block: Abstract out bvec iterator
[linux-block.git] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44
45 #include "rbd_types.h"
46
47 #define RBD_DEBUG       /* Activate rbd_assert() calls */
48
49 /*
50  * The basic unit of block I/O is a sector.  It is interpreted in a
51  * number of contexts in Linux (blk, bio, genhd), but the default is
52  * universally 512 bytes.  These symbols are just slightly more
53  * meaningful than the bare numbers they represent.
54  */
55 #define SECTOR_SHIFT    9
56 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
57
58 /*
59  * Increment the given counter and return its updated value.
60  * If the counter is already 0 it will not be incremented.
61  * If the counter is already at its maximum value returns
62  * -EINVAL without updating it.
63  */
64 static int atomic_inc_return_safe(atomic_t *v)
65 {
66         unsigned int counter;
67
68         counter = (unsigned int)__atomic_add_unless(v, 1, 0);
69         if (counter <= (unsigned int)INT_MAX)
70                 return (int)counter;
71
72         atomic_dec(v);
73
74         return -EINVAL;
75 }
76
77 /* Decrement the counter.  Return the resulting value, or -EINVAL */
78 static int atomic_dec_return_safe(atomic_t *v)
79 {
80         int counter;
81
82         counter = atomic_dec_return(v);
83         if (counter >= 0)
84                 return counter;
85
86         atomic_inc(v);
87
88         return -EINVAL;
89 }
90
91 #define RBD_DRV_NAME "rbd"
92 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
93
94 #define RBD_MINORS_PER_MAJOR    256             /* max minors per blkdev */
95
96 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
97 #define RBD_MAX_SNAP_NAME_LEN   \
98                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
99
100 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
101
102 #define RBD_SNAP_HEAD_NAME      "-"
103
104 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
105
106 /* This allows a single page to hold an image name sent by OSD */
107 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
108 #define RBD_IMAGE_ID_LEN_MAX    64
109
110 #define RBD_OBJ_PREFIX_LEN_MAX  64
111
112 /* Feature bits */
113
114 #define RBD_FEATURE_LAYERING    (1<<0)
115 #define RBD_FEATURE_STRIPINGV2  (1<<1)
116 #define RBD_FEATURES_ALL \
117             (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
118
119 /* Features supported by this (client software) implementation. */
120
121 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
122
123 /*
124  * An RBD device name will be "rbd#", where the "rbd" comes from
125  * RBD_DRV_NAME above, and # is a unique integer identifier.
126  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
127  * enough to hold all possible device names.
128  */
129 #define DEV_NAME_LEN            32
130 #define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
131
132 /*
133  * block device image metadata (in-memory version)
134  */
135 struct rbd_image_header {
136         /* These six fields never change for a given rbd image */
137         char *object_prefix;
138         __u8 obj_order;
139         __u8 crypt_type;
140         __u8 comp_type;
141         u64 stripe_unit;
142         u64 stripe_count;
143         u64 features;           /* Might be changeable someday? */
144
145         /* The remaining fields need to be updated occasionally */
146         u64 image_size;
147         struct ceph_snap_context *snapc;
148         char *snap_names;       /* format 1 only */
149         u64 *snap_sizes;        /* format 1 only */
150 };
151
152 /*
153  * An rbd image specification.
154  *
155  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
156  * identify an image.  Each rbd_dev structure includes a pointer to
157  * an rbd_spec structure that encapsulates this identity.
158  *
159  * Each of the id's in an rbd_spec has an associated name.  For a
160  * user-mapped image, the names are supplied and the id's associated
161  * with them are looked up.  For a layered image, a parent image is
162  * defined by the tuple, and the names are looked up.
163  *
164  * An rbd_dev structure contains a parent_spec pointer which is
165  * non-null if the image it represents is a child in a layered
166  * image.  This pointer will refer to the rbd_spec structure used
167  * by the parent rbd_dev for its own identity (i.e., the structure
168  * is shared between the parent and child).
169  *
170  * Since these structures are populated once, during the discovery
171  * phase of image construction, they are effectively immutable so
172  * we make no effort to synchronize access to them.
173  *
174  * Note that code herein does not assume the image name is known (it
175  * could be a null pointer).
176  */
177 struct rbd_spec {
178         u64             pool_id;
179         const char      *pool_name;
180
181         const char      *image_id;
182         const char      *image_name;
183
184         u64             snap_id;
185         const char      *snap_name;
186
187         struct kref     kref;
188 };
189
190 /*
191  * an instance of the client.  multiple devices may share an rbd client.
192  */
193 struct rbd_client {
194         struct ceph_client      *client;
195         struct kref             kref;
196         struct list_head        node;
197 };
198
199 struct rbd_img_request;
200 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
201
202 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
203
204 struct rbd_obj_request;
205 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
206
207 enum obj_request_type {
208         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
209 };
210
211 enum obj_req_flags {
212         OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
213         OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
214         OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
215         OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
216 };
217
218 struct rbd_obj_request {
219         const char              *object_name;
220         u64                     offset;         /* object start byte */
221         u64                     length;         /* bytes from offset */
222         unsigned long           flags;
223
224         /*
225          * An object request associated with an image will have its
226          * img_data flag set; a standalone object request will not.
227          *
228          * A standalone object request will have which == BAD_WHICH
229          * and a null obj_request pointer.
230          *
231          * An object request initiated in support of a layered image
232          * object (to check for its existence before a write) will
233          * have which == BAD_WHICH and a non-null obj_request pointer.
234          *
235          * Finally, an object request for rbd image data will have
236          * which != BAD_WHICH, and will have a non-null img_request
237          * pointer.  The value of which will be in the range
238          * 0..(img_request->obj_request_count-1).
239          */
240         union {
241                 struct rbd_obj_request  *obj_request;   /* STAT op */
242                 struct {
243                         struct rbd_img_request  *img_request;
244                         u64                     img_offset;
245                         /* links for img_request->obj_requests list */
246                         struct list_head        links;
247                 };
248         };
249         u32                     which;          /* posn image request list */
250
251         enum obj_request_type   type;
252         union {
253                 struct bio      *bio_list;
254                 struct {
255                         struct page     **pages;
256                         u32             page_count;
257                 };
258         };
259         struct page             **copyup_pages;
260         u32                     copyup_page_count;
261
262         struct ceph_osd_request *osd_req;
263
264         u64                     xferred;        /* bytes transferred */
265         int                     result;
266
267         rbd_obj_callback_t      callback;
268         struct completion       completion;
269
270         struct kref             kref;
271 };
272
273 enum img_req_flags {
274         IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
275         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
276         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
277 };
278
279 struct rbd_img_request {
280         struct rbd_device       *rbd_dev;
281         u64                     offset; /* starting image byte offset */
282         u64                     length; /* byte count from offset */
283         unsigned long           flags;
284         union {
285                 u64                     snap_id;        /* for reads */
286                 struct ceph_snap_context *snapc;        /* for writes */
287         };
288         union {
289                 struct request          *rq;            /* block request */
290                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
291         };
292         struct page             **copyup_pages;
293         u32                     copyup_page_count;
294         spinlock_t              completion_lock;/* protects next_completion */
295         u32                     next_completion;
296         rbd_img_callback_t      callback;
297         u64                     xferred;/* aggregate bytes transferred */
298         int                     result; /* first nonzero obj_request result */
299
300         u32                     obj_request_count;
301         struct list_head        obj_requests;   /* rbd_obj_request structs */
302
303         struct kref             kref;
304 };
305
306 #define for_each_obj_request(ireq, oreq) \
307         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
308 #define for_each_obj_request_from(ireq, oreq) \
309         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
310 #define for_each_obj_request_safe(ireq, oreq, n) \
311         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
312
313 struct rbd_mapping {
314         u64                     size;
315         u64                     features;
316         bool                    read_only;
317 };
318
319 /*
320  * a single device
321  */
322 struct rbd_device {
323         int                     dev_id;         /* blkdev unique id */
324
325         int                     major;          /* blkdev assigned major */
326         struct gendisk          *disk;          /* blkdev's gendisk and rq */
327
328         u32                     image_format;   /* Either 1 or 2 */
329         struct rbd_client       *rbd_client;
330
331         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
332
333         spinlock_t              lock;           /* queue, flags, open_count */
334
335         struct rbd_image_header header;
336         unsigned long           flags;          /* possibly lock protected */
337         struct rbd_spec         *spec;
338
339         char                    *header_name;
340
341         struct ceph_file_layout layout;
342
343         struct ceph_osd_event   *watch_event;
344         struct rbd_obj_request  *watch_request;
345
346         struct rbd_spec         *parent_spec;
347         u64                     parent_overlap;
348         atomic_t                parent_ref;
349         struct rbd_device       *parent;
350
351         /* protects updating the header */
352         struct rw_semaphore     header_rwsem;
353
354         struct rbd_mapping      mapping;
355
356         struct list_head        node;
357
358         /* sysfs related */
359         struct device           dev;
360         unsigned long           open_count;     /* protected by lock */
361 };
362
363 /*
364  * Flag bits for rbd_dev->flags.  If atomicity is required,
365  * rbd_dev->lock is used to protect access.
366  *
367  * Currently, only the "removing" flag (which is coupled with the
368  * "open_count" field) requires atomic access.
369  */
370 enum rbd_dev_flags {
371         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
372         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
373 };
374
375 static DEFINE_MUTEX(client_mutex);      /* Serialize client creation */
376
377 static LIST_HEAD(rbd_dev_list);    /* devices */
378 static DEFINE_SPINLOCK(rbd_dev_list_lock);
379
380 static LIST_HEAD(rbd_client_list);              /* clients */
381 static DEFINE_SPINLOCK(rbd_client_list_lock);
382
383 /* Slab caches for frequently-allocated structures */
384
385 static struct kmem_cache        *rbd_img_request_cache;
386 static struct kmem_cache        *rbd_obj_request_cache;
387 static struct kmem_cache        *rbd_segment_name_cache;
388
389 static int rbd_img_request_submit(struct rbd_img_request *img_request);
390
391 static void rbd_dev_device_release(struct device *dev);
392
393 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
394                        size_t count);
395 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
396                           size_t count);
397 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
398 static void rbd_spec_put(struct rbd_spec *spec);
399
400 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
401 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
402
403 static struct attribute *rbd_bus_attrs[] = {
404         &bus_attr_add.attr,
405         &bus_attr_remove.attr,
406         NULL,
407 };
408 ATTRIBUTE_GROUPS(rbd_bus);
409
410 static struct bus_type rbd_bus_type = {
411         .name           = "rbd",
412         .bus_groups     = rbd_bus_groups,
413 };
414
415 static void rbd_root_dev_release(struct device *dev)
416 {
417 }
418
419 static struct device rbd_root_dev = {
420         .init_name =    "rbd",
421         .release =      rbd_root_dev_release,
422 };
423
424 static __printf(2, 3)
425 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
426 {
427         struct va_format vaf;
428         va_list args;
429
430         va_start(args, fmt);
431         vaf.fmt = fmt;
432         vaf.va = &args;
433
434         if (!rbd_dev)
435                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
436         else if (rbd_dev->disk)
437                 printk(KERN_WARNING "%s: %s: %pV\n",
438                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
439         else if (rbd_dev->spec && rbd_dev->spec->image_name)
440                 printk(KERN_WARNING "%s: image %s: %pV\n",
441                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
442         else if (rbd_dev->spec && rbd_dev->spec->image_id)
443                 printk(KERN_WARNING "%s: id %s: %pV\n",
444                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
445         else    /* punt */
446                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
447                         RBD_DRV_NAME, rbd_dev, &vaf);
448         va_end(args);
449 }
450
451 #ifdef RBD_DEBUG
452 #define rbd_assert(expr)                                                \
453                 if (unlikely(!(expr))) {                                \
454                         printk(KERN_ERR "\nAssertion failure in %s() "  \
455                                                 "at line %d:\n\n"       \
456                                         "\trbd_assert(%s);\n\n",        \
457                                         __func__, __LINE__, #expr);     \
458                         BUG();                                          \
459                 }
460 #else /* !RBD_DEBUG */
461 #  define rbd_assert(expr)      ((void) 0)
462 #endif /* !RBD_DEBUG */
463
464 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
465 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
466 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
467
468 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
469 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
470 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev);
471 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
472                                         u64 snap_id);
473 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
474                                 u8 *order, u64 *snap_size);
475 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
476                 u64 *snap_features);
477 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
478
479 static int rbd_open(struct block_device *bdev, fmode_t mode)
480 {
481         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
482         bool removing = false;
483
484         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
485                 return -EROFS;
486
487         spin_lock_irq(&rbd_dev->lock);
488         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
489                 removing = true;
490         else
491                 rbd_dev->open_count++;
492         spin_unlock_irq(&rbd_dev->lock);
493         if (removing)
494                 return -ENOENT;
495
496         (void) get_device(&rbd_dev->dev);
497         set_device_ro(bdev, rbd_dev->mapping.read_only);
498
499         return 0;
500 }
501
502 static void rbd_release(struct gendisk *disk, fmode_t mode)
503 {
504         struct rbd_device *rbd_dev = disk->private_data;
505         unsigned long open_count_before;
506
507         spin_lock_irq(&rbd_dev->lock);
508         open_count_before = rbd_dev->open_count--;
509         spin_unlock_irq(&rbd_dev->lock);
510         rbd_assert(open_count_before > 0);
511
512         put_device(&rbd_dev->dev);
513 }
514
515 static const struct block_device_operations rbd_bd_ops = {
516         .owner                  = THIS_MODULE,
517         .open                   = rbd_open,
518         .release                = rbd_release,
519 };
520
521 /*
522  * Initialize an rbd client instance.  Success or not, this function
523  * consumes ceph_opts.  Caller holds client_mutex.
524  */
525 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
526 {
527         struct rbd_client *rbdc;
528         int ret = -ENOMEM;
529
530         dout("%s:\n", __func__);
531         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
532         if (!rbdc)
533                 goto out_opt;
534
535         kref_init(&rbdc->kref);
536         INIT_LIST_HEAD(&rbdc->node);
537
538         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
539         if (IS_ERR(rbdc->client))
540                 goto out_rbdc;
541         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
542
543         ret = ceph_open_session(rbdc->client);
544         if (ret < 0)
545                 goto out_client;
546
547         spin_lock(&rbd_client_list_lock);
548         list_add_tail(&rbdc->node, &rbd_client_list);
549         spin_unlock(&rbd_client_list_lock);
550
551         dout("%s: rbdc %p\n", __func__, rbdc);
552
553         return rbdc;
554 out_client:
555         ceph_destroy_client(rbdc->client);
556 out_rbdc:
557         kfree(rbdc);
558 out_opt:
559         if (ceph_opts)
560                 ceph_destroy_options(ceph_opts);
561         dout("%s: error %d\n", __func__, ret);
562
563         return ERR_PTR(ret);
564 }
565
566 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
567 {
568         kref_get(&rbdc->kref);
569
570         return rbdc;
571 }
572
573 /*
574  * Find a ceph client with specific addr and configuration.  If
575  * found, bump its reference count.
576  */
577 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
578 {
579         struct rbd_client *client_node;
580         bool found = false;
581
582         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
583                 return NULL;
584
585         spin_lock(&rbd_client_list_lock);
586         list_for_each_entry(client_node, &rbd_client_list, node) {
587                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
588                         __rbd_get_client(client_node);
589
590                         found = true;
591                         break;
592                 }
593         }
594         spin_unlock(&rbd_client_list_lock);
595
596         return found ? client_node : NULL;
597 }
598
599 /*
600  * mount options
601  */
602 enum {
603         Opt_last_int,
604         /* int args above */
605         Opt_last_string,
606         /* string args above */
607         Opt_read_only,
608         Opt_read_write,
609         /* Boolean args above */
610         Opt_last_bool,
611 };
612
613 static match_table_t rbd_opts_tokens = {
614         /* int args above */
615         /* string args above */
616         {Opt_read_only, "read_only"},
617         {Opt_read_only, "ro"},          /* Alternate spelling */
618         {Opt_read_write, "read_write"},
619         {Opt_read_write, "rw"},         /* Alternate spelling */
620         /* Boolean args above */
621         {-1, NULL}
622 };
623
624 struct rbd_options {
625         bool    read_only;
626 };
627
628 #define RBD_READ_ONLY_DEFAULT   false
629
630 static int parse_rbd_opts_token(char *c, void *private)
631 {
632         struct rbd_options *rbd_opts = private;
633         substring_t argstr[MAX_OPT_ARGS];
634         int token, intval, ret;
635
636         token = match_token(c, rbd_opts_tokens, argstr);
637         if (token < 0)
638                 return -EINVAL;
639
640         if (token < Opt_last_int) {
641                 ret = match_int(&argstr[0], &intval);
642                 if (ret < 0) {
643                         pr_err("bad mount option arg (not int) "
644                                "at '%s'\n", c);
645                         return ret;
646                 }
647                 dout("got int token %d val %d\n", token, intval);
648         } else if (token > Opt_last_int && token < Opt_last_string) {
649                 dout("got string token %d val %s\n", token,
650                      argstr[0].from);
651         } else if (token > Opt_last_string && token < Opt_last_bool) {
652                 dout("got Boolean token %d\n", token);
653         } else {
654                 dout("got token %d\n", token);
655         }
656
657         switch (token) {
658         case Opt_read_only:
659                 rbd_opts->read_only = true;
660                 break;
661         case Opt_read_write:
662                 rbd_opts->read_only = false;
663                 break;
664         default:
665                 rbd_assert(false);
666                 break;
667         }
668         return 0;
669 }
670
671 /*
672  * Get a ceph client with specific addr and configuration, if one does
673  * not exist create it.  Either way, ceph_opts is consumed by this
674  * function.
675  */
676 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
677 {
678         struct rbd_client *rbdc;
679
680         mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
681         rbdc = rbd_client_find(ceph_opts);
682         if (rbdc)       /* using an existing client */
683                 ceph_destroy_options(ceph_opts);
684         else
685                 rbdc = rbd_client_create(ceph_opts);
686         mutex_unlock(&client_mutex);
687
688         return rbdc;
689 }
690
691 /*
692  * Destroy ceph client
693  *
694  * Caller must hold rbd_client_list_lock.
695  */
696 static void rbd_client_release(struct kref *kref)
697 {
698         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
699
700         dout("%s: rbdc %p\n", __func__, rbdc);
701         spin_lock(&rbd_client_list_lock);
702         list_del(&rbdc->node);
703         spin_unlock(&rbd_client_list_lock);
704
705         ceph_destroy_client(rbdc->client);
706         kfree(rbdc);
707 }
708
709 /*
710  * Drop reference to ceph client node. If it's not referenced anymore, release
711  * it.
712  */
713 static void rbd_put_client(struct rbd_client *rbdc)
714 {
715         if (rbdc)
716                 kref_put(&rbdc->kref, rbd_client_release);
717 }
718
719 static bool rbd_image_format_valid(u32 image_format)
720 {
721         return image_format == 1 || image_format == 2;
722 }
723
724 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
725 {
726         size_t size;
727         u32 snap_count;
728
729         /* The header has to start with the magic rbd header text */
730         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
731                 return false;
732
733         /* The bio layer requires at least sector-sized I/O */
734
735         if (ondisk->options.order < SECTOR_SHIFT)
736                 return false;
737
738         /* If we use u64 in a few spots we may be able to loosen this */
739
740         if (ondisk->options.order > 8 * sizeof (int) - 1)
741                 return false;
742
743         /*
744          * The size of a snapshot header has to fit in a size_t, and
745          * that limits the number of snapshots.
746          */
747         snap_count = le32_to_cpu(ondisk->snap_count);
748         size = SIZE_MAX - sizeof (struct ceph_snap_context);
749         if (snap_count > size / sizeof (__le64))
750                 return false;
751
752         /*
753          * Not only that, but the size of the entire the snapshot
754          * header must also be representable in a size_t.
755          */
756         size -= snap_count * sizeof (__le64);
757         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
758                 return false;
759
760         return true;
761 }
762
763 /*
764  * Fill an rbd image header with information from the given format 1
765  * on-disk header.
