979         /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
3980
3981         blk_queue_max_hw_sectors(q, objset_bytes >> SECTOR_SHIFT);
3982         q->limits.max_sectors = queue_max_hw_sectors(q);
3983         blk_queue_max_segments(q, USHRT_MAX);
3984         blk_queue_max_segment_size(q, UINT_MAX);
3985         blk_queue_io_min(q, objset_bytes);
3986         blk_queue_io_opt(q, objset_bytes);
3987
3988         if (rbd_dev->opts->trim) {
3989                 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
3990                 q->limits.discard_granularity = objset_bytes;
3991                 blk_queue_max_discard_sectors(q, objset_bytes >> SECTOR_SHIFT);
3992                 blk_queue_max_write_zeroes_sectors(q, objset_bytes >> SECTOR_SHIFT);
3993         }
3994
3995         if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
3996                 q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES;
3997
3998         /*
3999          * disk_release() expects a queue ref from add_disk() and will
4000          * put it.  Hold an extra ref until add_disk() is called.
4001          */
4002         WARN_ON(!blk_get_queue(q));
4003         disk->queue = q;
4004         q->queuedata = rbd_dev;
4005
4006         rbd_dev->disk = disk;
4007
4008         return 0;
4009 out_tag_set:
4010         blk_mq_free_tag_set(&rbd_dev->tag_set);
4011 out_disk:
4012         put_disk(disk);
4013         return err;
4014 }
4015
4016 /*
4017   sysfs
4018 */
4019
4020 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
4021 {
4022         return container_of(dev, struct rbd_device, dev);
4023 }
4024
4025 static ssize_t rbd_size_show(struct device *dev,
4026                              struct device_attribute *attr, char *buf)
4027 {
4028         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4029
4030         return sprintf(buf, "%llu\n",
4031                 (unsigned long long)rbd_dev->mapping.size);
4032 }
4033
4034 /*
4035  * Note this shows the features for whatever's mapped, which is not
4036  * necessarily the base image.
4037  */
4038 static ssize_t rbd_features_show(struct device *dev,
4039                              struct device_attribute *attr, char *buf)
4040 {
4041         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4042
4043         return sprintf(buf, "0x%016llx\n",
4044                         (unsigned long long)rbd_dev->mapping.features);
4045 }
4046
4047 static ssize_t rbd_major_show(struct device *dev,
4048                               struct device_attribute *attr, char *buf)
4049 {
4050         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4051
4052         if (rbd_dev->major)
4053                 return sprintf(buf, "%d\n", rbd_dev->major);
4054
4055         return sprintf(buf, "(none)\n");
4056 }
4057
4058 static ssize_t rbd_minor_show(struct device *dev,
4059                               struct device_attribute *attr, char *buf)
4060 {
4061         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4062
4063         return sprintf(buf, "%d\n", rbd_dev->minor);
4064 }
4065
4066 static ssize_t rbd_client_addr_show(struct device *dev,
4067                                     struct device_attribute *attr, char *buf)
4068 {
4069         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4070         struct ceph_entity_addr *client_addr =
4071             ceph_client_addr(rbd_dev->rbd_client->client);
4072
4073         return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
4074                        le32_to_cpu(client_addr->nonce));
4075 }
4076
4077 static ssize_t rbd_client_id_show(struct device *dev,
4078                                   struct device_attribute *attr, char *buf)
4079 {
4080         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4081
4082         return sprintf(buf, "client%lld\n",
4083                        ceph_client_gid(rbd_dev->rbd_client->client));
4084 }
4085
4086 static ssize_t rbd_cluster_fsid_show(struct device *dev,
4087                                      struct device_attribute *attr, char *buf)
4088 {
4089         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4090
4091         return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
4092 }
4093
4094 static ssize_t rbd_config_info_show(struct device *dev,
4095                                     struct device_attribute *attr, char *buf)
4096 {
4097         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4098
4099         return sprintf(buf, "%s\n", rbd_dev->config_info);
4100 }
4101
4102 static ssize_t rbd_pool_show(struct device *dev,
4103                              struct device_attribute *attr, char *buf)
4104 {
4105         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4106
4107         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
4108 }
4109
4110 static ssize_t rbd_pool_id_show(struct device *dev,
4111                              struct device_attribute *attr, char *buf)
4112 {
4113         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4114
4115         return sprintf(buf, "%llu\n",
4116                         (unsigned long long) rbd_dev->spec->pool_id);
4117 }
4118
4119 static ssize_t rbd_name_show(struct device *dev,
4120                              struct device_attribute *attr, char *buf)
4121 {
4122         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4123
4124         if (rbd_dev->spec->image_name)
4125                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
4126
4127         return sprintf(buf, "(unknown)\n");
4128 }
4129
4130 static ssize_t rbd_image_id_show(struct device *dev,
4131                              struct device_attribute *attr, char *buf)
4132 {
4133         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4134
4135         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
4136 }
4137
4138 /*
4139  * Shows the name of the currently-mapped snapshot (or
4140  * RBD_SNAP_HEAD_NAME for the base image).
4141  */
4142 static ssize_t rbd_snap_show(struct device *dev,
4143                              struct device_attribute *attr,
4144                              char *buf)
4145 {
4146         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4147
4148         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
4149 }
4150
4151 static ssize_t rbd_snap_id_show(struct device *dev,
4152                                 struct device_attribute *attr, char *buf)
4153 {
4154         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4155
4156         return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
4157 }
4158
4159 /*
4160  * For a v2 image, shows the chain of parent images, separated by empty
4161  * lines.  For v1 images or if there is no parent, shows "(no parent
4162  * image)".
