regulator: lochnagar: Use a consisent comment style for SPDX header
[linux-2.6-block.git] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/striper.h>
36 #include <linux/ceph/decode.h>
37 #include <linux/parser.h>
38 #include <linux/bsearch.h>
39
40 #include <linux/kernel.h>
41 #include <linux/device.h>
42 #include <linux/module.h>
43 #include <linux/blk-mq.h>
44 #include <linux/fs.h>
45 #include <linux/blkdev.h>
46 #include <linux/slab.h>
47 #include <linux/idr.h>
48 #include <linux/workqueue.h>
49
50 #include "rbd_types.h"
51
52 #define RBD_DEBUG       /* Activate rbd_assert() calls */
53
54 /*
55  * Increment the given counter and return its updated value.
56  * If the counter is already 0 it will not be incremented.
57  * If the counter is already at its maximum value returns
58  * -EINVAL without updating it.
59  */
60 static int atomic_inc_return_safe(atomic_t *v)
61 {
62         unsigned int counter;
63
64         counter = (unsigned int)atomic_fetch_add_unless(v, 1, 0);
65         if (counter <= (unsigned int)INT_MAX)
66                 return (int)counter;
67
68         atomic_dec(v);
69
70         return -EINVAL;
71 }
72
73 /* Decrement the counter.  Return the resulting value, or -EINVAL */
74 static int atomic_dec_return_safe(atomic_t *v)
75 {
76         int counter;
77
78         counter = atomic_dec_return(v);
79         if (counter >= 0)
80                 return counter;
81
82         atomic_inc(v);
83
84         return -EINVAL;
85 }
86
87 #define RBD_DRV_NAME "rbd"
88
89 #define RBD_MINORS_PER_MAJOR            256
90 #define RBD_SINGLE_MAJOR_PART_SHIFT     4
91
92 #define RBD_MAX_PARENT_CHAIN_LEN        16
93
94 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
95 #define RBD_MAX_SNAP_NAME_LEN   \
96                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
97
98 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
99
100 #define RBD_SNAP_HEAD_NAME      "-"
101
102 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
103
104 /* This allows a single page to hold an image name sent by OSD */
105 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
106 #define RBD_IMAGE_ID_LEN_MAX    64
107
108 #define RBD_OBJ_PREFIX_LEN_MAX  64
109
110 #define RBD_NOTIFY_TIMEOUT      5       /* seconds */
111 #define RBD_RETRY_DELAY         msecs_to_jiffies(1000)
112
113 /* Feature bits */
114
115 #define RBD_FEATURE_LAYERING            (1ULL<<0)
116 #define RBD_FEATURE_STRIPINGV2          (1ULL<<1)
117 #define RBD_FEATURE_EXCLUSIVE_LOCK      (1ULL<<2)
118 #define RBD_FEATURE_DATA_POOL           (1ULL<<7)
119 #define RBD_FEATURE_OPERATIONS          (1ULL<<8)
120
121 #define RBD_FEATURES_ALL        (RBD_FEATURE_LAYERING |         \
122                                  RBD_FEATURE_STRIPINGV2 |       \
123                                  RBD_FEATURE_EXCLUSIVE_LOCK |   \
124                                  RBD_FEATURE_DATA_POOL |        \
125                                  RBD_FEATURE_OPERATIONS)
126
127 /* Features supported by this (client software) implementation. */
128
129 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
130
131 /*
132  * An RBD device name will be "rbd#", where the "rbd" comes from
133  * RBD_DRV_NAME above, and # is a unique integer identifier.
134  */
135 #define DEV_NAME_LEN            32
136
137 /*
138  * block device image metadata (in-memory version)
139  */
140 struct rbd_image_header {
141         /* These six fields never change for a given rbd image */
142         char *object_prefix;
143         __u8 obj_order;
144         u64 stripe_unit;
145         u64 stripe_count;
146         s64 data_pool_id;
147         u64 features;           /* Might be changeable someday? */
148
149         /* The remaining fields need to be updated occasionally */
150         u64 image_size;
151         struct ceph_snap_context *snapc;
152         char *snap_names;       /* format 1 only */
153         u64 *snap_sizes;        /* format 1 only */
154 };
155
156 /*
157  * An rbd image specification.
158  *
159  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
160  * identify an image.  Each rbd_dev structure includes a pointer to
161  * an rbd_spec structure that encapsulates this identity.
162  *
163  * Each of the id's in an rbd_spec has an associated name.  For a
164  * user-mapped image, the names are supplied and the id's associated
165  * with them are looked up.  For a layered image, a parent image is
166  * defined by the tuple, and the names are looked up.
167  *
168  * An rbd_dev structure contains a parent_spec pointer which is
169  * non-null if the image it represents is a child in a layered
170  * image.  This pointer will refer to the rbd_spec structure used
171  * by the parent rbd_dev for its own identity (i.e., the structure
172  * is shared between the parent and child).
173  *
174  * Since these structures are populated once, during the discovery
175  * phase of image construction, they are effectively immutable so
176  * we make no effort to synchronize access to them.
177  *
178  * Note that code herein does not assume the image name is known (it
179  * could be a null pointer).
180  */
181 struct rbd_spec {
182         u64             pool_id;
183         const char      *pool_name;
184         const char      *pool_ns;       /* NULL if default, never "" */
185
186         const char      *image_id;
187         const char      *image_name;
188
189         u64             snap_id;
190         const char      *snap_name;
191
192         struct kref     kref;
193 };
194
195 /*
196  * an instance of the client.  multiple devices may share an rbd client.
197  */
198 struct rbd_client {
199         struct ceph_client      *client;
200         struct kref             kref;
201         struct list_head        node;
202 };
203
204 struct rbd_img_request;
205
206 enum obj_request_type {
207         OBJ_REQUEST_NODATA = 1,
208         OBJ_REQUEST_BIO,        /* pointer into provided bio (list) */
209         OBJ_REQUEST_BVECS,      /* pointer into provided bio_vec array */
210         OBJ_REQUEST_OWN_BVECS,  /* private bio_vec array, doesn't own pages */
211 };
212
213 enum obj_operation_type {
214         OBJ_OP_READ = 1,
215         OBJ_OP_WRITE,
216         OBJ_OP_DISCARD,
217 };
218
219 /*
220  * Writes go through the following state machine to deal with
221  * layering:
222  *
223  *                       need copyup
224  * RBD_OBJ_WRITE_GUARD ---------------> RBD_OBJ_WRITE_COPYUP
225  *        |     ^                              |
226  *        v     \------------------------------/
227  *      done
228  *        ^
229  *        |
230  * RBD_OBJ_WRITE_FLAT
231  *
232  * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether
233  * there is a parent or not.
234  */
235 enum rbd_obj_write_state {
236         RBD_OBJ_WRITE_FLAT = 1,
237         RBD_OBJ_WRITE_GUARD,
238         RBD_OBJ_WRITE_COPYUP,
239 };
240
241 struct rbd_obj_request {
242         struct ceph_object_extent ex;
243         union {
244                 bool                    tried_parent;   /* for reads */
245                 enum rbd_obj_write_state write_state;   /* for writes */
246         };
247
248         struct rbd_img_request  *img_request;
249         struct ceph_file_extent *img_extents;
250         u32                     num_img_extents;
251
252         union {
253                 struct ceph_bio_iter    bio_pos;
254                 struct {
255                         struct ceph_bvec_iter   bvec_pos;
256                         u32                     bvec_count;
257                         u32                     bvec_idx;
258                 };
259         };
260         struct bio_vec          *copyup_bvecs;
261         u32                     copyup_bvec_count;
262
263         struct ceph_osd_request *osd_req;
264
265         u64                     xferred;        /* bytes transferred */
266         int                     result;
267
268         struct kref             kref;
269 };
270
271 enum img_req_flags {
272         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
273         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
274 };
275
276 struct rbd_img_request {
277         struct rbd_device       *rbd_dev;
278         enum obj_operation_type op_type;
279         enum obj_request_type   data_type;
280         unsigned long           flags;
281         union {
282                 u64                     snap_id;        /* for reads */
283                 struct ceph_snap_context *snapc;        /* for writes */
284         };
285         union {
286                 struct request          *rq;            /* block request */
287                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
288         };
289         spinlock_t              completion_lock;
290         u64                     xferred;/* aggregate bytes transferred */
291         int                     result; /* first nonzero obj_request result */
292
293         struct list_head        object_extents; /* obj_req.ex structs */
294         u32                     obj_request_count;
295         u32                     pending_count;
296
297         struct kref             kref;
298 };
299
300 #define for_each_obj_request(ireq, oreq) \
301         list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item)
302 #define for_each_obj_request_safe(ireq, oreq, n) \
303         list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item)
304
305 enum rbd_watch_state {
306         RBD_WATCH_STATE_UNREGISTERED,
307         RBD_WATCH_STATE_REGISTERED,
308         RBD_WATCH_STATE_ERROR,
309 };
310
311 enum rbd_lock_state {
312         RBD_LOCK_STATE_UNLOCKED,
313         RBD_LOCK_STATE_LOCKED,
314         RBD_LOCK_STATE_RELEASING,
315 };
316
317 /* WatchNotify::ClientId */
318 struct rbd_client_id {
319         u64 gid;
320         u64 handle;
321 };
322
323 struct rbd_mapping {
324         u64                     size;
325         u64                     features;
326 };
327
328 /*
329  * a single device
330  */
331 struct rbd_device {
332         int                     dev_id;         /* blkdev unique id */
333
334         int                     major;          /* blkdev assigned major */
335         int                     minor;
336         struct gendisk          *disk;          /* blkdev's gendisk and rq */
337
338         u32                     image_format;   /* Either 1 or 2 */
339         struct rbd_client       *rbd_client;
340
341         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
342
343         spinlock_t              lock;           /* queue, flags, open_count */
344
345         struct rbd_image_header header;
346         unsigned long           flags;          /* possibly lock protected */
347         struct rbd_spec         *spec;
348         struct rbd_options      *opts;
349         char                    *config_info;   /* add{,_single_major} string */
350
351         struct ceph_object_id   header_oid;
352         struct ceph_object_locator header_oloc;
353
354         struct ceph_file_layout layout;         /* used for all rbd requests */
355
356         struct mutex            watch_mutex;
357         enum rbd_watch_state    watch_state;
358         struct ceph_osd_linger_request *watch_handle;
359         u64                     watch_cookie;
360         struct delayed_work     watch_dwork;
361
362         struct rw_semaphore     lock_rwsem;
363         enum rbd_lock_state     lock_state;
364         char                    lock_cookie[32];
365         struct rbd_client_id    owner_cid;
366         struct work_struct      acquired_lock_work;
367         struct work_struct      released_lock_work;
368         struct delayed_work     lock_dwork;
369         struct work_struct      unlock_work;
370         wait_queue_head_t       lock_waitq;
371
372         struct workqueue_struct *task_wq;
373
374         struct rbd_spec         *parent_spec;
375         u64                     parent_overlap;
376         atomic_t                parent_ref;
377         struct rbd_device       *parent;
378
379         /* Block layer tags. */
380         struct blk_mq_tag_set   tag_set;
381
382         /* protects updating the header */
383         struct rw_semaphore     header_rwsem;
384
385         struct rbd_mapping      mapping;
386
387         struct list_head        node;
388
389         /* sysfs related */
390         struct device           dev;
391         unsigned long           open_count;     /* protected by lock */
392 };
393
394 /*
395  * Flag bits for rbd_dev->flags:
396  * - REMOVING (which is coupled with rbd_dev->open_count) is protected
397  *   by rbd_dev->lock
398  * - BLACKLISTED is protected by rbd_dev->lock_rwsem
399  */
400 enum rbd_dev_flags {
401         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
402         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
403         RBD_DEV_FLAG_BLACKLISTED, /* our ceph_client is blacklisted */
404 };
405
406 static DEFINE_MUTEX(client_mutex);      /* Serialize client creation */
407
408 static LIST_HEAD(rbd_dev_list);    /* devices */
409 static DEFINE_SPINLOCK(rbd_dev_list_lock);
410
411 static LIST_HEAD(rbd_client_list);              /* clients */
412 static DEFINE_SPINLOCK(rbd_client_list_lock);
413
414 /* Slab caches for frequently-allocated structures */
415
416 static struct kmem_cache        *rbd_img_request_cache;
417 static struct kmem_cache        *rbd_obj_request_cache;
418
419 static int rbd_major;
420 static DEFINE_IDA(rbd_dev_id_ida);
421
422 static struct workqueue_struct *rbd_wq;
423
424 /*
425  * single-major requires >= 0.75 version of userspace rbd utility.
426  */
427 static bool single_major = true;
428 module_param(single_major, bool, 0444);
429 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)");
430
431 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
432                        size_t count);
433 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
434                           size_t count);
435 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
436                                     size_t count);
437 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
438                                        size_t count);
439 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
440
441 static int rbd_dev_id_to_minor(int dev_id)
442 {
443         return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
444 }
445
446 static int minor_to_rbd_dev_id(int minor)
447 {
448         return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
449 }
450
451 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
452 {
453         return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
454                rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
455 }
456
457 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
458 {
459         bool is_lock_owner;
460
461         down_read(&rbd_dev->lock_rwsem);
462         is_lock_owner = __rbd_is_lock_owner(rbd_dev);
463         up_read(&rbd_dev->lock_rwsem);
464         return is_lock_owner;
465 }
466
467 static ssize_t rbd_supported_features_show(struct bus_type *bus, char *buf)
468 {
469         return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
470 }
471
472 static BUS_ATTR(add, 0200, NULL, rbd_add);
473 static BUS_ATTR(remove, 0200, NULL, rbd_remove);
474 static BUS_ATTR(add_single_major, 0200, NULL, rbd_add_single_major);
475 static BUS_ATTR(remove_single_major, 0200, NULL, rbd_remove_single_major);
476 static BUS_ATTR(supported_features, 0444, rbd_supported_features_show, NULL);
477
478 static struct attribute *rbd_bus_attrs[] = {
479         &bus_attr_add.attr,
480         &bus_attr_remove.attr,
481         &bus_attr_add_single_major.attr,
482         &bus_attr_remove_single_major.attr,
483         &bus_attr_supported_features.attr,
484         NULL,
485 };
486
487 static umode_t rbd_bus_is_visible(struct kobject *kobj,
488                                   struct attribute *attr, int index)
489 {
490         if (!single_major &&
491             (attr == &bus_attr_add_single_major.attr ||
492              attr == &bus_attr_remove_single_major.attr))
493                 return 0;
494
495         return attr->mode;
496 }
497
498 static const struct attribute_group rbd_bus_group = {
499         .attrs = rbd_bus_attrs,
500         .is_visible = rbd_bus_is_visible,
501 };
502 __ATTRIBUTE_GROUPS(rbd_bus);
503
504 static struct bus_type rbd_bus_type = {
505         .name           = "rbd",
506         .bus_groups     = rbd_bus_groups,
507 };
508
509 static void rbd_root_dev_release(struct device *dev)
510 {
511 }
512
513 static struct device rbd_root_dev = {
514         .init_name =    "rbd",
515         .release =      rbd_root_dev_release,
516 };
517
518 static __printf(2, 3)
519 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
520 {
521         struct va_format vaf;
522         va_list args;
523
524         va_start(args, fmt);
525         vaf.fmt = fmt;
526         vaf.va = &args;
527
528         if (!rbd_dev)
529                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
530         else if (rbd_dev->disk)
531                 printk(KERN_WARNING "%s: %s: %pV\n",
532                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
533         else if (rbd_dev->spec && rbd_dev->spec->image_name)
534                 printk(KERN_WARNING "%s: image %s: %pV\n",
535                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
536         else if (rbd_dev->spec && rbd_dev->spec->image_id)
537                 printk(KERN_WARNING "%s: id %s: %pV\n",
538                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
539         else    /* punt */
540                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
541                         RBD_DRV_NAME, rbd_dev, &vaf);
542         va_end(args);
543 }
544
545 #ifdef RBD_DEBUG
546 #define rbd_assert(expr)                                                \
547                 if (unlikely(!(expr))) {                                \
548                         printk(KERN_ERR "\nAssertion failure in %s() "  \
549                                                 "at line %d:\n\n"       \
550                                         "\trbd_assert(%s);\n\n",        \
551                                         __func__, __LINE__, #expr);     \
552                         BUG();                                          \
553                 }
554 #else /* !RBD_DEBUG */
555 #  define rbd_assert(expr)      ((void) 0)
556 #endif /* !RBD_DEBUG */
557
558 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
559
560 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
561 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
562 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
563 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
564 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
565                                         u64 snap_id);
566 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
567                                 u8 *order, u64 *snap_size);
568 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
569                 u64 *snap_features);
570
571 static int rbd_open(struct block_device *bdev, fmode_t mode)
572 {
573         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
574         bool removing = false;
575
576         spin_lock_irq(&rbd_dev->lock);
577         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
578                 removing = true;
579         else
580                 rbd_dev->open_count++;
581         spin_unlock_irq(&rbd_dev->lock);
582         if (removing)
583                 return -ENOENT;
584
585         (void) get_device(&rbd_dev->dev);
586
587         return 0;
588 }
589
590 static void rbd_release(struct gendisk *disk, fmode_t mode)
591 {
592         struct rbd_device *rbd_dev = disk->private_data;
593         unsigned long open_count_before;
594
595         spin_lock_irq(&rbd_dev->lock);
596         open_count_before = rbd_dev->open_count--;
597         spin_unlock_irq(&rbd_dev->lock);
598         rbd_assert(open_count_before > 0);
599
600         put_device(&rbd_dev->dev);
601 }
602
603 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
604 {
605         int ro;
606
607         if (get_user(ro, (int __user *)arg))
608                 return -EFAULT;
609
610         /* Snapshots can't be marked read-write */
611         if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
612                 return -EROFS;
613
614         /* Let blkdev_roset() handle it */
615         return -ENOTTY;
616 }
617
618 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
619                         unsigned int cmd, unsigned long arg)
620 {
621         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
622         int ret;
623
624         switch (cmd) {
625         case BLKROSET:
626                 ret = rbd_ioctl_set_ro(rbd_dev, arg);
627                 break;
628         default:
629                 ret = -ENOTTY;
630         }
631
632         return ret;
633 }
634
635 #ifdef CONFIG_COMPAT
636 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
637                                 unsigned int cmd, unsigned long arg)
638 {
639         return rbd_ioctl(bdev, mode, cmd, arg);
640 }
641 #endif /* CONFIG_COMPAT */
642
643 static const struct block_device_operations rbd_bd_ops = {
644         .owner                  = THIS_MODULE,
645         .open                   = rbd_open,
646         .release                = rbd_release,
647         .ioctl                  = rbd_ioctl,
648 #ifdef CONFIG_COMPAT
649         .compat_ioctl           = rbd_compat_ioctl,
650 #endif
651 };
652
653 /*
654  * Initialize an rbd client instance.  Success or not, this function
655  * consumes ceph_opts.  Caller holds client_mutex.