766  */
767 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
768                                  struct rbd_image_header_ondisk *ondisk)
769 {
770         struct rbd_image_header *header = &rbd_dev->header;
771         bool first_time = header->object_prefix == NULL;
772         struct ceph_snap_context *snapc;
773         char *object_prefix = NULL;
774         char *snap_names = NULL;
775         u64 *snap_sizes = NULL;
776         u32 snap_count;
777         size_t size;
778         int ret = -ENOMEM;
779         u32 i;
780
781         /* Allocate this now to avoid having to handle failure below */
782
783         if (first_time) {
784                 size_t len;
785
786                 len = strnlen(ondisk->object_prefix,
787                                 sizeof (ondisk->object_prefix));
788                 object_prefix = kmalloc(len + 1, GFP_KERNEL);
789                 if (!object_prefix)
790                         return -ENOMEM;
791                 memcpy(object_prefix, ondisk->object_prefix, len);
792                 object_prefix[len] = '\0';
793         }
794
795         /* Allocate the snapshot context and fill it in */
796
797         snap_count = le32_to_cpu(ondisk->snap_count);
798         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
799         if (!snapc)
800                 goto out_err;
801         snapc->seq = le64_to_cpu(ondisk->snap_seq);
802         if (snap_count) {
803                 struct rbd_image_snap_ondisk *snaps;
804                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
805
806                 /* We'll keep a copy of the snapshot names... */
807
808                 if (snap_names_len > (u64)SIZE_MAX)
809                         goto out_2big;
810                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
811                 if (!snap_names)
812                         goto out_err;
813
814                 /* ...as well as the array of their sizes. */
815
816                 size = snap_count * sizeof (*header->snap_sizes);
817                 snap_sizes = kmalloc(size, GFP_KERNEL);
818                 if (!snap_sizes)
819                         goto out_err;
820
821                 /*
822                  * Copy the names, and fill in each snapshot's id
823                  * and size.
824                  *
825                  * Note that rbd_dev_v1_header_info() guarantees the
826                  * ondisk buffer we're working with has
827                  * snap_names_len bytes beyond the end of the
828                  * snapshot id array, this memcpy() is safe.
829                  */
830                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
831                 snaps = ondisk->snaps;
832                 for (i = 0; i < snap_count; i++) {
833                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
834                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
835                 }
836         }
837
838         /* We won't fail any more, fill in the header */
839
840         if (first_time) {
841                 header->object_prefix = object_prefix;
842                 header->obj_order = ondisk->options.order;
843                 header->crypt_type = ondisk->options.crypt_type;
844                 header->comp_type = ondisk->options.comp_type;
845                 /* The rest aren't used for format 1 images */
846                 header->stripe_unit = 0;
847                 header->stripe_count = 0;
848                 header->features = 0;
849         } else {
850                 ceph_put_snap_context(header->snapc);
851                 kfree(header->snap_names);
852                 kfree(header->snap_sizes);
853         }
854
855         /* The remaining fields always get updated (when we refresh) */
856
857         header->image_size = le64_to_cpu(ondisk->image_size);
858         header->snapc = snapc;
859         header->snap_names = snap_names;
860         header->snap_sizes = snap_sizes;
861
862         /* Make sure mapping size is consistent with header info */
863
864         if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time)
865                 if (rbd_dev->mapping.size != header->image_size)
866                         rbd_dev->mapping.size = header->image_size;
867
868         return 0;
869 out_2big:
870         ret = -EIO;
871 out_err:
872         kfree(snap_sizes);
873         kfree(snap_names);
874         ceph_put_snap_context(snapc);
875         kfree(object_prefix);
876
877         return ret;
878 }
879
880 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
881 {
882         const char *snap_name;
883
884         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
885
886         /* Skip over names until we find the one we are looking for */
887
888         snap_name = rbd_dev->header.snap_names;
889         while (which--)
890                 snap_name += strlen(snap_name) + 1;
891
892         return kstrdup(snap_name, GFP_KERNEL);
893 }
894
895 /*
896  * Snapshot id comparison function for use with qsort()/bsearch().
897  * Note that result is for snapshots in *descending* order.
898  */
899 static int snapid_compare_reverse(const void *s1, const void *s2)
900 {
901         u64 snap_id1 = *(u64 *)s1;
902         u64 snap_id2 = *(u64 *)s2;
903
904         if (snap_id1 < snap_id2)
905                 return 1;
906         return snap_id1 == snap_id2 ? 0 : -1;
907 }
908
909 /*
910  * Search a snapshot context to see if the given snapshot id is
911  * present.
912  *
913  * Returns the position of the snapshot id in the array if it's found,
914  * or BAD_SNAP_INDEX otherwise.
915  *
916  * Note: The snapshot array is in kept sorted (by the osd) in
917  * reverse order, highest snapshot id first.
918  */
919 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
920 {
921         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
922         u64 *found;
923
924         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
925                                 sizeof (snap_id), snapid_compare_reverse);
926
927         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
928 }
929
930 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
931                                         u64 snap_id)
932 {
933         u32 which;
934         const char *snap_name;
935
936         which = rbd_dev_snap_index(rbd_dev, snap_id);
937         if (which == BAD_SNAP_INDEX)
938                 return ERR_PTR(-ENOENT);
939
940         snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
941         return snap_name ? snap_name : ERR_PTR(-ENOMEM);
942 }
943
944 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
945 {
946         if (snap_id == CEPH_NOSNAP)
947                 return RBD_SNAP_HEAD_NAME;
948
949         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
950         if (rbd_dev->image_format == 1)
951                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
952
953         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
954 }
955
956 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
957                                 u64 *snap_size)
958 {
959         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
960         if (snap_id == CEPH_NOSNAP) {
961                 *snap_size = rbd_dev->header.image_size;
962         } else if (rbd_dev->image_format == 1) {
963                 u32 which;
964
965                 which = rbd_dev_snap_index(rbd_dev, snap_id);
966                 if (which == BAD_SNAP_INDEX)
967                         return -ENOENT;
968
969                 *snap_size = rbd_dev->header.snap_sizes[which];
970         } else {
971                 u64 size = 0;
972                 int ret;
973
974                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
975                 if (ret)
976                         return ret;
977
978                 *snap_size = size;
979         }
980         return 0;
981 }
982
983 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
984                         u64 *snap_features)
985 {
986         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
987         if (snap_id == CEPH_NOSNAP) {
988                 *snap_features = rbd_dev->header.features;
989         } else if (rbd_dev->image_format == 1) {
990                 *snap_features = 0;     /* No features for format 1 */
991         } else {
992                 u64 features = 0;
993                 int ret;
994
995                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
996                 if (ret)
997                         return ret;
998
999                 *snap_features = features;
1000         }
1001         return 0;
1002 }
1003
1004 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1005 {
1006         u64 snap_id = rbd_dev->spec->snap_id;
1007         u64 size = 0;
1008         u64 features = 0;
1009         int ret;
1010
1011         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1012         if (ret)
1013                 return ret;
1014         ret = rbd_snap_features(rbd_dev, snap_id, &features);
1015         if (ret)
1016                 return ret;
1017
1018         rbd_dev->mapping.size = size;
1019         rbd_dev->mapping.features = features;
1020
1021         return 0;
1022 }
1023
1024 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1025 {
1026         rbd_dev->mapping.size = 0;
1027         rbd_dev->mapping.features = 0;
1028 }
1029
1030 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1031 {
1032         char *name;
1033         u64 segment;
1034         int ret;
1035         char *name_format;
1036
1037         name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1038         if (!name)
1039                 return NULL;
1040         segment = offset >> rbd_dev->header.obj_order;
1041         name_format = "%s.%012llx";
1042         if (rbd_dev->image_format == 2)
1043                 name_format = "%s.%016llx";
1044         ret = snprintf(name, MAX_OBJ_NAME_SIZE + 1, name_format,
1045                         rbd_dev->header.object_prefix, segment);
1046         if (ret < 0 || ret > MAX_OBJ_NAME_SIZE) {
1047                 pr_err("error formatting segment name for #%llu (%d)\n",
1048                         segment, ret);
1049                 kfree(name);
1050                 name = NULL;
1051         }
1052
1053         return name;
1054 }
1055
1056 static void rbd_segment_name_free(const char *name)
1057 {
1058         /* The explicit cast here is needed to drop the const qualifier */
1059
1060         kmem_cache_free(rbd_segment_name_cache, (void *)name);
1061 }
1062
1063 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1064 {
1065         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1066
1067         return offset & (segment_size - 1);
1068 }
1069
1070 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1071                                 u64 offset, u64 length)
1072 {
1073         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1074
1075         offset &= segment_size - 1;
1076
1077         rbd_assert(length <= U64_MAX - offset);
1078         if (offset + length > segment_size)
1079                 length = segment_size - offset;
1080
1081         return length;
1082 }
1083
1084 /*
1085  * returns the size of an object in the image
1086  */
1087 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1088 {
1089         return 1 << header->obj_order;
1090 }
1091
1092 /*
1093  * bio helpers
1094  */
1095
1096 static void bio_chain_put(struct bio *chain)
1097 {
1098         struct bio *tmp;
1099
1100         while (chain) {
1101                 tmp = chain;
1102                 chain = chain->bi_next;
1103                 bio_put(tmp);
1104         }
1105 }
1106
1107 /*
1108  * zeros a bio chain, starting at specific offset
1109  */
1110 static void zero_bio_chain(struct bio *chain, int start_ofs)
1111 {
1112         struct bio_vec *bv;
1113         unsigned long flags;
1114         void *buf;
1115         int i;
1116         int pos = 0;
1117
1118         while (chain) {
1119                 bio_for_each_segment(bv, chain, i) {
1120                         if (pos + bv->bv_len > start_ofs) {
1121                                 int remainder = max(start_ofs - pos, 0);
1122                                 buf = bvec_kmap_irq(bv, &flags);
1123                                 memset(buf + remainder, 0,
1124                                        bv->bv_len - remainder);
1125                                 flush_dcache_page(bv->bv_page);
1126                                 bvec_kunmap_irq(buf, &flags);
1127                         }
1128                         pos += bv->bv_len;
1129                 }
1130
1131                 chain = chain->bi_next;
1132         }
1133 }
1134
1135 /*
1136  * similar to zero_bio_chain(), zeros data defined by a page array,
1137  * starting at the given byte offset from the start of the array and
1138  * continuing up to the given end offset.  The pages array is
1139  * assumed to be big enough to hold all bytes up to the end.
1140  */
1141 static void zero_pages(struct page **pages, u64 offset, u64 end)
1142 {
1143         struct page **page = &pages[offset >> PAGE_SHIFT];
1144
1145         rbd_assert(end > offset);
1146         rbd_assert(end - offset <= (u64)SIZE_MAX);
1147         while (offset < end) {
1148                 size_t page_offset;
1149                 size_t length;
1150                 unsigned long flags;
1151                 void *kaddr;
1152
1153                 page_offset = offset & ~PAGE_MASK;
1154                 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1155                 local_irq_save(flags);
1156                 kaddr = kmap_atomic(*page);
1157                 memset(kaddr + page_offset, 0, length);
1158                 flush_dcache_page(*page);
1159                 kunmap_atomic(kaddr);
1160                 local_irq_restore(flags);
1161
1162                 offset += length;
1163                 page++;
1164         }
1165 }
1166
1167 /*
1168  * Clone a portion of a bio, starting at the given byte offset
1169  * and continuing for the number of bytes indicated.
1170  */
1171 static struct bio *bio_clone_range(struct bio *bio_src,
1172                                         unsigned int offset,
1173                                         unsigned int len,
1174                                         gfp_t gfpmask)
1175 {
1176         struct bio_vec *bv;
1177         unsigned int resid;
1178         unsigned short idx;
1179         unsigned int voff;
1180         unsigned short end_idx;
1181         unsigned short vcnt;
1182         struct bio *bio;
1183
1184         /* Handle the easy case for the caller */
1185
1186         if (!offset && len == bio_src->bi_iter.bi_size)
1187                 return bio_clone(bio_src, gfpmask);
1188
1189         if (WARN_ON_ONCE(!len))
1190                 return NULL;
1191         if (WARN_ON_ONCE(len > bio_src->bi_iter.bi_size))
1192                 return NULL;
1193         if (WARN_ON_ONCE(offset > bio_src->bi_iter.bi_size - len))
1194                 return NULL;
1195
1196         /* Find first affected segment... */
1197
1198         resid = offset;
1199         bio_for_each_segment(bv, bio_src, idx) {
1200                 if (resid < bv->bv_len)
1201                         break;
1202                 resid -= bv->bv_len;
1203         }
1204         voff = resid;
1205
1206         /* ...and the last affected segment */
1207
1208         resid += len;
1209         __bio_for_each_segment(bv, bio_src, end_idx, idx) {
1210                 if (resid <= bv->bv_len)
1211                         break;
1212                 resid -= bv->bv_len;
1213         }
1214         vcnt = end_idx - idx + 1;
1215
1216         /* Build the clone */
1217
1218         bio = bio_alloc(gfpmask, (unsigned int) vcnt);
1219         if (!bio)
1220                 return NULL;    /* ENOMEM */
1221
1222         bio->bi_bdev = bio_src->bi_bdev;
1223         bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector +
1224                 (offset >> SECTOR_SHIFT);
1225         bio->bi_rw = bio_src->bi_rw;
1226         bio->bi_flags |= 1 << BIO_CLONED;
1227
1228         /*
1229          * Copy over our part of the bio_vec, then update the first
1230          * and last (or only) entries.
1231          */
1232         memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[idx],
1233                         vcnt * sizeof (struct bio_vec));
1234         bio->bi_io_vec[0].bv_offset += voff;
1235         if (vcnt > 1) {
1236                 bio->bi_io_vec[0].bv_len -= voff;
1237                 bio->bi_io_vec[vcnt - 1].bv_len = resid;
1238         } else {
1239                 bio->bi_io_vec[0].bv_len = len;
1240         }
1241
1242         bio->bi_vcnt = vcnt;
1243         bio->bi_iter.bi_size = len;
1244
1245         return bio;
1246 }
1247
1248 /*
1249  * Clone a portion of a bio chain, starting at the given byte offset
1250  * into the first bio in the source chain and continuing for the
1251  * number of bytes indicated.  The result is another bio chain of
1252  * exactly the given length, or a null pointer on error.
1253  *
1254  * The bio_src and offset parameters are both in-out.  On entry they
1255  * refer to the first source bio and the offset into that bio where
1256  * the start of data to be cloned is located.
1257  *
1258  * On return, bio_src is updated to refer to the bio in the source
1259  * chain that contains first un-cloned byte, and *offset will
1260  * contain the offset of that byte within that bio.
1261  */
1262 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1263                                         unsigned int *offset,
1264                                         unsigned int len,
1265                                         gfp_t gfpmask)
1266 {
1267         struct bio *bi = *bio_src;
1268         unsigned int off = *offset;
1269         struct bio *chain = NULL;
1270         struct bio **end;
1271
1272         /* Build up a chain of clone bios up to the limit */
1273
1274         if (!bi || off >= bi->bi_iter.bi_size || !len)
1275                 return NULL;            /* Nothing to clone */
1276
1277         end = &chain;
1278         while (len) {
1279                 unsigned int bi_size;
1280                 struct bio *bio;
1281
1282                 if (!bi) {
1283                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1284                         goto out_err;   /* EINVAL; ran out of bio's */
1285                 }
1286                 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1287                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1288                 if (!bio)
1289                         goto out_err;   /* ENOMEM */
1290
1291                 *end = bio;
1292                 end = &bio->bi_next;
1293
1294                 off += bi_size;
1295                 if (off == bi->bi_iter.bi_size) {
1296                         bi = bi->bi_next;
1297                         off = 0;
1298                 }
1299                 len -= bi_size;
1300         }
1301         *bio_src = bi;
1302         *offset = off;
1303
1304         return chain;
1305 out_err:
1306         bio_chain_put(chain);
1307
1308         return NULL;
1309 }
1310
1311 /*
1312  * The default/initial value for all object request flags is 0.  For
1313  * each flag, once its value is set to 1 it is never reset to 0
1314  * again.
1315  */
1316 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1317 {
1318         if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1319                 struct rbd_device *rbd_dev;
1320
1321                 rbd_dev = obj_request->img_request->rbd_dev;
1322                 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1323                         obj_request);
1324         }
1325 }
1326
1327 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1328 {
1329         smp_mb();
1330         return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1331 }
1332
1333 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1334 {
1335         if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1336                 struct rbd_device *rbd_dev = NULL;
1337
1338                 if (obj_request_img_data_test(obj_request))
1339                         rbd_dev = obj_request->img_request->rbd_dev;
1340                 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1341                         obj_request);
1342         }
1343 }
1344
1345 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1346 {
1347         smp_mb();
1348         return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1349 }
1350
1351 /*
1352  * This sets the KNOWN flag after (possibly) setting the EXISTS
1353  * flag.  The latter is set based on the "exists" value provided.
1354  *
1355  * Note that for our purposes once an object exists it never goes
1356  * away again.  It's possible that the response from two existence
1357  * checks are separated by the creation of the target object, and
1358  * the first ("doesn't exist") response arrives *after* the second
1359  * ("does exist").  In that case we ignore the second one.
1360  */
1361 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1362                                 bool exists)
1363 {
1364         if (exists)
1365                 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1366         set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1367         smp_mb();
1368 }
1369
1370 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1371 {
1372         smp_mb();
1373         return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1374 }
1375
1376 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1377 {
1378         smp_mb();
1379         return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1380 }
1381
1382 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1383 {
1384         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1385                 atomic_read(&obj_request->kref.refcount));
1386         kref_get(&obj_request->kref);
1387 }
1388
1389 static void rbd_obj_request_destroy(struct kref *kref);
1390 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1391 {
1392         rbd_assert(obj_request != NULL);
1393         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1394                 atomic_read(&obj_request->kref.refcount));
1395         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1396 }
1397
1398 static bool img_request_child_test(struct rbd_img_request *img_request);
1399 static void rbd_parent_request_destroy(struct kref *kref);
1400 static void rbd_img_request_destroy(struct kref *kref);
1401 static void rbd_img_request_put(struct rbd_img_request *img_request)
1402 {
1403         rbd_assert(img_request != NULL);
1404         dout("%s: img %p (was %d)\n", __func__, img_request,
1405                 atomic_read(&img_request->kref.refcount));
1406         if (img_request_child_test(img_request))
1407                 kref_put(&img_request->kref, rbd_parent_request_destroy);
1408         else
1409                 kref_put(&img_request->kref, rbd_img_request_destroy);
1410 }
1411
1412 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1413                                         struct rbd_obj_request *obj_request)
1414 {
1415         rbd_assert(obj_request->img_request == NULL);
1416
1417         /* Image request now owns object's original reference */
1418         obj_request->img_request = img_request;
1419         obj_request->which = img_request->obj_request_count;
1420         rbd_assert(!obj_request_img_data_test(obj_request));
1421         obj_request_img_data_set(obj_request);
1422         rbd_assert(obj_request->which != BAD_WHICH);
1423         img_request->obj_request_count++;
1424         list_add_tail(&obj_request->links, &img_request->obj_requests);
1425         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1426                 obj_request->which);
1427 }
1428
1429 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1430                                         struct rbd_obj_request *obj_request)
1431 {
1432         rbd_assert(obj_request->which != BAD_WHICH);
1433
1434         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1435                 obj_request->which);
1436         list_del(&obj_request->links);
1437         rbd_assert(img_request->obj_request_count > 0);
1438         img_request->obj_request_count--;
1439         rbd_assert(obj_request->which == img_request->obj_request_count);
1440         obj_request->which = BAD_WHICH;
1441         rbd_assert(obj_request_img_data_test(obj_request));
1442         rbd_assert(obj_request->img_request == img_request);
1443         obj_request->img_request = NULL;
1444         obj_request->callback = NULL;
1445         rbd_obj_request_put(obj_request);
1446 }
1447
1448 static bool obj_request_type_valid(enum obj_request_type type)
1449 {
1450         switch (type) {
1451         case OBJ_REQUEST_NODATA:
1452         case OBJ_REQUEST_BIO:
1453         case OBJ_REQUEST_PAGES:
1454                 return true;
1455         default:
1456                 return false;
1457         }
1458 }
1459
1460 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1461                                 struct rbd_obj_request *obj_request)
1462 {
1463         dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1464
1465         return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1466 }
1467
1468 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1469 {
1470
1471         dout("%s: img %p\n", __func__, img_request);
1472
1473         /*
1474          * If no error occurred, compute the aggregate transfer
1475          * count for the image request.  We could instead use
1476          * atomic64_cmpxchg() to update it as each object request
1477          * completes; not clear which way is better off hand.