4163  */
4164 static ssize_t rbd_parent_show(struct device *dev,
4165                                struct device_attribute *attr,
4166                                char *buf)
4167 {
4168         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4169         ssize_t count = 0;
4170
4171         if (!rbd_dev->parent)
4172                 return sprintf(buf, "(no parent image)\n");
4173
4174         for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
4175                 struct rbd_spec *spec = rbd_dev->parent_spec;
4176
4177                 count += sprintf(&buf[count], "%s"
4178                             "pool_id %llu\npool_name %s\n"
4179                             "image_id %s\nimage_name %s\n"
4180                             "snap_id %llu\nsnap_name %s\n"
4181                             "overlap %llu\n",
4182                             !count ? "" : "\n", /* first? */
4183                             spec->pool_id, spec->pool_name,
4184                             spec->image_id, spec->image_name ?: "(unknown)",
4185                             spec->snap_id, spec->snap_name,
4186                             rbd_dev->parent_overlap);
4187         }
4188
4189         return count;
4190 }
4191
4192 static ssize_t rbd_image_refresh(struct device *dev,
4193                                  struct device_attribute *attr,
4194                                  const char *buf,
4195                                  size_t size)
4196 {
4197         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4198         int ret;
4199
4200         ret = rbd_dev_refresh(rbd_dev);
4201         if (ret)
4202                 return ret;
4203
4204         return size;
4205 }
4206
4207 static DEVICE_ATTR(size, 0444, rbd_size_show, NULL);
4208 static DEVICE_ATTR(features, 0444, rbd_features_show, NULL);
4209 static DEVICE_ATTR(major, 0444, rbd_major_show, NULL);
4210 static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL);
4211 static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL);
4212 static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL);
4213 static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL);
4214 static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL);
4215 static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL);
4216 static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL);
4217 static DEVICE_ATTR(name, 0444, rbd_name_show, NULL);
4218 static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL);
4219 static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh);
4220 static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL);
4221 static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL);
4222 static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL);
4223
4224 static struct attribute *rbd_attrs[] = {
4225         &dev_attr_size.attr,
4226         &dev_attr_features.attr,
4227         &dev_attr_major.attr,
4228         &dev_attr_minor.attr,
4229         &dev_attr_client_addr.attr,
4230         &dev_attr_client_id.attr,
4231         &dev_attr_cluster_fsid.attr,
4232         &dev_attr_config_info.attr,
4233         &dev_attr_pool.attr,
4234         &dev_attr_pool_id.attr,
4235         &dev_attr_name.attr,
4236         &dev_attr_image_id.attr,
4237         &dev_attr_current_snap.attr,
4238         &dev_attr_snap_id.attr,
4239         &dev_attr_parent.attr,
4240         &dev_attr_refresh.attr,
4241         NULL
4242 };
4243
4244 static struct attribute_group rbd_attr_group = {
4245         .attrs = rbd_attrs,
4246 };
4247
4248 static const struct attribute_group *rbd_attr_groups[] = {
4249         &rbd_attr_group,
4250         NULL
4251 };
4252
4253 static void rbd_dev_release(struct device *dev);
4254
4255 static const struct device_type rbd_device_type = {
4256         .name           = "rbd",
4257         .groups         = rbd_attr_groups,
4258         .release        = rbd_dev_release,
4259 };
4260
4261 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
4262 {
4263         kref_get(&spec->kref);
4264
4265         return spec;
4266 }
4267
4268 static void rbd_spec_free(struct kref *kref);
4269 static void rbd_spec_put(struct rbd_spec *spec)
4270 {
4271         if (spec)
4272                 kref_put(&spec->kref, rbd_spec_free);
4273 }
4274
4275 static struct rbd_spec *rbd_spec_alloc(void)
4276 {
4277         struct rbd_spec *spec;
4278
4279         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4280         if (!spec)
4281                 return NULL;
4282
4283         spec->pool_id = CEPH_NOPOOL;
4284         spec->snap_id = CEPH_NOSNAP;
4285         kref_init(&spec->kref);
4286
4287         return spec;
4288 }
4289
4290 static void rbd_spec_free(struct kref *kref)
4291 {
4292         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4293
4294         kfree(spec->pool_name);
4295         kfree(spec->image_id);
4296         kfree(spec->image_name);
4297         kfree(spec->snap_name);
4298         kfree(spec);
4299 }
4300
4301 static void rbd_dev_free(struct rbd_device *rbd_dev)
4302 {
4303         WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
4304         WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
4305
4306         ceph_oid_destroy(&rbd_dev->header_oid);
4307         ceph_oloc_destroy(&rbd_dev->header_oloc);
4308         kfree(rbd_dev->config_info);
4309
4310         rbd_put_client(rbd_dev->rbd_client);
4311         rbd_spec_put(rbd_dev->spec);
4312         kfree(rbd_dev->opts);
4313         kfree(rbd_dev);
4314 }
4315
4316 static void rbd_dev_release(struct device *dev)
4317 {
4318         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4319         bool need_put = !!rbd_dev->opts;
4320
4321         if (need_put) {
4322                 destroy_workqueue(rbd_dev->task_wq);
4323                 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4324         }
4325
4326         rbd_dev_free(rbd_dev);
4327
4328         /*
4329          * This is racy, but way better than putting module outside of
4330          * the release callback.  The race window is pretty small, so
4331          * doing something similar to dm (dm-builtin.c) is overkill.
4332          */
4333         if (need_put)
4334                 module_put(THIS_MODULE);
4335 }
4336
4337 static struct rbd_device *__rbd_dev_create(struct rbd_client *rbdc,
4338                                            struct rbd_spec *spec)
4339 {
4340         struct rbd_device *rbd_dev;
4341
4342         rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
4343         if (!rbd_dev)
4344                 return NULL;
4345
4346         spin_lock_init(&rbd_dev->lock);
4347         INIT_LIST_HEAD(&rbd_dev->node);
4348         init_rwsem(&rbd_dev->header_rwsem);
4349
4350         rbd_dev->header.data_pool_id = CEPH_NOPOOL;
4351         ceph_oid_init(&rbd_dev->header_oid);
4352         rbd_dev->header_oloc.pool = spec->pool_id;
4353
4354         mutex_init(&rbd_dev->watch_mutex);
4355         rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4356         INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
4357
4358         init_rwsem(&rbd_dev->lock_rwsem);
4359         rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
4360         INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
4361         INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
4362         INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
4363         INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
4364         init_waitqueue_head(&rbd_dev->lock_waitq);
4365
4366         rbd_dev->dev.bus = &rbd_bus_type;
4367         rbd_dev->dev.type = &rbd_device_type;
4368         rbd_dev->dev.parent = &rbd_root_dev;
4369         device_initialize(&rbd_dev->dev);
4370
4371         rbd_dev->rbd_client = rbdc;
4372         rbd_dev->spec = spec;
4373
4374         return rbd_dev;
4375 }
4376
4377 /*
4378  * Create a mapping rbd_dev.
4379  */
4380 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4381                                          struct rbd_spec *spec,
4382                                          struct rbd_options *opts)
4383 {
4384         struct rbd_device *rbd_dev;
4385
4386         rbd_dev = __rbd_dev_create(rbdc, spec);
4387         if (!rbd_dev)
4388                 return NULL;
4389
4390         rbd_dev->opts = opts;
4391
4392         /* get an id and fill in device name */
4393         rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
4394                                          minor_to_rbd_dev_id(1 << MINORBITS),
4395                                          GFP_KERNEL);
4396         if (rbd_dev->dev_id < 0)
4397                 goto fail_rbd_dev;
4398
4399         sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
4400         rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
4401                                                    rbd_dev->name);
4402         if (!rbd_dev->task_wq)
4403                 goto fail_dev_id;
4404
4405         /* we have a ref from do_rbd_add() */
4406         __module_get(THIS_MODULE);
4407
4408         dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
4409         return rbd_dev;
4410
4411 fail_dev_id:
4412         ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4413 fail_rbd_dev:
4414         rbd_dev_free(rbd_dev);
4415         return NULL;
4416 }
4417
4418 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4419 {
4420         if (rbd_dev)
4421                 put_device(&rbd_dev->dev);
4422 }
4423
4424 /*
4425  * Get the size and object order for an image snapshot, or if
4426  * snap_id is CEPH_NOSNAP, gets this information for the base
4427  * image.