656  */
657 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
658 {
659         struct rbd_client *rbdc;
660         int ret = -ENOMEM;
661
662         dout("%s:\n", __func__);
663         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
664         if (!rbdc)
665                 goto out_opt;
666
667         kref_init(&rbdc->kref);
668         INIT_LIST_HEAD(&rbdc->node);
669
670         rbdc->client = ceph_create_client(ceph_opts, rbdc);
671         if (IS_ERR(rbdc->client))
672                 goto out_rbdc;
673         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
674
675         ret = ceph_open_session(rbdc->client);
676         if (ret < 0)
677                 goto out_client;
678
679         spin_lock(&rbd_client_list_lock);
680         list_add_tail(&rbdc->node, &rbd_client_list);
681         spin_unlock(&rbd_client_list_lock);
682
683         dout("%s: rbdc %p\n", __func__, rbdc);
684
685         return rbdc;
686 out_client:
687         ceph_destroy_client(rbdc->client);
688 out_rbdc:
689         kfree(rbdc);
690 out_opt:
691         if (ceph_opts)
692                 ceph_destroy_options(ceph_opts);
693         dout("%s: error %d\n", __func__, ret);
694
695         return ERR_PTR(ret);
696 }
697
698 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
699 {
700         kref_get(&rbdc->kref);
701
702         return rbdc;
703 }
704
705 /*
706  * Find a ceph client with specific addr and configuration.  If
707  * found, bump its reference count.
708  */
709 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
710 {
711         struct rbd_client *client_node;
712         bool found = false;
713
714         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
715                 return NULL;
716
717         spin_lock(&rbd_client_list_lock);
718         list_for_each_entry(client_node, &rbd_client_list, node) {
719                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
720                         __rbd_get_client(client_node);
721
722                         found = true;
723                         break;
724                 }
725         }
726         spin_unlock(&rbd_client_list_lock);
727
728         return found ? client_node : NULL;
729 }
730
731 /*
732  * (Per device) rbd map options
733  */
734 enum {
735         Opt_queue_depth,
736         Opt_lock_timeout,
737         Opt_last_int,
738         /* int args above */
739         Opt_pool_ns,
740         Opt_last_string,
741         /* string args above */
742         Opt_read_only,
743         Opt_read_write,
744         Opt_lock_on_read,
745         Opt_exclusive,
746         Opt_notrim,
747         Opt_err
748 };
749
750 static match_table_t rbd_opts_tokens = {
751         {Opt_queue_depth, "queue_depth=%d"},
752         {Opt_lock_timeout, "lock_timeout=%d"},
753         /* int args above */
754         {Opt_pool_ns, "_pool_ns=%s"},
755         /* string args above */
756         {Opt_read_only, "read_only"},
757         {Opt_read_only, "ro"},          /* Alternate spelling */
758         {Opt_read_write, "read_write"},
759         {Opt_read_write, "rw"},         /* Alternate spelling */
760         {Opt_lock_on_read, "lock_on_read"},
761         {Opt_exclusive, "exclusive"},
762         {Opt_notrim, "notrim"},
763         {Opt_err, NULL}
764 };
765
766 struct rbd_options {
767         int     queue_depth;
768         unsigned long   lock_timeout;
769         bool    read_only;
770         bool    lock_on_read;
771         bool    exclusive;
772         bool    trim;
773 };
774
775 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ
776 #define RBD_LOCK_TIMEOUT_DEFAULT 0  /* no timeout */
777 #define RBD_READ_ONLY_DEFAULT   false
778 #define RBD_LOCK_ON_READ_DEFAULT false
779 #define RBD_EXCLUSIVE_DEFAULT   false
780 #define RBD_TRIM_DEFAULT        true
781
782 struct parse_rbd_opts_ctx {
783         struct rbd_spec         *spec;
784         struct rbd_options      *opts;
785 };
786
787 static int parse_rbd_opts_token(char *c, void *private)
788 {
789         struct parse_rbd_opts_ctx *pctx = private;
790         substring_t argstr[MAX_OPT_ARGS];
791         int token, intval, ret;
792
793         token = match_token(c, rbd_opts_tokens, argstr);
794         if (token < Opt_last_int) {
795                 ret = match_int(&argstr[0], &intval);
796                 if (ret < 0) {
797                         pr_err("bad option arg (not int) at '%s'\n", c);
798                         return ret;
799                 }
800                 dout("got int token %d val %d\n", token, intval);
801         } else if (token > Opt_last_int && token < Opt_last_string) {
802                 dout("got string token %d val %s\n", token, argstr[0].from);
803         } else {
804                 dout("got token %d\n", token);
805         }
806
807         switch (token) {
808         case Opt_queue_depth:
809                 if (intval < 1) {
810                         pr_err("queue_depth out of range\n");
811                         return -EINVAL;
812                 }
813                 pctx->opts->queue_depth = intval;
814                 break;
815         case Opt_lock_timeout:
816                 /* 0 is "wait forever" (i.e. infinite timeout) */
817                 if (intval < 0 || intval > INT_MAX / 1000) {
818                         pr_err("lock_timeout out of range\n");
819                         return -EINVAL;
820                 }
821                 pctx->opts->lock_timeout = msecs_to_jiffies(intval * 1000);
822                 break;
823         case Opt_pool_ns:
824                 kfree(pctx->spec->pool_ns);
825                 pctx->spec->pool_ns = match_strdup(argstr);
826                 if (!pctx->spec->pool_ns)
827                         return -ENOMEM;
828                 break;
829         case Opt_read_only:
830                 pctx->opts->read_only = true;
831                 break;
832         case Opt_read_write:
833                 pctx->opts->read_only = false;
834                 break;
835         case Opt_lock_on_read:
836                 pctx->opts->lock_on_read = true;
837                 break;
838         case Opt_exclusive:
839                 pctx->opts->exclusive = true;
840                 break;
841         case Opt_notrim:
842                 pctx->opts->trim = false;
843                 break;
844         default:
845                 /* libceph prints "bad option" msg */
846                 return -EINVAL;
847         }
848
849         return 0;
850 }
851
852 static char* obj_op_name(enum obj_operation_type op_type)
853 {
854         switch (op_type) {
855         case OBJ_OP_READ:
856                 return "read";
857         case OBJ_OP_WRITE:
858                 return "write";
859         case OBJ_OP_DISCARD:
860                 return "discard";
861         default:
862                 return "???";
863         }
864 }
865
866 /*
867  * Destroy ceph client
868  *
869  * Caller must hold rbd_client_list_lock.
870  */
871 static void rbd_client_release(struct kref *kref)
872 {
873         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
874
875         dout("%s: rbdc %p\n", __func__, rbdc);
876         spin_lock(&rbd_client_list_lock);
877         list_del(&rbdc->node);
878         spin_unlock(&rbd_client_list_lock);
879
880         ceph_destroy_client(rbdc->client);
881         kfree(rbdc);
882 }
883
884 /*
885  * Drop reference to ceph client node. If it's not referenced anymore, release
886  * it.
887  */
888 static void rbd_put_client(struct rbd_client *rbdc)
889 {
890         if (rbdc)
891                 kref_put(&rbdc->kref, rbd_client_release);
892 }
893
894 static int wait_for_latest_osdmap(struct ceph_client *client)
895 {
896         u64 newest_epoch;
897         int ret;
898
899         ret = ceph_monc_get_version(&client->monc, "osdmap", &newest_epoch);
900         if (ret)
901                 return ret;
902
903         if (client->osdc.osdmap->epoch >= newest_epoch)
904                 return 0;
905
906         ceph_osdc_maybe_request_map(&client->osdc);
907         return ceph_monc_wait_osdmap(&client->monc, newest_epoch,
908                                      client->options->mount_timeout);
909 }
910
911 /*
912  * Get a ceph client with specific addr and configuration, if one does
913  * not exist create it.  Either way, ceph_opts is consumed by this
914  * function.
915  */
916 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
917 {
918         struct rbd_client *rbdc;
919         int ret;
920
921         mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
922         rbdc = rbd_client_find(ceph_opts);
923         if (rbdc) {
924                 ceph_destroy_options(ceph_opts);
925
926                 /*
927                  * Using an existing client.  Make sure ->pg_pools is up to
928                  * date before we look up the pool id in do_rbd_add().
929                  */
930                 ret = wait_for_latest_osdmap(rbdc->client);
931                 if (ret) {
932                         rbd_warn(NULL, "failed to get latest osdmap: %d", ret);
933                         rbd_put_client(rbdc);
934                         rbdc = ERR_PTR(ret);
935                 }
936         } else {
937                 rbdc = rbd_client_create(ceph_opts);
938         }
939         mutex_unlock(&client_mutex);
940
941         return rbdc;
942 }
943
944 static bool rbd_image_format_valid(u32 image_format)
945 {
946         return image_format == 1 || image_format == 2;
947 }
948
949 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
950 {
951         size_t size;
952         u32 snap_count;
953
954         /* The header has to start with the magic rbd header text */
955         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
956                 return false;
957
958         /* The bio layer requires at least sector-sized I/O */
959
960         if (ondisk->options.order < SECTOR_SHIFT)
961                 return false;
962
963         /* If we use u64 in a few spots we may be able to loosen this */
964
965         if (ondisk->options.order > 8 * sizeof (int) - 1)
966                 return false;
967
968         /*
969          * The size of a snapshot header has to fit in a size_t, and
970          * that limits the number of snapshots.
971          */
972         snap_count = le32_to_cpu(ondisk->snap_count);
973         size = SIZE_MAX - sizeof (struct ceph_snap_context);
974         if (snap_count > size / sizeof (__le64))
975                 return false;
976
977         /*
978          * Not only that, but the size of the entire the snapshot
979          * header must also be representable in a size_t.
980          */
981         size -= snap_count * sizeof (__le64);
982         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
983                 return false;
984
985         return true;
986 }
987
988 /*
989  * returns the size of an object in the image
990  */
991 static u32 rbd_obj_bytes(struct rbd_image_header *header)
992 {
993         return 1U << header->obj_order;
994 }
995
996 static void rbd_init_layout(struct rbd_device *rbd_dev)
997 {
998         if (rbd_dev->header.stripe_unit == 0 ||
999             rbd_dev->header.stripe_count == 0) {
1000                 rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
1001                 rbd_dev->header.stripe_count = 1;
1002         }
1003
1004         rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
1005         rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
1006         rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
1007         rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
1008                           rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
1009         RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
1010 }
1011
1012 /*
1013  * Fill an rbd image header with information from the given format 1
1014  * on-disk header.
1015  */
1016 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
1017                                  struct rbd_image_header_ondisk *ondisk)
1018 {
1019         struct rbd_image_header *header = &rbd_dev->header;
1020         bool first_time = header->object_prefix == NULL;
1021         struct ceph_snap_context *snapc;
1022         char *object_prefix = NULL;
1023         char *snap_names = NULL;
1024         u64 *snap_sizes = NULL;
1025         u32 snap_count;
1026         int ret = -ENOMEM;
1027         u32 i;
1028
1029         /* Allocate this now to avoid having to handle failure below */
1030
1031         if (first_time) {
1032                 object_prefix = kstrndup(ondisk->object_prefix,
1033                                          sizeof(ondisk->object_prefix),
1034                                          GFP_KERNEL);
1035                 if (!object_prefix)
1036                         return -ENOMEM;
1037         }
1038
1039         /* Allocate the snapshot context and fill it in */
1040
1041         snap_count = le32_to_cpu(ondisk->snap_count);
1042         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1043         if (!snapc)
1044                 goto out_err;
1045         snapc->seq = le64_to_cpu(ondisk->snap_seq);
1046         if (snap_count) {
1047                 struct rbd_image_snap_ondisk *snaps;
1048                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1049
1050                 /* We'll keep a copy of the snapshot names... */
1051
1052                 if (snap_names_len > (u64)SIZE_MAX)
1053                         goto out_2big;
1054                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1055                 if (!snap_names)
1056                         goto out_err;
1057
1058                 /* ...as well as the array of their sizes. */
1059                 snap_sizes = kmalloc_array(snap_count,
1060                                            sizeof(*header->snap_sizes),
1061                                            GFP_KERNEL);
1062                 if (!snap_sizes)
1063                         goto out_err;
1064
1065                 /*
1066                  * Copy the names, and fill in each snapshot's id
1067                  * and size.
1068                  *
1069                  * Note that rbd_dev_v1_header_info() guarantees the
1070                  * ondisk buffer we're working with has
1071                  * snap_names_len bytes beyond the end of the
1072                  * snapshot id array, this memcpy() is safe.
1073                  */
1074                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1075                 snaps = ondisk->snaps;
1076                 for (i = 0; i < snap_count; i++) {
1077                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1078                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1079                 }
1080         }
1081
1082         /* We won't fail any more, fill in the header */
1083
1084         if (first_time) {
1085                 header->object_prefix = object_prefix;
1086                 header->obj_order = ondisk->options.order;
1087                 rbd_init_layout(rbd_dev);
1088         } else {
1089                 ceph_put_snap_context(header->snapc);
1090                 kfree(header->snap_names);
1091                 kfree(header->snap_sizes);
1092         }
1093
1094         /* The remaining fields always get updated (when we refresh) */
1095
1096         header->image_size = le64_to_cpu(ondisk->image_size);
1097         header->snapc = snapc;
1098         header->snap_names = snap_names;
1099         header->snap_sizes = snap_sizes;
1100
1101         return 0;
1102 out_2big:
1103         ret = -EIO;
1104 out_err:
1105         kfree(snap_sizes);
1106         kfree(snap_names);
1107         ceph_put_snap_context(snapc);
1108         kfree(object_prefix);
1109
1110         return ret;
1111 }
1112
1113 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1114 {
1115         const char *snap_name;
1116
1117         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1118
1119         /* Skip over names until we find the one we are looking for */
1120
1121         snap_name = rbd_dev->header.snap_names;
1122         while (which--)
1123                 snap_name += strlen(snap_name) + 1;
1124
1125         return kstrdup(snap_name, GFP_KERNEL);
1126 }
1127
1128 /*
1129  * Snapshot id comparison function for use with qsort()/bsearch().
1130  * Note that result is for snapshots in *descending* order.
1131  */
1132 static int snapid_compare_reverse(const void *s1, const void *s2)
1133 {
1134         u64 snap_id1 = *(u64 *)s1;
1135         u64 snap_id2 = *(u64 *)s2;
1136
1137         if (snap_id1 < snap_id2)
1138                 return 1;
1139         return snap_id1 == snap_id2 ? 0 : -1;
1140 }
1141
1142 /*
1143  * Search a snapshot context to see if the given snapshot id is
1144  * present.
1145  *
1146  * Returns the position of the snapshot id in the array if it's found,
1147  * or BAD_SNAP_INDEX otherwise.
1148  *
1149  * Note: The snapshot array is in kept sorted (by the osd) in
1150  * reverse order, highest snapshot id first.
1151  */
1152 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1153 {
1154         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1155         u64 *found;
1156
1157         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1158                                 sizeof (snap_id), snapid_compare_reverse);
1159
1160         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1161 }
1162
1163 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1164                                         u64 snap_id)
1165 {
1166         u32 which;
1167         const char *snap_name;
1168
1169         which = rbd_dev_snap_index(rbd_dev, snap_id);
1170         if (which == BAD_SNAP_INDEX)
1171                 return ERR_PTR(-ENOENT);
1172
1173         snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1174         return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1175 }
1176
1177 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1178 {
1179         if (snap_id == CEPH_NOSNAP)
1180                 return RBD_SNAP_HEAD_NAME;
1181
1182         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1183         if (rbd_dev->image_format == 1)
1184                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1185
1186         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1187 }
1188
1189 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1190                                 u64 *snap_size)
1191 {
1192         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1193         if (snap_id == CEPH_NOSNAP) {
1194                 *snap_size = rbd_dev->header.image_size;
1195         } else if (rbd_dev->image_format == 1) {
1196                 u32 which;
1197
1198                 which = rbd_dev_snap_index(rbd_dev, snap_id);
1199                 if (which == BAD_SNAP_INDEX)
1200                         return -ENOENT;
1201
1202                 *snap_size = rbd_dev->header.snap_sizes[which];
1203         } else {
1204                 u64 size = 0;
1205                 int ret;
1206
1207                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1208                 if (ret)
1209                         return ret;
1210
1211                 *snap_size = size;
1212         }
1213         return 0;
1214 }
1215
1216 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1217                         u64 *snap_features)
1218 {
1219         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1220         if (snap_id == CEPH_NOSNAP) {
1221                 *snap_features = rbd_dev->header.features;
1222         } else if (rbd_dev->image_format == 1) {
1223                 *snap_features = 0;     /* No features for format 1 */
1224         } else {
1225                 u64 features = 0;
1226                 int ret;
1227
1228                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1229                 if (ret)
1230                         return ret;
1231
1232                 *snap_features = features;
1233         }
1234         return 0;
1235 }
1236
1237 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1238 {
1239         u64 snap_id = rbd_dev->spec->snap_id;
1240         u64 size = 0;
1241         u64 features = 0;
1242         int ret;
1243
1244         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1245         if (ret)
1246                 return ret;
1247         ret = rbd_snap_features(rbd_dev, snap_id, &features);
1248         if (ret)
1249                 return ret;
1250
1251         rbd_dev->mapping.size = size;
1252         rbd_dev->mapping.features = features;
1253
1254         return 0;
1255 }
1256
1257 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1258 {
1259         rbd_dev->mapping.size = 0;
1260         rbd_dev->mapping.features = 0;
1261 }
1262
1263 static void zero_bvec(struct bio_vec *bv)
1264 {
1265         void *buf;
1266         unsigned long flags;
1267
1268         buf = bvec_kmap_irq(bv, &flags);
1269         memset(buf, 0, bv->bv_len);
1270         flush_dcache_page(bv->bv_page);
1271         bvec_kunmap_irq(buf, &flags);
1272 }
1273
1274 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes)
1275 {
1276         struct ceph_bio_iter it = *bio_pos;
1277
1278         ceph_bio_iter_advance(&it, off);
1279         ceph_bio_iter_advance_step(&it, bytes, ({
1280                 zero_bvec(&bv);
1281         }));
1282 }
1283
1284 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes)
1285 {
1286         struct ceph_bvec_iter it = *bvec_pos;
1287
1288         ceph_bvec_iter_advance(&it, off);
1289         ceph_bvec_iter_advance_step(&it, bytes, ({
1290                 zero_bvec(&bv);
1291         }));
1292 }
1293
1294 /*
1295  * Zero a range in @obj_req data buffer defined by a bio (list) or
1296  * (private) bio_vec array.