1478          */
1479         if (!img_request->result) {
1480                 struct rbd_obj_request *obj_request;
1481                 u64 xferred = 0;
1482
1483                 for_each_obj_request(img_request, obj_request)
1484                         xferred += obj_request->xferred;
1485                 img_request->xferred = xferred;
1486         }
1487
1488         if (img_request->callback)
1489                 img_request->callback(img_request);
1490         else
1491                 rbd_img_request_put(img_request);
1492 }
1493
1494 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1495
1496 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1497 {
1498         dout("%s: obj %p\n", __func__, obj_request);
1499
1500         return wait_for_completion_interruptible(&obj_request->completion);
1501 }
1502
1503 /*
1504  * The default/initial value for all image request flags is 0.  Each
1505  * is conditionally set to 1 at image request initialization time
1506  * and currently never change thereafter.
1507  */
1508 static void img_request_write_set(struct rbd_img_request *img_request)
1509 {
1510         set_bit(IMG_REQ_WRITE, &img_request->flags);
1511         smp_mb();
1512 }
1513
1514 static bool img_request_write_test(struct rbd_img_request *img_request)
1515 {
1516         smp_mb();
1517         return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1518 }
1519
1520 static void img_request_child_set(struct rbd_img_request *img_request)
1521 {
1522         set_bit(IMG_REQ_CHILD, &img_request->flags);
1523         smp_mb();
1524 }
1525
1526 static void img_request_child_clear(struct rbd_img_request *img_request)
1527 {
1528         clear_bit(IMG_REQ_CHILD, &img_request->flags);
1529         smp_mb();
1530 }
1531
1532 static bool img_request_child_test(struct rbd_img_request *img_request)
1533 {
1534         smp_mb();
1535         return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1536 }
1537
1538 static void img_request_layered_set(struct rbd_img_request *img_request)
1539 {
1540         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1541         smp_mb();
1542 }
1543
1544 static void img_request_layered_clear(struct rbd_img_request *img_request)
1545 {
1546         clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1547         smp_mb();
1548 }
1549
1550 static bool img_request_layered_test(struct rbd_img_request *img_request)
1551 {
1552         smp_mb();
1553         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1554 }
1555
1556 static void
1557 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1558 {
1559         u64 xferred = obj_request->xferred;
1560         u64 length = obj_request->length;
1561
1562         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1563                 obj_request, obj_request->img_request, obj_request->result,
1564                 xferred, length);
1565         /*
1566          * ENOENT means a hole in the image.  We zero-fill the entire
1567          * length of the request.  A short read also implies zero-fill
1568          * to the end of the request.  An error requires the whole
1569          * length of the request to be reported finished with an error
1570          * to the block layer.  In each case we update the xferred
1571          * count to indicate the whole request was satisfied.
1572          */
1573         rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1574         if (obj_request->result == -ENOENT) {
1575                 if (obj_request->type == OBJ_REQUEST_BIO)
1576                         zero_bio_chain(obj_request->bio_list, 0);
1577                 else
1578                         zero_pages(obj_request->pages, 0, length);
1579                 obj_request->result = 0;
1580         } else if (xferred < length && !obj_request->result) {
1581                 if (obj_request->type == OBJ_REQUEST_BIO)
1582                         zero_bio_chain(obj_request->bio_list, xferred);
1583                 else
1584                         zero_pages(obj_request->pages, xferred, length);
1585         }
1586         obj_request->xferred = length;
1587         obj_request_done_set(obj_request);
1588 }
1589
1590 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1591 {
1592         dout("%s: obj %p cb %p\n", __func__, obj_request,
1593                 obj_request->callback);
1594         if (obj_request->callback)
1595                 obj_request->callback(obj_request);
1596         else
1597                 complete_all(&obj_request->completion);
1598 }
1599
1600 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1601 {
1602         dout("%s: obj %p\n", __func__, obj_request);
1603         obj_request_done_set(obj_request);
1604 }
1605
1606 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1607 {
1608         struct rbd_img_request *img_request = NULL;
1609         struct rbd_device *rbd_dev = NULL;
1610         bool layered = false;
1611
1612         if (obj_request_img_data_test(obj_request)) {
1613                 img_request = obj_request->img_request;
1614                 layered = img_request && img_request_layered_test(img_request);
1615                 rbd_dev = img_request->rbd_dev;
1616         }
1617
1618         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1619                 obj_request, img_request, obj_request->result,
1620                 obj_request->xferred, obj_request->length);
1621         if (layered && obj_request->result == -ENOENT &&
1622                         obj_request->img_offset < rbd_dev->parent_overlap)
1623                 rbd_img_parent_read(obj_request);
1624         else if (img_request)
1625                 rbd_img_obj_request_read_callback(obj_request);
1626         else
1627                 obj_request_done_set(obj_request);
1628 }
1629
1630 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1631 {
1632         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1633                 obj_request->result, obj_request->length);
1634         /*
1635          * There is no such thing as a successful short write.  Set
1636          * it to our originally-requested length.
1637          */
1638         obj_request->xferred = obj_request->length;
1639         obj_request_done_set(obj_request);
1640 }
1641
1642 /*
1643  * For a simple stat call there's nothing to do.  We'll do more if
1644  * this is part of a write sequence for a layered image.
1645  */
1646 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1647 {
1648         dout("%s: obj %p\n", __func__, obj_request);
1649         obj_request_done_set(obj_request);
1650 }
1651
1652 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1653                                 struct ceph_msg *msg)
1654 {
1655         struct rbd_obj_request *obj_request = osd_req->r_priv;
1656         u16 opcode;
1657
1658         dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1659         rbd_assert(osd_req == obj_request->osd_req);
1660         if (obj_request_img_data_test(obj_request)) {
1661                 rbd_assert(obj_request->img_request);
1662                 rbd_assert(obj_request->which != BAD_WHICH);
1663         } else {
1664                 rbd_assert(obj_request->which == BAD_WHICH);
1665         }
1666
1667         if (osd_req->r_result < 0)
1668                 obj_request->result = osd_req->r_result;
1669
1670         BUG_ON(osd_req->r_num_ops > 2);
1671
1672         /*
1673          * We support a 64-bit length, but ultimately it has to be
1674          * passed to blk_end_request(), which takes an unsigned int.
1675          */
1676         obj_request->xferred = osd_req->r_reply_op_len[0];
1677         rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1678         opcode = osd_req->r_ops[0].op;
1679         switch (opcode) {
1680         case CEPH_OSD_OP_READ:
1681                 rbd_osd_read_callback(obj_request);
1682                 break;
1683         case CEPH_OSD_OP_WRITE:
1684                 rbd_osd_write_callback(obj_request);
1685                 break;
1686         case CEPH_OSD_OP_STAT:
1687                 rbd_osd_stat_callback(obj_request);
1688                 break;
1689         case CEPH_OSD_OP_CALL:
1690         case CEPH_OSD_OP_NOTIFY_ACK:
1691         case CEPH_OSD_OP_WATCH:
1692                 rbd_osd_trivial_callback(obj_request);
1693                 break;
1694         default:
1695                 rbd_warn(NULL, "%s: unsupported op %hu\n",
1696                         obj_request->object_name, (unsigned short) opcode);
1697                 break;
1698         }
1699
1700         if (obj_request_done_test(obj_request))
1701                 rbd_obj_request_complete(obj_request);
1702 }
1703
1704 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1705 {
1706         struct rbd_img_request *img_request = obj_request->img_request;
1707         struct ceph_osd_request *osd_req = obj_request->osd_req;
1708         u64 snap_id;
1709
1710         rbd_assert(osd_req != NULL);
1711
1712         snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1713         ceph_osdc_build_request(osd_req, obj_request->offset,
1714                         NULL, snap_id, NULL);
1715 }
1716
1717 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1718 {
1719         struct rbd_img_request *img_request = obj_request->img_request;
1720         struct ceph_osd_request *osd_req = obj_request->osd_req;
1721         struct ceph_snap_context *snapc;
1722         struct timespec mtime = CURRENT_TIME;
1723
1724         rbd_assert(osd_req != NULL);
1725
1726         snapc = img_request ? img_request->snapc : NULL;
1727         ceph_osdc_build_request(osd_req, obj_request->offset,
1728                         snapc, CEPH_NOSNAP, &mtime);
1729 }
1730
1731 static struct ceph_osd_request *rbd_osd_req_create(
1732                                         struct rbd_device *rbd_dev,
1733                                         bool write_request,
1734                                         struct rbd_obj_request *obj_request)
1735 {
1736         struct ceph_snap_context *snapc = NULL;
1737         struct ceph_osd_client *osdc;
1738         struct ceph_osd_request *osd_req;
1739
1740         if (obj_request_img_data_test(obj_request)) {
1741                 struct rbd_img_request *img_request = obj_request->img_request;
1742
1743                 rbd_assert(write_request ==
1744                                 img_request_write_test(img_request));
1745                 if (write_request)
1746                         snapc = img_request->snapc;
1747         }
1748
1749         /* Allocate and initialize the request, for the single op */
1750
1751         osdc = &rbd_dev->rbd_client->client->osdc;
1752         osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1753         if (!osd_req)
1754                 return NULL;    /* ENOMEM */
1755
1756         if (write_request)
1757                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1758         else
1759                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1760
1761         osd_req->r_callback = rbd_osd_req_callback;
1762         osd_req->r_priv = obj_request;
1763
1764         osd_req->r_oid_len = strlen(obj_request->object_name);
1765         rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1766         memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1767
1768         osd_req->r_file_layout = rbd_dev->layout;       /* struct */
1769
1770         return osd_req;
1771 }
1772
1773 /*
1774  * Create a copyup osd request based on the information in the
1775  * object request supplied.  A copyup request has two osd ops,
1776  * a copyup method call, and a "normal" write request.
1777  */
1778 static struct ceph_osd_request *
1779 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1780 {
1781         struct rbd_img_request *img_request;
1782         struct ceph_snap_context *snapc;
1783         struct rbd_device *rbd_dev;
1784         struct ceph_osd_client *osdc;
1785         struct ceph_osd_request *osd_req;
1786
1787         rbd_assert(obj_request_img_data_test(obj_request));
1788         img_request = obj_request->img_request;
1789         rbd_assert(img_request);
1790         rbd_assert(img_request_write_test(img_request));
1791
1792         /* Allocate and initialize the request, for the two ops */
1793
1794         snapc = img_request->snapc;
1795         rbd_dev = img_request->rbd_dev;
1796         osdc = &rbd_dev->rbd_client->client->osdc;
1797         osd_req = ceph_osdc_alloc_request(osdc, snapc, 2, false, GFP_ATOMIC);
1798         if (!osd_req)
1799                 return NULL;    /* ENOMEM */
1800
1801         osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1802         osd_req->r_callback = rbd_osd_req_callback;
1803         osd_req->r_priv = obj_request;
1804
1805         osd_req->r_oid_len = strlen(obj_request->object_name);
1806         rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1807         memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1808
1809         osd_req->r_file_layout = rbd_dev->layout;       /* struct */
1810
1811         return osd_req;
1812 }
1813
1814
1815 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1816 {
1817         ceph_osdc_put_request(osd_req);
1818 }
1819
1820 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1821
1822 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1823                                                 u64 offset, u64 length,
1824                                                 enum obj_request_type type)
1825 {
1826         struct rbd_obj_request *obj_request;
1827         size_t size;
1828         char *name;
1829
1830         rbd_assert(obj_request_type_valid(type));
1831
1832         size = strlen(object_name) + 1;
1833         name = kmalloc(size, GFP_KERNEL);
1834         if (!name)
1835                 return NULL;
1836
1837         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1838         if (!obj_request) {
1839                 kfree(name);
1840                 return NULL;
1841         }
1842
1843         obj_request->object_name = memcpy(name, object_name, size);
1844         obj_request->offset = offset;
1845         obj_request->length = length;
1846         obj_request->flags = 0;
1847         obj_request->which = BAD_WHICH;
1848         obj_request->type = type;
1849         INIT_LIST_HEAD(&obj_request->links);
1850         init_completion(&obj_request->completion);
1851         kref_init(&obj_request->kref);
1852
1853         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1854                 offset, length, (int)type, obj_request);
1855
1856         return obj_request;
1857 }
1858
1859 static void rbd_obj_request_destroy(struct kref *kref)
1860 {
1861         struct rbd_obj_request *obj_request;
1862
1863         obj_request = container_of(kref, struct rbd_obj_request, kref);
1864
1865         dout("%s: obj %p\n", __func__, obj_request);
1866
1867         rbd_assert(obj_request->img_request == NULL);
1868         rbd_assert(obj_request->which == BAD_WHICH);
1869
1870         if (obj_request->osd_req)
1871                 rbd_osd_req_destroy(obj_request->osd_req);
1872
1873         rbd_assert(obj_request_type_valid(obj_request->type));
1874         switch (obj_request->type) {
1875         case OBJ_REQUEST_NODATA:
1876                 break;          /* Nothing to do */
1877         case OBJ_REQUEST_BIO:
1878                 if (obj_request->bio_list)
1879                         bio_chain_put(obj_request->bio_list);
1880                 break;
1881         case OBJ_REQUEST_PAGES:
1882                 if (obj_request->pages)
1883                         ceph_release_page_vector(obj_request->pages,
1884                                                 obj_request->page_count);
1885                 break;
1886         }
1887
1888         kfree(obj_request->object_name);
1889         obj_request->object_name = NULL;
1890         kmem_cache_free(rbd_obj_request_cache, obj_request);
1891 }
1892
1893 /* It's OK to call this for a device with no parent */
1894
1895 static void rbd_spec_put(struct rbd_spec *spec);
1896 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1897 {
1898         rbd_dev_remove_parent(rbd_dev);
1899         rbd_spec_put(rbd_dev->parent_spec);
1900         rbd_dev->parent_spec = NULL;
1901         rbd_dev->parent_overlap = 0;
1902 }
1903
1904 /*
1905  * Parent image reference counting is used to determine when an
1906  * image's parent fields can be safely torn down--after there are no
1907  * more in-flight requests to the parent image.  When the last
1908  * reference is dropped, cleaning them up is safe.
1909  */
1910 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1911 {
1912         int counter;
1913
1914         if (!rbd_dev->parent_spec)
1915                 return;
1916
1917         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1918         if (counter > 0)
1919                 return;
1920
1921         /* Last reference; clean up parent data structures */
1922
1923         if (!counter)
1924                 rbd_dev_unparent(rbd_dev);
1925         else
1926                 rbd_warn(rbd_dev, "parent reference underflow\n");
1927 }
1928
1929 /*
1930  * If an image has a non-zero parent overlap, get a reference to its
1931  * parent.
1932  *
1933  * We must get the reference before checking for the overlap to
1934  * coordinate properly with zeroing the parent overlap in
1935  * rbd_dev_v2_parent_info() when an image gets flattened.  We
1936  * drop it again if there is no overlap.
1937  *
1938  * Returns true if the rbd device has a parent with a non-zero
1939  * overlap and a reference for it was successfully taken, or
1940  * false otherwise.
1941  */
1942 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1943 {
1944         int counter;
1945
1946         if (!rbd_dev->parent_spec)
1947                 return false;
1948
1949         counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1950         if (counter > 0 && rbd_dev->parent_overlap)
1951                 return true;
1952
1953         /* Image was flattened, but parent is not yet torn down */
1954
1955         if (counter < 0)
1956                 rbd_warn(rbd_dev, "parent reference overflow\n");
1957
1958         return false;
1959 }
1960
1961 /*
1962  * Caller is responsible for filling in the list of object requests
1963  * that comprises the image request, and the Linux request pointer
1964  * (if there is one).
1965  */
1966 static struct rbd_img_request *rbd_img_request_create(
1967                                         struct rbd_device *rbd_dev,
1968                                         u64 offset, u64 length,
1969                                         bool write_request)
1970 {
1971         struct rbd_img_request *img_request;
1972
1973         img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
1974         if (!img_request)
1975                 return NULL;
1976
1977         if (write_request) {
1978                 down_read(&rbd_dev->header_rwsem);
1979                 ceph_get_snap_context(rbd_dev->header.snapc);
1980                 up_read(&rbd_dev->header_rwsem);
1981         }
1982
1983         img_request->rq = NULL;
1984         img_request->rbd_dev = rbd_dev;
1985         img_request->offset = offset;
1986         img_request->length = length;
1987         img_request->flags = 0;
1988         if (write_request) {
1989                 img_request_write_set(img_request);
1990                 img_request->snapc = rbd_dev->header.snapc;
1991         } else {
1992                 img_request->snap_id = rbd_dev->spec->snap_id;
1993         }
1994         if (rbd_dev_parent_get(rbd_dev))
1995                 img_request_layered_set(img_request);
1996         spin_lock_init(&img_request->completion_lock);
1997         img_request->next_completion = 0;
1998         img_request->callback = NULL;
1999         img_request->result = 0;
2000         img_request->obj_request_count = 0;
2001         INIT_LIST_HEAD(&img_request->obj_requests);
2002         kref_init(&img_request->kref);
2003
2004         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2005                 write_request ? "write" : "read", offset, length,
2006                 img_request);
2007
2008         return img_request;
2009 }
2010
2011 static void rbd_img_request_destroy(struct kref *kref)
2012 {
2013         struct rbd_img_request *img_request;
2014         struct rbd_obj_request *obj_request;
2015         struct rbd_obj_request *next_obj_request;
2016
2017         img_request = container_of(kref, struct rbd_img_request, kref);
2018
2019         dout("%s: img %p\n", __func__, img_request);
2020
2021         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2022                 rbd_img_obj_request_del(img_request, obj_request);
2023         rbd_assert(img_request->obj_request_count == 0);
2024
2025         if (img_request_layered_test(img_request)) {
2026                 img_request_layered_clear(img_request);
2027                 rbd_dev_parent_put(img_request->rbd_dev);
2028         }
2029
2030         if (img_request_write_test(img_request))
2031                 ceph_put_snap_context(img_request->snapc);
2032
2033         kmem_cache_free(rbd_img_request_cache, img_request);
2034 }
2035
2036 static struct rbd_img_request *rbd_parent_request_create(
2037                                         struct rbd_obj_request *obj_request,
2038                                         u64 img_offset, u64 length)
2039 {
2040         struct rbd_img_request *parent_request;
2041         struct rbd_device *rbd_dev;
2042
2043         rbd_assert(obj_request->img_request);
2044         rbd_dev = obj_request->img_request->rbd_dev;
2045
2046         parent_request = rbd_img_request_create(rbd_dev->parent,
2047                                                 img_offset, length, false);
2048         if (!parent_request)
2049                 return NULL;
2050
2051         img_request_child_set(parent_request);
2052         rbd_obj_request_get(obj_request);
2053         parent_request->obj_request = obj_request;
2054
2055         return parent_request;
2056 }
2057
2058 static void rbd_parent_request_destroy(struct kref *kref)
2059 {
2060         struct rbd_img_request *parent_request;
2061         struct rbd_obj_request *orig_request;
2062
2063         parent_request = container_of(kref, struct rbd_img_request, kref);
2064         orig_request = parent_request->obj_request;
2065
2066         parent_request->obj_request = NULL;
2067         rbd_obj_request_put(orig_request);
2068         img_request_child_clear(parent_request);
2069
2070         rbd_img_request_destroy(kref);
2071 }
2072
2073 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2074 {
2075         struct rbd_img_request *img_request;
2076         unsigned int xferred;
2077         int result;
2078         bool more;
2079
2080         rbd_assert(obj_request_img_data_test(obj_request));
2081         img_request = obj_request->img_request;
2082
2083         rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2084         xferred = (unsigned int)obj_request->xferred;
2085         result = obj_request->result;
2086         if (result) {
2087                 struct rbd_device *rbd_dev = img_request->rbd_dev;
2088
2089                 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
2090                         img_request_write_test(img_request) ? "write" : "read",
2091                         obj_request->length, obj_request->img_offset,
2092                         obj_request->offset);
2093                 rbd_warn(rbd_dev, "  result %d xferred %x\n",
2094                         result, xferred);
2095                 if (!img_request->result)
2096                         img_request->result = result;
2097         }
2098
2099         /* Image object requests don't own their page array */
2100
2101         if (obj_request->type == OBJ_REQUEST_PAGES) {
2102                 obj_request->pages = NULL;
2103                 obj_request->page_count = 0;
2104         }
2105
2106         if (img_request_child_test(img_request)) {
2107                 rbd_assert(img_request->obj_request != NULL);
2108                 more = obj_request->which < img_request->obj_request_count - 1;
2109         } else {
2110                 rbd_assert(img_request->rq != NULL);
2111                 more = blk_end_request(img_request->rq, result, xferred);
2112         }
2113
2114         return more;
2115 }
2116
2117 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2118 {
2119         struct rbd_img_request *img_request;
2120         u32 which = obj_request->which;
2121         bool more = true;
2122
2123         rbd_assert(obj_request_img_data_test(obj_request));
2124         img_request = obj_request->img_request;
2125
2126         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2127         rbd_assert(img_request != NULL);
2128         rbd_assert(img_request->obj_request_count > 0);
2129         rbd_assert(which != BAD_WHICH);
2130         rbd_assert(which < img_request->obj_request_count);
2131         rbd_assert(which >= img_request->next_completion);
2132
2133         spin_lock_irq(&img_request->completion_lock);
2134         if (which != img_request->next_completion)
2135                 goto out;
2136
2137         for_each_obj_request_from(img_request, obj_request) {
2138                 rbd_assert(more);
2139                 rbd_assert(which < img_request->obj_request_count);
2140
2141                 if (!obj_request_done_test(obj_request))
2142                         break;
2143                 more = rbd_img_obj_end_request(obj_request);
2144                 which++;
2145         }
2146
2147         rbd_assert(more ^ (which == img_request->obj_request_count));
2148         img_request->next_completion = which;
2149 out:
2150         spin_unlock_irq(&img_request->completion_lock);
2151
2152         if (!more)
2153                 rbd_img_request_complete(img_request);
2154 }
2155
2156 /*
2157  * Split up an image request into one or more object requests, each
2158  * to a different object.  The "type" parameter indicates whether
2159  * "data_desc" is the pointer to the head of a list of bio
2160  * structures, or the base of a page array.  In either case this
2161  * function assumes data_desc describes memory sufficient to hold
2162  * all data described by the image request.