4428  */
4429 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4430                                 u8 *order, u64 *snap_size)
4431 {
4432         __le64 snapid = cpu_to_le64(snap_id);
4433         int ret;
4434         struct {
4435                 u8 order;
4436                 __le64 size;
4437         } __attribute__ ((packed)) size_buf = { 0 };
4438
4439         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4440                                   &rbd_dev->header_oloc, "get_size",
4441                                   &snapid, sizeof(snapid),
4442                                   &size_buf, sizeof(size_buf));
4443         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4444         if (ret < 0)
4445                 return ret;
4446         if (ret < sizeof (size_buf))
4447                 return -ERANGE;
4448
4449         if (order) {
4450                 *order = size_buf.order;
4451                 dout("  order %u", (unsigned int)*order);
4452         }
4453         *snap_size = le64_to_cpu(size_buf.size);
4454
4455         dout("  snap_id 0x%016llx snap_size = %llu\n",
4456                 (unsigned long long)snap_id,
4457                 (unsigned long long)*snap_size);
4458
4459         return 0;
4460 }
4461
4462 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4463 {
4464         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4465                                         &rbd_dev->header.obj_order,
4466                                         &rbd_dev->header.image_size);
4467 }
4468
4469 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4470 {
4471         void *reply_buf;
4472         int ret;
4473         void *p;
4474
4475         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4476         if (!reply_buf)
4477                 return -ENOMEM;
4478
4479         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4480                                   &rbd_dev->header_oloc, "get_object_prefix",
4481                                   NULL, 0, reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4482         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4483         if (ret < 0)
4484                 goto out;
4485
4486         p = reply_buf;
4487         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4488                                                 p + ret, NULL, GFP_NOIO);
4489         ret = 0;
4490
4491         if (IS_ERR(rbd_dev->header.object_prefix)) {
4492                 ret = PTR_ERR(rbd_dev->header.object_prefix);
4493                 rbd_dev->header.object_prefix = NULL;
4494         } else {
4495                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
4496         }
4497 out:
4498         kfree(reply_buf);
4499
4500         return ret;
4501 }
4502
4503 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4504                 u64 *snap_features)
4505 {
4506         __le64 snapid = cpu_to_le64(snap_id);
4507         struct {
4508                 __le64 features;
4509                 __le64 incompat;
4510         } __attribute__ ((packed)) features_buf = { 0 };
4511         u64 unsup;
4512         int ret;
4513
4514         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4515                                   &rbd_dev->header_oloc, "get_features",
4516                                   &snapid, sizeof(snapid),
4517                                   &features_buf, sizeof(features_buf));
4518         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4519         if (ret < 0)
4520                 return ret;
4521         if (ret < sizeof (features_buf))
4522                 return -ERANGE;
4523
4524         unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
4525         if (unsup) {
4526                 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
4527                          unsup);
4528                 return -ENXIO;
4529         }
4530
4531         *snap_features = le64_to_cpu(features_buf.features);
4532
4533         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4534                 (unsigned long long)snap_id,
4535                 (unsigned long long)*snap_features,
4536                 (unsigned long long)le64_to_cpu(features_buf.incompat));
4537
4538         return 0;
4539 }
4540
4541 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4542 {
4543         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4544                                                 &rbd_dev->header.features);
4545 }
4546
4547 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4548 {
4549         struct rbd_spec *parent_spec;
4550         size_t size;
4551         void *reply_buf = NULL;
4552         __le64 snapid;
4553         void *p;
4554         void *end;
4555         u64 pool_id;
4556         char *image_id;
4557         u64 snap_id;
4558         u64 overlap;
4559         int ret;
4560
4561         parent_spec = rbd_spec_alloc();
4562         if (!parent_spec)
4563                 return -ENOMEM;
4564
4565         size = sizeof (__le64) +                                /* pool_id */
4566                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
4567                 sizeof (__le64) +                               /* snap_id */
4568                 sizeof (__le64);                                /* overlap */
4569         reply_buf = kmalloc(size, GFP_KERNEL);
4570         if (!reply_buf) {
4571                 ret = -ENOMEM;
4572                 goto out_err;
4573         }
4574
4575         snapid = cpu_to_le64(rbd_dev->spec->snap_id);
4576         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4577                                   &rbd_dev->header_oloc, "get_parent",
4578                                   &snapid, sizeof(snapid), reply_buf, size);
4579         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4580         if (ret < 0)
4581                 goto out_err;
4582
4583         p = reply_buf;
4584         end = reply_buf + ret;
4585         ret = -ERANGE;
4586         ceph_decode_64_safe(&p, end, pool_id, out_err);
4587         if (pool_id == CEPH_NOPOOL) {
4588                 /*
4589                  * Either the parent never existed, or we have
4590                  * record of it but the image got flattened so it no
4591                  * longer has a parent.  When the parent of a
4592                  * layered image disappears we immediately set the
4593                  * overlap to 0.  The effect of this is that all new
4594                  * requests will be treated as if the image had no
4595                  * parent.
4596                  */
4597                 if (rbd_dev->parent_overlap) {
4598                         rbd_dev->parent_overlap = 0;
4599                         rbd_dev_parent_put(rbd_dev);
4600                         pr_info("%s: clone image has been flattened\n",
4601                                 rbd_dev->disk->disk_name);
4602                 }
4603
4604                 goto out;       /* No parent?  No problem. */
4605         }
4606
4607         /* The ceph file layout needs to fit pool id in 32 bits */
4608
4609         ret = -EIO;
4610         if (pool_id > (u64)U32_MAX) {
4611                 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
4612                         (unsigned long long)pool_id, U32_MAX);
4613                 goto out_err;
4614         }
4615
4616         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4617         if (IS_ERR(image_id)) {
4618                 ret = PTR_ERR(image_id);
4619                 goto out_err;
4620         }
4621         ceph_decode_64_safe(&p, end, snap_id, out_err);
4622         ceph_decode_64_safe(&p, end, overlap, out_err);
4623
4624         /*
4625          * The parent won't change (except when the clone is
4626          * flattened, already handled that).  So we only need to
4627          * record the parent spec we have not already done so.
4628          */
4629         if (!rbd_dev->parent_spec) {
4630                 parent_spec->pool_id = pool_id;
4631                 parent_spec->image_id = image_id;
4632                 parent_spec->snap_id = snap_id;
4633                 rbd_dev->parent_spec = parent_spec;
4634                 parent_spec = NULL;     /* rbd_dev now owns this */
4635         } else {
4636                 kfree(image_id);
4637         }
4638
4639         /*
4640          * We always update the parent overlap.  If it's zero we issue
4641          * a warning, as we will proceed as if there was no parent.
4642          */
4643         if (!overlap) {
4644                 if (parent_spec) {
4645                         /* refresh, careful to warn just once */
4646                         if (rbd_dev->parent_overlap)
4647                                 rbd_warn(rbd_dev,
4648                                     "clone now standalone (overlap became 0)");
4649                 } else {
4650                         /* initial probe */
4651                         rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
4652                 }
4653         }
4654         rbd_dev->parent_overlap = overlap;
4655
4656 out:
4657         ret = 0;
4658 out_err:
4659         kfree(reply_buf);
4660         rbd_spec_put(parent_spec);
4661
4662         return ret;
4663 }
4664
4665 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4666 {
4667         struct {
4668                 __le64 stripe_unit;
4669                 __le64 stripe_count;
4670         } __attribute__ ((packed)) striping_info_buf = { 0 };
4671         size_t size = sizeof (striping_info_buf);
4672         void *p;
4673         int ret;
4674
4675         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4676                                 &rbd_dev->header_oloc, "get_stripe_unit_count",
4677                                 NULL, 0, &striping_info_buf, size);
4678         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4679         if (ret < 0)
4680                 return ret;
4681         if (ret < size)
4682                 return -ERANGE;
4683
4684         p = &striping_info_buf;
4685         rbd_dev->header.stripe_unit = ceph_decode_64(&p);
4686         rbd_dev->header.stripe_count = ceph_decode_64(&p);
4687         return 0;
4688 }
4689
4690 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev)
4691 {
4692         __le64 data_pool_id;
4693         int ret;
4694
4695         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4696                                   &rbd_dev->header_oloc, "get_data_pool",
4697                                   NULL, 0, &data_pool_id, sizeof(data_pool_id));
4698         if (ret < 0)
4699                 return ret;
4700         if (ret < sizeof(data_pool_id))
4701                 return -EBADMSG;
4702
4703         rbd_dev->header.data_pool_id = le64_to_cpu(data_pool_id);
4704         WARN_ON(rbd_dev->header.data_pool_id == CEPH_NOPOOL);
4705         return 0;
4706 }
4707
4708 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4709 {
4710         CEPH_DEFINE_OID_ONSTACK(oid);
4711         size_t image_id_size;
4712         char *image_id;
4713         void *p;
4714         void *end;
4715         size_t size;
4716         void *reply_buf = NULL;
4717         size_t len = 0;
4718         char *image_name = NULL;
4719         int ret;
4720
4721         rbd_assert(!rbd_dev->spec->image_name);
4722
4723         len = strlen(rbd_dev->spec->image_id);
4724         image_id_size = sizeof (__le32) + len;
4725         image_id = kmalloc(image_id_size, GFP_KERNEL);
4726         if (!image_id)
4727                 return NULL;
4728
4729         p = image_id;
4730         end = image_id + image_id_size;
4731         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4732
4733         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4734         reply_buf = kmalloc(size, GFP_KERNEL);
4735         if (!reply_buf)
4736                 goto out;
4737
4738         ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
4739         ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
4740                                   "dir_get_name", image_id, image_id_size,
4741                                   reply_buf, size);
4742         if (ret < 0)
4743                 goto out;
4744         p = reply_buf;
4745         end = reply_buf + ret;
4746
4747         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4748         if (IS_ERR(image_name))
4749                 image_name = NULL;
4750         else
4751                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4752 out:
4753         kfree(reply_buf);
4754         kfree(image_id);
4755
4756         return image_name;
4757 }
4758
4759 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4760 {
4761         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4762         const char *snap_name;
4763         u32 which = 0;
4764
4765         /* Skip over names until we find the one we are looking for */
4766
4767         snap_name = rbd_dev->header.snap_names;
4768         while (which < snapc->num_snaps) {
4769                 if (!strcmp(name, snap_name))
4770                         return snapc->snaps[which];
4771                 snap_name += strlen(snap_name) + 1;
4772                 which++;
4773         }
4774         return CEPH_NOSNAP;
4775 }
4776
4777 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4778 {
4779         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4780         u32 which;
4781         bool found = false;
4782         u64 snap_id;
4783
4784         for (which = 0; !found && which < snapc->num_snaps; which++) {
4785                 const char *snap_name;
4786
4787                 snap_id = snapc->snaps[which];
4788                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4789                 if (IS_ERR(snap_name)) {
4790                         /* ignore no-longer existing snapshots */
4791                         if (PTR_ERR(snap_name) == -ENOENT)
4792                                 continue;
4793                         else
4794                                 break;
4795                 }
4796                 found = !strcmp(name, snap_name);
4797                 kfree(snap_name);
4798         }
4799         return found ? snap_id : CEPH_NOSNAP;
4800 }
4801
4802 /*
4803  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4804  * no snapshot by that name is found, or if an error occurs.