1297  *
1298  * @off is relative to the start of the data buffer.
1299  */
1300 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off,
1301                                u32 bytes)
1302 {
1303         switch (obj_req->img_request->data_type) {
1304         case OBJ_REQUEST_BIO:
1305                 zero_bios(&obj_req->bio_pos, off, bytes);
1306                 break;
1307         case OBJ_REQUEST_BVECS:
1308         case OBJ_REQUEST_OWN_BVECS:
1309                 zero_bvecs(&obj_req->bvec_pos, off, bytes);
1310                 break;
1311         default:
1312                 rbd_assert(0);
1313         }
1314 }
1315
1316 static void rbd_obj_request_destroy(struct kref *kref);
1317 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1318 {
1319         rbd_assert(obj_request != NULL);
1320         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1321                 kref_read(&obj_request->kref));
1322         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1323 }
1324
1325 static void rbd_img_request_get(struct rbd_img_request *img_request)
1326 {
1327         dout("%s: img %p (was %d)\n", __func__, img_request,
1328              kref_read(&img_request->kref));
1329         kref_get(&img_request->kref);
1330 }
1331
1332 static void rbd_img_request_destroy(struct kref *kref);
1333 static void rbd_img_request_put(struct rbd_img_request *img_request)
1334 {
1335         rbd_assert(img_request != NULL);
1336         dout("%s: img %p (was %d)\n", __func__, img_request,
1337                 kref_read(&img_request->kref));
1338         kref_put(&img_request->kref, rbd_img_request_destroy);
1339 }
1340
1341 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1342                                         struct rbd_obj_request *obj_request)
1343 {
1344         rbd_assert(obj_request->img_request == NULL);
1345
1346         /* Image request now owns object's original reference */
1347         obj_request->img_request = img_request;
1348         img_request->obj_request_count++;
1349         img_request->pending_count++;
1350         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1351 }
1352
1353 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1354                                         struct rbd_obj_request *obj_request)
1355 {
1356         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1357         list_del(&obj_request->ex.oe_item);
1358         rbd_assert(img_request->obj_request_count > 0);
1359         img_request->obj_request_count--;
1360         rbd_assert(obj_request->img_request == img_request);
1361         rbd_obj_request_put(obj_request);
1362 }
1363
1364 static void rbd_obj_request_submit(struct rbd_obj_request *obj_request)
1365 {
1366         struct ceph_osd_request *osd_req = obj_request->osd_req;
1367
1368         dout("%s %p object_no %016llx %llu~%llu osd_req %p\n", __func__,
1369              obj_request, obj_request->ex.oe_objno, obj_request->ex.oe_off,
1370              obj_request->ex.oe_len, osd_req);
1371         ceph_osdc_start_request(osd_req->r_osdc, osd_req, false);
1372 }
1373
1374 /*
1375  * The default/initial value for all image request flags is 0.  Each
1376  * is conditionally set to 1 at image request initialization time
1377  * and currently never change thereafter.
1378  */
1379 static void img_request_layered_set(struct rbd_img_request *img_request)
1380 {
1381         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1382         smp_mb();
1383 }
1384
1385 static void img_request_layered_clear(struct rbd_img_request *img_request)
1386 {
1387         clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1388         smp_mb();
1389 }
1390
1391 static bool img_request_layered_test(struct rbd_img_request *img_request)
1392 {
1393         smp_mb();
1394         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1395 }
1396
1397 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req)
1398 {
1399         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1400
1401         return !obj_req->ex.oe_off &&
1402                obj_req->ex.oe_len == rbd_dev->layout.object_size;
1403 }
1404
1405 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req)
1406 {
1407         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1408
1409         return obj_req->ex.oe_off + obj_req->ex.oe_len ==
1410                                         rbd_dev->layout.object_size;
1411 }
1412
1413 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req)
1414 {
1415         return ceph_file_extents_bytes(obj_req->img_extents,
1416                                        obj_req->num_img_extents);
1417 }
1418
1419 static bool rbd_img_is_write(struct rbd_img_request *img_req)
1420 {
1421         switch (img_req->op_type) {
1422         case OBJ_OP_READ:
1423                 return false;
1424         case OBJ_OP_WRITE:
1425         case OBJ_OP_DISCARD:
1426                 return true;
1427         default:
1428                 BUG();
1429         }
1430 }
1431
1432 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req);
1433
1434 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1435 {
1436         struct rbd_obj_request *obj_req = osd_req->r_priv;
1437
1438         dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1439              osd_req->r_result, obj_req);
1440         rbd_assert(osd_req == obj_req->osd_req);
1441
1442         obj_req->result = osd_req->r_result < 0 ? osd_req->r_result : 0;
1443         if (!obj_req->result && !rbd_img_is_write(obj_req->img_request))
1444                 obj_req->xferred = osd_req->r_result;
1445         else
1446                 /*
1447                  * Writes aren't allowed to return a data payload.  In some
1448                  * guarded write cases (e.g. stat + zero on an empty object)
1449                  * a stat response makes it through, but we don't care.
1450                  */
1451                 obj_req->xferred = 0;
1452
1453         rbd_obj_handle_request(obj_req);
1454 }
1455
1456 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1457 {
1458         struct ceph_osd_request *osd_req = obj_request->osd_req;
1459
1460         osd_req->r_flags = CEPH_OSD_FLAG_READ;
1461         osd_req->r_snapid = obj_request->img_request->snap_id;
1462 }
1463
1464 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1465 {
1466         struct ceph_osd_request *osd_req = obj_request->osd_req;
1467
1468         osd_req->r_flags = CEPH_OSD_FLAG_WRITE;
1469         ktime_get_real_ts64(&osd_req->r_mtime);
1470         osd_req->r_data_offset = obj_request->ex.oe_off;
1471 }
1472
1473 static struct ceph_osd_request *
1474 rbd_osd_req_create(struct rbd_obj_request *obj_req, unsigned int num_ops)
1475 {
1476         struct rbd_img_request *img_req = obj_req->img_request;
1477         struct rbd_device *rbd_dev = img_req->rbd_dev;
1478         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1479         struct ceph_osd_request *req;
1480         const char *name_format = rbd_dev->image_format == 1 ?
1481                                       RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1482
1483         req = ceph_osdc_alloc_request(osdc,
1484                         (rbd_img_is_write(img_req) ? img_req->snapc : NULL),
1485                         num_ops, false, GFP_NOIO);
1486         if (!req)
1487                 return NULL;
1488
1489         req->r_callback = rbd_osd_req_callback;
1490         req->r_priv = obj_req;
1491
1492         /*
1493          * Data objects may be stored in a separate pool, but always in
1494          * the same namespace in that pool as the header in its pool.
1495          */
1496         ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
1497         req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1498
1499         if (ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1500                         rbd_dev->header.object_prefix, obj_req->ex.oe_objno))
1501                 goto err_req;
1502
1503         if (ceph_osdc_alloc_messages(req, GFP_NOIO))
1504                 goto err_req;
1505
1506         return req;
1507
1508 err_req:
1509         ceph_osdc_put_request(req);
1510         return NULL;
1511 }
1512
1513 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1514 {
1515         ceph_osdc_put_request(osd_req);
1516 }
1517
1518 static struct rbd_obj_request *rbd_obj_request_create(void)
1519 {
1520         struct rbd_obj_request *obj_request;
1521
1522         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
1523         if (!obj_request)
1524                 return NULL;
1525
1526         ceph_object_extent_init(&obj_request->ex);
1527         kref_init(&obj_request->kref);
1528
1529         dout("%s %p\n", __func__, obj_request);
1530         return obj_request;
1531 }
1532
1533 static void rbd_obj_request_destroy(struct kref *kref)
1534 {
1535         struct rbd_obj_request *obj_request;
1536         u32 i;
1537
1538         obj_request = container_of(kref, struct rbd_obj_request, kref);
1539
1540         dout("%s: obj %p\n", __func__, obj_request);
1541
1542         if (obj_request->osd_req)
1543                 rbd_osd_req_destroy(obj_request->osd_req);
1544
1545         switch (obj_request->img_request->data_type) {
1546         case OBJ_REQUEST_NODATA:
1547         case OBJ_REQUEST_BIO:
1548         case OBJ_REQUEST_BVECS:
1549                 break;          /* Nothing to do */
1550         case OBJ_REQUEST_OWN_BVECS:
1551                 kfree(obj_request->bvec_pos.bvecs);
1552                 break;
1553         default:
1554                 rbd_assert(0);
1555         }
1556
1557         kfree(obj_request->img_extents);
1558         if (obj_request->copyup_bvecs) {
1559                 for (i = 0; i < obj_request->copyup_bvec_count; i++) {
1560                         if (obj_request->copyup_bvecs[i].bv_page)
1561                                 __free_page(obj_request->copyup_bvecs[i].bv_page);
1562                 }
1563                 kfree(obj_request->copyup_bvecs);
1564         }
1565
1566         kmem_cache_free(rbd_obj_request_cache, obj_request);
1567 }
1568
1569 /* It's OK to call this for a device with no parent */
1570
1571 static void rbd_spec_put(struct rbd_spec *spec);
1572 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1573 {
1574         rbd_dev_remove_parent(rbd_dev);
1575         rbd_spec_put(rbd_dev->parent_spec);
1576         rbd_dev->parent_spec = NULL;
1577         rbd_dev->parent_overlap = 0;
1578 }
1579
1580 /*
1581  * Parent image reference counting is used to determine when an
1582  * image's parent fields can be safely torn down--after there are no
1583  * more in-flight requests to the parent image.  When the last
1584  * reference is dropped, cleaning them up is safe.
1585  */
1586 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1587 {
1588         int counter;
1589
1590         if (!rbd_dev->parent_spec)
1591                 return;
1592
1593         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1594         if (counter > 0)
1595                 return;
1596
1597         /* Last reference; clean up parent data structures */
1598
1599         if (!counter)
1600                 rbd_dev_unparent(rbd_dev);
1601         else
1602                 rbd_warn(rbd_dev, "parent reference underflow");
1603 }
1604
1605 /*
1606  * If an image has a non-zero parent overlap, get a reference to its
1607  * parent.
1608  *
1609  * Returns true if the rbd device has a parent with a non-zero
1610  * overlap and a reference for it was successfully taken, or
1611  * false otherwise.
1612  */
1613 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1614 {
1615         int counter = 0;
1616
1617         if (!rbd_dev->parent_spec)
1618                 return false;
1619
1620         down_read(&rbd_dev->header_rwsem);
1621         if (rbd_dev->parent_overlap)
1622                 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1623         up_read(&rbd_dev->header_rwsem);
1624
1625         if (counter < 0)
1626                 rbd_warn(rbd_dev, "parent reference overflow");
1627
1628         return counter > 0;
1629 }
1630
1631 /*
1632  * Caller is responsible for filling in the list of object requests
1633  * that comprises the image request, and the Linux request pointer
1634  * (if there is one).
1635  */
1636 static struct rbd_img_request *rbd_img_request_create(
1637                                         struct rbd_device *rbd_dev,
1638                                         enum obj_operation_type op_type,
1639                                         struct ceph_snap_context *snapc)
1640 {
1641         struct rbd_img_request *img_request;
1642
1643         img_request = kmem_cache_zalloc(rbd_img_request_cache, GFP_NOIO);
1644         if (!img_request)
1645                 return NULL;
1646
1647         img_request->rbd_dev = rbd_dev;
1648         img_request->op_type = op_type;
1649         if (!rbd_img_is_write(img_request))
1650                 img_request->snap_id = rbd_dev->spec->snap_id;
1651         else
1652                 img_request->snapc = snapc;
1653
1654         if (rbd_dev_parent_get(rbd_dev))
1655                 img_request_layered_set(img_request);
1656
1657         spin_lock_init(&img_request->completion_lock);
1658         INIT_LIST_HEAD(&img_request->object_extents);
1659         kref_init(&img_request->kref);
1660
1661         dout("%s: rbd_dev %p %s -> img %p\n", __func__, rbd_dev,
1662              obj_op_name(op_type), img_request);
1663         return img_request;
1664 }
1665
1666 static void rbd_img_request_destroy(struct kref *kref)
1667 {
1668         struct rbd_img_request *img_request;
1669         struct rbd_obj_request *obj_request;
1670         struct rbd_obj_request *next_obj_request;
1671
1672         img_request = container_of(kref, struct rbd_img_request, kref);
1673
1674         dout("%s: img %p\n", __func__, img_request);
1675
1676         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1677                 rbd_img_obj_request_del(img_request, obj_request);
1678         rbd_assert(img_request->obj_request_count == 0);
1679
1680         if (img_request_layered_test(img_request)) {
1681                 img_request_layered_clear(img_request);
1682                 rbd_dev_parent_put(img_request->rbd_dev);
1683         }
1684
1685         if (rbd_img_is_write(img_request))
1686                 ceph_put_snap_context(img_request->snapc);
1687
1688         kmem_cache_free(rbd_img_request_cache, img_request);
1689 }
1690
1691 static void prune_extents(struct ceph_file_extent *img_extents,
1692                           u32 *num_img_extents, u64 overlap)
1693 {
1694         u32 cnt = *num_img_extents;
1695
1696         /* drop extents completely beyond the overlap */
1697         while (cnt && img_extents[cnt - 1].fe_off >= overlap)
1698                 cnt--;
1699
1700         if (cnt) {
1701                 struct ceph_file_extent *ex = &img_extents[cnt - 1];
1702
1703                 /* trim final overlapping extent */
1704                 if (ex->fe_off + ex->fe_len > overlap)
1705                         ex->fe_len = overlap - ex->fe_off;
1706         }
1707
1708         *num_img_extents = cnt;
1709 }
1710
1711 /*
1712  * Determine the byte range(s) covered by either just the object extent
1713  * or the entire object in the parent image.