2163  */
2164 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2165                                         enum obj_request_type type,
2166                                         void *data_desc)
2167 {
2168         struct rbd_device *rbd_dev = img_request->rbd_dev;
2169         struct rbd_obj_request *obj_request = NULL;
2170         struct rbd_obj_request *next_obj_request;
2171         bool write_request = img_request_write_test(img_request);
2172         struct bio *bio_list = NULL;
2173         unsigned int bio_offset = 0;
2174         struct page **pages = NULL;
2175         u64 img_offset;
2176         u64 resid;
2177         u16 opcode;
2178
2179         dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2180                 (int)type, data_desc);
2181
2182         opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2183         img_offset = img_request->offset;
2184         resid = img_request->length;
2185         rbd_assert(resid > 0);
2186
2187         if (type == OBJ_REQUEST_BIO) {
2188                 bio_list = data_desc;
2189                 rbd_assert(img_offset ==
2190                            bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2191         } else {
2192                 rbd_assert(type == OBJ_REQUEST_PAGES);
2193                 pages = data_desc;
2194         }
2195
2196         while (resid) {
2197                 struct ceph_osd_request *osd_req;
2198                 const char *object_name;
2199                 u64 offset;
2200                 u64 length;
2201
2202                 object_name = rbd_segment_name(rbd_dev, img_offset);
2203                 if (!object_name)
2204                         goto out_unwind;
2205                 offset = rbd_segment_offset(rbd_dev, img_offset);
2206                 length = rbd_segment_length(rbd_dev, img_offset, resid);
2207                 obj_request = rbd_obj_request_create(object_name,
2208                                                 offset, length, type);
2209                 /* object request has its own copy of the object name */
2210                 rbd_segment_name_free(object_name);
2211                 if (!obj_request)
2212                         goto out_unwind;
2213                 /*
2214                  * set obj_request->img_request before creating the
2215                  * osd_request so that it gets the right snapc
2216                  */
2217                 rbd_img_obj_request_add(img_request, obj_request);
2218
2219                 if (type == OBJ_REQUEST_BIO) {
2220                         unsigned int clone_size;
2221
2222                         rbd_assert(length <= (u64)UINT_MAX);
2223                         clone_size = (unsigned int)length;
2224                         obj_request->bio_list =
2225                                         bio_chain_clone_range(&bio_list,
2226                                                                 &bio_offset,
2227                                                                 clone_size,
2228                                                                 GFP_ATOMIC);
2229                         if (!obj_request->bio_list)
2230                                 goto out_partial;
2231                 } else {
2232                         unsigned int page_count;
2233
2234                         obj_request->pages = pages;
2235                         page_count = (u32)calc_pages_for(offset, length);
2236                         obj_request->page_count = page_count;
2237                         if ((offset + length) & ~PAGE_MASK)
2238                                 page_count--;   /* more on last page */
2239                         pages += page_count;
2240                 }
2241
2242                 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2243                                                 obj_request);
2244                 if (!osd_req)
2245                         goto out_partial;
2246                 obj_request->osd_req = osd_req;
2247                 obj_request->callback = rbd_img_obj_callback;
2248
2249                 osd_req_op_extent_init(osd_req, 0, opcode, offset, length,
2250                                                 0, 0);
2251                 if (type == OBJ_REQUEST_BIO)
2252                         osd_req_op_extent_osd_data_bio(osd_req, 0,
2253                                         obj_request->bio_list, length);
2254                 else
2255                         osd_req_op_extent_osd_data_pages(osd_req, 0,
2256                                         obj_request->pages, length,
2257                                         offset & ~PAGE_MASK, false, false);
2258
2259                 if (write_request)
2260                         rbd_osd_req_format_write(obj_request);
2261                 else
2262                         rbd_osd_req_format_read(obj_request);
2263
2264                 obj_request->img_offset = img_offset;
2265
2266                 img_offset += length;
2267                 resid -= length;
2268         }
2269
2270         return 0;
2271
2272 out_partial:
2273         rbd_obj_request_put(obj_request);
2274 out_unwind:
2275         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2276                 rbd_obj_request_put(obj_request);
2277
2278         return -ENOMEM;
2279 }
2280
2281 static void
2282 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2283 {
2284         struct rbd_img_request *img_request;
2285         struct rbd_device *rbd_dev;
2286         struct page **pages;
2287         u32 page_count;
2288
2289         rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2290         rbd_assert(obj_request_img_data_test(obj_request));
2291         img_request = obj_request->img_request;
2292         rbd_assert(img_request);
2293
2294         rbd_dev = img_request->rbd_dev;
2295         rbd_assert(rbd_dev);
2296
2297         pages = obj_request->copyup_pages;
2298         rbd_assert(pages != NULL);
2299         obj_request->copyup_pages = NULL;
2300         page_count = obj_request->copyup_page_count;
2301         rbd_assert(page_count);
2302         obj_request->copyup_page_count = 0;
2303         ceph_release_page_vector(pages, page_count);
2304
2305         /*
2306          * We want the transfer count to reflect the size of the
2307          * original write request.  There is no such thing as a
2308          * successful short write, so if the request was successful
2309          * we can just set it to the originally-requested length.
2310          */
2311         if (!obj_request->result)
2312                 obj_request->xferred = obj_request->length;
2313
2314         /* Finish up with the normal image object callback */
2315
2316         rbd_img_obj_callback(obj_request);
2317 }
2318
2319 static void
2320 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2321 {
2322         struct rbd_obj_request *orig_request;
2323         struct ceph_osd_request *osd_req;
2324         struct ceph_osd_client *osdc;
2325         struct rbd_device *rbd_dev;
2326         struct page **pages;
2327         u32 page_count;
2328         int img_result;
2329         u64 parent_length;
2330         u64 offset;
2331         u64 length;
2332
2333         rbd_assert(img_request_child_test(img_request));
2334
2335         /* First get what we need from the image request */
2336
2337         pages = img_request->copyup_pages;
2338         rbd_assert(pages != NULL);
2339         img_request->copyup_pages = NULL;
2340         page_count = img_request->copyup_page_count;
2341         rbd_assert(page_count);
2342         img_request->copyup_page_count = 0;
2343
2344         orig_request = img_request->obj_request;
2345         rbd_assert(orig_request != NULL);
2346         rbd_assert(obj_request_type_valid(orig_request->type));
2347         img_result = img_request->result;
2348         parent_length = img_request->length;
2349         rbd_assert(parent_length == img_request->xferred);
2350         rbd_img_request_put(img_request);
2351
2352         rbd_assert(orig_request->img_request);
2353         rbd_dev = orig_request->img_request->rbd_dev;
2354         rbd_assert(rbd_dev);
2355
2356         /*
2357          * If the overlap has become 0 (most likely because the
2358          * image has been flattened) we need to free the pages
2359          * and re-submit the original write request.
2360          */
2361         if (!rbd_dev->parent_overlap) {
2362                 struct ceph_osd_client *osdc;
2363
2364                 ceph_release_page_vector(pages, page_count);
2365                 osdc = &rbd_dev->rbd_client->client->osdc;
2366                 img_result = rbd_obj_request_submit(osdc, orig_request);
2367                 if (!img_result)
2368                         return;
2369         }
2370
2371         if (img_result)
2372                 goto out_err;
2373
2374         /*
2375          * The original osd request is of no use to use any more.
2376          * We need a new one that can hold the two ops in a copyup
2377          * request.  Allocate the new copyup osd request for the
2378          * original request, and release the old one.
2379          */
2380         img_result = -ENOMEM;
2381         osd_req = rbd_osd_req_create_copyup(orig_request);
2382         if (!osd_req)
2383                 goto out_err;
2384         rbd_osd_req_destroy(orig_request->osd_req);
2385         orig_request->osd_req = osd_req;
2386         orig_request->copyup_pages = pages;
2387         orig_request->copyup_page_count = page_count;
2388
2389         /* Initialize the copyup op */
2390
2391         osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2392         osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2393                                                 false, false);
2394
2395         /* Then the original write request op */
2396
2397         offset = orig_request->offset;
2398         length = orig_request->length;
2399         osd_req_op_extent_init(osd_req, 1, CEPH_OSD_OP_WRITE,
2400                                         offset, length, 0, 0);
2401         if (orig_request->type == OBJ_REQUEST_BIO)
2402                 osd_req_op_extent_osd_data_bio(osd_req, 1,
2403                                         orig_request->bio_list, length);
2404         else
2405                 osd_req_op_extent_osd_data_pages(osd_req, 1,
2406                                         orig_request->pages, length,
2407                                         offset & ~PAGE_MASK, false, false);
2408
2409         rbd_osd_req_format_write(orig_request);
2410
2411         /* All set, send it off. */
2412
2413         orig_request->callback = rbd_img_obj_copyup_callback;
2414         osdc = &rbd_dev->rbd_client->client->osdc;
2415         img_result = rbd_obj_request_submit(osdc, orig_request);
2416         if (!img_result)
2417                 return;
2418 out_err:
2419         /* Record the error code and complete the request */
2420
2421         orig_request->result = img_result;
2422         orig_request->xferred = 0;
2423         obj_request_done_set(orig_request);
2424         rbd_obj_request_complete(orig_request);
2425 }
2426
2427 /*
2428  * Read from the parent image the range of data that covers the
2429  * entire target of the given object request.  This is used for
2430  * satisfying a layered image write request when the target of an
2431  * object request from the image request does not exist.
2432  *
2433  * A page array big enough to hold the returned data is allocated
2434  * and supplied to rbd_img_request_fill() as the "data descriptor."
2435  * When the read completes, this page array will be transferred to
2436  * the original object request for the copyup operation.
2437  *
2438  * If an error occurs, record it as the result of the original
2439  * object request and mark it done so it gets completed.
2440  */
2441 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2442 {
2443         struct rbd_img_request *img_request = NULL;
2444         struct rbd_img_request *parent_request = NULL;
2445         struct rbd_device *rbd_dev;
2446         u64 img_offset;
2447         u64 length;
2448         struct page **pages = NULL;
2449         u32 page_count;
2450         int result;
2451
2452         rbd_assert(obj_request_img_data_test(obj_request));
2453         rbd_assert(obj_request_type_valid(obj_request->type));
2454
2455         img_request = obj_request->img_request;
2456         rbd_assert(img_request != NULL);
2457         rbd_dev = img_request->rbd_dev;
2458         rbd_assert(rbd_dev->parent != NULL);
2459
2460         /*
2461          * Determine the byte range covered by the object in the
2462          * child image to which the original request was to be sent.
2463          */
2464         img_offset = obj_request->img_offset - obj_request->offset;
2465         length = (u64)1 << rbd_dev->header.obj_order;
2466
2467         /*
2468          * There is no defined parent data beyond the parent
2469          * overlap, so limit what we read at that boundary if
2470          * necessary.
2471          */
2472         if (img_offset + length > rbd_dev->parent_overlap) {
2473                 rbd_assert(img_offset < rbd_dev->parent_overlap);
2474                 length = rbd_dev->parent_overlap - img_offset;
2475         }
2476
2477         /*
2478          * Allocate a page array big enough to receive the data read
2479          * from the parent.
2480          */
2481         page_count = (u32)calc_pages_for(0, length);
2482         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2483         if (IS_ERR(pages)) {
2484                 result = PTR_ERR(pages);
2485                 pages = NULL;
2486                 goto out_err;
2487         }
2488
2489         result = -ENOMEM;
2490         parent_request = rbd_parent_request_create(obj_request,
2491                                                 img_offset, length);
2492         if (!parent_request)
2493                 goto out_err;
2494
2495         result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2496         if (result)
2497                 goto out_err;
2498         parent_request->copyup_pages = pages;
2499         parent_request->copyup_page_count = page_count;
2500
2501         parent_request->callback = rbd_img_obj_parent_read_full_callback;
2502         result = rbd_img_request_submit(parent_request);
2503         if (!result)
2504                 return 0;
2505
2506         parent_request->copyup_pages = NULL;
2507         parent_request->copyup_page_count = 0;
2508         parent_request->obj_request = NULL;
2509         rbd_obj_request_put(obj_request);
2510 out_err:
2511         if (pages)
2512                 ceph_release_page_vector(pages, page_count);
2513         if (parent_request)
2514                 rbd_img_request_put(parent_request);
2515         obj_request->result = result;
2516         obj_request->xferred = 0;
2517         obj_request_done_set(obj_request);
2518
2519         return result;
2520 }
2521
2522 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2523 {
2524         struct rbd_obj_request *orig_request;
2525         struct rbd_device *rbd_dev;
2526         int result;
2527
2528         rbd_assert(!obj_request_img_data_test(obj_request));
2529
2530         /*
2531          * All we need from the object request is the original
2532          * request and the result of the STAT op.  Grab those, then
2533          * we're done with the request.
2534          */
2535         orig_request = obj_request->obj_request;
2536         obj_request->obj_request = NULL;
2537         rbd_obj_request_put(orig_request);
2538         rbd_assert(orig_request);
2539         rbd_assert(orig_request->img_request);
2540
2541         result = obj_request->result;
2542         obj_request->result = 0;
2543
2544         dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2545                 obj_request, orig_request, result,
2546                 obj_request->xferred, obj_request->length);
2547         rbd_obj_request_put(obj_request);
2548
2549         /*
2550          * If the overlap has become 0 (most likely because the
2551          * image has been flattened) we need to free the pages
2552          * and re-submit the original write request.
2553          */
2554         rbd_dev = orig_request->img_request->rbd_dev;
2555         if (!rbd_dev->parent_overlap) {
2556                 struct ceph_osd_client *osdc;
2557
2558                 osdc = &rbd_dev->rbd_client->client->osdc;
2559                 result = rbd_obj_request_submit(osdc, orig_request);
2560                 if (!result)
2561                         return;
2562         }
2563
2564         /*
2565          * Our only purpose here is to determine whether the object
2566          * exists, and we don't want to treat the non-existence as
2567          * an error.  If something else comes back, transfer the
2568          * error to the original request and complete it now.
2569          */
2570         if (!result) {
2571                 obj_request_existence_set(orig_request, true);
2572         } else if (result == -ENOENT) {
2573                 obj_request_existence_set(orig_request, false);
2574         } else if (result) {
2575                 orig_request->result = result;
2576                 goto out;
2577         }
2578
2579         /*
2580          * Resubmit the original request now that we have recorded
2581          * whether the target object exists.
2582          */
2583         orig_request->result = rbd_img_obj_request_submit(orig_request);
2584 out:
2585         if (orig_request->result)
2586                 rbd_obj_request_complete(orig_request);
2587 }
2588
2589 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2590 {
2591         struct rbd_obj_request *stat_request;
2592         struct rbd_device *rbd_dev;
2593         struct ceph_osd_client *osdc;
2594         struct page **pages = NULL;
2595         u32 page_count;
2596         size_t size;
2597         int ret;
2598
2599         /*
2600          * The response data for a STAT call consists of:
2601          *     le64 length;
2602          *     struct {
2603          *         le32 tv_sec;
2604          *         le32 tv_nsec;
2605          *     } mtime;
2606          */
2607         size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2608         page_count = (u32)calc_pages_for(0, size);
2609         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2610         if (IS_ERR(pages))
2611                 return PTR_ERR(pages);
2612
2613         ret = -ENOMEM;
2614         stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2615                                                         OBJ_REQUEST_PAGES);
2616         if (!stat_request)
2617                 goto out;
2618
2619         rbd_obj_request_get(obj_request);
2620         stat_request->obj_request = obj_request;
2621         stat_request->pages = pages;
2622         stat_request->page_count = page_count;
2623
2624         rbd_assert(obj_request->img_request);
2625         rbd_dev = obj_request->img_request->rbd_dev;
2626         stat_request->osd_req = rbd_osd_req_create(rbd_dev, false,
2627                                                 stat_request);
2628         if (!stat_request->osd_req)
2629                 goto out;
2630         stat_request->callback = rbd_img_obj_exists_callback;
2631
2632         osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2633         osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2634                                         false, false);
2635         rbd_osd_req_format_read(stat_request);
2636
2637         osdc = &rbd_dev->rbd_client->client->osdc;
2638         ret = rbd_obj_request_submit(osdc, stat_request);
2639 out:
2640         if (ret)
2641                 rbd_obj_request_put(obj_request);
2642
2643         return ret;
2644 }
2645
2646 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2647 {
2648         struct rbd_img_request *img_request;
2649         struct rbd_device *rbd_dev;
2650         bool known;
2651
2652         rbd_assert(obj_request_img_data_test(obj_request));
2653
2654         img_request = obj_request->img_request;
2655         rbd_assert(img_request);
2656         rbd_dev = img_request->rbd_dev;
2657
2658         /*
2659          * Only writes to layered images need special handling.
2660          * Reads and non-layered writes are simple object requests.
2661          * Layered writes that start beyond the end of the overlap
2662          * with the parent have no parent data, so they too are
2663          * simple object requests.  Finally, if the target object is
2664          * known to already exist, its parent data has already been
2665          * copied, so a write to the object can also be handled as a
2666          * simple object request.
2667          */
2668         if (!img_request_write_test(img_request) ||
2669                 !img_request_layered_test(img_request) ||
2670                 rbd_dev->parent_overlap <= obj_request->img_offset ||
2671                 ((known = obj_request_known_test(obj_request)) &&
2672                         obj_request_exists_test(obj_request))) {
2673
2674                 struct rbd_device *rbd_dev;
2675                 struct ceph_osd_client *osdc;
2676
2677                 rbd_dev = obj_request->img_request->rbd_dev;
2678                 osdc = &rbd_dev->rbd_client->client->osdc;
2679
2680                 return rbd_obj_request_submit(osdc, obj_request);
2681         }
2682
2683         /*
2684          * It's a layered write.  The target object might exist but
2685          * we may not know that yet.  If we know it doesn't exist,
2686          * start by reading the data for the full target object from
2687          * the parent so we can use it for a copyup to the target.