4805  */
4806 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4807 {
4808         if (rbd_dev->image_format == 1)
4809                 return rbd_v1_snap_id_by_name(rbd_dev, name);
4810
4811         return rbd_v2_snap_id_by_name(rbd_dev, name);
4812 }
4813
4814 /*
4815  * An image being mapped will have everything but the snap id.
4816  */
4817 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
4818 {
4819         struct rbd_spec *spec = rbd_dev->spec;
4820
4821         rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
4822         rbd_assert(spec->image_id && spec->image_name);
4823         rbd_assert(spec->snap_name);
4824
4825         if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4826                 u64 snap_id;
4827
4828                 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4829                 if (snap_id == CEPH_NOSNAP)
4830                         return -ENOENT;
4831
4832                 spec->snap_id = snap_id;
4833         } else {
4834                 spec->snap_id = CEPH_NOSNAP;
4835         }
4836
4837         return 0;
4838 }
4839
4840 /*
4841  * A parent image will have all ids but none of the names.
4842  *
4843  * All names in an rbd spec are dynamically allocated.  It's OK if we
4844  * can't figure out the name for an image id.
4845  */
4846 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
4847 {
4848         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4849         struct rbd_spec *spec = rbd_dev->spec;
4850         const char *pool_name;
4851         const char *image_name;
4852         const char *snap_name;
4853         int ret;
4854
4855         rbd_assert(spec->pool_id != CEPH_NOPOOL);
4856         rbd_assert(spec->image_id);
4857         rbd_assert(spec->snap_id != CEPH_NOSNAP);
4858
4859         /* Get the pool name; we have to make our own copy of this */
4860
4861         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4862         if (!pool_name) {
4863                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4864                 return -EIO;
4865         }
4866         pool_name = kstrdup(pool_name, GFP_KERNEL);
4867         if (!pool_name)
4868                 return -ENOMEM;
4869
4870         /* Fetch the image name; tolerate failure here */
4871
4872         image_name = rbd_dev_image_name(rbd_dev);
4873         if (!image_name)
4874                 rbd_warn(rbd_dev, "unable to get image name");
4875
4876         /* Fetch the snapshot name */
4877
4878         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4879         if (IS_ERR(snap_name)) {
4880                 ret = PTR_ERR(snap_name);
4881                 goto out_err;
4882         }
4883
4884         spec->pool_name = pool_name;
4885         spec->image_name = image_name;
4886         spec->snap_name = snap_name;
4887
4888         return 0;
4889
4890 out_err:
4891         kfree(image_name);
4892         kfree(pool_name);
4893         return ret;
4894 }
4895
4896 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4897 {
4898         size_t size;
4899         int ret;
4900         void *reply_buf;
4901         void *p;
4902         void *end;
4903         u64 seq;
4904         u32 snap_count;
4905         struct ceph_snap_context *snapc;
4906         u32 i;
4907
4908         /*
4909          * We'll need room for the seq value (maximum snapshot id),
4910          * snapshot count, and array of that many snapshot ids.
4911          * For now we have a fixed upper limit on the number we're
4912          * prepared to receive.
4913          */
4914         size = sizeof (__le64) + sizeof (__le32) +
4915                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
4916         reply_buf = kzalloc(size, GFP_KERNEL);
4917         if (!reply_buf)
4918                 return -ENOMEM;
4919
4920         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4921                                   &rbd_dev->header_oloc, "get_snapcontext",
4922                                   NULL, 0, reply_buf, size);
4923         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4924         if (ret < 0)
4925                 goto out;
4926
4927         p = reply_buf;
4928         end = reply_buf + ret;
4929         ret = -ERANGE;
4930         ceph_decode_64_safe(&p, end, seq, out);
4931         ceph_decode_32_safe(&p, end, snap_count, out);
4932
4933         /*
4934          * Make sure the reported number of snapshot ids wouldn't go
4935          * beyond the end of our buffer.  But before checking that,
4936          * make sure the computed size of the snapshot context we
4937          * allocate is representable in a size_t.
4938          */
4939         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4940                                  / sizeof (u64)) {
4941                 ret = -EINVAL;
4942                 goto out;
4943         }
4944         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4945                 goto out;
4946         ret = 0;
4947
4948         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4949         if (!snapc) {
4950                 ret = -ENOMEM;
4951                 goto out;
4952         }
4953         snapc->seq = seq;
4954         for (i = 0; i < snap_count; i++)
4955                 snapc->snaps[i] = ceph_decode_64(&p);
4956
4957         ceph_put_snap_context(rbd_dev->header.snapc);
4958         rbd_dev->header.snapc = snapc;
4959
4960         dout("  snap context seq = %llu, snap_count = %u\n",
4961                 (unsigned long long)seq, (unsigned int)snap_count);
4962 out:
4963         kfree(reply_buf);
4964
4965         return ret;
4966 }
4967
4968 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4969                                         u64 snap_id)
4970 {
4971         size_t size;
4972         void *reply_buf;
4973         __le64 snapid;
4974         int ret;
4975         void *p;
4976         void *end;
4977         char *snap_name;
4978
4979         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4980         reply_buf = kmalloc(size, GFP_KERNEL);
4981         if (!reply_buf)
4982                 return ERR_PTR(-ENOMEM);
4983
4984         snapid = cpu_to_le64(snap_id);
4985         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4986                                   &rbd_dev->header_oloc, "get_snapshot_name",
4987                                   &snapid, sizeof(snapid), reply_buf, size);
4988         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4989         if (ret < 0) {
4990                 snap_name = ERR_PTR(ret);
4991                 goto out;
4992         }
4993
4994         p = reply_buf;
4995         end = reply_buf + ret;
4996         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4997         if (IS_ERR(snap_name))
4998                 goto out;
4999
5000         dout("  snap_id 0x%016llx snap_name = %s\n",
5001                 (unsigned long long)snap_id, snap_name);
5002 out:
5003         kfree(reply_buf);
5004
5005         return snap_name;
5006 }
5007
5008 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
5009 {
5010         bool first_time = rbd_dev->header.object_prefix == NULL;
5011         int ret;
5012
5013         ret = rbd_dev_v2_image_size(rbd_dev);
5014         if (ret)
5015                 return ret;
5016
5017         if (first_time) {
5018                 ret = rbd_dev_v2_header_onetime(rbd_dev);
5019                 if (ret)
5020                         return ret;
5021         }
5022
5023         ret = rbd_dev_v2_snap_context(rbd_dev);
5024         if (ret && first_time) {
5025                 kfree(rbd_dev->header.object_prefix);
5026                 rbd_dev->header.object_prefix = NULL;
5027         }
5028
5029         return ret;
5030 }
5031
5032 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
5033 {
5034         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5035
5036         if (rbd_dev->image_format == 1)
5037                 return rbd_dev_v1_header_info(rbd_dev);
5038
5039         return rbd_dev_v2_header_info(rbd_dev);
5040 }
5041
5042 /*
5043  * Skips over white space at *buf, and updates *buf to point to the
5044  * first found non-space character (if any). Returns the length of
5045  * the token (string of non-white space characters) found.  Note
5046  * that *buf must be terminated with '\0'.