1714  */
1715 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req,
1716                                     bool entire)
1717 {
1718         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1719         int ret;
1720
1721         if (!rbd_dev->parent_overlap)
1722                 return 0;
1723
1724         ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno,
1725                                   entire ? 0 : obj_req->ex.oe_off,
1726                                   entire ? rbd_dev->layout.object_size :
1727                                                         obj_req->ex.oe_len,
1728                                   &obj_req->img_extents,
1729                                   &obj_req->num_img_extents);
1730         if (ret)
1731                 return ret;
1732
1733         prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
1734                       rbd_dev->parent_overlap);
1735         return 0;
1736 }
1737
1738 static void rbd_osd_req_setup_data(struct rbd_obj_request *obj_req, u32 which)
1739 {
1740         switch (obj_req->img_request->data_type) {
1741         case OBJ_REQUEST_BIO:
1742                 osd_req_op_extent_osd_data_bio(obj_req->osd_req, which,
1743                                                &obj_req->bio_pos,
1744                                                obj_req->ex.oe_len);
1745                 break;
1746         case OBJ_REQUEST_BVECS:
1747         case OBJ_REQUEST_OWN_BVECS:
1748                 rbd_assert(obj_req->bvec_pos.iter.bi_size ==
1749                                                         obj_req->ex.oe_len);
1750                 rbd_assert(obj_req->bvec_idx == obj_req->bvec_count);
1751                 osd_req_op_extent_osd_data_bvec_pos(obj_req->osd_req, which,
1752                                                     &obj_req->bvec_pos);
1753                 break;
1754         default:
1755                 rbd_assert(0);
1756         }
1757 }
1758
1759 static int rbd_obj_setup_read(struct rbd_obj_request *obj_req)
1760 {
1761         obj_req->osd_req = rbd_osd_req_create(obj_req, 1);
1762         if (!obj_req->osd_req)
1763                 return -ENOMEM;
1764
1765         osd_req_op_extent_init(obj_req->osd_req, 0, CEPH_OSD_OP_READ,
1766                                obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
1767         rbd_osd_req_setup_data(obj_req, 0);
1768
1769         rbd_osd_req_format_read(obj_req);
1770         return 0;
1771 }
1772
1773 static int __rbd_obj_setup_stat(struct rbd_obj_request *obj_req,
1774                                 unsigned int which)
1775 {
1776         struct page **pages;
1777
1778         /*
1779          * The response data for a STAT call consists of:
1780          *     le64 length;
1781          *     struct {
1782          *         le32 tv_sec;
1783          *         le32 tv_nsec;
1784          *     } mtime;
1785          */
1786         pages = ceph_alloc_page_vector(1, GFP_NOIO);
1787         if (IS_ERR(pages))
1788                 return PTR_ERR(pages);
1789
1790         osd_req_op_init(obj_req->osd_req, which, CEPH_OSD_OP_STAT, 0);
1791         osd_req_op_raw_data_in_pages(obj_req->osd_req, which, pages,
1792                                      8 + sizeof(struct ceph_timespec),
1793                                      0, false, true);
1794         return 0;
1795 }
1796
1797 static void __rbd_obj_setup_write(struct rbd_obj_request *obj_req,
1798                                   unsigned int which)
1799 {
1800         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1801         u16 opcode;
1802
1803         osd_req_op_alloc_hint_init(obj_req->osd_req, which++,
1804                                    rbd_dev->layout.object_size,
1805                                    rbd_dev->layout.object_size);
1806
1807         if (rbd_obj_is_entire(obj_req))
1808                 opcode = CEPH_OSD_OP_WRITEFULL;
1809         else
1810                 opcode = CEPH_OSD_OP_WRITE;
1811
1812         osd_req_op_extent_init(obj_req->osd_req, which, opcode,
1813                                obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
1814         rbd_osd_req_setup_data(obj_req, which++);
1815
1816         rbd_assert(which == obj_req->osd_req->r_num_ops);
1817         rbd_osd_req_format_write(obj_req);
1818 }
1819
1820 static int rbd_obj_setup_write(struct rbd_obj_request *obj_req)
1821 {
1822         unsigned int num_osd_ops, which = 0;
1823         int ret;
1824
1825         /* reverse map the entire object onto the parent */
1826         ret = rbd_obj_calc_img_extents(obj_req, true);
1827         if (ret)
1828                 return ret;
1829
1830         if (obj_req->num_img_extents) {
1831                 obj_req->write_state = RBD_OBJ_WRITE_GUARD;
1832                 num_osd_ops = 3; /* stat + setallochint + write/writefull */
1833         } else {
1834                 obj_req->write_state = RBD_OBJ_WRITE_FLAT;
1835                 num_osd_ops = 2; /* setallochint + write/writefull */
1836         }
1837
1838         obj_req->osd_req = rbd_osd_req_create(obj_req, num_osd_ops);
1839         if (!obj_req->osd_req)
1840                 return -ENOMEM;
1841
1842         if (obj_req->num_img_extents) {
1843                 ret = __rbd_obj_setup_stat(obj_req, which++);
1844                 if (ret)
1845                         return ret;
1846         }
1847
1848         __rbd_obj_setup_write(obj_req, which);
1849         return 0;
1850 }
1851
1852 static void __rbd_obj_setup_discard(struct rbd_obj_request *obj_req,
1853                                     unsigned int which)
1854 {
1855         u16 opcode;
1856
1857         if (rbd_obj_is_entire(obj_req)) {
1858                 if (obj_req->num_img_extents) {
1859                         osd_req_op_init(obj_req->osd_req, which++,
1860                                         CEPH_OSD_OP_CREATE, 0);
1861                         opcode = CEPH_OSD_OP_TRUNCATE;
1862                 } else {
1863                         osd_req_op_init(obj_req->osd_req, which++,
1864                                         CEPH_OSD_OP_DELETE, 0);
1865                         opcode = 0;
1866                 }
1867         } else if (rbd_obj_is_tail(obj_req)) {
1868                 opcode = CEPH_OSD_OP_TRUNCATE;
1869         } else {
1870                 opcode = CEPH_OSD_OP_ZERO;
1871         }
1872
1873         if (opcode)
1874                 osd_req_op_extent_init(obj_req->osd_req, which++, opcode,
1875                                        obj_req->ex.oe_off, obj_req->ex.oe_len,
1876                                        0, 0);
1877
1878         rbd_assert(which == obj_req->osd_req->r_num_ops);
1879         rbd_osd_req_format_write(obj_req);
1880 }
1881
1882 static int rbd_obj_setup_discard(struct rbd_obj_request *obj_req)
1883 {
1884         unsigned int num_osd_ops, which = 0;
1885         int ret;
1886
1887         /* reverse map the entire object onto the parent */
1888         ret = rbd_obj_calc_img_extents(obj_req, true);
1889         if (ret)
1890                 return ret;
1891
1892         if (rbd_obj_is_entire(obj_req)) {
1893                 obj_req->write_state = RBD_OBJ_WRITE_FLAT;
1894                 if (obj_req->num_img_extents)
1895                         num_osd_ops = 2; /* create + truncate */
1896                 else
1897                         num_osd_ops = 1; /* delete */
1898         } else {
1899                 if (obj_req->num_img_extents) {
1900                         obj_req->write_state = RBD_OBJ_WRITE_GUARD;
1901                         num_osd_ops = 2; /* stat + truncate/zero */
1902                 } else {
1903                         obj_req->write_state = RBD_OBJ_WRITE_FLAT;
1904                         num_osd_ops = 1; /* truncate/zero */
1905                 }
1906         }
1907
1908         obj_req->osd_req = rbd_osd_req_create(obj_req, num_osd_ops);
1909         if (!obj_req->osd_req)
1910                 return -ENOMEM;
1911
1912         if (!rbd_obj_is_entire(obj_req) && obj_req->num_img_extents) {
1913                 ret = __rbd_obj_setup_stat(obj_req, which++);
1914                 if (ret)
1915                         return ret;
1916         }
1917
1918         __rbd_obj_setup_discard(obj_req, which);
1919         return 0;
1920 }
1921
1922 /*
1923  * For each object request in @img_req, allocate an OSD request, add
1924  * individual OSD ops and prepare them for submission.  The number of
1925  * OSD ops depends on op_type and the overlap point (if any).
1926  */
1927 static int __rbd_img_fill_request(struct rbd_img_request *img_req)
1928 {
1929         struct rbd_obj_request *obj_req;
1930         int ret;
1931
1932         for_each_obj_request(img_req, obj_req) {
1933                 switch (img_req->op_type) {
1934                 case OBJ_OP_READ:
1935                         ret = rbd_obj_setup_read(obj_req);
1936                         break;
1937                 case OBJ_OP_WRITE:
1938                         ret = rbd_obj_setup_write(obj_req);
1939                         break;
1940                 case OBJ_OP_DISCARD:
1941                         ret = rbd_obj_setup_discard(obj_req);
1942                         break;
1943                 default:
1944                         rbd_assert(0);
1945                 }
1946                 if (ret)
1947                         return ret;
1948         }
1949
1950         return 0;
1951 }
1952
1953 union rbd_img_fill_iter {
1954         struct ceph_bio_iter    bio_iter;
1955         struct ceph_bvec_iter   bvec_iter;
1956 };
1957
1958 struct rbd_img_fill_ctx {
1959         enum obj_request_type   pos_type;
1960         union rbd_img_fill_iter *pos;
1961         union rbd_img_fill_iter iter;
1962         ceph_object_extent_fn_t set_pos_fn;
1963         ceph_object_extent_fn_t count_fn;
1964         ceph_object_extent_fn_t copy_fn;
1965 };
1966
1967 static struct ceph_object_extent *alloc_object_extent(void *arg)
1968 {
1969         struct rbd_img_request *img_req = arg;
1970         struct rbd_obj_request *obj_req;
1971
1972         obj_req = rbd_obj_request_create();
1973         if (!obj_req)
1974                 return NULL;
1975
1976         rbd_img_obj_request_add(img_req, obj_req);
1977         return &obj_req->ex;
1978 }
1979
1980 /*
1981  * While su != os && sc == 1 is technically not fancy (it's the same
1982  * layout as su == os && sc == 1), we can't use the nocopy path for it
1983  * because ->set_pos_fn() should be called only once per object.
1984  * ceph_file_to_extents() invokes action_fn once per stripe unit, so
1985  * treat su != os && sc == 1 as fancy.
1986  */
1987 static bool rbd_layout_is_fancy(struct ceph_file_layout *l)
1988 {
1989         return l->stripe_unit != l->object_size;
1990 }
1991
1992 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req,
1993                                        struct ceph_file_extent *img_extents,
1994                                        u32 num_img_extents,
1995                                        struct rbd_img_fill_ctx *fctx)
1996 {
1997         u32 i;
1998         int ret;
1999
2000         img_req->data_type = fctx->pos_type;
2001
2002         /*
2003          * Create object requests and set each object request's starting
2004          * position in the provided bio (list) or bio_vec array.
2005          */
2006         fctx->iter = *fctx->pos;
2007         for (i = 0; i < num_img_extents; i++) {
2008                 ret = ceph_file_to_extents(&img_req->rbd_dev->layout,
2009                                            img_extents[i].fe_off,
2010                                            img_extents[i].fe_len,
2011                                            &img_req->object_extents,
2012                                            alloc_object_extent, img_req,
2013                                            fctx->set_pos_fn, &fctx->iter);
2014                 if (ret)
2015                         return ret;
2016         }
2017
2018         return __rbd_img_fill_request(img_req);
2019 }
2020
2021 /*
2022  * Map a list of image extents to a list of object extents, create the
2023  * corresponding object requests (normally each to a different object,
2024  * but not always) and add them to @img_req.  For each object request,
2025  * set up its data descriptor to point to the corresponding chunk(s) of
2026  * @fctx->pos data buffer.
2027  *
2028  * Because ceph_file_to_extents() will merge adjacent object extents
2029  * together, each object request's data descriptor may point to multiple
2030  * different chunks of @fctx->pos data buffer.
2031  *
2032  * @fctx->pos data buffer is assumed to be large enough.
2033  */
2034 static int rbd_img_fill_request(struct rbd_img_request *img_req,
2035                                 struct ceph_file_extent *img_extents,
2036                                 u32 num_img_extents,
2037                                 struct rbd_img_fill_ctx *fctx)
2038 {
2039         struct rbd_device *rbd_dev = img_req->rbd_dev;
2040         struct rbd_obj_request *obj_req;
2041         u32 i;
2042         int ret;
2043
2044         if (fctx->pos_type == OBJ_REQUEST_NODATA ||
2045             !rbd_layout_is_fancy(&rbd_dev->layout))
2046                 return rbd_img_fill_request_nocopy(img_req, img_extents,
2047                                                    num_img_extents, fctx);
2048
2049         img_req->data_type = OBJ_REQUEST_OWN_BVECS;
2050
2051         /*
2052          * Create object requests and determine ->bvec_count for each object
2053          * request.  Note that ->bvec_count sum over all object requests may
2054          * be greater than the number of bio_vecs in the provided bio (list)
2055          * or bio_vec array because when mapped, those bio_vecs can straddle
2056          * stripe unit boundaries.
2057          */
2058         fctx->iter = *fctx->pos;
2059         for (i = 0; i < num_img_extents; i++) {
2060                 ret = ceph_file_to_extents(&rbd_dev->layout,
2061                                            img_extents[i].fe_off,
2062                                            img_extents[i].fe_len,
2063                                            &img_req->object_extents,
2064                                            alloc_object_extent, img_req,
2065                                            fctx->count_fn, &fctx->iter);
2066                 if (ret)
2067                         return ret;
2068         }
2069
2070         for_each_obj_request(img_req, obj_req) {
2071                 obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count,
2072                                               sizeof(*obj_req->bvec_pos.bvecs),
2073                                               GFP_NOIO);
2074                 if (!obj_req->bvec_pos.bvecs)
2075                         return -ENOMEM;
2076         }
2077
2078         /*
2079          * Fill in each object request's private bio_vec array, splitting and
2080          * rearranging the provided bio_vecs in stripe unit chunks as needed.
2081          */
2082         fctx->iter = *fctx->pos;
2083         for (i = 0; i < num_img_extents; i++) {
2084                 ret = ceph_iterate_extents(&rbd_dev->layout,
2085                                            img_extents[i].fe_off,
2086                                            img_extents[i].fe_len,
2087                                            &img_req->object_extents,
2088                                            fctx->copy_fn, &fctx->iter);
2089                 if (ret)
2090                         return ret;
2091         }
2092
2093         return __rbd_img_fill_request(img_req);
2094 }
2095
2096 static int rbd_img_fill_nodata(struct rbd_img_request *img_req,
2097                                u64 off, u64 len)
2098 {
2099         struct ceph_file_extent ex = { off, len };
2100         union rbd_img_fill_iter dummy;
2101         struct rbd_img_fill_ctx fctx = {
2102                 .pos_type = OBJ_REQUEST_NODATA,
2103                 .pos = &dummy,
2104         };
2105
2106         return rbd_img_fill_request(img_req, &ex, 1, &fctx);
2107 }
2108
2109 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2110 {
2111         struct rbd_obj_request *obj_req =
2112             container_of(ex, struct rbd_obj_request, ex);
2113         struct ceph_bio_iter *it = arg;
2114
2115         dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2116         obj_req->bio_pos = *it;
2117         ceph_bio_iter_advance(it, bytes);
2118 }
2119
2120 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2121 {
2122         struct rbd_obj_request *obj_req =
2123             container_of(ex, struct rbd_obj_request, ex);
2124         struct ceph_bio_iter *it = arg;
2125
2126         dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2127         ceph_bio_iter_advance_step(it, bytes, ({
2128                 obj_req->bvec_count++;
2129         }));
2130
2131 }
2132
2133 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2134 {
2135         struct rbd_obj_request *obj_req =
2136             container_of(ex, struct rbd_obj_request, ex);
2137         struct ceph_bio_iter *it = arg;
2138
2139         dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2140         ceph_bio_iter_advance_step(it, bytes, ({
2141                 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2142                 obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2143         }));
2144 }
2145
2146 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2147                                    struct ceph_file_extent *img_extents,
2148                                    u32 num_img_extents,
2149                                    struct ceph_bio_iter *bio_pos)
2150 {
2151         struct rbd_img_fill_ctx fctx = {
2152                 .pos_type = OBJ_REQUEST_BIO,
2153                 .pos = (union rbd_img_fill_iter *)bio_pos,
2154                 .set_pos_fn = set_bio_pos,
2155                 .count_fn = count_bio_bvecs,
2156                 .copy_fn = copy_bio_bvecs,
2157         };
2158
2159         return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2160                                     &fctx);
2161 }
2162
2163 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2164                                  u64 off, u64 len, struct bio *bio)
2165 {
2166         struct ceph_file_extent ex = { off, len };
2167         struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter };
2168
2169         return __rbd_img_fill_from_bio(img_req, &ex, 1, &it);
2170 }
2171
2172 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2173 {
2174         struct rbd_obj_request *obj_req =
2175             container_of(ex, struct rbd_obj_request, ex);
2176         struct ceph_bvec_iter *it = arg;
2177
2178         obj_req->bvec_pos = *it;
2179         ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes);
2180         ceph_bvec_iter_advance(it, bytes);
2181 }
2182
2183 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2184 {
2185         struct rbd_obj_request *obj_req =
2186             container_of(ex, struct rbd_obj_request, ex);
2187         struct ceph_bvec_iter *it = arg;
2188
2189         ceph_bvec_iter_advance_step(it, bytes, ({
2190                 obj_req->bvec_count++;
2191         }));
2192 }
2193
2194 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2195 {
2196         struct rbd_obj_request *obj_req =
2197             container_of(ex, struct rbd_obj_request, ex);
2198         struct ceph_bvec_iter *it = arg;
2199
2200         ceph_bvec_iter_advance_step(it, bytes, ({
2201                 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2202                 obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2203         }));
2204 }
2205
2206 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2207                                      struct ceph_file_extent *img_extents,
2208                                      u32 num_img_extents,
2209                                      struct ceph_bvec_iter *bvec_pos)
2210 {
2211         struct rbd_img_fill_ctx fctx = {
2212                 .pos_type = OBJ_REQUEST_BVECS,
2213                 .pos = (union rbd_img_fill_iter *)bvec_pos,
2214                 .set_pos_fn = set_bvec_pos,
2215                 .count_fn = count_bvecs,
2216                 .copy_fn = copy_bvecs,
2217         };
2218
2219         return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2220                                     &fctx);
2221 }
2222
2223 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2224                                    struct ceph_file_extent *img_extents,
2225                                    u32 num_img_extents,
2226                                    struct bio_vec *bvecs)
2227 {
2228         struct ceph_bvec_iter it = {
2229                 .bvecs = bvecs,
2230                 .iter = { .bi_size = ceph_file_extents_bytes(img_extents,
2231                                                              num_img_extents) },
2232         };
2233
2234         return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents,
2235                                          &it);
2236 }
2237
2238 static void rbd_img_request_submit(struct rbd_img_request *img_request)
2239 {
2240         struct rbd_obj_request *obj_request;
2241
2242         dout("%s: img %p\n", __func__, img_request);
2243
2244         rbd_img_request_get(img_request);
2245         for_each_obj_request(img_request, obj_request)
2246                 rbd_obj_request_submit(obj_request);
2247
2248         rbd_img_request_put(img_request);
2249 }
2250
2251 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req)
2252 {
2253         struct rbd_img_request *img_req = obj_req->img_request;
2254         struct rbd_img_request *child_img_req;
2255         int ret;
2256
2257         child_img_req = rbd_img_request_create(img_req->rbd_dev->parent,
2258                                                OBJ_OP_READ, NULL);
2259         if (!child_img_req)
2260                 return -ENOMEM;
2261
2262         __set_bit(IMG_REQ_CHILD, &child_img_req->flags);
2263         child_img_req->obj_request = obj_req;
2264
2265         if (!rbd_img_is_write(img_req)) {
2266                 switch (img_req->data_type) {
2267                 case OBJ_REQUEST_BIO:
2268                         ret = __rbd_img_fill_from_bio(child_img_req,
2269                                                       obj_req->img_extents,
2270                                                       obj_req->num_img_extents,
2271                                                       &obj_req->bio_pos);
2272                         break;
2273                 case OBJ_REQUEST_BVECS:
2274                 case OBJ_REQUEST_OWN_BVECS:
2275                         ret = __rbd_img_fill_from_bvecs(child_img_req,
2276                                                       obj_req->img_extents,
2277                                                       obj_req->num_img_extents,
2278                                                       &obj_req->bvec_pos);
2279                         break;
2280                 default:
2281                         rbd_assert(0);
2282                 }
2283         } else {
2284                 ret = rbd_img_fill_from_bvecs(child_img_req,
2285                                               obj_req->img_extents,
2286                                               obj_req->num_img_extents,
2287                                               obj_req->copyup_bvecs);
2288         }
2289         if (ret) {
2290                 rbd_img_request_put(child_img_req);
2291                 return ret;
2292         }
2293
2294         rbd_img_request_submit(child_img_req);
2295         return 0;
2296 }
2297
2298 static bool rbd_obj_handle_read(struct rbd_obj_request *obj_req)
2299 {
2300         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2301         int ret;
2302
2303         if (obj_req->result == -ENOENT &&
2304             rbd_dev->parent_overlap && !obj_req->tried_parent) {
2305                 /* reverse map this object extent onto the parent */
2306                 ret = rbd_obj_calc_img_extents(obj_req, false);
2307                 if (ret) {
2308                         obj_req->result = ret;
2309                         return true;
2310                 }
2311
2312                 if (obj_req->num_img_extents) {
2313                         obj_req->tried_parent = true;
2314                         ret = rbd_obj_read_from_parent(obj_req);
2315                         if (ret) {
2316                                 obj_req->result = ret;
2317                                 return true;
2318                         }
2319                         return false;
2320                 }
2321         }
2322
2323         /*
2324          * -ENOENT means a hole in the image -- zero-fill the entire
2325          * length of the request.  A short read also implies zero-fill
2326          * to the end of the request.  In both cases we update xferred
2327          * count to indicate the whole request was satisfied.