2688          */
2689         if (known)
2690                 return rbd_img_obj_parent_read_full(obj_request);
2691
2692         /* We don't know whether the target exists.  Go find out. */
2693
2694         return rbd_img_obj_exists_submit(obj_request);
2695 }
2696
2697 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2698 {
2699         struct rbd_obj_request *obj_request;
2700         struct rbd_obj_request *next_obj_request;
2701
2702         dout("%s: img %p\n", __func__, img_request);
2703         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2704                 int ret;
2705
2706                 ret = rbd_img_obj_request_submit(obj_request);
2707                 if (ret)
2708                         return ret;
2709         }
2710
2711         return 0;
2712 }
2713
2714 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2715 {
2716         struct rbd_obj_request *obj_request;
2717         struct rbd_device *rbd_dev;
2718         u64 obj_end;
2719         u64 img_xferred;
2720         int img_result;
2721
2722         rbd_assert(img_request_child_test(img_request));
2723
2724         /* First get what we need from the image request and release it */
2725
2726         obj_request = img_request->obj_request;
2727         img_xferred = img_request->xferred;
2728         img_result = img_request->result;
2729         rbd_img_request_put(img_request);
2730
2731         /*
2732          * If the overlap has become 0 (most likely because the
2733          * image has been flattened) we need to re-submit the
2734          * original request.
2735          */
2736         rbd_assert(obj_request);
2737         rbd_assert(obj_request->img_request);
2738         rbd_dev = obj_request->img_request->rbd_dev;
2739         if (!rbd_dev->parent_overlap) {
2740                 struct ceph_osd_client *osdc;
2741
2742                 osdc = &rbd_dev->rbd_client->client->osdc;
2743                 img_result = rbd_obj_request_submit(osdc, obj_request);
2744                 if (!img_result)
2745                         return;
2746         }
2747
2748         obj_request->result = img_result;
2749         if (obj_request->result)
2750                 goto out;
2751
2752         /*
2753          * We need to zero anything beyond the parent overlap
2754          * boundary.  Since rbd_img_obj_request_read_callback()
2755          * will zero anything beyond the end of a short read, an
2756          * easy way to do this is to pretend the data from the
2757          * parent came up short--ending at the overlap boundary.
2758          */
2759         rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2760         obj_end = obj_request->img_offset + obj_request->length;
2761         if (obj_end > rbd_dev->parent_overlap) {
2762                 u64 xferred = 0;
2763
2764                 if (obj_request->img_offset < rbd_dev->parent_overlap)
2765                         xferred = rbd_dev->parent_overlap -
2766                                         obj_request->img_offset;
2767
2768                 obj_request->xferred = min(img_xferred, xferred);
2769         } else {
2770                 obj_request->xferred = img_xferred;
2771         }
2772 out:
2773         rbd_img_obj_request_read_callback(obj_request);
2774         rbd_obj_request_complete(obj_request);
2775 }
2776
2777 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2778 {
2779         struct rbd_img_request *img_request;
2780         int result;
2781
2782         rbd_assert(obj_request_img_data_test(obj_request));
2783         rbd_assert(obj_request->img_request != NULL);
2784         rbd_assert(obj_request->result == (s32) -ENOENT);
2785         rbd_assert(obj_request_type_valid(obj_request->type));
2786
2787         /* rbd_read_finish(obj_request, obj_request->length); */
2788         img_request = rbd_parent_request_create(obj_request,
2789                                                 obj_request->img_offset,
2790                                                 obj_request->length);
2791         result = -ENOMEM;
2792         if (!img_request)
2793                 goto out_err;
2794
2795         if (obj_request->type == OBJ_REQUEST_BIO)
2796                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2797                                                 obj_request->bio_list);
2798         else
2799                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2800                                                 obj_request->pages);
2801         if (result)
2802                 goto out_err;
2803
2804         img_request->callback = rbd_img_parent_read_callback;
2805         result = rbd_img_request_submit(img_request);
2806         if (result)
2807                 goto out_err;
2808
2809         return;
2810 out_err:
2811         if (img_request)
2812                 rbd_img_request_put(img_request);
2813         obj_request->result = result;
2814         obj_request->xferred = 0;
2815         obj_request_done_set(obj_request);
2816 }
2817
2818 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
2819 {
2820         struct rbd_obj_request *obj_request;
2821         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2822         int ret;
2823
2824         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2825                                                         OBJ_REQUEST_NODATA);
2826         if (!obj_request)
2827                 return -ENOMEM;
2828
2829         ret = -ENOMEM;
2830         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2831         if (!obj_request->osd_req)
2832                 goto out;
2833
2834         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2835                                         notify_id, 0, 0);
2836         rbd_osd_req_format_read(obj_request);
2837
2838         ret = rbd_obj_request_submit(osdc, obj_request);
2839         if (ret)
2840                 goto out;
2841         ret = rbd_obj_request_wait(obj_request);
2842 out:
2843         rbd_obj_request_put(obj_request);
2844
2845         return ret;
2846 }
2847
2848 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2849 {
2850         struct rbd_device *rbd_dev = (struct rbd_device *)data;
2851         int ret;
2852
2853         if (!rbd_dev)
2854                 return;
2855
2856         dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2857                 rbd_dev->header_name, (unsigned long long)notify_id,
2858                 (unsigned int)opcode);
2859         ret = rbd_dev_refresh(rbd_dev);
2860         if (ret)
2861                 rbd_warn(rbd_dev, "header refresh error (%d)\n", ret);
2862
2863         rbd_obj_notify_ack_sync(rbd_dev, notify_id);
2864 }
2865
2866 /*
2867  * Request sync osd watch/unwatch.  The value of "start" determines
2868  * whether a watch request is being initiated or torn down.
2869  */
2870 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, bool start)
2871 {
2872         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2873         struct rbd_obj_request *obj_request;
2874         int ret;
2875
2876         rbd_assert(start ^ !!rbd_dev->watch_event);
2877         rbd_assert(start ^ !!rbd_dev->watch_request);
2878
2879         if (start) {
2880                 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2881                                                 &rbd_dev->watch_event);
2882                 if (ret < 0)
2883                         return ret;
2884                 rbd_assert(rbd_dev->watch_event != NULL);
2885         }
2886
2887         ret = -ENOMEM;
2888         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2889                                                         OBJ_REQUEST_NODATA);
2890         if (!obj_request)
2891                 goto out_cancel;
2892
2893         obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, obj_request);
2894         if (!obj_request->osd_req)
2895                 goto out_cancel;
2896
2897         if (start)
2898                 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2899         else
2900                 ceph_osdc_unregister_linger_request(osdc,
2901                                         rbd_dev->watch_request->osd_req);
2902
2903         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2904                                 rbd_dev->watch_event->cookie, 0, start ? 1 : 0);
2905         rbd_osd_req_format_write(obj_request);
2906
2907         ret = rbd_obj_request_submit(osdc, obj_request);
2908         if (ret)
2909                 goto out_cancel;
2910         ret = rbd_obj_request_wait(obj_request);
2911         if (ret)
2912                 goto out_cancel;
2913         ret = obj_request->result;
2914         if (ret)
2915                 goto out_cancel;
2916
2917         /*
2918          * A watch request is set to linger, so the underlying osd
2919          * request won't go away until we unregister it.  We retain
2920          * a pointer to the object request during that time (in
2921          * rbd_dev->watch_request), so we'll keep a reference to
2922          * it.  We'll drop that reference (below) after we've
2923          * unregistered it.
2924          */
2925         if (start) {
2926                 rbd_dev->watch_request = obj_request;
2927
2928                 return 0;
2929         }
2930
2931         /* We have successfully torn down the watch request */
2932
2933         rbd_obj_request_put(rbd_dev->watch_request);
2934         rbd_dev->watch_request = NULL;
2935 out_cancel:
2936         /* Cancel the event if we're tearing down, or on error */
2937         ceph_osdc_cancel_event(rbd_dev->watch_event);
2938         rbd_dev->watch_event = NULL;
2939         if (obj_request)
2940                 rbd_obj_request_put(obj_request);
2941
2942         return ret;
2943 }
2944
2945 /*
2946  * Synchronous osd object method call.  Returns the number of bytes
2947  * returned in the outbound buffer, or a negative error code.
2948  */
2949 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
2950                              const char *object_name,
2951                              const char *class_name,
2952                              const char *method_name,
2953                              const void *outbound,
2954                              size_t outbound_size,
2955                              void *inbound,
2956                              size_t inbound_size)
2957 {
2958         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2959         struct rbd_obj_request *obj_request;
2960         struct page **pages;
2961         u32 page_count;
2962         int ret;
2963
2964         /*
2965          * Method calls are ultimately read operations.  The result
2966          * should placed into the inbound buffer provided.  They
2967          * also supply outbound data--parameters for the object
2968          * method.  Currently if this is present it will be a
2969          * snapshot id.
2970          */
2971         page_count = (u32)calc_pages_for(0, inbound_size);
2972         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2973         if (IS_ERR(pages))
2974                 return PTR_ERR(pages);
2975
2976         ret = -ENOMEM;
2977         obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
2978                                                         OBJ_REQUEST_PAGES);
2979         if (!obj_request)
2980                 goto out;
2981
2982         obj_request->pages = pages;
2983         obj_request->page_count = page_count;
2984
2985         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2986         if (!obj_request->osd_req)
2987                 goto out;
2988
2989         osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
2990                                         class_name, method_name);
2991         if (outbound_size) {
2992                 struct ceph_pagelist *pagelist;
2993
2994                 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
2995                 if (!pagelist)
2996                         goto out;
2997
2998                 ceph_pagelist_init(pagelist);
2999                 ceph_pagelist_append(pagelist, outbound, outbound_size);
3000                 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3001                                                 pagelist);
3002         }
3003         osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3004                                         obj_request->pages, inbound_size,
3005                                         0, false, false);
3006         rbd_osd_req_format_read(obj_request);
3007
3008         ret = rbd_obj_request_submit(osdc, obj_request);
3009         if (ret)
3010                 goto out;
3011         ret = rbd_obj_request_wait(obj_request);
3012         if (ret)
3013                 goto out;
3014
3015         ret = obj_request->result;
3016         if (ret < 0)
3017                 goto out;
3018
3019         rbd_assert(obj_request->xferred < (u64)INT_MAX);
3020         ret = (int)obj_request->xferred;
3021         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3022 out:
3023         if (obj_request)
3024                 rbd_obj_request_put(obj_request);
3025         else
3026                 ceph_release_page_vector(pages, page_count);
3027
3028         return ret;
3029 }
3030
3031 static void rbd_request_fn(struct request_queue *q)
3032                 __releases(q->queue_lock) __acquires(q->queue_lock)
3033 {
3034         struct rbd_device *rbd_dev = q->queuedata;
3035         bool read_only = rbd_dev->mapping.read_only;
3036         struct request *rq;
3037         int result;
3038
3039         while ((rq = blk_fetch_request(q))) {
3040                 bool write_request = rq_data_dir(rq) == WRITE;
3041                 struct rbd_img_request *img_request;
3042                 u64 offset;
3043                 u64 length;
3044
3045                 /* Ignore any non-FS requests that filter through. */
3046
3047                 if (rq->cmd_type != REQ_TYPE_FS) {
3048                         dout("%s: non-fs request type %d\n", __func__,
3049                                 (int) rq->cmd_type);
3050                         __blk_end_request_all(rq, 0);
3051                         continue;
3052                 }
3053
3054                 /* Ignore/skip any zero-length requests */
3055
3056                 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
3057                 length = (u64) blk_rq_bytes(rq);
3058
3059                 if (!length) {
3060                         dout("%s: zero-length request\n", __func__);
3061                         __blk_end_request_all(rq, 0);
3062                         continue;
3063                 }
3064
3065                 spin_unlock_irq(q->queue_lock);
3066
3067                 /* Disallow writes to a read-only device */
3068
3069                 if (write_request) {
3070                         result = -EROFS;
3071                         if (read_only)
3072                                 goto end_request;
3073                         rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3074                 }
3075
3076                 /*
3077                  * Quit early if the mapped snapshot no longer
3078                  * exists.  It's still possible the snapshot will
3079                  * have disappeared by the time our request arrives
3080                  * at the osd, but there's no sense in sending it if
3081                  * we already know.
3082                  */
3083                 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3084                         dout("request for non-existent snapshot");
3085                         rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3086                         result = -ENXIO;
3087                         goto end_request;
3088                 }
3089
3090                 result = -EINVAL;
3091                 if (offset && length > U64_MAX - offset + 1) {
3092                         rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
3093                                 offset, length);
3094                         goto end_request;       /* Shouldn't happen */
3095                 }
3096
3097                 result = -EIO;
3098                 if (offset + length > rbd_dev->mapping.size) {
3099                         rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
3100                                 offset, length, rbd_dev->mapping.size);
3101                         goto end_request;
3102                 }
3103
3104                 result = -ENOMEM;
3105                 img_request = rbd_img_request_create(rbd_dev, offset, length,
3106                                                         write_request);
3107                 if (!img_request)
3108                         goto end_request;
3109
3110                 img_request->rq = rq;
3111
3112                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3113                                                 rq->bio);
3114                 if (!result)
3115                         result = rbd_img_request_submit(img_request);
3116                 if (result)
3117                         rbd_img_request_put(img_request);
3118 end_request:
3119                 spin_lock_irq(q->queue_lock);
3120                 if (result < 0) {
3121                         rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
3122                                 write_request ? "write" : "read",
3123                                 length, offset, result);
3124
3125                         __blk_end_request_all(rq, result);
3126                 }
3127         }
3128 }
3129
3130 /*
3131  * a queue callback. Makes sure that we don't create a bio that spans across
3132  * multiple osd objects. One exception would be with a single page bios,
3133  * which we handle later at bio_chain_clone_range()
3134  */
3135 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3136                           struct bio_vec *bvec)
3137 {
3138         struct rbd_device *rbd_dev = q->queuedata;
3139         sector_t sector_offset;
3140         sector_t sectors_per_obj;
3141         sector_t obj_sector_offset;
3142         int ret;
3143
3144         /*
3145          * Find how far into its rbd object the partition-relative
3146          * bio start sector is to offset relative to the enclosing
3147          * device.
3148          */
3149         sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3150         sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3151         obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3152
3153         /*
3154          * Compute the number of bytes from that offset to the end
3155          * of the object.  Account for what's already used by the bio.
3156          */
3157         ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3158         if (ret > bmd->bi_size)
3159                 ret -= bmd->bi_size;
3160         else
3161                 ret = 0;
3162
3163         /*
3164          * Don't send back more than was asked for.  And if the bio
3165          * was empty, let the whole thing through because:  "Note
3166          * that a block device *must* allow a single page to be
3167          * added to an empty bio."
3168          */
3169         rbd_assert(bvec->bv_len <= PAGE_SIZE);
3170         if (ret > (int) bvec->bv_len || !bmd->bi_size)
3171                 ret = (int) bvec->bv_len;
3172
3173         return ret;
3174 }
3175
3176 static void rbd_free_disk(struct rbd_device *rbd_dev)
3177 {
3178         struct gendisk *disk = rbd_dev->disk;
3179
3180         if (!disk)
3181                 return;
3182
3183         rbd_dev->disk = NULL;
3184         if (disk->flags & GENHD_FL_UP) {
3185                 del_gendisk(disk);
3186                 if (disk->queue)
3187                         blk_cleanup_queue(disk->queue);
3188         }
3189         put_disk(disk);
3190 }
3191
3192 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3193                                 const char *object_name,
3194                                 u64 offset, u64 length, void *buf)
3195
3196 {
3197         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3198         struct rbd_obj_request *obj_request;
3199         struct page **pages = NULL;
3200         u32 page_count;
3201         size_t size;
3202         int ret;
3203
3204         page_count = (u32) calc_pages_for(offset, length);
3205         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3206         if (IS_ERR(pages))
3207                 ret = PTR_ERR(pages);
3208
3209         ret = -ENOMEM;
3210         obj_request = rbd_obj_request_create(object_name, offset, length,
3211                                                         OBJ_REQUEST_PAGES);
3212         if (!obj_request)
3213                 goto out;
3214
3215         obj_request->pages = pages;
3216         obj_request->page_count = page_count;
3217
3218         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
3219         if (!obj_request->osd_req)
3220                 goto out;
3221
3222         osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3223                                         offset, length, 0, 0);
3224         osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3225                                         obj_request->pages,
3226                                         obj_request->length,
3227                                         obj_request->offset & ~PAGE_MASK,
3228                                         false, false);
3229         rbd_osd_req_format_read(obj_request);
3230
3231         ret = rbd_obj_request_submit(osdc, obj_request);
3232         if (ret)
3233                 goto out;
3234         ret = rbd_obj_request_wait(obj_request);
3235         if (ret)
3236                 goto out;
3237
3238         ret = obj_request->result;
3239         if (ret < 0)
3240                 goto out;
3241
3242         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3243         size = (size_t) obj_request->xferred;
3244         ceph_copy_from_page_vector(pages, buf, 0, size);
3245         rbd_assert(size <= (size_t)INT_MAX);
3246         ret = (int)size;
3247 out:
3248         if (obj_request)
3249                 rbd_obj_request_put(obj_request);
3250         else
3251                 ceph_release_page_vector(pages, page_count);
3252
3253         return ret;
3254 }
3255
3256 /*
3257  * Read the complete header for the given rbd device.  On successful
3258  * return, the rbd_dev->header field will contain up-to-date
3259  * information about the image.
3260  */
3261 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3262 {
3263         struct rbd_image_header_ondisk *ondisk = NULL;
3264         u32 snap_count = 0;
3265         u64 names_size = 0;
3266         u32 want_count;
3267         int ret;
3268
3269         /*
3270          * The complete header will include an array of its 64-bit
3271          * snapshot ids, followed by the names of those snapshots as
3272          * a contiguous block of NUL-terminated strings.  Note that
3273          * the number of snapshots could change by the time we read
3274          * it in, in which case we re-read it.
3275          */
3276         do {
3277                 size_t size;
3278
3279                 kfree(ondisk);
3280
3281                 size = sizeof (*ondisk);
3282                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3283                 size += names_size;
3284                 ondisk = kmalloc(size, GFP_KERNEL);
3285                 if (!ondisk)
3286                         return -ENOMEM;
3287
3288                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3289                                        0, size, ondisk);
3290                 if (ret < 0)
3291                         goto out;
3292                 if ((size_t)ret < size) {
3293                         ret = -ENXIO;
3294                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3295                                 size, ret);
3296                         goto out;
3297                 }
3298                 if (!rbd_dev_ondisk_valid(ondisk)) {
3299                         ret = -ENXIO;
3300                         rbd_warn(rbd_dev, "invalid header");
3301                         goto out;
3302                 }
3303
3304                 names_size = le64_to_cpu(ondisk->snap_names_len);
3305                 want_count = snap_count;
3306                 snap_count = le32_to_cpu(ondisk->snap_count);
3307         } while (snap_count != want_count);
3308
3309         ret = rbd_header_from_disk(rbd_dev, ondisk);
3310 out:
3311         kfree(ondisk);
3312
3313         return ret;
3314 }
3315
3316 /*
3317  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3318  * has disappeared from the (just updated) snapshot context.