5047  */
5048 static inline size_t next_token(const char **buf)
5049 {
5050         /*
5051         * These are the characters that produce nonzero for
5052         * isspace() in the "C" and "POSIX" locales.
5053         */
5054         const char *spaces = " \f\n\r\t\v";
5055
5056         *buf += strspn(*buf, spaces);   /* Find start of token */
5057
5058         return strcspn(*buf, spaces);   /* Return token length */
5059 }
5060
5061 /*
5062  * Finds the next token in *buf, dynamically allocates a buffer big
5063  * enough to hold a copy of it, and copies the token into the new
5064  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
5065  * that a duplicate buffer is created even for a zero-length token.
5066  *
5067  * Returns a pointer to the newly-allocated duplicate, or a null
5068  * pointer if memory for the duplicate was not available.  If
5069  * the lenp argument is a non-null pointer, the length of the token
5070  * (not including the '\0') is returned in *lenp.
5071  *
5072  * If successful, the *buf pointer will be updated to point beyond
5073  * the end of the found token.
5074  *
5075  * Note: uses GFP_KERNEL for allocation.
5076  */
5077 static inline char *dup_token(const char **buf, size_t *lenp)
5078 {
5079         char *dup;
5080         size_t len;
5081
5082         len = next_token(buf);
5083         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
5084         if (!dup)
5085                 return NULL;
5086         *(dup + len) = '\0';
5087         *buf += len;
5088
5089         if (lenp)
5090                 *lenp = len;
5091
5092         return dup;
5093 }
5094
5095 /*
5096  * Parse the options provided for an "rbd add" (i.e., rbd image
5097  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
5098  * and the data written is passed here via a NUL-terminated buffer.
5099  * Returns 0 if successful or an error code otherwise.
5100  *
5101  * The information extracted from these options is recorded in
5102  * the other parameters which return dynamically-allocated
5103  * structures:
5104  *  ceph_opts
5105  *      The address of a pointer that will refer to a ceph options
5106  *      structure.  Caller must release the returned pointer using
5107  *      ceph_destroy_options() when it is no longer needed.
5108  *  rbd_opts
5109  *      Address of an rbd options pointer.  Fully initialized by
5110  *      this function; caller must release with kfree().
5111  *  spec
5112  *      Address of an rbd image specification pointer.  Fully
5113  *      initialized by this function based on parsed options.
5114  *      Caller must release with rbd_spec_put().
5115  *
5116  * The options passed take this form:
5117  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
5118  * where:
5119  *  <mon_addrs>
5120  *      A comma-separated list of one or more monitor addresses.
5121  *      A monitor address is an ip address, optionally followed
5122  *      by a port number (separated by a colon).
5123  *        I.e.:  ip1[:port1][,ip2[:port2]...]
5124  *  <options>
5125  *      A comma-separated list of ceph and/or rbd options.
5126  *  <pool_name>
5127  *      The name of the rados pool containing the rbd image.
5128  *  <image_name>
5129  *      The name of the image in that pool to map.
5130  *  <snap_id>
5131  *      An optional snapshot id.  If provided, the mapping will
5132  *      present data from the image at the time that snapshot was
5133  *      created.  The image head is used if no snapshot id is
5134  *      provided.  Snapshot mappings are always read-only.
5135  */
5136 static int rbd_add_parse_args(const char *buf,
5137                                 struct ceph_options **ceph_opts,
5138                                 struct rbd_options **opts,
5139                                 struct rbd_spec **rbd_spec)
5140 {
5141         size_t len;
5142         char *options;
5143         const char *mon_addrs;
5144         char *snap_name;
5145         size_t mon_addrs_size;
5146         struct rbd_spec *spec = NULL;
5147         struct rbd_options *rbd_opts = NULL;
5148         struct ceph_options *copts;
5149         int ret;
5150
5151         /* The first four tokens are required */
5152
5153         len = next_token(&buf);
5154         if (!len) {
5155                 rbd_warn(NULL, "no monitor address(es) provided");
5156                 return -EINVAL;
5157         }
5158         mon_addrs = buf;
5159         mon_addrs_size = len + 1;
5160         buf += len;
5161
5162         ret = -EINVAL;
5163         options = dup_token(&buf, NULL);
5164         if (!options)
5165                 return -ENOMEM;
5166         if (!*options) {
5167                 rbd_warn(NULL, "no options provided");
5168                 goto out_err;
5169         }
5170
5171         spec = rbd_spec_alloc();
5172         if (!spec)
5173                 goto out_mem;
5174
5175         spec->pool_name = dup_token(&buf, NULL);
5176         if (!spec->pool_name)
5177                 goto out_mem;
5178         if (!*spec->pool_name) {
5179                 rbd_warn(NULL, "no pool name provided");
5180                 goto out_err;
5181         }
5182
5183         spec->image_name = dup_token(&buf, NULL);
5184         if (!spec->image_name)
5185                 goto out_mem;
5186         if (!*spec->image_name) {
5187                 rbd_warn(NULL, "no image name provided");
5188                 goto out_err;
5189         }
5190
5191         /*
5192          * Snapshot name is optional; default is to use "-"
5193          * (indicating the head/no snapshot).
5194          */
5195         len = next_token(&buf);
5196         if (!len) {
5197                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
5198                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
5199         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
5200                 ret = -ENAMETOOLONG;
5201                 goto out_err;
5202         }
5203         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
5204         if (!snap_name)
5205                 goto out_mem;
5206         *(snap_name + len) = '\0';
5207         spec->snap_name = snap_name;
5208
5209         /* Initialize all rbd options to the defaults */
5210
5211         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
5212         if (!rbd_opts)
5213                 goto out_mem;
5214
5215         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
5216         rbd_opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
5217         rbd_opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT;
5218         rbd_opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
5219         rbd_opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
5220         rbd_opts->trim = RBD_TRIM_DEFAULT;
5221
5222         copts = ceph_parse_options(options, mon_addrs,
5223                                         mon_addrs + mon_addrs_size - 1,
5224                                         parse_rbd_opts_token, rbd_opts);
5225         if (IS_ERR(copts)) {
5226                 ret = PTR_ERR(copts);
5227                 goto out_err;
5228         }
5229         kfree(options);
5230
5231         *ceph_opts = copts;
5232         *opts = rbd_opts;
5233         *rbd_spec = spec;
5234
5235         return 0;
5236 out_mem:
5237         ret = -ENOMEM;
5238 out_err:
5239         kfree(rbd_opts);
5240         rbd_spec_put(spec);
5241         kfree(options);
5242
5243         return ret;
5244 }
5245
5246 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
5247 {
5248         down_write(&rbd_dev->lock_rwsem);
5249         if (__rbd_is_lock_owner(rbd_dev))
5250                 rbd_unlock(rbd_dev);
5251         up_write(&rbd_dev->lock_rwsem);
5252 }
5253
5254 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
5255 {
5256         int ret;
5257
5258         if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
5259                 rbd_warn(rbd_dev, "exclusive-lock feature is not enabled");
5260                 return -EINVAL;
5261         }
5262
5263         /* FIXME: "rbd map --exclusive" should be in interruptible */
5264         down_read(&rbd_dev->lock_rwsem);
5265         ret = rbd_wait_state_locked(rbd_dev, true);
5266         up_read(&rbd_dev->lock_rwsem);
5267         if (ret) {
5268                 rbd_warn(rbd_dev, "failed to acquire exclusive lock");
5269                 return -EROFS;
5270         }
5271
5272         return 0;
5273 }
5274
5275 /*
5276  * An rbd format 2 image has a unique identifier, distinct from the
5277  * name given to it by the user.  Internally, that identifier is
5278  * what's used to specify the names of objects related to the image.