2328          */
2329         if (obj_req->result == -ENOENT ||
2330             (!obj_req->result && obj_req->xferred < obj_req->ex.oe_len)) {
2331                 rbd_assert(!obj_req->xferred || !obj_req->result);
2332                 rbd_obj_zero_range(obj_req, obj_req->xferred,
2333                                    obj_req->ex.oe_len - obj_req->xferred);
2334                 obj_req->result = 0;
2335                 obj_req->xferred = obj_req->ex.oe_len;
2336         }
2337
2338         return true;
2339 }
2340
2341 /*
2342  * copyup_bvecs pages are never highmem pages
2343  */
2344 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes)
2345 {
2346         struct ceph_bvec_iter it = {
2347                 .bvecs = bvecs,
2348                 .iter = { .bi_size = bytes },
2349         };
2350
2351         ceph_bvec_iter_advance_step(&it, bytes, ({
2352                 if (memchr_inv(page_address(bv.bv_page) + bv.bv_offset, 0,
2353                                bv.bv_len))
2354                         return false;
2355         }));
2356         return true;
2357 }
2358
2359 static int rbd_obj_issue_copyup(struct rbd_obj_request *obj_req, u32 bytes)
2360 {
2361         unsigned int num_osd_ops = obj_req->osd_req->r_num_ops;
2362         int ret;
2363
2364         dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
2365         rbd_assert(obj_req->osd_req->r_ops[0].op == CEPH_OSD_OP_STAT);
2366         rbd_osd_req_destroy(obj_req->osd_req);
2367
2368         /*
2369          * Create a copyup request with the same number of OSD ops as
2370          * the original request.  The original request was stat + op(s),
2371          * the new copyup request will be copyup + the same op(s).
2372          */
2373         obj_req->osd_req = rbd_osd_req_create(obj_req, num_osd_ops);
2374         if (!obj_req->osd_req)
2375                 return -ENOMEM;
2376
2377         ret = osd_req_op_cls_init(obj_req->osd_req, 0, CEPH_OSD_OP_CALL, "rbd",
2378                                   "copyup");
2379         if (ret)
2380                 return ret;
2381
2382         /*
2383          * Only send non-zero copyup data to save some I/O and network
2384          * bandwidth -- zero copyup data is equivalent to the object not
2385          * existing.
2386          */
2387         if (is_zero_bvecs(obj_req->copyup_bvecs, bytes)) {
2388                 dout("%s obj_req %p detected zeroes\n", __func__, obj_req);
2389                 bytes = 0;
2390         }
2391         osd_req_op_cls_request_data_bvecs(obj_req->osd_req, 0,
2392                                           obj_req->copyup_bvecs,
2393                                           obj_req->copyup_bvec_count,
2394                                           bytes);
2395
2396         switch (obj_req->img_request->op_type) {
2397         case OBJ_OP_WRITE:
2398                 __rbd_obj_setup_write(obj_req, 1);
2399                 break;
2400         case OBJ_OP_DISCARD:
2401                 rbd_assert(!rbd_obj_is_entire(obj_req));
2402                 __rbd_obj_setup_discard(obj_req, 1);
2403                 break;
2404         default:
2405                 rbd_assert(0);
2406         }
2407
2408         rbd_obj_request_submit(obj_req);
2409         return 0;
2410 }
2411
2412 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap)
2413 {
2414         u32 i;
2415
2416         rbd_assert(!obj_req->copyup_bvecs);
2417         obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap);
2418         obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count,
2419                                         sizeof(*obj_req->copyup_bvecs),
2420                                         GFP_NOIO);
2421         if (!obj_req->copyup_bvecs)
2422                 return -ENOMEM;
2423
2424         for (i = 0; i < obj_req->copyup_bvec_count; i++) {
2425                 unsigned int len = min(obj_overlap, (u64)PAGE_SIZE);
2426
2427                 obj_req->copyup_bvecs[i].bv_page = alloc_page(GFP_NOIO);
2428                 if (!obj_req->copyup_bvecs[i].bv_page)
2429                         return -ENOMEM;
2430
2431                 obj_req->copyup_bvecs[i].bv_offset = 0;
2432                 obj_req->copyup_bvecs[i].bv_len = len;
2433                 obj_overlap -= len;
2434         }
2435
2436         rbd_assert(!obj_overlap);
2437         return 0;
2438 }
2439
2440 static int rbd_obj_handle_write_guard(struct rbd_obj_request *obj_req)
2441 {
2442         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2443         int ret;
2444
2445         rbd_assert(obj_req->num_img_extents);
2446         prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
2447                       rbd_dev->parent_overlap);
2448         if (!obj_req->num_img_extents) {
2449                 /*
2450                  * The overlap has become 0 (most likely because the
2451                  * image has been flattened).  Use rbd_obj_issue_copyup()
2452                  * to re-submit the original write request -- the copyup
2453                  * operation itself will be a no-op, since someone must
2454                  * have populated the child object while we weren't
2455                  * looking.  Move to WRITE_FLAT state as we'll be done
2456                  * with the operation once the null copyup completes.
2457                  */
2458                 obj_req->write_state = RBD_OBJ_WRITE_FLAT;
2459                 return rbd_obj_issue_copyup(obj_req, 0);
2460         }
2461
2462         ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req));
2463         if (ret)
2464                 return ret;
2465
2466         obj_req->write_state = RBD_OBJ_WRITE_COPYUP;
2467         return rbd_obj_read_from_parent(obj_req);
2468 }
2469
2470 static bool rbd_obj_handle_write(struct rbd_obj_request *obj_req)
2471 {
2472         int ret;
2473
2474 again:
2475         switch (obj_req->write_state) {
2476         case RBD_OBJ_WRITE_GUARD:
2477                 rbd_assert(!obj_req->xferred);
2478                 if (obj_req->result == -ENOENT) {
2479                         /*
2480                          * The target object doesn't exist.  Read the data for
2481                          * the entire target object up to the overlap point (if
2482                          * any) from the parent, so we can use it for a copyup.
2483                          */
2484                         ret = rbd_obj_handle_write_guard(obj_req);
2485                         if (ret) {
2486                                 obj_req->result = ret;
2487                                 return true;
2488                         }
2489                         return false;
2490                 }
2491                 /* fall through */
2492         case RBD_OBJ_WRITE_FLAT:
2493                 if (!obj_req->result)
2494                         /*
2495                          * There is no such thing as a successful short
2496                          * write -- indicate the whole request was satisfied.
2497                          */
2498                         obj_req->xferred = obj_req->ex.oe_len;
2499                 return true;
2500         case RBD_OBJ_WRITE_COPYUP:
2501                 obj_req->write_state = RBD_OBJ_WRITE_GUARD;
2502                 if (obj_req->result)
2503                         goto again;
2504
2505                 rbd_assert(obj_req->xferred);
2506                 ret = rbd_obj_issue_copyup(obj_req, obj_req->xferred);
2507                 if (ret) {
2508                         obj_req->result = ret;
2509                         return true;
2510                 }
2511                 return false;
2512         default:
2513                 BUG();
2514         }
2515 }
2516
2517 /*
2518  * Returns true if @obj_req is completed, or false otherwise.
2519  */
2520 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req)
2521 {
2522         switch (obj_req->img_request->op_type) {
2523         case OBJ_OP_READ:
2524                 return rbd_obj_handle_read(obj_req);
2525         case OBJ_OP_WRITE:
2526                 return rbd_obj_handle_write(obj_req);
2527         case OBJ_OP_DISCARD:
2528                 if (rbd_obj_handle_write(obj_req)) {
2529                         /*
2530                          * Hide -ENOENT from delete/truncate/zero -- discarding
2531                          * a non-existent object is not a problem.
2532                          */
2533                         if (obj_req->result == -ENOENT) {
2534                                 obj_req->result = 0;
2535                                 obj_req->xferred = obj_req->ex.oe_len;
2536                         }
2537                         return true;
2538                 }
2539                 return false;
2540         default:
2541                 BUG();
2542         }
2543 }
2544
2545 static void rbd_obj_end_request(struct rbd_obj_request *obj_req)
2546 {
2547         struct rbd_img_request *img_req = obj_req->img_request;
2548
2549         rbd_assert((!obj_req->result &&
2550                     obj_req->xferred == obj_req->ex.oe_len) ||
2551                    (obj_req->result < 0 && !obj_req->xferred));
2552         if (!obj_req->result) {
2553                 img_req->xferred += obj_req->xferred;
2554                 return;
2555         }
2556
2557         rbd_warn(img_req->rbd_dev,
2558                  "%s at objno %llu %llu~%llu result %d xferred %llu",
2559                  obj_op_name(img_req->op_type), obj_req->ex.oe_objno,
2560                  obj_req->ex.oe_off, obj_req->ex.oe_len, obj_req->result,
2561                  obj_req->xferred);
2562         if (!img_req->result) {
2563                 img_req->result = obj_req->result;
2564                 img_req->xferred = 0;
2565         }
2566 }
2567
2568 static void rbd_img_end_child_request(struct rbd_img_request *img_req)
2569 {
2570         struct rbd_obj_request *obj_req = img_req->obj_request;
2571
2572         rbd_assert(test_bit(IMG_REQ_CHILD, &img_req->flags));
2573         rbd_assert((!img_req->result &&
2574                     img_req->xferred == rbd_obj_img_extents_bytes(obj_req)) ||
2575                    (img_req->result < 0 && !img_req->xferred));
2576
2577         obj_req->result = img_req->result;
2578         obj_req->xferred = img_req->xferred;
2579         rbd_img_request_put(img_req);
2580 }
2581
2582 static void rbd_img_end_request(struct rbd_img_request *img_req)
2583 {
2584         rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags));
2585         rbd_assert((!img_req->result &&
2586                     img_req->xferred == blk_rq_bytes(img_req->rq)) ||
2587                    (img_req->result < 0 && !img_req->xferred));
2588
2589         blk_mq_end_request(img_req->rq,
2590                            errno_to_blk_status(img_req->result));
2591         rbd_img_request_put(img_req);
2592 }
2593
2594 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req)
2595 {
2596         struct rbd_img_request *img_req;
2597
2598 again:
2599         if (!__rbd_obj_handle_request(obj_req))
2600                 return;
2601
2602         img_req = obj_req->img_request;
2603         spin_lock(&img_req->completion_lock);
2604         rbd_obj_end_request(obj_req);
2605         rbd_assert(img_req->pending_count);
2606         if (--img_req->pending_count) {
2607                 spin_unlock(&img_req->completion_lock);
2608                 return;
2609         }
2610
2611         spin_unlock(&img_req->completion_lock);
2612         if (test_bit(IMG_REQ_CHILD, &img_req->flags)) {
2613                 obj_req = img_req->obj_request;
2614                 rbd_img_end_child_request(img_req);
2615                 goto again;
2616         }
2617         rbd_img_end_request(img_req);
2618 }
2619
2620 static const struct rbd_client_id rbd_empty_cid;
2621
2622 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
2623                           const struct rbd_client_id *rhs)
2624 {
2625         return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
2626 }
2627
2628 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
2629 {
2630         struct rbd_client_id cid;
2631
2632         mutex_lock(&rbd_dev->watch_mutex);
2633         cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
2634         cid.handle = rbd_dev->watch_cookie;
2635         mutex_unlock(&rbd_dev->watch_mutex);
2636         return cid;
2637 }
2638
2639 /*
2640  * lock_rwsem must be held for write
2641  */
2642 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
2643                               const struct rbd_client_id *cid)
2644 {
2645         dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
2646              rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
2647              cid->gid, cid->handle);
2648         rbd_dev->owner_cid = *cid; /* struct */
2649 }
2650
2651 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
2652 {
2653         mutex_lock(&rbd_dev->watch_mutex);
2654         sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
2655         mutex_unlock(&rbd_dev->watch_mutex);
2656 }
2657
2658 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie)
2659 {
2660         struct rbd_client_id cid = rbd_get_cid(rbd_dev);
2661
2662         strcpy(rbd_dev->lock_cookie, cookie);
2663         rbd_set_owner_cid(rbd_dev, &cid);
2664         queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
2665 }
2666
2667 /*
2668  * lock_rwsem must be held for write
2669  */
2670 static int rbd_lock(struct rbd_device *rbd_dev)
2671 {
2672         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2673         char cookie[32];
2674         int ret;
2675
2676         WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
2677                 rbd_dev->lock_cookie[0] != '\0');
2678
2679         format_lock_cookie(rbd_dev, cookie);
2680         ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
2681                             RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
2682                             RBD_LOCK_TAG, "", 0);
2683         if (ret)
2684                 return ret;
2685
2686         rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
2687         __rbd_lock(rbd_dev, cookie);
2688         return 0;
2689 }
2690
2691 /*
2692  * lock_rwsem must be held for write
2693  */
2694 static void rbd_unlock(struct rbd_device *rbd_dev)
2695 {
2696         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2697         int ret;
2698
2699         WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
2700                 rbd_dev->lock_cookie[0] == '\0');
2701
2702         ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
2703                               RBD_LOCK_NAME, rbd_dev->lock_cookie);
2704         if (ret && ret != -ENOENT)
2705                 rbd_warn(rbd_dev, "failed to unlock: %d", ret);
2706
2707         /* treat errors as the image is unlocked */
2708         rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
2709         rbd_dev->lock_cookie[0] = '\0';
2710         rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
2711         queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
2712 }
2713
2714 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
2715                                 enum rbd_notify_op notify_op,
2716                                 struct page ***preply_pages,
2717                                 size_t *preply_len)
2718 {
2719         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2720         struct rbd_client_id cid = rbd_get_cid(rbd_dev);
2721         char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN];
2722         int buf_size = sizeof(buf);
2723         void *p = buf;
2724
2725         dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
2726
2727         /* encode *LockPayload NotifyMessage (op + ClientId) */
2728         ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
2729         ceph_encode_32(&p, notify_op);
2730         ceph_encode_64(&p, cid.gid);
2731         ceph_encode_64(&p, cid.handle);
2732
2733         return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
2734                                 &rbd_dev->header_oloc, buf, buf_size,
2735                                 RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
2736 }
2737
2738 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
2739                                enum rbd_notify_op notify_op)
2740 {
2741         struct page **reply_pages;
2742         size_t reply_len;
2743
2744         __rbd_notify_op_lock(rbd_dev, notify_op, &reply_pages, &reply_len);
2745         ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
2746 }
2747
2748 static void rbd_notify_acquired_lock(struct work_struct *work)
2749 {
2750         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
2751                                                   acquired_lock_work);
2752
2753         rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
2754 }
2755
2756 static void rbd_notify_released_lock(struct work_struct *work)
2757 {
2758         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
2759                                                   released_lock_work);
2760
2761         rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
2762 }
2763
2764 static int rbd_request_lock(struct rbd_device *rbd_dev)
2765 {
2766         struct page **reply_pages;
2767         size_t reply_len;
2768         bool lock_owner_responded = false;
2769         int ret;
2770
2771         dout("%s rbd_dev %p\n", __func__, rbd_dev);
2772
2773         ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
2774                                    &reply_pages, &reply_len);
2775         if (ret && ret != -ETIMEDOUT) {
2776                 rbd_warn(rbd_dev, "failed to request lock: %d", ret);
2777                 goto out;
2778         }
2779
2780         if (reply_len > 0 && reply_len <= PAGE_SIZE) {
2781                 void *p = page_address(reply_pages[0]);
2782                 void *const end = p + reply_len;
2783                 u32 n;
2784
2785                 ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
2786                 while (n--) {
2787                         u8 struct_v;
2788                         u32 len;
2789
2790                         ceph_decode_need(&p, end, 8 + 8, e_inval);
2791                         p += 8 + 8; /* skip gid and cookie */
2792
2793                         ceph_decode_32_safe(&p, end, len, e_inval);
2794                         if (!len)
2795                                 continue;
2796
2797                         if (lock_owner_responded) {
2798                                 rbd_warn(rbd_dev,
2799                                          "duplicate lock owners detected");
2800                                 ret = -EIO;
2801                                 goto out;
2802                         }
2803
2804                         lock_owner_responded = true;
2805                         ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
2806                                                   &struct_v, &len);
2807                         if (ret) {
2808                                 rbd_warn(rbd_dev,
2809                                          "failed to decode ResponseMessage: %d",
2810                                          ret);
2811                                 goto e_inval;
2812                         }
2813
2814                         ret = ceph_decode_32(&p);
2815                 }
2816         }
2817
2818         if (!lock_owner_responded) {
2819                 rbd_warn(rbd_dev, "no lock owners detected");
2820                 ret = -ETIMEDOUT;
2821         }
2822
2823 out:
2824         ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
2825         return ret;
2826
2827 e_inval:
2828         ret = -EINVAL;
2829         goto out;
2830 }
2831
2832 static void wake_requests(struct rbd_device *rbd_dev, bool wake_all)
2833 {
2834         dout("%s rbd_dev %p wake_all %d\n", __func__, rbd_dev, wake_all);
2835
2836         cancel_delayed_work(&rbd_dev->lock_dwork);
2837         if (wake_all)
2838                 wake_up_all(&rbd_dev->lock_waitq);
2839         else
2840                 wake_up(&rbd_dev->lock_waitq);
2841 }
2842
2843 static int get_lock_owner_info(struct rbd_device *rbd_dev,
2844                                struct ceph_locker **lockers, u32 *num_lockers)
2845 {
2846         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2847         u8 lock_type;
2848         char *lock_tag;
2849         int ret;
2850
2851         dout("%s rbd_dev %p\n", __func__, rbd_dev);
2852
2853         ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
2854                                  &rbd_dev->header_oloc, RBD_LOCK_NAME,
2855                                  &lock_type, &lock_tag, lockers, num_lockers);
2856         if (ret)
2857                 return ret;
2858
2859         if (*num_lockers == 0) {
2860                 dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
2861                 goto out;
2862         }
2863
2864         if (strcmp(lock_tag, RBD_LOCK_TAG)) {
2865                 rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
2866                          lock_tag);
2867                 ret = -EBUSY;
2868                 goto out;
2869         }
2870
2871         if (lock_type == CEPH_CLS_LOCK_SHARED) {
2872                 rbd_warn(rbd_dev, "shared lock type detected");
2873                 ret = -EBUSY;
2874                 goto out;
2875         }
2876
2877         if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX,
2878                     strlen(RBD_LOCK_COOKIE_PREFIX))) {
2879                 rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
2880                          (*lockers)[0].id.cookie);
2881                 ret = -EBUSY;
2882                 goto out;
2883         }
2884
2885 out:
2886         kfree(lock_tag);
2887         return ret;
2888 }
2889
2890 static int find_watcher(struct rbd_device *rbd_dev,
2891                         const struct ceph_locker *locker)
2892 {
2893         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2894         struct ceph_watch_item *watchers;
2895         u32 num_watchers;
2896         u64 cookie;
2897         int i;
2898         int ret;
2899
2900         ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
2901                                       &rbd_dev->header_oloc, &watchers,
2902                                       &num_watchers);
2903         if (ret)
2904                 return ret;
2905
2906         sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