3319  */
3320 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3321 {
3322         u64 snap_id;
3323
3324         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3325                 return;
3326
3327         snap_id = rbd_dev->spec->snap_id;
3328         if (snap_id == CEPH_NOSNAP)
3329                 return;
3330
3331         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3332                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3333 }
3334
3335 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3336 {
3337         sector_t size;
3338         bool removing;
3339
3340         /*
3341          * Don't hold the lock while doing disk operations,
3342          * or lock ordering will conflict with the bdev mutex via:
3343          * rbd_add() -> blkdev_get() -> rbd_open()
3344          */
3345         spin_lock_irq(&rbd_dev->lock);
3346         removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3347         spin_unlock_irq(&rbd_dev->lock);
3348         /*
3349          * If the device is being removed, rbd_dev->disk has
3350          * been destroyed, so don't try to update its size
3351          */
3352         if (!removing) {
3353                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3354                 dout("setting size to %llu sectors", (unsigned long long)size);
3355                 set_capacity(rbd_dev->disk, size);
3356                 revalidate_disk(rbd_dev->disk);
3357         }
3358 }
3359
3360 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3361 {
3362         u64 mapping_size;
3363         int ret;
3364
3365         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3366         down_write(&rbd_dev->header_rwsem);
3367         mapping_size = rbd_dev->mapping.size;
3368         if (rbd_dev->image_format == 1)
3369                 ret = rbd_dev_v1_header_info(rbd_dev);
3370         else
3371                 ret = rbd_dev_v2_header_info(rbd_dev);
3372
3373         /* If it's a mapped snapshot, validate its EXISTS flag */
3374
3375         rbd_exists_validate(rbd_dev);
3376         up_write(&rbd_dev->header_rwsem);
3377
3378         if (mapping_size != rbd_dev->mapping.size) {
3379                 rbd_dev_update_size(rbd_dev);
3380         }
3381
3382         return ret;
3383 }
3384
3385 static int rbd_init_disk(struct rbd_device *rbd_dev)
3386 {
3387         struct gendisk *disk;
3388         struct request_queue *q;
3389         u64 segment_size;
3390
3391         /* create gendisk info */
3392         disk = alloc_disk(RBD_MINORS_PER_MAJOR);
3393         if (!disk)
3394                 return -ENOMEM;
3395
3396         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3397                  rbd_dev->dev_id);
3398         disk->major = rbd_dev->major;
3399         disk->first_minor = 0;
3400         disk->fops = &rbd_bd_ops;
3401         disk->private_data = rbd_dev;
3402
3403         q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3404         if (!q)
3405                 goto out_disk;
3406
3407         /* We use the default size, but let's be explicit about it. */
3408         blk_queue_physical_block_size(q, SECTOR_SIZE);
3409
3410         /* set io sizes to object size */
3411         segment_size = rbd_obj_bytes(&rbd_dev->header);
3412         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3413         blk_queue_max_segment_size(q, segment_size);
3414         blk_queue_io_min(q, segment_size);
3415         blk_queue_io_opt(q, segment_size);
3416
3417         blk_queue_merge_bvec(q, rbd_merge_bvec);
3418         disk->queue = q;
3419
3420         q->queuedata = rbd_dev;
3421
3422         rbd_dev->disk = disk;
3423
3424         return 0;
3425 out_disk:
3426         put_disk(disk);
3427
3428         return -ENOMEM;
3429 }
3430
3431 /*
3432   sysfs
3433 */
3434
3435 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3436 {
3437         return container_of(dev, struct rbd_device, dev);
3438 }
3439
3440 static ssize_t rbd_size_show(struct device *dev,
3441                              struct device_attribute *attr, char *buf)
3442 {
3443         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3444
3445         return sprintf(buf, "%llu\n",
3446                 (unsigned long long)rbd_dev->mapping.size);
3447 }
3448
3449 /*
3450  * Note this shows the features for whatever's mapped, which is not
3451  * necessarily the base image.
3452  */
3453 static ssize_t rbd_features_show(struct device *dev,
3454                              struct device_attribute *attr, char *buf)
3455 {
3456         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3457
3458         return sprintf(buf, "0x%016llx\n",
3459                         (unsigned long long)rbd_dev->mapping.features);
3460 }
3461
3462 static ssize_t rbd_major_show(struct device *dev,
3463                               struct device_attribute *attr, char *buf)
3464 {
3465         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3466
3467         if (rbd_dev->major)
3468                 return sprintf(buf, "%d\n", rbd_dev->major);
3469
3470         return sprintf(buf, "(none)\n");
3471
3472 }
3473
3474 static ssize_t rbd_client_id_show(struct device *dev,
3475                                   struct device_attribute *attr, char *buf)
3476 {
3477         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3478
3479         return sprintf(buf, "client%lld\n",
3480                         ceph_client_id(rbd_dev->rbd_client->client));
3481 }
3482
3483 static ssize_t rbd_pool_show(struct device *dev,
3484                              struct device_attribute *attr, char *buf)
3485 {
3486         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3487
3488         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3489 }
3490
3491 static ssize_t rbd_pool_id_show(struct device *dev,
3492                              struct device_attribute *attr, char *buf)
3493 {
3494         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3495
3496         return sprintf(buf, "%llu\n",
3497                         (unsigned long long) rbd_dev->spec->pool_id);
3498 }
3499
3500 static ssize_t rbd_name_show(struct device *dev,
3501                              struct device_attribute *attr, char *buf)
3502 {
3503         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3504
3505         if (rbd_dev->spec->image_name)
3506                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3507
3508         return sprintf(buf, "(unknown)\n");
3509 }
3510
3511 static ssize_t rbd_image_id_show(struct device *dev,
3512                              struct device_attribute *attr, char *buf)
3513 {
3514         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3515
3516         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3517 }
3518
3519 /*
3520  * Shows the name of the currently-mapped snapshot (or
3521  * RBD_SNAP_HEAD_NAME for the base image).
3522  */
3523 static ssize_t rbd_snap_show(struct device *dev,
3524                              struct device_attribute *attr,
3525                              char *buf)
3526 {
3527         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3528
3529         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3530 }
3531
3532 /*
3533  * For an rbd v2 image, shows the pool id, image id, and snapshot id
3534  * for the parent image.  If there is no parent, simply shows
3535  * "(no parent image)".
3536  */
3537 static ssize_t rbd_parent_show(struct device *dev,
3538                              struct device_attribute *attr,
3539                              char *buf)
3540 {
3541         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3542         struct rbd_spec *spec = rbd_dev->parent_spec;
3543         int count;
3544         char *bufp = buf;
3545
3546         if (!spec)
3547                 return sprintf(buf, "(no parent image)\n");
3548
3549         count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3550                         (unsigned long long) spec->pool_id, spec->pool_name);
3551         if (count < 0)
3552                 return count;
3553         bufp += count;
3554
3555         count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3556                         spec->image_name ? spec->image_name : "(unknown)");
3557         if (count < 0)
3558                 return count;
3559         bufp += count;
3560
3561         count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3562                         (unsigned long long) spec->snap_id, spec->snap_name);
3563         if (count < 0)
3564                 return count;
3565         bufp += count;
3566
3567         count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3568         if (count < 0)
3569                 return count;
3570         bufp += count;
3571
3572         return (ssize_t) (bufp - buf);
3573 }
3574
3575 static ssize_t rbd_image_refresh(struct device *dev,
3576                                  struct device_attribute *attr,
3577                                  const char *buf,
3578                                  size_t size)
3579 {
3580         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3581         int ret;
3582
3583         ret = rbd_dev_refresh(rbd_dev);
3584         if (ret)
3585                 rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3586
3587         return ret < 0 ? ret : size;
3588 }
3589
3590 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3591 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3592 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3593 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3594 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3595 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3596 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3597 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3598 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3599 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3600 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3601
3602 static struct attribute *rbd_attrs[] = {
3603         &dev_attr_size.attr,
3604         &dev_attr_features.attr,
3605         &dev_attr_major.attr,
3606         &dev_attr_client_id.attr,
3607         &dev_attr_pool.attr,
3608         &dev_attr_pool_id.attr,
3609         &dev_attr_name.attr,
3610         &dev_attr_image_id.attr,
3611         &dev_attr_current_snap.attr,
3612         &dev_attr_parent.attr,
3613         &dev_attr_refresh.attr,
3614         NULL
3615 };
3616
3617 static struct attribute_group rbd_attr_group = {
3618         .attrs = rbd_attrs,
3619 };
3620
3621 static const struct attribute_group *rbd_attr_groups[] = {
3622         &rbd_attr_group,
3623         NULL
3624 };
3625
3626 static void rbd_sysfs_dev_release(struct device *dev)
3627 {
3628 }
3629
3630 static struct device_type rbd_device_type = {
3631         .name           = "rbd",
3632         .groups         = rbd_attr_groups,
3633         .release        = rbd_sysfs_dev_release,
3634 };
3635
3636 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3637 {
3638         kref_get(&spec->kref);
3639
3640         return spec;
3641 }
3642
3643 static void rbd_spec_free(struct kref *kref);
3644 static void rbd_spec_put(struct rbd_spec *spec)
3645 {
3646         if (spec)
3647                 kref_put(&spec->kref, rbd_spec_free);
3648 }
3649
3650 static struct rbd_spec *rbd_spec_alloc(void)
3651 {
3652         struct rbd_spec *spec;
3653
3654         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3655         if (!spec)
3656                 return NULL;
3657         kref_init(&spec->kref);
3658
3659         return spec;
3660 }
3661
3662 static void rbd_spec_free(struct kref *kref)
3663 {
3664         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3665
3666         kfree(spec->pool_name);
3667         kfree(spec->image_id);
3668         kfree(spec->image_name);
3669         kfree(spec->snap_name);
3670         kfree(spec);
3671 }
3672
3673 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3674                                 struct rbd_spec *spec)
3675 {
3676         struct rbd_device *rbd_dev;
3677
3678         rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3679         if (!rbd_dev)
3680                 return NULL;
3681
3682         spin_lock_init(&rbd_dev->lock);
3683         rbd_dev->flags = 0;
3684         atomic_set(&rbd_dev->parent_ref, 0);
3685         INIT_LIST_HEAD(&rbd_dev->node);
3686         init_rwsem(&rbd_dev->header_rwsem);
3687
3688         rbd_dev->spec = spec;
3689         rbd_dev->rbd_client = rbdc;
3690
3691         /* Initialize the layout used for all rbd requests */
3692
3693         rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3694         rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3695         rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3696         rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3697
3698         return rbd_dev;
3699 }
3700
3701 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3702 {
3703         rbd_put_client(rbd_dev->rbd_client);
3704         rbd_spec_put(rbd_dev->spec);
3705         kfree(rbd_dev);
3706 }
3707
3708 /*
3709  * Get the size and object order for an image snapshot, or if
3710  * snap_id is CEPH_NOSNAP, gets this information for the base
3711  * image.
3712  */
3713 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3714                                 u8 *order, u64 *snap_size)
3715 {
3716         __le64 snapid = cpu_to_le64(snap_id);
3717         int ret;
3718         struct {
3719                 u8 order;
3720                 __le64 size;
3721         } __attribute__ ((packed)) size_buf = { 0 };
3722
3723         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3724                                 "rbd", "get_size",
3725                                 &snapid, sizeof (snapid),
3726                                 &size_buf, sizeof (size_buf));
3727         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3728         if (ret < 0)
3729                 return ret;
3730         if (ret < sizeof (size_buf))
3731                 return -ERANGE;
3732
3733         if (order) {
3734                 *order = size_buf.order;
3735                 dout("  order %u", (unsigned int)*order);
3736         }
3737         *snap_size = le64_to_cpu(size_buf.size);
3738
3739         dout("  snap_id 0x%016llx snap_size = %llu\n",
3740                 (unsigned long long)snap_id,
3741                 (unsigned long long)*snap_size);
3742
3743         return 0;
3744 }
3745
3746 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3747 {
3748         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3749                                         &rbd_dev->header.obj_order,
3750                                         &rbd_dev->header.image_size);
3751 }
3752
3753 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3754 {
3755         void *reply_buf;
3756         int ret;
3757         void *p;
3758
3759         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3760         if (!reply_buf)
3761                 return -ENOMEM;
3762
3763         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3764                                 "rbd", "get_object_prefix", NULL, 0,
3765                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3766         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3767         if (ret < 0)
3768                 goto out;
3769
3770         p = reply_buf;
3771         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3772                                                 p + ret, NULL, GFP_NOIO);
3773         ret = 0;
3774
3775         if (IS_ERR(rbd_dev->header.object_prefix)) {
3776                 ret = PTR_ERR(rbd_dev->header.object_prefix);
3777                 rbd_dev->header.object_prefix = NULL;
3778         } else {
3779                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
3780         }
3781 out:
3782         kfree(reply_buf);
3783
3784         return ret;
3785 }
3786
3787 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3788                 u64 *snap_features)
3789 {
3790         __le64 snapid = cpu_to_le64(snap_id);
3791         struct {
3792                 __le64 features;
3793                 __le64 incompat;
3794         } __attribute__ ((packed)) features_buf = { 0 };
3795         u64 incompat;
3796         int ret;
3797
3798         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3799                                 "rbd", "get_features",
3800                                 &snapid, sizeof (snapid),
3801                                 &features_buf, sizeof (features_buf));
3802         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3803         if (ret < 0)
3804                 return ret;
3805         if (ret < sizeof (features_buf))
3806                 return -ERANGE;
3807
3808         incompat = le64_to_cpu(features_buf.incompat);
3809         if (incompat & ~RBD_FEATURES_SUPPORTED)
3810                 return -ENXIO;
3811
3812         *snap_features = le64_to_cpu(features_buf.features);
3813
3814         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3815                 (unsigned long long)snap_id,
3816                 (unsigned long long)*snap_features,
3817                 (unsigned long long)le64_to_cpu(features_buf.incompat));
3818
3819         return 0;
3820 }
3821
3822 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3823 {
3824         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3825                                                 &rbd_dev->header.features);
3826 }
3827
3828 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3829 {
3830         struct rbd_spec *parent_spec;
3831         size_t size;
3832         void *reply_buf = NULL;
3833         __le64 snapid;
3834         void *p;
3835         void *end;
3836         u64 pool_id;
3837         char *image_id;
3838         u64 snap_id;
3839         u64 overlap;
3840         int ret;
3841
3842         parent_spec = rbd_spec_alloc();
3843         if (!parent_spec)
3844                 return -ENOMEM;
3845
3846         size = sizeof (__le64) +                                /* pool_id */
3847                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
3848                 sizeof (__le64) +                               /* snap_id */
3849                 sizeof (__le64);                                /* overlap */
3850         reply_buf = kmalloc(size, GFP_KERNEL);
3851         if (!reply_buf) {
3852                 ret = -ENOMEM;
3853                 goto out_err;
3854         }
3855
3856         snapid = cpu_to_le64(CEPH_NOSNAP);
3857         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3858                                 "rbd", "get_parent",
3859                                 &snapid, sizeof (snapid),
3860                                 reply_buf, size);
3861         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3862         if (ret < 0)
3863                 goto out_err;
3864
3865         p = reply_buf;
3866         end = reply_buf + ret;
3867         ret = -ERANGE;
3868         ceph_decode_64_safe(&p, end, pool_id, out_err);
3869         if (pool_id == CEPH_NOPOOL) {
3870                 /*
3871                  * Either the parent never existed, or we have
3872                  * record of it but the image got flattened so it no
3873                  * longer has a parent.  When the parent of a
3874                  * layered image disappears we immediately set the
3875                  * overlap to 0.  The effect of this is that all new
3876                  * requests will be treated as if the image had no
3877                  * parent.
3878                  */
3879                 if (rbd_dev->parent_overlap) {
3880                         rbd_dev->parent_overlap = 0;
3881                         smp_mb();
3882                         rbd_dev_parent_put(rbd_dev);
3883                         pr_info("%s: clone image has been flattened\n",
3884                                 rbd_dev->disk->disk_name);
3885                 }
3886
3887                 goto out;       /* No parent?  No problem. */
3888         }
3889
3890         /* The ceph file layout needs to fit pool id in 32 bits */
3891
3892         ret = -EIO;
3893         if (pool_id > (u64)U32_MAX) {
3894                 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
3895                         (unsigned long long)pool_id, U32_MAX);
3896                 goto out_err;
3897         }
3898
3899         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3900         if (IS_ERR(image_id)) {
3901                 ret = PTR_ERR(image_id);
3902                 goto out_err;
3903         }
3904         ceph_decode_64_safe(&p, end, snap_id, out_err);
3905         ceph_decode_64_safe(&p, end, overlap, out_err);
3906
3907         /*
3908          * The parent won't change (except when the clone is
3909          * flattened, already handled that).  So we only need to
3910          * record the parent spec we have not already done so.
3911          */
3912         if (!rbd_dev->parent_spec) {
3913                 parent_spec->pool_id = pool_id;
3914                 parent_spec->image_id = image_id;
3915                 parent_spec->snap_id = snap_id;
3916                 rbd_dev->parent_spec = parent_spec;
3917                 parent_spec = NULL;     /* rbd_dev now owns this */
3918         }
3919
3920         /*
3921          * We always update the parent overlap.  If it's zero we
3922          * treat it specially.
3923          */
3924         rbd_dev->parent_overlap = overlap;
3925         smp_mb();
3926         if (!overlap) {
3927
3928                 /* A null parent_spec indicates it's the initial probe */
3929
3930                 if (parent_spec) {
3931                         /*
3932                          * The overlap has become zero, so the clone
3933                          * must have been resized down to 0 at some
3934                          * point.  Treat this the same as a flatten.
3935                          */
3936                         rbd_dev_parent_put(rbd_dev);
3937                         pr_info("%s: clone image now standalone\n",
3938                                 rbd_dev->disk->disk_name);
3939                 } else {
3940                         /*
3941                          * For the initial probe, if we find the
3942                          * overlap is zero we just pretend there was
3943                          * no parent image.
3944                          */
3945                         rbd_warn(rbd_dev, "ignoring parent of "
3946                                                 "clone with overlap 0\n");
3947                 }
3948         }
3949 out:
3950         ret = 0;
3951 out_err:
3952         kfree(reply_buf);
3953         rbd_spec_put(parent_spec);
3954
3955         return ret;
3956 }
3957
3958 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
3959 {
3960         struct {
3961                 __le64 stripe_unit;
3962                 __le64 stripe_count;
3963         } __attribute__ ((packed)) striping_info_buf = { 0 };
3964         size_t size = sizeof (striping_info_buf);
3965         void *p;
3966         u64 obj_size;
3967         u64 stripe_unit;
3968         u64 stripe_count;
3969         int ret;
3970
3971         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3972                                 "rbd", "get_stripe_unit_count", NULL, 0,
3973                                 (char *)&striping_info_buf, size);
3974         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3975         if (ret < 0)
3976                 return ret;
3977         if (ret < size)
3978                 return -ERANGE;
3979
3980         /*
3981          * We don't actually support the "fancy striping" feature
3982          * (STRIPINGV2) yet, but if the striping sizes are the
3983          * defaults the behavior is the same as before.  So find
3984          * out, and only fail if the image has non-default values.