5279  *
5280  * A special "rbd id" object is used to map an rbd image name to its
5281  * id.  If that object doesn't exist, then there is no v2 rbd image
5282  * with the supplied name.
5283  *
5284  * This function will record the given rbd_dev's image_id field if
5285  * it can be determined, and in that case will return 0.  If any
5286  * errors occur a negative errno will be returned and the rbd_dev's
5287  * image_id field will be unchanged (and should be NULL).
5288  */
5289 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5290 {
5291         int ret;
5292         size_t size;
5293         CEPH_DEFINE_OID_ONSTACK(oid);
5294         void *response;
5295         char *image_id;
5296
5297         /*
5298          * When probing a parent image, the image id is already
5299          * known (and the image name likely is not).  There's no
5300          * need to fetch the image id again in this case.  We
5301          * do still need to set the image format though.
5302          */
5303         if (rbd_dev->spec->image_id) {
5304                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5305
5306                 return 0;
5307         }
5308
5309         /*
5310          * First, see if the format 2 image id file exists, and if
5311          * so, get the image's persistent id from it.
5312          */
5313         ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
5314                                rbd_dev->spec->image_name);
5315         if (ret)
5316                 return ret;
5317
5318         dout("rbd id object name is %s\n", oid.name);
5319
5320         /* Response will be an encoded string, which includes a length */
5321
5322         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5323         response = kzalloc(size, GFP_NOIO);
5324         if (!response) {
5325                 ret = -ENOMEM;
5326                 goto out;
5327         }
5328
5329         /* If it doesn't exist we'll assume it's a format 1 image */
5330
5331         ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5332                                   "get_id", NULL, 0,
5333                                   response, RBD_IMAGE_ID_LEN_MAX);
5334         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5335         if (ret == -ENOENT) {
5336                 image_id = kstrdup("", GFP_KERNEL);
5337                 ret = image_id ? 0 : -ENOMEM;
5338                 if (!ret)
5339                         rbd_dev->image_format = 1;
5340         } else if (ret >= 0) {
5341                 void *p = response;
5342
5343                 image_id = ceph_extract_encoded_string(&p, p + ret,
5344                                                 NULL, GFP_NOIO);
5345                 ret = PTR_ERR_OR_ZERO(image_id);
5346                 if (!ret)
5347                         rbd_dev->image_format = 2;
5348         }
5349
5350         if (!ret) {
5351                 rbd_dev->spec->image_id = image_id;
5352                 dout("image_id is %s\n", image_id);
5353         }
5354 out:
5355         kfree(response);
5356         ceph_oid_destroy(&oid);
5357         return ret;
5358 }
5359
5360 /*
5361  * Undo whatever state changes are made by v1 or v2 header info
5362  * call.
5363  */
5364 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5365 {
5366         struct rbd_image_header *header;
5367
5368         rbd_dev_parent_put(rbd_dev);
5369
5370         /* Free dynamic fields from the header, then zero it out */
5371
5372         header = &rbd_dev->header;
5373         ceph_put_snap_context(header->snapc);
5374         kfree(header->snap_sizes);
5375         kfree(header->snap_names);
5376         kfree(header->object_prefix);
5377         memset(header, 0, sizeof (*header));
5378 }
5379
5380 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5381 {
5382         int ret;
5383
5384         ret = rbd_dev_v2_object_prefix(rbd_dev);
5385         if (ret)
5386                 goto out_err;
5387
5388         /*
5389          * Get the and check features for the image.  Currently the
5390          * features are assumed to never change.
5391          */
5392         ret = rbd_dev_v2_features(rbd_dev);
5393         if (ret)
5394                 goto out_err;
5395
5396         /* If the image supports fancy striping, get its parameters */
5397
5398         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5399                 ret = rbd_dev_v2_striping_info(rbd_dev);
5400                 if (ret < 0)
5401                         goto out_err;
5402         }
5403
5404         if (rbd_dev->header.features & RBD_FEATURE_DATA_POOL) {
5405                 ret = rbd_dev_v2_data_pool(rbd_dev);
5406                 if (ret)
5407                         goto out_err;
5408         }
5409
5410         rbd_init_layout(rbd_dev);
5411         return 0;
5412
5413 out_err:
5414         rbd_dev->header.features = 0;
5415         kfree(rbd_dev->header.object_prefix);
5416         rbd_dev->header.object_prefix = NULL;
5417         return ret;
5418 }
5419
5420 /*
5421  * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
5422  * rbd_dev_image_probe() recursion depth, which means it's also the
5423  * length of the already discovered part of the parent chain.
5424  */
5425 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
5426 {
5427         struct rbd_device *parent = NULL;
5428         int ret;
5429
5430         if (!rbd_dev->parent_spec)
5431                 return 0;
5432
5433         if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
5434                 pr_info("parent chain is too long (%d)\n", depth);
5435                 ret = -EINVAL;
5436                 goto out_err;
5437         }
5438
5439         parent = __rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec);
5440         if (!parent) {
5441                 ret = -ENOMEM;
5442                 goto out_err;
5443         }
5444
5445         /*
5446          * Images related by parent/child relationships always share
5447          * rbd_client and spec/parent_spec, so bump their refcounts.
5448          */
5449         __rbd_get_client(rbd_dev->rbd_client);
5450         rbd_spec_get(rbd_dev->parent_spec);
5451
5452         ret = rbd_dev_image_probe(parent, depth);
5453         if (ret < 0)
5454                 goto out_err;
5455
5456         rbd_dev->parent = parent;
5457         atomic_set(&rbd_dev->parent_ref, 1);
5458         return 0;
5459
5460 out_err:
5461         rbd_dev_unparent(rbd_dev);
5462         rbd_dev_destroy(parent);
5463         return ret;
5464 }
5465
5466 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
5467 {
5468         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5469         rbd_dev_mapping_clear(rbd_dev);
5470         rbd_free_disk(rbd_dev);
5471         if (!single_major)
5472                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5473 }
5474
5475 /*
5476  * rbd_dev->header_rwsem must be locked for write and will be unlocked
5477  * upon return.
5478  */
5479 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5480 {
5481         int ret;
5482
5483         /* Record our major and minor device numbers. */
5484
5485         if (!single_major) {
5486                 ret = register_blkdev(0, rbd_dev->name);
5487                 if (ret < 0)
5488                         goto err_out_unlock;
5489
5490                 rbd_dev->major = ret;
5491                 rbd_dev->minor = 0;
5492         } else {
5493                 rbd_dev->major = rbd_major;
5494                 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5495         }
5496
5497         /* Set up the blkdev mapping. */
5498
5499         ret = rbd_init_disk(rbd_dev);
5500         if (ret)
5501                 goto err_out_blkdev;
5502
5503         ret = rbd_dev_mapping_set(rbd_dev);
5504         if (ret)
5505                 goto err_out_disk;
5506
5507         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5508         set_disk_ro(rbd_dev->disk, rbd_dev->opts->read_only);
5509
5510         ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
5511         if (ret)
5512                 goto err_out_mapping;
5513
5514         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5515         up_write(&rbd_dev->header_rwsem);
5516         return 0;
5517
5518 err_out_mapping:
5519         rbd_dev_mapping_clear(rbd_dev);
5520 err_out_disk:
5521         rbd_free_disk(rbd_dev);
5522 err_out_blkdev:
5523         if (!single_major)
5524                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5525 err_out_unlock:
5526         up_write(&rbd_dev->header_rwsem);
5527         return ret;
5528 }
5529
5530 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5531 {
5532         struct rbd_spec *spec = rbd_dev->spec;
5533         int ret;
5534
5535         /* Record the header object name for this rbd image. */
5536
5537         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5538         if (rbd_dev->image_format == 1)
5539                 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
5540                                        spec->image_name, RBD_SUFFIX);
5541         else
5542                 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
5543                                        RBD_HEADER_PREFIX, spec->image_id);
5544
5545         return ret;
5546 }
5547
5548 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5549 {
5550         rbd_dev_unprobe(rbd_dev);
5551         if (rbd_dev->opts)
5552                 rbd_unregister_watch(rbd_dev);
5553         rbd_dev->image_format = 0;
5554         kfree(rbd_dev->spec->image_id);
5555         rbd_dev->spec->image_id = NULL;
5556 }
5557
5558 /*
5559  * Probe for the existence of the header object for the given rbd
5560  * device.  If this image is the one being mapped (i.e., not a
5561  * parent), initiate a watch on its header object before using that
5562  * object to get detailed information about the rbd image.