2907         for (i = 0; i < num_watchers; i++) {
2908                 if (!memcmp(&watchers[i].addr, &locker->info.addr,
2909                             sizeof(locker->info.addr)) &&
2910                     watchers[i].cookie == cookie) {
2911                         struct rbd_client_id cid = {
2912                                 .gid = le64_to_cpu(watchers[i].name.num),
2913                                 .handle = cookie,
2914                         };
2915
2916                         dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
2917                              rbd_dev, cid.gid, cid.handle);
2918                         rbd_set_owner_cid(rbd_dev, &cid);
2919                         ret = 1;
2920                         goto out;
2921                 }
2922         }
2923
2924         dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
2925         ret = 0;
2926 out:
2927         kfree(watchers);
2928         return ret;
2929 }
2930
2931 /*
2932  * lock_rwsem must be held for write
2933  */
2934 static int rbd_try_lock(struct rbd_device *rbd_dev)
2935 {
2936         struct ceph_client *client = rbd_dev->rbd_client->client;
2937         struct ceph_locker *lockers;
2938         u32 num_lockers;
2939         int ret;
2940
2941         for (;;) {
2942                 ret = rbd_lock(rbd_dev);
2943                 if (ret != -EBUSY)
2944                         return ret;
2945
2946                 /* determine if the current lock holder is still alive */
2947                 ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers);
2948                 if (ret)
2949                         return ret;
2950
2951                 if (num_lockers == 0)
2952                         goto again;
2953
2954                 ret = find_watcher(rbd_dev, lockers);
2955                 if (ret) {
2956                         if (ret > 0)
2957                                 ret = 0; /* have to request lock */
2958                         goto out;
2959                 }
2960
2961                 rbd_warn(rbd_dev, "%s%llu seems dead, breaking lock",
2962                          ENTITY_NAME(lockers[0].id.name));
2963
2964                 ret = ceph_monc_blacklist_add(&client->monc,
2965                                               &lockers[0].info.addr);
2966                 if (ret) {
2967                         rbd_warn(rbd_dev, "blacklist of %s%llu failed: %d",
2968                                  ENTITY_NAME(lockers[0].id.name), ret);
2969                         goto out;
2970                 }
2971
2972                 ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
2973                                           &rbd_dev->header_oloc, RBD_LOCK_NAME,
2974                                           lockers[0].id.cookie,
2975                                           &lockers[0].id.name);
2976                 if (ret && ret != -ENOENT)
2977                         goto out;
2978
2979 again:
2980                 ceph_free_lockers(lockers, num_lockers);
2981         }
2982
2983 out:
2984         ceph_free_lockers(lockers, num_lockers);
2985         return ret;
2986 }
2987
2988 /*
2989  * ret is set only if lock_state is RBD_LOCK_STATE_UNLOCKED
2990  */
2991 static enum rbd_lock_state rbd_try_acquire_lock(struct rbd_device *rbd_dev,
2992                                                 int *pret)
2993 {
2994         enum rbd_lock_state lock_state;
2995
2996         down_read(&rbd_dev->lock_rwsem);
2997         dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
2998              rbd_dev->lock_state);
2999         if (__rbd_is_lock_owner(rbd_dev)) {
3000                 lock_state = rbd_dev->lock_state;
3001                 up_read(&rbd_dev->lock_rwsem);
3002                 return lock_state;
3003         }
3004
3005         up_read(&rbd_dev->lock_rwsem);
3006         down_write(&rbd_dev->lock_rwsem);
3007         dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
3008              rbd_dev->lock_state);
3009         if (!__rbd_is_lock_owner(rbd_dev)) {
3010                 *pret = rbd_try_lock(rbd_dev);
3011                 if (*pret)
3012                         rbd_warn(rbd_dev, "failed to acquire lock: %d", *pret);
3013         }
3014
3015         lock_state = rbd_dev->lock_state;
3016         up_write(&rbd_dev->lock_rwsem);
3017         return lock_state;
3018 }
3019
3020 static void rbd_acquire_lock(struct work_struct *work)
3021 {
3022         struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
3023                                             struct rbd_device, lock_dwork);
3024         enum rbd_lock_state lock_state;
3025         int ret = 0;
3026
3027         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3028 again:
3029         lock_state = rbd_try_acquire_lock(rbd_dev, &ret);
3030         if (lock_state != RBD_LOCK_STATE_UNLOCKED || ret == -EBLACKLISTED) {
3031                 if (lock_state == RBD_LOCK_STATE_LOCKED)
3032                         wake_requests(rbd_dev, true);
3033                 dout("%s rbd_dev %p lock_state %d ret %d - done\n", __func__,
3034                      rbd_dev, lock_state, ret);
3035                 return;
3036         }
3037
3038         ret = rbd_request_lock(rbd_dev);
3039         if (ret == -ETIMEDOUT) {
3040                 goto again; /* treat this as a dead client */
3041         } else if (ret == -EROFS) {
3042                 rbd_warn(rbd_dev, "peer will not release lock");
3043                 /*
3044                  * If this is rbd_add_acquire_lock(), we want to fail
3045                  * immediately -- reuse BLACKLISTED flag.  Otherwise we
3046                  * want to block.
3047                  */
3048                 if (!(rbd_dev->disk->flags & GENHD_FL_UP)) {
3049                         set_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags);
3050                         /* wake "rbd map --exclusive" process */
3051                         wake_requests(rbd_dev, false);
3052                 }
3053         } else if (ret < 0) {
3054                 rbd_warn(rbd_dev, "error requesting lock: %d", ret);
3055                 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
3056                                  RBD_RETRY_DELAY);
3057         } else {
3058                 /*
3059                  * lock owner acked, but resend if we don't see them
3060                  * release the lock
3061                  */
3062                 dout("%s rbd_dev %p requeueing lock_dwork\n", __func__,
3063                      rbd_dev);
3064                 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
3065                     msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
3066         }
3067 }
3068
3069 /*
3070  * lock_rwsem must be held for write
3071  */
3072 static bool rbd_release_lock(struct rbd_device *rbd_dev)
3073 {
3074         dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
3075              rbd_dev->lock_state);
3076         if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
3077                 return false;
3078
3079         rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
3080         downgrade_write(&rbd_dev->lock_rwsem);
3081         /*
3082          * Ensure that all in-flight IO is flushed.
3083          *
3084          * FIXME: ceph_osdc_sync() flushes the entire OSD client, which
3085          * may be shared with other devices.
3086          */
3087         ceph_osdc_sync(&rbd_dev->rbd_client->client->osdc);
3088         up_read(&rbd_dev->lock_rwsem);
3089
3090         down_write(&rbd_dev->lock_rwsem);
3091         dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
3092              rbd_dev->lock_state);
3093         if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
3094                 return false;
3095
3096         rbd_unlock(rbd_dev);
3097         /*
3098          * Give others a chance to grab the lock - we would re-acquire
3099          * almost immediately if we got new IO during ceph_osdc_sync()
3100          * otherwise.  We need to ack our own notifications, so this
3101          * lock_dwork will be requeued from rbd_wait_state_locked()
3102          * after wake_requests() in rbd_handle_released_lock().
3103          */
3104         cancel_delayed_work(&rbd_dev->lock_dwork);
3105         return true;
3106 }
3107
3108 static void rbd_release_lock_work(struct work_struct *work)
3109 {
3110         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3111                                                   unlock_work);
3112
3113         down_write(&rbd_dev->lock_rwsem);
3114         rbd_release_lock(rbd_dev);
3115         up_write(&rbd_dev->lock_rwsem);
3116 }
3117
3118 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
3119                                      void **p)
3120 {
3121         struct rbd_client_id cid = { 0 };
3122
3123         if (struct_v >= 2) {
3124                 cid.gid = ceph_decode_64(p);
3125                 cid.handle = ceph_decode_64(p);
3126         }
3127
3128         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3129              cid.handle);
3130         if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
3131                 down_write(&rbd_dev->lock_rwsem);
3132                 if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
3133                         /*
3134                          * we already know that the remote client is
3135                          * the owner
3136                          */
3137                         up_write(&rbd_dev->lock_rwsem);
3138                         return;
3139                 }
3140
3141                 rbd_set_owner_cid(rbd_dev, &cid);
3142                 downgrade_write(&rbd_dev->lock_rwsem);
3143         } else {
3144                 down_read(&rbd_dev->lock_rwsem);
3145         }
3146
3147         if (!__rbd_is_lock_owner(rbd_dev))
3148                 wake_requests(rbd_dev, false);
3149         up_read(&rbd_dev->lock_rwsem);
3150 }
3151
3152 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
3153                                      void **p)
3154 {
3155         struct rbd_client_id cid = { 0 };
3156
3157         if (struct_v >= 2) {
3158                 cid.gid = ceph_decode_64(p);
3159                 cid.handle = ceph_decode_64(p);
3160         }
3161
3162         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3163              cid.handle);
3164         if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
3165                 down_write(&rbd_dev->lock_rwsem);
3166                 if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
3167                         dout("%s rbd_dev %p unexpected owner, cid %llu-%llu != owner_cid %llu-%llu\n",
3168                              __func__, rbd_dev, cid.gid, cid.handle,
3169                              rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
3170                         up_write(&rbd_dev->lock_rwsem);
3171                         return;
3172                 }
3173
3174                 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3175                 downgrade_write(&rbd_dev->lock_rwsem);
3176         } else {
3177                 down_read(&rbd_dev->lock_rwsem);
3178         }
3179
3180         if (!__rbd_is_lock_owner(rbd_dev))
3181                 wake_requests(rbd_dev, false);
3182         up_read(&rbd_dev->lock_rwsem);
3183 }
3184
3185 /*
3186  * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
3187  * ResponseMessage is needed.
3188  */
3189 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
3190                                    void **p)
3191 {
3192         struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
3193         struct rbd_client_id cid = { 0 };
3194         int result = 1;
3195
3196         if (struct_v >= 2) {
3197                 cid.gid = ceph_decode_64(p);
3198                 cid.handle = ceph_decode_64(p);
3199         }
3200
3201         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3202              cid.handle);
3203         if (rbd_cid_equal(&cid, &my_cid))
3204                 return result;
3205
3206         down_read(&rbd_dev->lock_rwsem);
3207         if (__rbd_is_lock_owner(rbd_dev)) {
3208                 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
3209                     rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid))
3210                         goto out_unlock;
3211
3212                 /*
3213                  * encode ResponseMessage(0) so the peer can detect
3214                  * a missing owner
3215                  */
3216                 result = 0;
3217
3218                 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
3219                         if (!rbd_dev->opts->exclusive) {
3220                                 dout("%s rbd_dev %p queueing unlock_work\n",
3221                                      __func__, rbd_dev);
3222                                 queue_work(rbd_dev->task_wq,
3223                                            &rbd_dev->unlock_work);
3224                         } else {
3225                                 /* refuse to release the lock */
3226                                 result = -EROFS;
3227                         }
3228                 }
3229         }
3230
3231 out_unlock:
3232         up_read(&rbd_dev->lock_rwsem);
3233         return result;
3234 }
3235
3236 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
3237                                      u64 notify_id, u64 cookie, s32 *result)
3238 {
3239         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3240         char buf[4 + CEPH_ENCODING_START_BLK_LEN];
3241         int buf_size = sizeof(buf);
3242         int ret;
3243
3244         if (result) {
3245                 void *p = buf;
3246
3247                 /* encode ResponseMessage */
3248                 ceph_start_encoding(&p, 1, 1,
3249                                     buf_size - CEPH_ENCODING_START_BLK_LEN);
3250                 ceph_encode_32(&p, *result);
3251         } else {
3252                 buf_size = 0;
3253         }
3254
3255         ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
3256                                    &rbd_dev->header_oloc, notify_id, cookie,
3257                                    buf, buf_size);
3258         if (ret)
3259                 rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
3260 }
3261
3262 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
3263                                    u64 cookie)
3264 {
3265         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3266         __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
3267 }
3268
3269 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
3270                                           u64 notify_id, u64 cookie, s32 result)
3271 {
3272         dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3273         __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
3274 }
3275
3276 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
3277                          u64 notifier_id, void *data, size_t data_len)
3278 {
3279         struct rbd_device *rbd_dev = arg;
3280         void *p = data;
3281         void *const end = p + data_len;
3282         u8 struct_v = 0;
3283         u32 len;
3284         u32 notify_op;
3285         int ret;
3286
3287         dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
3288              __func__, rbd_dev, cookie, notify_id, data_len);
3289         if (data_len) {
3290                 ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
3291                                           &struct_v, &len);
3292                 if (ret) {
3293                         rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
3294                                  ret);
3295                         return;
3296                 }
3297
3298                 notify_op = ceph_decode_32(&p);
3299         } else {
3300                 /* legacy notification for header updates */
3301                 notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
3302                 len = 0;
3303         }
3304
3305         dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
3306         switch (notify_op) {
3307         case RBD_NOTIFY_OP_ACQUIRED_LOCK:
3308                 rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
3309                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3310                 break;
3311         case RBD_NOTIFY_OP_RELEASED_LOCK:
3312                 rbd_handle_released_lock(rbd_dev, struct_v, &p);
3313                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3314                 break;
3315         case RBD_NOTIFY_OP_REQUEST_LOCK:
3316                 ret = rbd_handle_request_lock(rbd_dev, struct_v, &p);
3317                 if (ret <= 0)
3318                         rbd_acknowledge_notify_result(rbd_dev, notify_id,
3319                                                       cookie, ret);
3320                 else
3321                         rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3322                 break;
3323         case RBD_NOTIFY_OP_HEADER_UPDATE:
3324                 ret = rbd_dev_refresh(rbd_dev);
3325                 if (ret)
3326                         rbd_warn(rbd_dev, "refresh failed: %d", ret);
3327
3328                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3329                 break;
3330         default:
3331                 if (rbd_is_lock_owner(rbd_dev))
3332                         rbd_acknowledge_notify_result(rbd_dev, notify_id,
3333                                                       cookie, -EOPNOTSUPP);
3334                 else
3335                         rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3336                 break;
3337         }
3338 }
3339
3340 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
3341
3342 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
3343 {
3344         struct rbd_device *rbd_dev = arg;
3345
3346         rbd_warn(rbd_dev, "encountered watch error: %d", err);
3347
3348         down_write(&rbd_dev->lock_rwsem);
3349         rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3350         up_write(&rbd_dev->lock_rwsem);
3351
3352         mutex_lock(&rbd_dev->watch_mutex);
3353         if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
3354                 __rbd_unregister_watch(rbd_dev);
3355                 rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
3356
3357                 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
3358         }
3359         mutex_unlock(&rbd_dev->watch_mutex);
3360 }
3361
3362 /*
3363  * watch_mutex must be locked
3364  */
3365 static int __rbd_register_watch(struct rbd_device *rbd_dev)
3366 {
3367         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3368         struct ceph_osd_linger_request *handle;
3369
3370         rbd_assert(!rbd_dev->watch_handle);
3371         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3372
3373         handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
3374                                  &rbd_dev->header_oloc, rbd_watch_cb,
3375                                  rbd_watch_errcb, rbd_dev);
3376         if (IS_ERR(handle))
3377                 return PTR_ERR(handle);
3378
3379         rbd_dev->watch_handle = handle;
3380         return 0;
3381 }
3382
3383 /*
3384  * watch_mutex must be locked
3385  */
3386 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
3387 {
3388         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3389         int ret;
3390
3391         rbd_assert(rbd_dev->watch_handle);
3392         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3393
3394         ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
3395         if (ret)
3396                 rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
3397
3398         rbd_dev->watch_handle = NULL;
3399 }
3400
3401 static int rbd_register_watch(struct rbd_device *rbd_dev)
3402 {
3403         int ret;
3404
3405         mutex_lock(&rbd_dev->watch_mutex);
3406         rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
3407         ret = __rbd_register_watch(rbd_dev);
3408         if (ret)
3409                 goto out;
3410
3411         rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
3412         rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
3413
3414 out:
3415         mutex_unlock(&rbd_dev->watch_mutex);
3416         return ret;
3417 }
3418
3419 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
3420 {
3421         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3422
3423         cancel_work_sync(&rbd_dev->acquired_lock_work);
3424         cancel_work_sync(&rbd_dev->released_lock_work);
3425         cancel_delayed_work_sync(&rbd_dev->lock_dwork);
3426         cancel_work_sync(&rbd_dev->unlock_work);
3427 }
3428
3429 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
3430 {
3431         WARN_ON(waitqueue_active(&rbd_dev->lock_waitq));
3432         cancel_tasks_sync(rbd_dev);
3433
3434         mutex_lock(&rbd_dev->watch_mutex);
3435         if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
3436                 __rbd_unregister_watch(rbd_dev);
3437         rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
3438         mutex_unlock(&rbd_dev->watch_mutex);
3439
3440         cancel_delayed_work_sync(&rbd_dev->watch_dwork);
3441         ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
3442 }
3443
3444 /*
3445  * lock_rwsem must be held for write
3446  */
3447 static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
3448 {
3449         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3450         char cookie[32];
3451         int ret;
3452
3453         WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED);
3454
3455         format_lock_cookie(rbd_dev, cookie);
3456         ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid,
3457                                   &rbd_dev->header_oloc, RBD_LOCK_NAME,
3458                                   CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie,
3459                                   RBD_LOCK_TAG, cookie);
3460         if (ret) {
3461                 if (ret != -EOPNOTSUPP)
3462                         rbd_warn(rbd_dev, "failed to update lock cookie: %d",
3463                                  ret);
3464
3465                 /*
3466                  * Lock cookie cannot be updated on older OSDs, so do
3467                  * a manual release and queue an acquire.