3985          */
3986         ret = -EINVAL;
3987         obj_size = (u64)1 << rbd_dev->header.obj_order;
3988         p = &striping_info_buf;
3989         stripe_unit = ceph_decode_64(&p);
3990         if (stripe_unit != obj_size) {
3991                 rbd_warn(rbd_dev, "unsupported stripe unit "
3992                                 "(got %llu want %llu)",
3993                                 stripe_unit, obj_size);
3994                 return -EINVAL;
3995         }
3996         stripe_count = ceph_decode_64(&p);
3997         if (stripe_count != 1) {
3998                 rbd_warn(rbd_dev, "unsupported stripe count "
3999                                 "(got %llu want 1)", stripe_count);
4000                 return -EINVAL;
4001         }
4002         rbd_dev->header.stripe_unit = stripe_unit;
4003         rbd_dev->header.stripe_count = stripe_count;
4004
4005         return 0;
4006 }
4007
4008 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4009 {
4010         size_t image_id_size;
4011         char *image_id;
4012         void *p;
4013         void *end;
4014         size_t size;
4015         void *reply_buf = NULL;
4016         size_t len = 0;
4017         char *image_name = NULL;
4018         int ret;
4019
4020         rbd_assert(!rbd_dev->spec->image_name);
4021
4022         len = strlen(rbd_dev->spec->image_id);
4023         image_id_size = sizeof (__le32) + len;
4024         image_id = kmalloc(image_id_size, GFP_KERNEL);
4025         if (!image_id)
4026                 return NULL;
4027
4028         p = image_id;
4029         end = image_id + image_id_size;
4030         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4031
4032         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4033         reply_buf = kmalloc(size, GFP_KERNEL);
4034         if (!reply_buf)
4035                 goto out;
4036
4037         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4038                                 "rbd", "dir_get_name",
4039                                 image_id, image_id_size,
4040                                 reply_buf, size);
4041         if (ret < 0)
4042                 goto out;
4043         p = reply_buf;
4044         end = reply_buf + ret;
4045
4046         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4047         if (IS_ERR(image_name))
4048                 image_name = NULL;
4049         else
4050                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4051 out:
4052         kfree(reply_buf);
4053         kfree(image_id);
4054
4055         return image_name;
4056 }
4057
4058 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4059 {
4060         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4061         const char *snap_name;
4062         u32 which = 0;
4063
4064         /* Skip over names until we find the one we are looking for */
4065
4066         snap_name = rbd_dev->header.snap_names;
4067         while (which < snapc->num_snaps) {
4068                 if (!strcmp(name, snap_name))
4069                         return snapc->snaps[which];
4070                 snap_name += strlen(snap_name) + 1;
4071                 which++;
4072         }
4073         return CEPH_NOSNAP;
4074 }
4075
4076 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4077 {
4078         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4079         u32 which;
4080         bool found = false;
4081         u64 snap_id;
4082
4083         for (which = 0; !found && which < snapc->num_snaps; which++) {
4084                 const char *snap_name;
4085
4086                 snap_id = snapc->snaps[which];
4087                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4088                 if (IS_ERR(snap_name)) {
4089                         /* ignore no-longer existing snapshots */
4090                         if (PTR_ERR(snap_name) == -ENOENT)
4091                                 continue;
4092                         else
4093                                 break;
4094                 }
4095                 found = !strcmp(name, snap_name);
4096                 kfree(snap_name);
4097         }
4098         return found ? snap_id : CEPH_NOSNAP;
4099 }
4100
4101 /*
4102  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4103  * no snapshot by that name is found, or if an error occurs.
4104  */
4105 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4106 {
4107         if (rbd_dev->image_format == 1)
4108                 return rbd_v1_snap_id_by_name(rbd_dev, name);
4109
4110         return rbd_v2_snap_id_by_name(rbd_dev, name);
4111 }
4112
4113 /*
4114  * When an rbd image has a parent image, it is identified by the
4115  * pool, image, and snapshot ids (not names).  This function fills
4116  * in the names for those ids.  (It's OK if we can't figure out the
4117  * name for an image id, but the pool and snapshot ids should always
4118  * exist and have names.)  All names in an rbd spec are dynamically
4119  * allocated.
4120  *
4121  * When an image being mapped (not a parent) is probed, we have the
4122  * pool name and pool id, image name and image id, and the snapshot
4123  * name.  The only thing we're missing is the snapshot id.
4124  */
4125 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
4126 {
4127         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4128         struct rbd_spec *spec = rbd_dev->spec;
4129         const char *pool_name;
4130         const char *image_name;
4131         const char *snap_name;
4132         int ret;
4133
4134         /*
4135          * An image being mapped will have the pool name (etc.), but
4136          * we need to look up the snapshot id.
4137          */
4138         if (spec->pool_name) {
4139                 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4140                         u64 snap_id;
4141
4142                         snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4143                         if (snap_id == CEPH_NOSNAP)
4144                                 return -ENOENT;
4145                         spec->snap_id = snap_id;
4146                 } else {
4147                         spec->snap_id = CEPH_NOSNAP;
4148                 }
4149
4150                 return 0;
4151         }
4152
4153         /* Get the pool name; we have to make our own copy of this */
4154
4155         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4156         if (!pool_name) {
4157                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4158                 return -EIO;
4159         }
4160         pool_name = kstrdup(pool_name, GFP_KERNEL);
4161         if (!pool_name)
4162                 return -ENOMEM;
4163
4164         /* Fetch the image name; tolerate failure here */
4165
4166         image_name = rbd_dev_image_name(rbd_dev);
4167         if (!image_name)
4168                 rbd_warn(rbd_dev, "unable to get image name");
4169
4170         /* Look up the snapshot name, and make a copy */
4171
4172         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4173         if (IS_ERR(snap_name)) {
4174                 ret = PTR_ERR(snap_name);
4175                 goto out_err;
4176         }
4177
4178         spec->pool_name = pool_name;
4179         spec->image_name = image_name;
4180         spec->snap_name = snap_name;
4181
4182         return 0;
4183 out_err:
4184         kfree(image_name);
4185         kfree(pool_name);
4186
4187         return ret;
4188 }
4189
4190 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4191 {
4192         size_t size;
4193         int ret;
4194         void *reply_buf;
4195         void *p;
4196         void *end;
4197         u64 seq;
4198         u32 snap_count;
4199         struct ceph_snap_context *snapc;
4200         u32 i;
4201
4202         /*
4203          * We'll need room for the seq value (maximum snapshot id),
4204          * snapshot count, and array of that many snapshot ids.
4205          * For now we have a fixed upper limit on the number we're
4206          * prepared to receive.
4207          */
4208         size = sizeof (__le64) + sizeof (__le32) +
4209                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
4210         reply_buf = kzalloc(size, GFP_KERNEL);
4211         if (!reply_buf)
4212                 return -ENOMEM;
4213
4214         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4215                                 "rbd", "get_snapcontext", NULL, 0,
4216                                 reply_buf, size);
4217         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4218         if (ret < 0)
4219                 goto out;
4220
4221         p = reply_buf;
4222         end = reply_buf + ret;
4223         ret = -ERANGE;
4224         ceph_decode_64_safe(&p, end, seq, out);
4225         ceph_decode_32_safe(&p, end, snap_count, out);
4226
4227         /*
4228          * Make sure the reported number of snapshot ids wouldn't go
4229          * beyond the end of our buffer.  But before checking that,
4230          * make sure the computed size of the snapshot context we
4231          * allocate is representable in a size_t.
4232          */
4233         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4234                                  / sizeof (u64)) {
4235                 ret = -EINVAL;
4236                 goto out;
4237         }
4238         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4239                 goto out;
4240         ret = 0;
4241
4242         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4243         if (!snapc) {
4244                 ret = -ENOMEM;
4245                 goto out;
4246         }
4247         snapc->seq = seq;
4248         for (i = 0; i < snap_count; i++)
4249                 snapc->snaps[i] = ceph_decode_64(&p);
4250
4251         ceph_put_snap_context(rbd_dev->header.snapc);
4252         rbd_dev->header.snapc = snapc;
4253
4254         dout("  snap context seq = %llu, snap_count = %u\n",
4255                 (unsigned long long)seq, (unsigned int)snap_count);
4256 out:
4257         kfree(reply_buf);
4258
4259         return ret;
4260 }
4261
4262 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4263                                         u64 snap_id)
4264 {
4265         size_t size;
4266         void *reply_buf;
4267         __le64 snapid;
4268         int ret;
4269         void *p;
4270         void *end;
4271         char *snap_name;
4272
4273         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4274         reply_buf = kmalloc(size, GFP_KERNEL);
4275         if (!reply_buf)
4276                 return ERR_PTR(-ENOMEM);
4277
4278         snapid = cpu_to_le64(snap_id);
4279         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4280                                 "rbd", "get_snapshot_name",
4281                                 &snapid, sizeof (snapid),
4282                                 reply_buf, size);
4283         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4284         if (ret < 0) {
4285                 snap_name = ERR_PTR(ret);
4286                 goto out;
4287         }
4288
4289         p = reply_buf;
4290         end = reply_buf + ret;
4291         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4292         if (IS_ERR(snap_name))
4293                 goto out;
4294
4295         dout("  snap_id 0x%016llx snap_name = %s\n",
4296                 (unsigned long long)snap_id, snap_name);
4297 out:
4298         kfree(reply_buf);
4299
4300         return snap_name;
4301 }
4302
4303 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4304 {
4305         bool first_time = rbd_dev->header.object_prefix == NULL;
4306         int ret;
4307
4308         ret = rbd_dev_v2_image_size(rbd_dev);
4309         if (ret)
4310                 return ret;
4311
4312         if (first_time) {
4313                 ret = rbd_dev_v2_header_onetime(rbd_dev);
4314                 if (ret)
4315                         return ret;
4316         }
4317
4318         /*
4319          * If the image supports layering, get the parent info.  We
4320          * need to probe the first time regardless.  Thereafter we
4321          * only need to if there's a parent, to see if it has
4322          * disappeared due to the mapped image getting flattened.
4323          */
4324         if (rbd_dev->header.features & RBD_FEATURE_LAYERING &&
4325                         (first_time || rbd_dev->parent_spec)) {
4326                 bool warn;
4327
4328                 ret = rbd_dev_v2_parent_info(rbd_dev);
4329                 if (ret)
4330                         return ret;
4331
4332                 /*
4333                  * Print a warning if this is the initial probe and
4334                  * the image has a parent.  Don't print it if the
4335                  * image now being probed is itself a parent.  We
4336                  * can tell at this point because we won't know its
4337                  * pool name yet (just its pool id).
4338                  */
4339                 warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name;
4340                 if (first_time && warn)
4341                         rbd_warn(rbd_dev, "WARNING: kernel layering "
4342                                         "is EXPERIMENTAL!");
4343         }
4344
4345         if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4346                 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4347                         rbd_dev->mapping.size = rbd_dev->header.image_size;
4348
4349         ret = rbd_dev_v2_snap_context(rbd_dev);
4350         dout("rbd_dev_v2_snap_context returned %d\n", ret);
4351
4352         return ret;
4353 }
4354
4355 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4356 {
4357         struct device *dev;
4358         int ret;
4359
4360         dev = &rbd_dev->dev;
4361         dev->bus = &rbd_bus_type;
4362         dev->type = &rbd_device_type;
4363         dev->parent = &rbd_root_dev;
4364         dev->release = rbd_dev_device_release;
4365         dev_set_name(dev, "%d", rbd_dev->dev_id);
4366         ret = device_register(dev);
4367
4368         return ret;
4369 }
4370
4371 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4372 {
4373         device_unregister(&rbd_dev->dev);
4374 }
4375
4376 static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0);
4377
4378 /*
4379  * Get a unique rbd identifier for the given new rbd_dev, and add
4380  * the rbd_dev to the global list.  The minimum rbd id is 1.
4381  */
4382 static void rbd_dev_id_get(struct rbd_device *rbd_dev)
4383 {
4384         rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max);
4385
4386         spin_lock(&rbd_dev_list_lock);
4387         list_add_tail(&rbd_dev->node, &rbd_dev_list);
4388         spin_unlock(&rbd_dev_list_lock);
4389         dout("rbd_dev %p given dev id %llu\n", rbd_dev,
4390                 (unsigned long long) rbd_dev->dev_id);
4391 }
4392
4393 /*
4394  * Remove an rbd_dev from the global list, and record that its
4395  * identifier is no longer in use.
4396  */
4397 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4398 {
4399         struct list_head *tmp;
4400         int rbd_id = rbd_dev->dev_id;
4401         int max_id;
4402
4403         rbd_assert(rbd_id > 0);
4404
4405         dout("rbd_dev %p released dev id %llu\n", rbd_dev,
4406                 (unsigned long long) rbd_dev->dev_id);
4407         spin_lock(&rbd_dev_list_lock);
4408         list_del_init(&rbd_dev->node);
4409
4410         /*
4411          * If the id being "put" is not the current maximum, there
4412          * is nothing special we need to do.
4413          */
4414         if (rbd_id != atomic64_read(&rbd_dev_id_max)) {
4415                 spin_unlock(&rbd_dev_list_lock);
4416                 return;
4417         }
4418
4419         /*
4420          * We need to update the current maximum id.  Search the
4421          * list to find out what it is.  We're more likely to find
4422          * the maximum at the end, so search the list backward.
4423          */
4424         max_id = 0;
4425         list_for_each_prev(tmp, &rbd_dev_list) {
4426                 struct rbd_device *rbd_dev;
4427
4428                 rbd_dev = list_entry(tmp, struct rbd_device, node);
4429                 if (rbd_dev->dev_id > max_id)
4430                         max_id = rbd_dev->dev_id;
4431         }
4432         spin_unlock(&rbd_dev_list_lock);
4433
4434         /*
4435          * The max id could have been updated by rbd_dev_id_get(), in
4436          * which case it now accurately reflects the new maximum.
4437          * Be careful not to overwrite the maximum value in that
4438          * case.
4439          */
4440         atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id);
4441         dout("  max dev id has been reset\n");
4442 }
4443
4444 /*
4445  * Skips over white space at *buf, and updates *buf to point to the
4446  * first found non-space character (if any). Returns the length of
4447  * the token (string of non-white space characters) found.  Note
4448  * that *buf must be terminated with '\0'.
4449  */
4450 static inline size_t next_token(const char **buf)
4451 {
4452         /*
4453         * These are the characters that produce nonzero for
4454         * isspace() in the "C" and "POSIX" locales.
4455         */
4456         const char *spaces = " \f\n\r\t\v";
4457
4458         *buf += strspn(*buf, spaces);   /* Find start of token */
4459
4460         return strcspn(*buf, spaces);   /* Return token length */
4461 }
4462
4463 /*
4464  * Finds the next token in *buf, and if the provided token buffer is
4465  * big enough, copies the found token into it.  The result, if
4466  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
4467  * must be terminated with '\0' on entry.
4468  *
4469  * Returns the length of the token found (not including the '\0').
4470  * Return value will be 0 if no token is found, and it will be >=
4471  * token_size if the token would not fit.
4472  *
4473  * The *buf pointer will be updated to point beyond the end of the
4474  * found token.  Note that this occurs even if the token buffer is
4475  * too small to hold it.
4476  */
4477 static inline size_t copy_token(const char **buf,
4478                                 char *token,
4479                                 size_t token_size)
4480 {
4481         size_t len;
4482
4483         len = next_token(buf);
4484         if (len < token_size) {
4485                 memcpy(token, *buf, len);
4486                 *(token + len) = '\0';
4487         }
4488         *buf += len;
4489
4490         return len;
4491 }
4492
4493 /*
4494  * Finds the next token in *buf, dynamically allocates a buffer big
4495  * enough to hold a copy of it, and copies the token into the new
4496  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4497  * that a duplicate buffer is created even for a zero-length token.
4498  *
4499  * Returns a pointer to the newly-allocated duplicate, or a null
4500  * pointer if memory for the duplicate was not available.  If
4501  * the lenp argument is a non-null pointer, the length of the token
4502  * (not including the '\0') is returned in *lenp.
4503  *
4504  * If successful, the *buf pointer will be updated to point beyond
4505  * the end of the found token.
4506  *
4507  * Note: uses GFP_KERNEL for allocation.
4508  */
4509 static inline char *dup_token(const char **buf, size_t *lenp)
4510 {
4511         char *dup;
4512         size_t len;
4513
4514         len = next_token(buf);
4515         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4516         if (!dup)
4517                 return NULL;
4518         *(dup + len) = '\0';
4519         *buf += len;
4520
4521         if (lenp)
4522                 *lenp = len;
4523
4524         return dup;
4525 }
4526
4527 /*
4528  * Parse the options provided for an "rbd add" (i.e., rbd image
4529  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4530  * and the data written is passed here via a NUL-terminated buffer.
4531  * Returns 0 if successful or an error code otherwise.
4532  *
4533  * The information extracted from these options is recorded in
4534  * the other parameters which return dynamically-allocated
4535  * structures:
4536  *  ceph_opts
4537  *      The address of a pointer that will refer to a ceph options
4538  *      structure.  Caller must release the returned pointer using
4539  *      ceph_destroy_options() when it is no longer needed.
4540  *  rbd_opts
4541  *      Address of an rbd options pointer.  Fully initialized by
4542  *      this function; caller must release with kfree().
4543  *  spec
4544  *      Address of an rbd image specification pointer.  Fully
4545  *      initialized by this function based on parsed options.
4546  *      Caller must release with rbd_spec_put().
4547  *
4548  * The options passed take this form:
4549  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4550  * where:
4551  *  <mon_addrs>
4552  *      A comma-separated list of one or more monitor addresses.
4553  *      A monitor address is an ip address, optionally followed
4554  *      by a port number (separated by a colon).
4555  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4556  *  <options>
4557  *      A comma-separated list of ceph and/or rbd options.
4558  *  <pool_name>
4559  *      The name of the rados pool containing the rbd image.
4560  *  <image_name>
4561  *      The name of the image in that pool to map.
4562  *  <snap_id>
4563  *      An optional snapshot id.  If provided, the mapping will
4564  *      present data from the image at the time that snapshot was
4565  *      created.  The image head is used if no snapshot id is
4566  *      provided.  Snapshot mappings are always read-only.
4567  */
4568 static int rbd_add_parse_args(const char *buf,
4569                                 struct ceph_options **ceph_opts,
4570                                 struct rbd_options **opts,
4571                                 struct rbd_spec **rbd_spec)
4572 {
4573         size_t len;
4574         char *options;
4575         const char *mon_addrs;
4576         char *snap_name;
4577         size_t mon_addrs_size;
4578         struct rbd_spec *spec = NULL;
4579         struct rbd_options *rbd_opts = NULL;
4580         struct ceph_options *copts;
4581         int ret;
4582
4583         /* The first four tokens are required */
4584
4585         len = next_token(&buf);
4586         if (!len) {
4587                 rbd_warn(NULL, "no monitor address(es) provided");
4588                 return -EINVAL;
4589         }
4590         mon_addrs = buf;
4591         mon_addrs_size = len + 1;
4592         buf += len;
4593
4594         ret = -EINVAL;
4595         options = dup_token(&buf, NULL);
4596         if (!options)
4597                 return -ENOMEM;
4598         if (!*options) {
4599                 rbd_warn(NULL, "no options provided");
4600                 goto out_err;
4601         }
4602
4603         spec = rbd_spec_alloc();
4604         if (!spec)
4605                 goto out_mem;
4606
4607         spec->pool_name = dup_token(&buf, NULL);
4608         if (!spec->pool_name)
4609                 goto out_mem;
4610         if (!*spec->pool_name) {
4611                 rbd_warn(NULL, "no pool name provided");
4612                 goto out_err;
4613         }
4614
4615         spec->image_name = dup_token(&buf, NULL);
4616         if (!spec->image_name)
4617                 goto out_mem;
4618         if (!*spec->image_name) {
4619                 rbd_warn(NULL, "no image name provided");
4620                 goto out_err;
4621         }
4622
4623         /*
4624          * Snapshot name is optional; default is to use "-"
4625          * (indicating the head/no snapshot).
4626          */
4627         len = next_token(&buf);
4628         if (!len) {
4629                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4630                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4631         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4632                 ret = -ENAMETOOLONG;
4633                 goto out_err;
4634         }
4635         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4636         if (!snap_name)
4637                 goto out_mem;
4638         *(snap_name + len) = '\0';
4639         spec->snap_name = snap_name;
4640
4641         /* Initialize all rbd options to the defaults */
4642
4643         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4644         if (!rbd_opts)
4645                 goto out_mem;
4646
4647         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4648
4649         copts = ceph_parse_options(options, mon_addrs,
4650                                         mon_addrs + mon_addrs_size - 1,
4651                                         parse_rbd_opts_token, rbd_opts);
4652         if (IS_ERR(copts)) {
4653                 ret = PTR_ERR(copts);
4654                 goto out_err;
4655         }
4656         kfree(options);
4657
4658         *ceph_opts = copts;
4659         *opts = rbd_opts;
4660         *rbd_spec = spec;
4661
4662         return 0;
4663 out_mem:
4664         ret = -ENOMEM;
4665 out_err:
4666         kfree(rbd_opts);
4667         rbd_spec_put(spec);
4668         kfree(options);
4669
4670         return ret;
4671 }
4672
4673 /*
4674  * An rbd format 2 image has a unique identifier, distinct from the
4675  * name given to it by the user.  Internally, that identifier is
4676  * what's used to specify the names of objects related to the image.
4677  *
4678  * A special "rbd id" object is used to map an rbd image name to its
4679  * id.  If that object doesn't exist, then there is no v2 rbd image
4680  * with the supplied name.
4681  *
4682  * This function will record the given rbd_dev's image_id field if
4683  * it can be determined, and in that case will return 0.  If any
4684  * errors occur a negative errno will be returned and the rbd_dev's
4685  * image_id field will be unchanged (and should be NULL).