5563  */
5564 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
5565 {
5566         int ret;
5567
5568         /*
5569          * Get the id from the image id object.  Unless there's an
5570          * error, rbd_dev->spec->image_id will be filled in with
5571          * a dynamically-allocated string, and rbd_dev->image_format
5572          * will be set to either 1 or 2.
5573          */
5574         ret = rbd_dev_image_id(rbd_dev);
5575         if (ret)
5576                 return ret;
5577
5578         ret = rbd_dev_header_name(rbd_dev);
5579         if (ret)
5580                 goto err_out_format;
5581
5582         if (!depth) {
5583                 ret = rbd_register_watch(rbd_dev);
5584                 if (ret) {
5585                         if (ret == -ENOENT)
5586                                 pr_info("image %s/%s does not exist\n",
5587                                         rbd_dev->spec->pool_name,
5588                                         rbd_dev->spec->image_name);
5589                         goto err_out_format;
5590                 }
5591         }
5592
5593         ret = rbd_dev_header_info(rbd_dev);
5594         if (ret)
5595                 goto err_out_watch;
5596
5597         /*
5598          * If this image is the one being mapped, we have pool name and
5599          * id, image name and id, and snap name - need to fill snap id.
5600          * Otherwise this is a parent image, identified by pool, image
5601          * and snap ids - need to fill in names for those ids.
5602          */
5603         if (!depth)
5604                 ret = rbd_spec_fill_snap_id(rbd_dev);
5605         else
5606                 ret = rbd_spec_fill_names(rbd_dev);
5607         if (ret) {
5608                 if (ret == -ENOENT)
5609                         pr_info("snap %s/%s@%s does not exist\n",
5610                                 rbd_dev->spec->pool_name,
5611                                 rbd_dev->spec->image_name,
5612                                 rbd_dev->spec->snap_name);
5613                 goto err_out_probe;
5614         }
5615
5616         if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
5617                 ret = rbd_dev_v2_parent_info(rbd_dev);
5618                 if (ret)
5619                         goto err_out_probe;
5620
5621                 /*
5622                  * Need to warn users if this image is the one being
5623                  * mapped and has a parent.
5624                  */
5625                 if (!depth && rbd_dev->parent_spec)
5626                         rbd_warn(rbd_dev,
5627                                  "WARNING: kernel layering is EXPERIMENTAL!");
5628         }
5629
5630         ret = rbd_dev_probe_parent(rbd_dev, depth);
5631         if (ret)
5632                 goto err_out_probe;
5633
5634         dout("discovered format %u image, header name is %s\n",
5635                 rbd_dev->image_format, rbd_dev->header_oid.name);
5636         return 0;
5637
5638 err_out_probe:
5639         rbd_dev_unprobe(rbd_dev);
5640 err_out_watch:
5641         if (!depth)
5642                 rbd_unregister_watch(rbd_dev);
5643 err_out_format:
5644         rbd_dev->image_format = 0;
5645         kfree(rbd_dev->spec->image_id);
5646         rbd_dev->spec->image_id = NULL;
5647         return ret;
5648 }
5649
5650 static ssize_t do_rbd_add(struct bus_type *bus,
5651                           const char *buf,
5652                           size_t count)
5653 {
5654         struct rbd_device *rbd_dev = NULL;
5655         struct ceph_options *ceph_opts = NULL;
5656         struct rbd_options *rbd_opts = NULL;
5657         struct rbd_spec *spec = NULL;
5658         struct rbd_client *rbdc;
5659         int rc;
5660
5661         if (!try_module_get(THIS_MODULE))
5662                 return -ENODEV;
5663
5664         /* parse add command */
5665         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5666         if (rc < 0)
5667                 goto out;
5668
5669         rbdc = rbd_get_client(ceph_opts);
5670         if (IS_ERR(rbdc)) {
5671                 rc = PTR_ERR(rbdc);
5672                 goto err_out_args;
5673         }
5674
5675         /* pick the pool */
5676         rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name);
5677         if (rc < 0) {
5678                 if (rc == -ENOENT)
5679                         pr_info("pool %s does not exist\n", spec->pool_name);
5680                 goto err_out_client;
5681         }
5682         spec->pool_id = (u64)rc;
5683
5684         rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
5685         if (!rbd_dev) {
5686                 rc = -ENOMEM;
5687                 goto err_out_client;
5688         }
5689         rbdc = NULL;            /* rbd_dev now owns this */
5690         spec = NULL;            /* rbd_dev now owns this */
5691         rbd_opts = NULL;        /* rbd_dev now owns this */
5692
5693         rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
5694         if (!rbd_dev->config_info) {
5695                 rc = -ENOMEM;
5696                 goto err_out_rbd_dev;
5697         }
5698
5699         down_write(&rbd_dev->header_rwsem);
5700         rc = rbd_dev_image_probe(rbd_dev, 0);
5701         if (rc < 0) {
5702                 up_write(&rbd_dev->header_rwsem);
5703                 goto err_out_rbd_dev;
5704         }
5705
5706         /* If we are mapping a snapshot it must be marked read-only */
5707         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5708                 rbd_dev->opts->read_only = true;
5709
5710         rc = rbd_dev_device_setup(rbd_dev);
5711         if (rc)
5712                 goto err_out_image_probe;
5713
5714         if (rbd_dev->opts->exclusive) {
5715                 rc = rbd_add_acquire_lock(rbd_dev);
5716                 if (rc)
5717                         goto err_out_device_setup;
5718         }
5719
5720         /* Everything's ready.  Announce the disk to the world. */
5721
5722         rc = device_add(&rbd_dev->dev);
5723         if (rc)
5724                 goto err_out_image_lock;
5725
5726         add_disk(rbd_dev->disk);
5727         /* see rbd_init_disk() */
5728         blk_put_queue(rbd_dev->disk->queue);
5729
5730         spin_lock(&rbd_dev_list_lock);
5731         list_add_tail(&rbd_dev->node, &rbd_dev_list);
5732         spin_unlock(&rbd_dev_list_lock);
5733
5734         pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
5735                 (unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
5736                 rbd_dev->header.features);
5737         rc = count;
5738 out:
5739         module_put(THIS_MODULE);
5740         return rc;
5741
5742 err_out_image_lock:
5743         rbd_dev_image_unlock(rbd_dev);
5744 err_out_device_setup:
5745         rbd_dev_device_release(rbd_dev);
5746 err_out_image_probe:
5747         rbd_dev_image_release(rbd_dev);
5748 err_out_rbd_dev:
5749         rbd_dev_destroy(rbd_dev);
5750 err_out_client:
5751         rbd_put_client(rbdc);
5752 err_out_args:
5753         rbd_spec_put(spec);
5754         kfree(rbd_opts);
5755         goto out;
5756 }
5757
5758 static ssize_t rbd_add(struct bus_type *bus,
5759                        const char *buf,
5760                        size_t count)
5761 {
5762         if (single_major)
5763                 return -EINVAL;
5764
5765         return do_rbd_add(bus, buf, count);
5766 }
5767
5768 static ssize_t rbd_add_single_major(struct bus_type *bus,
5769                                     const char *buf,
5770                                     size_t count)
5771 {
5772         return do_rbd_add(bus, buf, count);
5773 }
5774
5775 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5776 {
5777         while (rbd_dev->parent) {
5778                 struct rbd_device *first = rbd_dev;
5779                 struct rbd_device *second = first->parent;
5780                 struct rbd_device *third;
5781
5782                 /*
5783                  * Follow to the parent with no grandparent and
5784                  * remove it.