3468                  */
3469                 if (rbd_release_lock(rbd_dev))
3470                         queue_delayed_work(rbd_dev->task_wq,
3471                                            &rbd_dev->lock_dwork, 0);
3472         } else {
3473                 __rbd_lock(rbd_dev, cookie);
3474         }
3475 }
3476
3477 static void rbd_reregister_watch(struct work_struct *work)
3478 {
3479         struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
3480                                             struct rbd_device, watch_dwork);
3481         int ret;
3482
3483         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3484
3485         mutex_lock(&rbd_dev->watch_mutex);
3486         if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
3487                 mutex_unlock(&rbd_dev->watch_mutex);
3488                 return;
3489         }
3490
3491         ret = __rbd_register_watch(rbd_dev);
3492         if (ret) {
3493                 rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
3494                 if (ret == -EBLACKLISTED || ret == -ENOENT) {
3495                         set_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags);
3496                         wake_requests(rbd_dev, true);
3497                 } else {
3498                         queue_delayed_work(rbd_dev->task_wq,
3499                                            &rbd_dev->watch_dwork,
3500                                            RBD_RETRY_DELAY);
3501                 }
3502                 mutex_unlock(&rbd_dev->watch_mutex);
3503                 return;
3504         }
3505
3506         rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
3507         rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
3508         mutex_unlock(&rbd_dev->watch_mutex);
3509
3510         down_write(&rbd_dev->lock_rwsem);
3511         if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
3512                 rbd_reacquire_lock(rbd_dev);
3513         up_write(&rbd_dev->lock_rwsem);
3514
3515         ret = rbd_dev_refresh(rbd_dev);
3516         if (ret)
3517                 rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret);
3518 }
3519
3520 /*
3521  * Synchronous osd object method call.  Returns the number of bytes
3522  * returned in the outbound buffer, or a negative error code.
3523  */
3524 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3525                              struct ceph_object_id *oid,
3526                              struct ceph_object_locator *oloc,
3527                              const char *method_name,
3528                              const void *outbound,
3529                              size_t outbound_size,
3530                              void *inbound,
3531                              size_t inbound_size)
3532 {
3533         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3534         struct page *req_page = NULL;
3535         struct page *reply_page;
3536         int ret;
3537
3538         /*
3539          * Method calls are ultimately read operations.  The result
3540          * should placed into the inbound buffer provided.  They
3541          * also supply outbound data--parameters for the object
3542          * method.  Currently if this is present it will be a
3543          * snapshot id.
3544          */
3545         if (outbound) {
3546                 if (outbound_size > PAGE_SIZE)
3547                         return -E2BIG;
3548
3549                 req_page = alloc_page(GFP_KERNEL);
3550                 if (!req_page)
3551                         return -ENOMEM;
3552
3553                 memcpy(page_address(req_page), outbound, outbound_size);
3554         }
3555
3556         reply_page = alloc_page(GFP_KERNEL);
3557         if (!reply_page) {
3558                 if (req_page)
3559                         __free_page(req_page);
3560                 return -ENOMEM;
3561         }
3562
3563         ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
3564                              CEPH_OSD_FLAG_READ, req_page, outbound_size,
3565                              reply_page, &inbound_size);
3566         if (!ret) {
3567                 memcpy(inbound, page_address(reply_page), inbound_size);
3568                 ret = inbound_size;
3569         }
3570
3571         if (req_page)
3572                 __free_page(req_page);
3573         __free_page(reply_page);
3574         return ret;
3575 }
3576
3577 /*
3578  * lock_rwsem must be held for read
3579  */
3580 static int rbd_wait_state_locked(struct rbd_device *rbd_dev, bool may_acquire)
3581 {
3582         DEFINE_WAIT(wait);
3583         unsigned long timeout;
3584         int ret = 0;
3585
3586         if (test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags))
3587                 return -EBLACKLISTED;
3588
3589         if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
3590                 return 0;
3591
3592         if (!may_acquire) {
3593                 rbd_warn(rbd_dev, "exclusive lock required");
3594                 return -EROFS;
3595         }
3596
3597         do {
3598                 /*
3599                  * Note the use of mod_delayed_work() in rbd_acquire_lock()
3600                  * and cancel_delayed_work() in wake_requests().
3601                  */
3602                 dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3603                 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3604                 prepare_to_wait_exclusive(&rbd_dev->lock_waitq, &wait,
3605                                           TASK_UNINTERRUPTIBLE);
3606                 up_read(&rbd_dev->lock_rwsem);
3607                 timeout = schedule_timeout(ceph_timeout_jiffies(
3608                                                 rbd_dev->opts->lock_timeout));
3609                 down_read(&rbd_dev->lock_rwsem);
3610                 if (test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)) {
3611                         ret = -EBLACKLISTED;
3612                         break;
3613                 }
3614                 if (!timeout) {
3615                         rbd_warn(rbd_dev, "timed out waiting for lock");
3616                         ret = -ETIMEDOUT;
3617                         break;
3618                 }
3619         } while (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED);
3620
3621         finish_wait(&rbd_dev->lock_waitq, &wait);
3622         return ret;
3623 }
3624
3625 static void rbd_queue_workfn(struct work_struct *work)
3626 {
3627         struct request *rq = blk_mq_rq_from_pdu(work);
3628         struct rbd_device *rbd_dev = rq->q->queuedata;
3629         struct rbd_img_request *img_request;
3630         struct ceph_snap_context *snapc = NULL;
3631         u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3632         u64 length = blk_rq_bytes(rq);
3633         enum obj_operation_type op_type;
3634         u64 mapping_size;
3635         bool must_be_locked;
3636         int result;
3637
3638         switch (req_op(rq)) {
3639         case REQ_OP_DISCARD:
3640         case REQ_OP_WRITE_ZEROES:
3641                 op_type = OBJ_OP_DISCARD;
3642                 break;
3643         case REQ_OP_WRITE:
3644                 op_type = OBJ_OP_WRITE;
3645                 break;
3646         case REQ_OP_READ:
3647                 op_type = OBJ_OP_READ;
3648                 break;
3649         default:
3650                 dout("%s: non-fs request type %d\n", __func__, req_op(rq));
3651                 result = -EIO;
3652                 goto err;
3653         }
3654
3655         /* Ignore/skip any zero-length requests */
3656
3657         if (!length) {
3658                 dout("%s: zero-length request\n", __func__);
3659                 result = 0;
3660                 goto err_rq;
3661         }
3662
3663         rbd_assert(op_type == OBJ_OP_READ ||
3664                    rbd_dev->spec->snap_id == CEPH_NOSNAP);
3665
3666         /*
3667          * Quit early if the mapped snapshot no longer exists.  It's
3668          * still possible the snapshot will have disappeared by the
3669          * time our request arrives at the osd, but there's no sense in
3670          * sending it if we already know.
3671          */
3672         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3673                 dout("request for non-existent snapshot");
3674                 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3675                 result = -ENXIO;
3676                 goto err_rq;
3677         }
3678
3679         if (offset && length > U64_MAX - offset + 1) {
3680                 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
3681                          length);
3682                 result = -EINVAL;
3683                 goto err_rq;    /* Shouldn't happen */
3684         }
3685
3686         blk_mq_start_request(rq);
3687
3688         down_read(&rbd_dev->header_rwsem);
3689         mapping_size = rbd_dev->mapping.size;
3690         if (op_type != OBJ_OP_READ) {
3691                 snapc = rbd_dev->header.snapc;
3692                 ceph_get_snap_context(snapc);
3693         }
3694         up_read(&rbd_dev->header_rwsem);
3695
3696         if (offset + length > mapping_size) {
3697                 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
3698                          length, mapping_size);
3699                 result = -EIO;
3700                 goto err_rq;
3701         }
3702
3703         must_be_locked =
3704             (rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK) &&
3705             (op_type != OBJ_OP_READ || rbd_dev->opts->lock_on_read);
3706         if (must_be_locked) {
3707                 down_read(&rbd_dev->lock_rwsem);
3708                 result = rbd_wait_state_locked(rbd_dev,
3709                                                !rbd_dev->opts->exclusive);
3710                 if (result)
3711                         goto err_unlock;
3712         }
3713
3714         img_request = rbd_img_request_create(rbd_dev, op_type, snapc);
3715         if (!img_request) {
3716                 result = -ENOMEM;
3717                 goto err_unlock;
3718         }
3719         img_request->rq = rq;
3720         snapc = NULL; /* img_request consumes a ref */
3721
3722         if (op_type == OBJ_OP_DISCARD)
3723                 result = rbd_img_fill_nodata(img_request, offset, length);
3724         else
3725                 result = rbd_img_fill_from_bio(img_request, offset, length,
3726                                                rq->bio);
3727         if (result)
3728                 goto err_img_request;
3729
3730         rbd_img_request_submit(img_request);
3731         if (must_be_locked)
3732                 up_read(&rbd_dev->lock_rwsem);
3733         return;
3734
3735 err_img_request:
3736         rbd_img_request_put(img_request);
3737 err_unlock:
3738         if (must_be_locked)
3739                 up_read(&rbd_dev->lock_rwsem);
3740 err_rq:
3741         if (result)
3742                 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
3743                          obj_op_name(op_type), length, offset, result);
3744         ceph_put_snap_context(snapc);
3745 err:
3746         blk_mq_end_request(rq, errno_to_blk_status(result));
3747 }
3748
3749 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
3750                 const struct blk_mq_queue_data *bd)
3751 {
3752         struct request *rq = bd->rq;
3753         struct work_struct *work = blk_mq_rq_to_pdu(rq);
3754
3755         queue_work(rbd_wq, work);
3756         return BLK_STS_OK;
3757 }
3758
3759 static void rbd_free_disk(struct rbd_device *rbd_dev)
3760 {
3761         blk_cleanup_queue(rbd_dev->disk->queue);
3762         blk_mq_free_tag_set(&rbd_dev->tag_set);
3763         put_disk(rbd_dev->disk);
3764         rbd_dev->disk = NULL;
3765 }
3766
3767 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3768                              struct ceph_object_id *oid,
3769                              struct ceph_object_locator *oloc,
3770                              void *buf, int buf_len)
3771
3772 {
3773         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3774         struct ceph_osd_request *req;
3775         struct page **pages;
3776         int num_pages = calc_pages_for(0, buf_len);
3777         int ret;
3778
3779         req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
3780         if (!req)
3781                 return -ENOMEM;
3782
3783         ceph_oid_copy(&req->r_base_oid, oid);
3784         ceph_oloc_copy(&req->r_base_oloc, oloc);
3785         req->r_flags = CEPH_OSD_FLAG_READ;
3786
3787         ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
3788         if (ret)
3789                 goto out_req;
3790
3791         pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
3792         if (IS_ERR(pages)) {
3793                 ret = PTR_ERR(pages);
3794                 goto out_req;
3795         }
3796
3797         osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
3798         osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
3799                                          true);
3800
3801         ceph_osdc_start_request(osdc, req, false);
3802         ret = ceph_osdc_wait_request(osdc, req);
3803         if (ret >= 0)
3804                 ceph_copy_from_page_vector(pages, buf, 0, ret);
3805
3806 out_req:
3807         ceph_osdc_put_request(req);
3808         return ret;
3809 }
3810
3811 /*
3812  * Read the complete header for the given rbd device.  On successful
3813  * return, the rbd_dev->header field will contain up-to-date
3814  * information about the image.
3815  */
3816 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3817 {
3818         struct rbd_image_header_ondisk *ondisk = NULL;
3819         u32 snap_count = 0;
3820         u64 names_size = 0;
3821         u32 want_count;
3822         int ret;
3823
3824         /*
3825          * The complete header will include an array of its 64-bit
3826          * snapshot ids, followed by the names of those snapshots as
3827          * a contiguous block of NUL-terminated strings.  Note that
3828          * the number of snapshots could change by the time we read
3829          * it in, in which case we re-read it.
3830          */
3831         do {
3832                 size_t size;
3833
3834                 kfree(ondisk);
3835
3836                 size = sizeof (*ondisk);
3837                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3838                 size += names_size;
3839                 ondisk = kmalloc(size, GFP_KERNEL);
3840                 if (!ondisk)
3841                         return -ENOMEM;
3842
3843                 ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
3844                                         &rbd_dev->header_oloc, ondisk, size);
3845                 if (ret < 0)
3846                         goto out;
3847                 if ((size_t)ret < size) {
3848                         ret = -ENXIO;
3849                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3850                                 size, ret);
3851                         goto out;
3852                 }
3853                 if (!rbd_dev_ondisk_valid(ondisk)) {
3854                         ret = -ENXIO;
3855                         rbd_warn(rbd_dev, "invalid header");
3856                         goto out;
3857                 }
3858
3859                 names_size = le64_to_cpu(ondisk->snap_names_len);
3860                 want_count = snap_count;
3861                 snap_count = le32_to_cpu(ondisk->snap_count);
3862         } while (snap_count != want_count);
3863
3864         ret = rbd_header_from_disk(rbd_dev, ondisk);
3865 out:
3866         kfree(ondisk);
3867
3868         return ret;
3869 }
3870
3871 /*
3872  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3873  * has disappeared from the (just updated) snapshot context.
3874  */
3875 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3876 {
3877         u64 snap_id;
3878
3879         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3880                 return;
3881
3882         snap_id = rbd_dev->spec->snap_id;
3883         if (snap_id == CEPH_NOSNAP)
3884                 return;
3885
3886         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3887                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3888 }
3889
3890 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3891 {
3892         sector_t size;
3893
3894         /*
3895          * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
3896          * try to update its size.  If REMOVING is set, updating size
3897          * is just useless work since the device can't be opened.
3898          */
3899         if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
3900             !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
3901                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3902                 dout("setting size to %llu sectors", (unsigned long long)size);
3903                 set_capacity(rbd_dev->disk, size);
3904                 revalidate_disk(rbd_dev->disk);
3905         }
3906 }
3907
3908 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3909 {
3910         u64 mapping_size;
3911         int ret;
3912
3913         down_write(&rbd_dev->header_rwsem);
3914         mapping_size = rbd_dev->mapping.size;
3915
3916         ret = rbd_dev_header_info(rbd_dev);
3917         if (ret)
3918                 goto out;
3919
3920         /*
3921          * If there is a parent, see if it has disappeared due to the
3922          * mapped image getting flattened.
3923          */
3924         if (rbd_dev->parent) {
3925                 ret = rbd_dev_v2_parent_info(rbd_dev);
3926                 if (ret)
3927                         goto out;
3928         }
3929
3930         if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
3931                 rbd_dev->mapping.size = rbd_dev->header.image_size;
3932         } else {
3933                 /* validate mapped snapshot's EXISTS flag */
3934                 rbd_exists_validate(rbd_dev);
3935         }
3936
3937 out:
3938         up_write(&rbd_dev->header_rwsem);
3939         if (!ret && mapping_size != rbd_dev->mapping.size)
3940                 rbd_dev_update_size(rbd_dev);
3941
3942         return ret;
3943 }
3944
3945 static int rbd_init_request(struct blk_mq_tag_set *set, struct request *rq,
3946                 unsigned int hctx_idx, unsigned int numa_node)
3947 {
3948         struct work_struct *work = blk_mq_rq_to_pdu(rq);
3949
3950         INIT_WORK(work, rbd_queue_workfn);
3951         return 0;
3952 }
3953
3954 static const struct blk_mq_ops rbd_mq_ops = {
3955         .queue_rq       = rbd_queue_rq,
3956         .init_request   = rbd_init_request,
3957 };
3958
3959 static int rbd_init_disk(struct rbd_device *rbd_dev)
3960 {
3961         struct gendisk *disk;
3962         struct request_queue *q;
3963         unsigned int objset_bytes =
3964             rbd_dev->layout.object_size * rbd_dev->layout.stripe_count;
3965         int err;
3966
3967         /* create gendisk info */
3968         disk = alloc_disk(single_major ?
3969                           (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3970                           RBD_MINORS_PER_MAJOR);
3971         if (!disk)
3972                 return -ENOMEM;
3973
3974         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3975                  rbd_dev->dev_id);
3976         disk->major = rbd_dev->major;
3977         disk->first_minor = rbd_dev->minor;
3978         if (single_major)
3979                 disk->flags |= GENHD_FL_EXT_DEVT;
3980         disk->fops = &rbd_bd_ops;
3981         disk->private_data = rbd_dev;
3982
3983         memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
3984         rbd_dev->tag_set.ops = &rbd_mq_ops;
3985         rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
3986         rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
3987         rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
3988         rbd_dev->tag_set.nr_hw_queues = 1;
3989         rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
3990
3991         err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
3992         if (err)
3993                 goto out_disk;
3994
3995         q = blk_mq_init_queue(&rbd_dev->tag_set);
3996         if (IS_ERR(q)) {
3997                 err = PTR_ERR(q);
3998                 goto out_tag_set;
3999         }
4000
4001         blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
4002         /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
4003
4004         blk_queue_max_hw_sectors(q, objset_bytes >> SECTOR_SHIFT);
4005         q->limits.max_sectors = queue_max_hw_sectors(q);
4006         blk_queue_max_segments(q, USHRT_MAX);
4007         blk_queue_max_segment_size(q, UINT_MAX);
4008         blk_queue_io_min(q, objset_bytes);
4009         blk_queue_io_opt(q, objset_bytes);
4010
4011         if (rbd_dev->opts->trim) {
4012                 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
4013                 q->limits.discard_granularity = objset_bytes;
4014                 blk_queue_max_discard_sectors(q, objset_bytes >> SECTOR_SHIFT);
4015                 blk_queue_max_write_zeroes_sectors(q, objset_bytes >> SECTOR_SHIFT);
4016         }
4017
4018         if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
4019                 q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES;
4020
4021         /*
4022          * disk_release() expects a queue ref from add_disk() and will
4023          * put it.  Hold an extra ref until add_disk() is called.