4686  */
4687 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4688 {
4689         int ret;
4690         size_t size;
4691         char *object_name;
4692         void *response;
4693         char *image_id;
4694
4695         /*
4696          * When probing a parent image, the image id is already
4697          * known (and the image name likely is not).  There's no
4698          * need to fetch the image id again in this case.  We
4699          * do still need to set the image format though.
4700          */
4701         if (rbd_dev->spec->image_id) {
4702                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4703
4704                 return 0;
4705         }
4706
4707         /*
4708          * First, see if the format 2 image id file exists, and if
4709          * so, get the image's persistent id from it.
4710          */
4711         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4712         object_name = kmalloc(size, GFP_NOIO);
4713         if (!object_name)
4714                 return -ENOMEM;
4715         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4716         dout("rbd id object name is %s\n", object_name);
4717
4718         /* Response will be an encoded string, which includes a length */
4719
4720         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4721         response = kzalloc(size, GFP_NOIO);
4722         if (!response) {
4723                 ret = -ENOMEM;
4724                 goto out;
4725         }
4726
4727         /* If it doesn't exist we'll assume it's a format 1 image */
4728
4729         ret = rbd_obj_method_sync(rbd_dev, object_name,
4730                                 "rbd", "get_id", NULL, 0,
4731                                 response, RBD_IMAGE_ID_LEN_MAX);
4732         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4733         if (ret == -ENOENT) {
4734                 image_id = kstrdup("", GFP_KERNEL);
4735                 ret = image_id ? 0 : -ENOMEM;
4736                 if (!ret)
4737                         rbd_dev->image_format = 1;
4738         } else if (ret > sizeof (__le32)) {
4739                 void *p = response;
4740
4741                 image_id = ceph_extract_encoded_string(&p, p + ret,
4742                                                 NULL, GFP_NOIO);
4743                 ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0;
4744                 if (!ret)
4745                         rbd_dev->image_format = 2;
4746         } else {
4747                 ret = -EINVAL;
4748         }
4749
4750         if (!ret) {
4751                 rbd_dev->spec->image_id = image_id;
4752                 dout("image_id is %s\n", image_id);
4753         }
4754 out:
4755         kfree(response);
4756         kfree(object_name);
4757
4758         return ret;
4759 }
4760
4761 /*
4762  * Undo whatever state changes are made by v1 or v2 header info
4763  * call.
4764  */
4765 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4766 {
4767         struct rbd_image_header *header;
4768
4769         /* Drop parent reference unless it's already been done (or none) */
4770
4771         if (rbd_dev->parent_overlap)
4772                 rbd_dev_parent_put(rbd_dev);
4773
4774         /* Free dynamic fields from the header, then zero it out */
4775
4776         header = &rbd_dev->header;
4777         ceph_put_snap_context(header->snapc);
4778         kfree(header->snap_sizes);
4779         kfree(header->snap_names);
4780         kfree(header->object_prefix);
4781         memset(header, 0, sizeof (*header));
4782 }
4783
4784 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
4785 {
4786         int ret;
4787
4788         ret = rbd_dev_v2_object_prefix(rbd_dev);
4789         if (ret)
4790                 goto out_err;
4791
4792         /*
4793          * Get the and check features for the image.  Currently the
4794          * features are assumed to never change.
4795          */
4796         ret = rbd_dev_v2_features(rbd_dev);
4797         if (ret)
4798                 goto out_err;
4799
4800         /* If the image supports fancy striping, get its parameters */
4801
4802         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4803                 ret = rbd_dev_v2_striping_info(rbd_dev);
4804                 if (ret < 0)
4805                         goto out_err;
4806         }
4807         /* No support for crypto and compression type format 2 images */
4808
4809         return 0;
4810 out_err:
4811         rbd_dev->header.features = 0;
4812         kfree(rbd_dev->header.object_prefix);
4813         rbd_dev->header.object_prefix = NULL;
4814
4815         return ret;
4816 }
4817
4818 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4819 {
4820         struct rbd_device *parent = NULL;
4821         struct rbd_spec *parent_spec;
4822         struct rbd_client *rbdc;
4823         int ret;
4824
4825         if (!rbd_dev->parent_spec)
4826                 return 0;
4827         /*
4828          * We need to pass a reference to the client and the parent
4829          * spec when creating the parent rbd_dev.  Images related by
4830          * parent/child relationships always share both.
4831          */
4832         parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4833         rbdc = __rbd_get_client(rbd_dev->rbd_client);
4834
4835         ret = -ENOMEM;
4836         parent = rbd_dev_create(rbdc, parent_spec);
4837         if (!parent)
4838                 goto out_err;
4839
4840         ret = rbd_dev_image_probe(parent, false);
4841         if (ret < 0)
4842                 goto out_err;
4843         rbd_dev->parent = parent;
4844         atomic_set(&rbd_dev->parent_ref, 1);
4845
4846         return 0;
4847 out_err:
4848         if (parent) {
4849                 rbd_dev_unparent(rbd_dev);
4850                 kfree(rbd_dev->header_name);
4851                 rbd_dev_destroy(parent);
4852         } else {
4853                 rbd_put_client(rbdc);
4854                 rbd_spec_put(parent_spec);
4855         }
4856
4857         return ret;
4858 }
4859
4860 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
4861 {
4862         int ret;
4863
4864         /* generate unique id: find highest unique id, add one */
4865         rbd_dev_id_get(rbd_dev);
4866
4867         /* Fill in the device name, now that we have its id. */
4868         BUILD_BUG_ON(DEV_NAME_LEN
4869                         < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4870         sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4871
4872         /* Get our block major device number. */
4873
4874         ret = register_blkdev(0, rbd_dev->name);
4875         if (ret < 0)
4876                 goto err_out_id;
4877         rbd_dev->major = ret;
4878
4879         /* Set up the blkdev mapping. */
4880
4881         ret = rbd_init_disk(rbd_dev);
4882         if (ret)
4883                 goto err_out_blkdev;
4884
4885         ret = rbd_dev_mapping_set(rbd_dev);
4886         if (ret)
4887                 goto err_out_disk;
4888         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
4889
4890         ret = rbd_bus_add_dev(rbd_dev);
4891         if (ret)
4892                 goto err_out_mapping;
4893
4894         /* Everything's ready.  Announce the disk to the world. */
4895
4896         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4897         add_disk(rbd_dev->disk);
4898
4899         pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4900                 (unsigned long long) rbd_dev->mapping.size);
4901
4902         return ret;
4903
4904 err_out_mapping:
4905         rbd_dev_mapping_clear(rbd_dev);
4906 err_out_disk:
4907         rbd_free_disk(rbd_dev);
4908 err_out_blkdev:
4909         unregister_blkdev(rbd_dev->major, rbd_dev->name);
4910 err_out_id:
4911         rbd_dev_id_put(rbd_dev);
4912         rbd_dev_mapping_clear(rbd_dev);
4913
4914         return ret;
4915 }
4916
4917 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
4918 {
4919         struct rbd_spec *spec = rbd_dev->spec;
4920         size_t size;
4921
4922         /* Record the header object name for this rbd image. */
4923
4924         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4925
4926         if (rbd_dev->image_format == 1)
4927                 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
4928         else
4929                 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
4930
4931         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4932         if (!rbd_dev->header_name)
4933                 return -ENOMEM;
4934
4935         if (rbd_dev->image_format == 1)
4936                 sprintf(rbd_dev->header_name, "%s%s",
4937                         spec->image_name, RBD_SUFFIX);
4938         else
4939                 sprintf(rbd_dev->header_name, "%s%s",
4940                         RBD_HEADER_PREFIX, spec->image_id);
4941         return 0;
4942 }
4943
4944 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
4945 {
4946         rbd_dev_unprobe(rbd_dev);
4947         kfree(rbd_dev->header_name);
4948         rbd_dev->header_name = NULL;
4949         rbd_dev->image_format = 0;
4950         kfree(rbd_dev->spec->image_id);
4951         rbd_dev->spec->image_id = NULL;
4952
4953         rbd_dev_destroy(rbd_dev);
4954 }
4955
4956 /*
4957  * Probe for the existence of the header object for the given rbd
4958  * device.  If this image is the one being mapped (i.e., not a
4959  * parent), initiate a watch on its header object before using that
4960  * object to get detailed information about the rbd image.
4961  */
4962 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
4963 {
4964         int ret;
4965         int tmp;
4966
4967         /*
4968          * Get the id from the image id object.  Unless there's an
4969          * error, rbd_dev->spec->image_id will be filled in with
4970          * a dynamically-allocated string, and rbd_dev->image_format
4971          * will be set to either 1 or 2.
4972          */
4973         ret = rbd_dev_image_id(rbd_dev);
4974         if (ret)
4975                 return ret;
4976         rbd_assert(rbd_dev->spec->image_id);
4977         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4978
4979         ret = rbd_dev_header_name(rbd_dev);
4980         if (ret)
4981                 goto err_out_format;
4982
4983         if (mapping) {
4984                 ret = rbd_dev_header_watch_sync(rbd_dev, true);
4985                 if (ret)
4986                         goto out_header_name;
4987         }
4988
4989         if (rbd_dev->image_format == 1)
4990                 ret = rbd_dev_v1_header_info(rbd_dev);
4991         else
4992                 ret = rbd_dev_v2_header_info(rbd_dev);
4993         if (ret)
4994                 goto err_out_watch;
4995
4996         ret = rbd_dev_spec_update(rbd_dev);
4997         if (ret)
4998                 goto err_out_probe;
4999
5000         ret = rbd_dev_probe_parent(rbd_dev);
5001         if (ret)
5002                 goto err_out_probe;
5003
5004         dout("discovered format %u image, header name is %s\n",
5005                 rbd_dev->image_format, rbd_dev->header_name);
5006
5007         return 0;
5008 err_out_probe:
5009         rbd_dev_unprobe(rbd_dev);
5010 err_out_watch:
5011         if (mapping) {
5012                 tmp = rbd_dev_header_watch_sync(rbd_dev, false);
5013                 if (tmp)
5014                         rbd_warn(rbd_dev, "unable to tear down "
5015                                         "watch request (%d)\n", tmp);
5016         }
5017 out_header_name:
5018         kfree(rbd_dev->header_name);
5019         rbd_dev->header_name = NULL;
5020 err_out_format:
5021         rbd_dev->image_format = 0;
5022         kfree(rbd_dev->spec->image_id);
5023         rbd_dev->spec->image_id = NULL;
5024
5025         dout("probe failed, returning %d\n", ret);
5026
5027         return ret;
5028 }
5029
5030 static ssize_t rbd_add(struct bus_type *bus,
5031                        const char *buf,
5032                        size_t count)
5033 {
5034         struct rbd_device *rbd_dev = NULL;
5035         struct ceph_options *ceph_opts = NULL;
5036         struct rbd_options *rbd_opts = NULL;
5037         struct rbd_spec *spec = NULL;
5038         struct rbd_client *rbdc;
5039         struct ceph_osd_client *osdc;
5040         bool read_only;
5041         int rc = -ENOMEM;
5042
5043         if (!try_module_get(THIS_MODULE))
5044                 return -ENODEV;
5045
5046         /* parse add command */
5047         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5048         if (rc < 0)
5049                 goto err_out_module;
5050         read_only = rbd_opts->read_only;
5051         kfree(rbd_opts);
5052         rbd_opts = NULL;        /* done with this */
5053
5054         rbdc = rbd_get_client(ceph_opts);
5055         if (IS_ERR(rbdc)) {
5056                 rc = PTR_ERR(rbdc);
5057                 goto err_out_args;
5058         }
5059
5060         /* pick the pool */
5061         osdc = &rbdc->client->osdc;
5062         rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
5063         if (rc < 0)
5064                 goto err_out_client;
5065         spec->pool_id = (u64)rc;
5066
5067         /* The ceph file layout needs to fit pool id in 32 bits */
5068
5069         if (spec->pool_id > (u64)U32_MAX) {
5070                 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
5071                                 (unsigned long long)spec->pool_id, U32_MAX);
5072                 rc = -EIO;
5073                 goto err_out_client;
5074         }
5075
5076         rbd_dev = rbd_dev_create(rbdc, spec);
5077         if (!rbd_dev)
5078                 goto err_out_client;
5079         rbdc = NULL;            /* rbd_dev now owns this */
5080         spec = NULL;            /* rbd_dev now owns this */
5081
5082         rc = rbd_dev_image_probe(rbd_dev, true);
5083         if (rc < 0)
5084                 goto err_out_rbd_dev;
5085
5086         /* If we are mapping a snapshot it must be marked read-only */
5087
5088         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5089                 read_only = true;
5090         rbd_dev->mapping.read_only = read_only;
5091
5092         rc = rbd_dev_device_setup(rbd_dev);
5093         if (rc) {
5094                 rbd_dev_image_release(rbd_dev);
5095                 goto err_out_module;
5096         }
5097
5098         return count;
5099
5100 err_out_rbd_dev:
5101         rbd_dev_destroy(rbd_dev);
5102 err_out_client:
5103         rbd_put_client(rbdc);
5104 err_out_args:
5105         rbd_spec_put(spec);
5106 err_out_module:
5107         module_put(THIS_MODULE);
5108
5109         dout("Error adding device %s\n", buf);
5110
5111         return (ssize_t)rc;
5112 }
5113
5114 static void rbd_dev_device_release(struct device *dev)
5115 {
5116         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5117
5118         rbd_free_disk(rbd_dev);
5119         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5120         rbd_dev_mapping_clear(rbd_dev);
5121         unregister_blkdev(rbd_dev->major, rbd_dev->name);
5122         rbd_dev->major = 0;
5123         rbd_dev_id_put(rbd_dev);
5124         rbd_dev_mapping_clear(rbd_dev);
5125 }
5126
5127 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5128 {
5129         while (rbd_dev->parent) {
5130                 struct rbd_device *first = rbd_dev;
5131                 struct rbd_device *second = first->parent;
5132                 struct rbd_device *third;
5133
5134                 /*
5135                  * Follow to the parent with no grandparent and
5136                  * remove it.
5137                  */
5138                 while (second && (third = second->parent)) {
5139                         first = second;
5140                         second = third;
5141                 }
5142                 rbd_assert(second);
5143                 rbd_dev_image_release(second);
5144                 first->parent = NULL;
5145                 first->parent_overlap = 0;
5146
5147                 rbd_assert(first->parent_spec);
5148                 rbd_spec_put(first->parent_spec);
5149                 first->parent_spec = NULL;
5150         }
5151 }
5152
5153 static ssize_t rbd_remove(struct bus_type *bus,
5154                           const char *buf,
5155                           size_t count)
5156 {
5157         struct rbd_device *rbd_dev = NULL;
5158         struct list_head *tmp;
5159         int dev_id;
5160         unsigned long ul;
5161         bool already = false;
5162         int ret;
5163
5164         ret = kstrtoul(buf, 10, &ul);
5165         if (ret)
5166                 return ret;
5167
5168         /* convert to int; abort if we lost anything in the conversion */
5169         dev_id = (int)ul;
5170         if (dev_id != ul)
5171                 return -EINVAL;
5172
5173         ret = -ENOENT;
5174         spin_lock(&rbd_dev_list_lock);
5175         list_for_each(tmp, &rbd_dev_list) {
5176                 rbd_dev = list_entry(tmp, struct rbd_device, node);
5177                 if (rbd_dev->dev_id == dev_id) {
5178                         ret = 0;
5179                         break;
5180                 }
5181         }
5182         if (!ret) {
5183                 spin_lock_irq(&rbd_dev->lock);
5184                 if (rbd_dev->open_count)
5185                         ret = -EBUSY;
5186                 else
5187                         already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5188                                                         &rbd_dev->flags);
5189                 spin_unlock_irq(&rbd_dev->lock);
5190         }
5191         spin_unlock(&rbd_dev_list_lock);
5192         if (ret < 0 || already)
5193                 return ret;
5194
5195         ret = rbd_dev_header_watch_sync(rbd_dev, false);
5196         if (ret)
5197                 rbd_warn(rbd_dev, "failed to cancel watch event (%d)\n", ret);
5198
5199         /*
5200          * flush remaining watch callbacks - these must be complete
5201          * before the osd_client is shutdown
5202          */
5203         dout("%s: flushing notifies", __func__);
5204         ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5205         /*
5206          * Don't free anything from rbd_dev->disk until after all
5207          * notifies are completely processed. Otherwise
5208          * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5209          * in a potential use after free of rbd_dev->disk or rbd_dev.
5210          */
5211         rbd_bus_del_dev(rbd_dev);
5212         rbd_dev_image_release(rbd_dev);
5213         module_put(THIS_MODULE);
5214
5215         return count;
5216 }
5217
5218 /*
5219  * create control files in sysfs
5220  * /sys/bus/rbd/...
5221  */
5222 static int rbd_sysfs_init(void)
5223 {
5224         int ret;
5225
5226         ret = device_register(&rbd_root_dev);
5227         if (ret < 0)
5228                 return ret;
5229
5230         ret = bus_register(&rbd_bus_type);
5231         if (ret < 0)
5232                 device_unregister(&rbd_root_dev);
5233
5234         return ret;
5235 }
5236
5237 static void rbd_sysfs_cleanup(void)
5238 {
5239         bus_unregister(&rbd_bus_type);
5240         device_unregister(&rbd_root_dev);
5241 }
5242
5243 static int rbd_slab_init(void)
5244 {
5245         rbd_assert(!rbd_img_request_cache);
5246         rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5247                                         sizeof (struct rbd_img_request),
5248                                         __alignof__(struct rbd_img_request),
5249                                         0, NULL);
5250         if (!rbd_img_request_cache)
5251                 return -ENOMEM;
5252
5253         rbd_assert(!rbd_obj_request_cache);
5254         rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5255                                         sizeof (struct rbd_obj_request),
5256                                         __alignof__(struct rbd_obj_request),
5257                                         0, NULL);
5258         if (!rbd_obj_request_cache)
5259                 goto out_err;
5260
5261         rbd_assert(!rbd_segment_name_cache);
5262         rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5263                                         MAX_OBJ_NAME_SIZE + 1, 1, 0, NULL);
5264         if (rbd_segment_name_cache)
5265                 return 0;
5266 out_err:
5267         if (rbd_obj_request_cache) {
5268                 kmem_cache_destroy(rbd_obj_request_cache);
5269                 rbd_obj_request_cache = NULL;
5270         }
5271
5272         kmem_cache_destroy(rbd_img_request_cache);
5273         rbd_img_request_cache = NULL;
5274
5275         return -ENOMEM;
5276 }
5277
5278 static void rbd_slab_exit(void)
5279 {
5280         rbd_assert(rbd_segment_name_cache);
5281         kmem_cache_destroy(rbd_segment_name_cache);
5282         rbd_segment_name_cache = NULL;
5283
5284         rbd_assert(rbd_obj_request_cache);
5285         kmem_cache_destroy(rbd_obj_request_cache);
5286         rbd_obj_request_cache = NULL;
5287
5288         rbd_assert(rbd_img_request_cache);
5289         kmem_cache_destroy(rbd_img_request_cache);
5290         rbd_img_request_cache = NULL;
5291 }
5292
5293 static int __init rbd_init(void)
5294 {
5295         int rc;
5296
5297         if (!libceph_compatible(NULL)) {
5298                 rbd_warn(NULL, "libceph incompatibility (quitting)");
5299
5300                 return -EINVAL;
5301         }
5302         rc = rbd_slab_init();
5303         if (rc)
5304                 return rc;
5305         rc = rbd_sysfs_init();
5306         if (rc)
5307                 rbd_slab_exit();
5308         else
5309                 pr_info("loaded " RBD_DRV_NAME_LONG "\n");
5310
5311         return rc;
5312 }
5313
5314 static void __exit rbd_exit(void)
5315 {
5316         rbd_sysfs_cleanup();
5317         rbd_slab_exit();
5318 }
5319
5320 module_init(rbd_init);
5321 module_exit(rbd_exit);
5322
5323 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5324 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5325 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5326 MODULE_DESCRIPTION("rados block device");
5327
5328 /* following authorship retained from original osdblk.c */
5329 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5330
5331 MODULE_LICENSE("GPL");