5785                  */
5786                 while (second && (third = second->parent)) {
5787                         first = second;
5788                         second = third;
5789                 }
5790                 rbd_assert(second);
5791                 rbd_dev_image_release(second);
5792                 rbd_dev_destroy(second);
5793                 first->parent = NULL;
5794                 first->parent_overlap = 0;
5795
5796                 rbd_assert(first->parent_spec);
5797                 rbd_spec_put(first->parent_spec);
5798                 first->parent_spec = NULL;
5799         }
5800 }
5801
5802 static ssize_t do_rbd_remove(struct bus_type *bus,
5803                              const char *buf,
5804                              size_t count)
5805 {
5806         struct rbd_device *rbd_dev = NULL;
5807         struct list_head *tmp;
5808         int dev_id;
5809         char opt_buf[6];
5810         bool already = false;
5811         bool force = false;
5812         int ret;
5813
5814         dev_id = -1;
5815         opt_buf[0] = '\0';
5816         sscanf(buf, "%d %5s", &dev_id, opt_buf);
5817         if (dev_id < 0) {
5818                 pr_err("dev_id out of range\n");
5819                 return -EINVAL;
5820         }
5821         if (opt_buf[0] != '\0') {
5822                 if (!strcmp(opt_buf, "force")) {
5823                         force = true;
5824                 } else {
5825                         pr_err("bad remove option at '%s'\n", opt_buf);
5826                         return -EINVAL;
5827                 }
5828         }
5829
5830         ret = -ENOENT;
5831         spin_lock(&rbd_dev_list_lock);
5832         list_for_each(tmp, &rbd_dev_list) {
5833                 rbd_dev = list_entry(tmp, struct rbd_device, node);
5834                 if (rbd_dev->dev_id == dev_id) {
5835                         ret = 0;
5836                         break;
5837                 }
5838         }
5839         if (!ret) {
5840                 spin_lock_irq(&rbd_dev->lock);
5841                 if (rbd_dev->open_count && !force)
5842                         ret = -EBUSY;
5843                 else
5844                         already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5845                                                         &rbd_dev->flags);
5846                 spin_unlock_irq(&rbd_dev->lock);
5847         }
5848         spin_unlock(&rbd_dev_list_lock);
5849         if (ret < 0 || already)
5850                 return ret;
5851
5852         if (force) {
5853                 /*
5854                  * Prevent new IO from being queued and wait for existing
5855                  * IO to complete/fail.
5856                  */
5857                 blk_mq_freeze_queue(rbd_dev->disk->queue);
5858                 blk_set_queue_dying(rbd_dev->disk->queue);
5859         }
5860
5861         del_gendisk(rbd_dev->disk);
5862         spin_lock(&rbd_dev_list_lock);
5863         list_del_init(&rbd_dev->node);
5864         spin_unlock(&rbd_dev_list_lock);
5865         device_del(&rbd_dev->dev);
5866
5867         rbd_dev_image_unlock(rbd_dev);
5868         rbd_dev_device_release(rbd_dev);
5869         rbd_dev_image_release(rbd_dev);
5870         rbd_dev_destroy(rbd_dev);
5871         return count;
5872 }
5873
5874 static ssize_t rbd_remove(struct bus_type *bus,
5875                           const char *buf,
5876                           size_t count)
5877 {
5878         if (single_major)
5879                 return -EINVAL;
5880
5881         return do_rbd_remove(bus, buf, count);
5882 }
5883
5884 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5885                                        const char *buf,
5886                                        size_t count)
5887 {
5888         return do_rbd_remove(bus, buf, count);
5889 }
5890
5891 /*
5892  * create control files in sysfs
5893  * /sys/bus/rbd/...
5894  */
5895 static int rbd_sysfs_init(void)
5896 {
5897         int ret;
5898
5899         ret = device_register(&rbd_root_dev);
5900         if (ret < 0)
5901                 return ret;
5902
5903         ret = bus_register(&rbd_bus_type);
5904         if (ret < 0)
5905                 device_unregister(&rbd_root_dev);
5906
5907         return ret;
5908 }
5909
5910 static void rbd_sysfs_cleanup(void)
5911 {
5912         bus_unregister(&rbd_bus_type);
5913         device_unregister(&rbd_root_dev);
5914 }
5915
5916 static int rbd_slab_init(void)
5917 {
5918         rbd_assert(!rbd_img_request_cache);
5919         rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
5920         if (!rbd_img_request_cache)
5921                 return -ENOMEM;
5922
5923         rbd_assert(!rbd_obj_request_cache);
5924         rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
5925         if (!rbd_obj_request_cache)
5926                 goto out_err;
5927
5928         return 0;
5929
5930 out_err:
5931         kmem_cache_destroy(rbd_img_request_cache);
5932         rbd_img_request_cache = NULL;
5933         return -ENOMEM;
5934 }
5935
5936 static void rbd_slab_exit(void)
5937 {
5938         rbd_assert(rbd_obj_request_cache);
5939         kmem_cache_destroy(rbd_obj_request_cache);
5940         rbd_obj_request_cache = NULL;
5941
5942         rbd_assert(rbd_img_request_cache);
5943         kmem_cache_destroy(rbd_img_request_cache);
5944         rbd_img_request_cache = NULL;
5945 }
5946
5947 static int __init rbd_init(void)
5948 {
5949         int rc;
5950
5951         if (!libceph_compatible(NULL)) {
5952                 rbd_warn(NULL, "libceph incompatibility (quitting)");
5953                 return -EINVAL;
5954         }
5955
5956         rc = rbd_slab_init();
5957         if (rc)
5958                 return rc;
5959
5960         /*
5961          * The number of active work items is limited by the number of
5962          * rbd devices * queue depth, so leave @max_active at default.
5963          */
5964         rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
5965         if (!rbd_wq) {
5966                 rc = -ENOMEM;
5967                 goto err_out_slab;
5968         }
5969
5970         if (single_major) {
5971                 rbd_major = register_blkdev(0, RBD_DRV_NAME);
5972                 if (rbd_major < 0) {
5973                         rc = rbd_major;
5974                         goto err_out_wq;
5975                 }
5976         }
5977
5978         rc = rbd_sysfs_init();
5979         if (rc)
5980                 goto err_out_blkdev;
5981
5982         if (single_major)
5983                 pr_info("loaded (major %d)\n", rbd_major);
5984         else
5985                 pr_info("loaded\n");
5986
5987         return 0;
5988
5989 err_out_blkdev:
5990         if (single_major)
5991                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5992 err_out_wq:
5993         destroy_workqueue(rbd_wq);
5994 err_out_slab:
5995         rbd_slab_exit();
5996         return rc;
5997 }
5998
5999 static void __exit rbd_exit(void)
6000 {
6001         ida_destroy(&rbd_dev_id_ida);
6002         rbd_sysfs_cleanup();
6003         if (single_major)
6004                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
6005         destroy_workqueue(rbd_wq);
6006         rbd_slab_exit();
6007 }
6008
6009 module_init(rbd_init);
6010 module_exit(rbd_exit);
6011
6012 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
6013 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
6014 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
6015 /* following authorship retained from original osdblk.c */
6016 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
6017
6018 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
6019 MODULE_LICENSE("GPL");