4024          */
4025         WARN_ON(!blk_get_queue(q));
4026         disk->queue = q;
4027         q->queuedata = rbd_dev;
4028
4029         rbd_dev->disk = disk;
4030
4031         return 0;
4032 out_tag_set:
4033         blk_mq_free_tag_set(&rbd_dev->tag_set);
4034 out_disk:
4035         put_disk(disk);
4036         return err;
4037 }
4038
4039 /*
4040   sysfs
4041 */
4042
4043 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
4044 {
4045         return container_of(dev, struct rbd_device, dev);
4046 }
4047
4048 static ssize_t rbd_size_show(struct device *dev,
4049                              struct device_attribute *attr, char *buf)
4050 {
4051         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4052
4053         return sprintf(buf, "%llu\n",
4054                 (unsigned long long)rbd_dev->mapping.size);
4055 }
4056
4057 /*
4058  * Note this shows the features for whatever's mapped, which is not
4059  * necessarily the base image.
4060  */
4061 static ssize_t rbd_features_show(struct device *dev,
4062                              struct device_attribute *attr, char *buf)
4063 {
4064         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4065
4066         return sprintf(buf, "0x%016llx\n",
4067                         (unsigned long long)rbd_dev->mapping.features);
4068 }
4069
4070 static ssize_t rbd_major_show(struct device *dev,
4071                               struct device_attribute *attr, char *buf)
4072 {
4073         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4074
4075         if (rbd_dev->major)
4076                 return sprintf(buf, "%d\n", rbd_dev->major);
4077
4078         return sprintf(buf, "(none)\n");
4079 }
4080
4081 static ssize_t rbd_minor_show(struct device *dev,
4082                               struct device_attribute *attr, char *buf)
4083 {
4084         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4085
4086         return sprintf(buf, "%d\n", rbd_dev->minor);
4087 }
4088
4089 static ssize_t rbd_client_addr_show(struct device *dev,
4090                                     struct device_attribute *attr, char *buf)
4091 {
4092         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4093         struct ceph_entity_addr *client_addr =
4094             ceph_client_addr(rbd_dev->rbd_client->client);
4095
4096         return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
4097                        le32_to_cpu(client_addr->nonce));
4098 }
4099
4100 static ssize_t rbd_client_id_show(struct device *dev,
4101                                   struct device_attribute *attr, char *buf)
4102 {
4103         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4104
4105         return sprintf(buf, "client%lld\n",
4106                        ceph_client_gid(rbd_dev->rbd_client->client));
4107 }
4108
4109 static ssize_t rbd_cluster_fsid_show(struct device *dev,
4110                                      struct device_attribute *attr, char *buf)
4111 {
4112         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4113
4114         return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
4115 }
4116
4117 static ssize_t rbd_config_info_show(struct device *dev,
4118                                     struct device_attribute *attr, char *buf)
4119 {
4120         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4121
4122         return sprintf(buf, "%s\n", rbd_dev->config_info);
4123 }
4124
4125 static ssize_t rbd_pool_show(struct device *dev,
4126                              struct device_attribute *attr, char *buf)
4127 {
4128         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4129
4130         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
4131 }
4132
4133 static ssize_t rbd_pool_id_show(struct device *dev,
4134                              struct device_attribute *attr, char *buf)
4135 {
4136         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4137
4138         return sprintf(buf, "%llu\n",
4139                         (unsigned long long) rbd_dev->spec->pool_id);
4140 }
4141
4142 static ssize_t rbd_pool_ns_show(struct device *dev,
4143                                 struct device_attribute *attr, char *buf)
4144 {
4145         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4146
4147         return sprintf(buf, "%s\n", rbd_dev->spec->pool_ns ?: "");
4148 }
4149
4150 static ssize_t rbd_name_show(struct device *dev,
4151                              struct device_attribute *attr, char *buf)
4152 {
4153         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4154
4155         if (rbd_dev->spec->image_name)
4156                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
4157
4158         return sprintf(buf, "(unknown)\n");
4159 }
4160
4161 static ssize_t rbd_image_id_show(struct device *dev,
4162                              struct device_attribute *attr, char *buf)
4163 {
4164         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4165
4166         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
4167 }
4168
4169 /*
4170  * Shows the name of the currently-mapped snapshot (or
4171  * RBD_SNAP_HEAD_NAME for the base image).
4172  */
4173 static ssize_t rbd_snap_show(struct device *dev,
4174                              struct device_attribute *attr,
4175                              char *buf)
4176 {
4177         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4178
4179         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
4180 }
4181
4182 static ssize_t rbd_snap_id_show(struct device *dev,
4183                                 struct device_attribute *attr, char *buf)
4184 {
4185         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4186
4187         return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
4188 }
4189
4190 /*
4191  * For a v2 image, shows the chain of parent images, separated by empty
4192  * lines.  For v1 images or if there is no parent, shows "(no parent
4193  * image)".
4194  */
4195 static ssize_t rbd_parent_show(struct device *dev,
4196                                struct device_attribute *attr,
4197                                char *buf)
4198 {
4199         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4200         ssize_t count = 0;
4201
4202         if (!rbd_dev->parent)
4203                 return sprintf(buf, "(no parent image)\n");
4204
4205         for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
4206                 struct rbd_spec *spec = rbd_dev->parent_spec;
4207
4208                 count += sprintf(&buf[count], "%s"
4209                             "pool_id %llu\npool_name %s\n"
4210                             "image_id %s\nimage_name %s\n"
4211                             "snap_id %llu\nsnap_name %s\n"
4212                             "overlap %llu\n",
4213                             !count ? "" : "\n", /* first? */
4214                             spec->pool_id, spec->pool_name,
4215                             spec->image_id, spec->image_name ?: "(unknown)",
4216                             spec->snap_id, spec->snap_name,
4217                             rbd_dev->parent_overlap);
4218         }
4219
4220         return count;
4221 }
4222
4223 static ssize_t rbd_image_refresh(struct device *dev,
4224                                  struct device_attribute *attr,
4225                                  const char *buf,
4226                                  size_t size)
4227 {
4228         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4229         int ret;
4230
4231         ret = rbd_dev_refresh(rbd_dev);
4232         if (ret)
4233                 return ret;
4234
4235         return size;
4236 }
4237
4238 static DEVICE_ATTR(size, 0444, rbd_size_show, NULL);
4239 static DEVICE_ATTR(features, 0444, rbd_features_show, NULL);
4240 static DEVICE_ATTR(major, 0444, rbd_major_show, NULL);
4241 static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL);
4242 static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL);
4243 static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL);
4244 static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL);
4245 static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL);
4246 static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL);
4247 static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL);
4248 static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL);
4249 static DEVICE_ATTR(name, 0444, rbd_name_show, NULL);
4250 static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL);
4251 static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh);
4252 static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL);
4253 static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL);
4254 static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL);
4255
4256 static struct attribute *rbd_attrs[] = {
4257         &dev_attr_size.attr,
4258         &dev_attr_features.attr,
4259         &dev_attr_major.attr,
4260         &dev_attr_minor.attr,
4261         &dev_attr_client_addr.attr,
4262         &dev_attr_client_id.attr,
4263         &dev_attr_cluster_fsid.attr,
4264         &dev_attr_config_info.attr,
4265         &dev_attr_pool.attr,
4266         &dev_attr_pool_id.attr,
4267         &dev_attr_pool_ns.attr,
4268         &dev_attr_name.attr,
4269         &dev_attr_image_id.attr,
4270         &dev_attr_current_snap.attr,
4271         &dev_attr_snap_id.attr,
4272         &dev_attr_parent.attr,
4273         &dev_attr_refresh.attr,
4274         NULL
4275 };
4276
4277 static struct attribute_group rbd_attr_group = {
4278         .attrs = rbd_attrs,
4279 };
4280
4281 static const struct attribute_group *rbd_attr_groups[] = {
4282         &rbd_attr_group,
4283         NULL
4284 };
4285
4286 static void rbd_dev_release(struct device *dev);
4287
4288 static const struct device_type rbd_device_type = {
4289         .name           = "rbd",
4290         .groups         = rbd_attr_groups,
4291         .release        = rbd_dev_release,
4292 };
4293
4294 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
4295 {
4296         kref_get(&spec->kref);
4297
4298         return spec;
4299 }
4300
4301 static void rbd_spec_free(struct kref *kref);
4302 static void rbd_spec_put(struct rbd_spec *spec)
4303 {
4304         if (spec)
4305                 kref_put(&spec->kref, rbd_spec_free);
4306 }
4307
4308 static struct rbd_spec *rbd_spec_alloc(void)
4309 {
4310         struct rbd_spec *spec;
4311
4312         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4313         if (!spec)
4314                 return NULL;
4315
4316         spec->pool_id = CEPH_NOPOOL;
4317         spec->snap_id = CEPH_NOSNAP;
4318         kref_init(&spec->kref);
4319
4320         return spec;
4321 }
4322
4323 static void rbd_spec_free(struct kref *kref)
4324 {
4325         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4326
4327         kfree(spec->pool_name);
4328         kfree(spec->pool_ns);
4329         kfree(spec->image_id);
4330         kfree(spec->image_name);
4331         kfree(spec->snap_name);
4332         kfree(spec);
4333 }
4334
4335 static void rbd_dev_free(struct rbd_device *rbd_dev)
4336 {
4337         WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
4338         WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
4339
4340         ceph_oid_destroy(&rbd_dev->header_oid);
4341         ceph_oloc_destroy(&rbd_dev->header_oloc);
4342         kfree(rbd_dev->config_info);
4343
4344         rbd_put_client(rbd_dev->rbd_client);
4345         rbd_spec_put(rbd_dev->spec);
4346         kfree(rbd_dev->opts);
4347         kfree(rbd_dev);
4348 }
4349
4350 static void rbd_dev_release(struct device *dev)
4351 {
4352         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4353         bool need_put = !!rbd_dev->opts;
4354
4355         if (need_put) {
4356                 destroy_workqueue(rbd_dev->task_wq);
4357                 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4358         }
4359
4360         rbd_dev_free(rbd_dev);
4361
4362         /*
4363          * This is racy, but way better than putting module outside of
4364          * the release callback.  The race window is pretty small, so
4365          * doing something similar to dm (dm-builtin.c) is overkill.
4366          */
4367         if (need_put)
4368                 module_put(THIS_MODULE);
4369 }
4370
4371 static struct rbd_device *__rbd_dev_create(struct rbd_client *rbdc,
4372                                            struct rbd_spec *spec)
4373 {
4374         struct rbd_device *rbd_dev;
4375
4376         rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
4377         if (!rbd_dev)
4378                 return NULL;
4379
4380         spin_lock_init(&rbd_dev->lock);
4381         INIT_LIST_HEAD(&rbd_dev->node);
4382         init_rwsem(&rbd_dev->header_rwsem);
4383
4384         rbd_dev->header.data_pool_id = CEPH_NOPOOL;
4385         ceph_oid_init(&rbd_dev->header_oid);
4386         rbd_dev->header_oloc.pool = spec->pool_id;
4387         if (spec->pool_ns) {
4388                 WARN_ON(!*spec->pool_ns);
4389                 rbd_dev->header_oloc.pool_ns =
4390                     ceph_find_or_create_string(spec->pool_ns,
4391                                                strlen(spec->pool_ns));
4392         }
4393
4394         mutex_init(&rbd_dev->watch_mutex);
4395         rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4396         INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
4397
4398         init_rwsem(&rbd_dev->lock_rwsem);
4399         rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
4400         INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
4401         INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
4402         INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
4403         INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
4404         init_waitqueue_head(&rbd_dev->lock_waitq);
4405
4406         rbd_dev->dev.bus = &rbd_bus_type;
4407         rbd_dev->dev.type = &rbd_device_type;
4408         rbd_dev->dev.parent = &rbd_root_dev;
4409         device_initialize(&rbd_dev->dev);
4410
4411         rbd_dev->rbd_client = rbdc;
4412         rbd_dev->spec = spec;
4413
4414         return rbd_dev;
4415 }
4416
4417 /*
4418  * Create a mapping rbd_dev.
4419  */
4420 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4421                                          struct rbd_spec *spec,
4422                                          struct rbd_options *opts)
4423 {
4424         struct rbd_device *rbd_dev;
4425
4426         rbd_dev = __rbd_dev_create(rbdc, spec);
4427         if (!rbd_dev)
4428                 return NULL;
4429
4430         rbd_dev->opts = opts;
4431
4432         /* get an id and fill in device name */
4433         rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
4434                                          minor_to_rbd_dev_id(1 << MINORBITS),
4435                                          GFP_KERNEL);
4436         if (rbd_dev->dev_id < 0)
4437                 goto fail_rbd_dev;
4438
4439         sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
4440         rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
4441                                                    rbd_dev->name);
4442         if (!rbd_dev->task_wq)
4443                 goto fail_dev_id;
4444
4445         /* we have a ref from do_rbd_add() */
4446         __module_get(THIS_MODULE);
4447
4448         dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
4449         return rbd_dev;
4450
4451 fail_dev_id:
4452         ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4453 fail_rbd_dev:
4454         rbd_dev_free(rbd_dev);
4455         return NULL;
4456 }
4457
4458 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4459 {
4460         if (rbd_dev)
4461                 put_device(&rbd_dev->dev);
4462 }
4463
4464 /*
4465  * Get the size and object order for an image snapshot, or if
4466  * snap_id is CEPH_NOSNAP, gets this information for the base
4467  * image.
4468  */
4469 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4470                                 u8 *order, u64 *snap_size)
4471 {
4472         __le64 snapid = cpu_to_le64(snap_id);
4473         int ret;
4474         struct {
4475                 u8 order;
4476                 __le64 size;
4477         } __attribute__ ((packed)) size_buf = { 0 };
4478
4479         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4480                                   &rbd_dev->header_oloc, "get_size",
4481                                   &snapid, sizeof(snapid),
4482                                   &size_buf, sizeof(size_buf));
4483         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4484         if (ret < 0)
4485                 return ret;
4486         if (ret < sizeof (size_buf))
4487                 return -ERANGE;
4488
4489         if (order) {
4490                 *order = size_buf.order;
4491                 dout("  order %u", (unsigned int)*order);
4492         }
4493         *snap_size = le64_to_cpu(size_buf.size);
4494
4495         dout("  snap_id 0x%016llx snap_size = %llu\n",
4496                 (unsigned long long)snap_id,
4497                 (unsigned long long)*snap_size);
4498
4499         return 0;
4500 }
4501
4502 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4503 {
4504         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4505                                         &rbd_dev->header.obj_order,
4506                                         &rbd_dev->header.image_size);
4507 }
4508
4509 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4510 {
4511         void *reply_buf;
4512         int ret;
4513         void *p;
4514
4515         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4516         if (!reply_buf)
4517                 return -ENOMEM;
4518
4519         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4520                                   &rbd_dev->header_oloc, "get_object_prefix",
4521                                   NULL, 0, reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4522         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4523         if (ret < 0)
4524                 goto out;
4525
4526         p = reply_buf;
4527         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4528                                                 p + ret, NULL, GFP_NOIO);
4529         ret = 0;
4530
4531         if (IS_ERR(rbd_dev->header.object_prefix)) {
4532                 ret = PTR_ERR(rbd_dev->header.object_prefix);
4533                 rbd_dev->header.object_prefix = NULL;
4534         } else {
4535                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
4536         }
4537 out:
4538         kfree(reply_buf);
4539
4540         return ret;
4541 }
4542
4543 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4544                 u64 *snap_features)
4545 {
4546         __le64 snapid = cpu_to_le64(snap_id);
4547         struct {
4548                 __le64 features;
4549                 __le64 incompat;
4550         } __attribute__ ((packed)) features_buf = { 0 };
4551         u64 unsup;
4552         int ret;
4553
4554         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4555                                   &rbd_dev->header_oloc, "get_features",
4556                                   &snapid, sizeof(snapid),
4557                                   &features_buf, sizeof(features_buf));
4558         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4559         if (ret < 0)
4560                 return ret;
4561         if (ret < sizeof (features_buf))
4562                 return -ERANGE;
4563
4564         unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
4565         if (unsup) {
4566                 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
4567                          unsup);
4568                 return -ENXIO;
4569         }
4570
4571         *snap_features = le64_to_cpu(features_buf.features);
4572
4573         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4574                 (unsigned long long)snap_id,
4575                 (unsigned long long)*snap_features,
4576                 (unsigned long long)le64_to_cpu(features_buf.incompat));
4577
4578         return 0;
4579 }
4580
4581 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4582 {
4583         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4584                                                 &rbd_dev->header.features);
4585 }
4586
4587 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4588 {
4589         struct rbd_spec *parent_spec;
4590         size_t size;
4591         void *reply_buf = NULL;
4592         __le64 snapid;
4593         void *p;
4594         void *end;
4595         u64 pool_id;
4596         char *image_id;
4597         u64 snap_id;
4598         u64 overlap;
4599         int ret;
4600
4601         parent_spec = rbd_spec_alloc();
4602         if (!parent_spec)
4603                 return -ENOMEM;
4604
4605         size = sizeof (__le64) +                                /* pool_id */
4606                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
4607                 sizeof (__le64) +                               /* snap_id */
4608                 sizeof (__le64);                                /* overlap */
4609         reply_buf = kmalloc(size, GFP_KERNEL);
4610         if (!reply_buf) {
4611                 ret = -ENOMEM;
4612                 goto out_err;
4613         }
4614
4615         snapid = cpu_to_le64(rbd_dev->spec->snap_id);
4616         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4617                                   &rbd_dev->header_oloc, "get_parent",
4618                                   &snapid, sizeof(snapid), reply_buf, size);
4619         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4620         if (ret < 0)
4621                 goto out_err;
4622
4623         p = reply_buf;
4624         end = reply_buf + ret;
4625         ret = -ERANGE;
4626         ceph_decode_64_safe(&p, end, pool_id, out_err);
4627         if (pool_id == CEPH_NOPOOL) {
4628                 /*
4629                  * Either the parent never existed, or we have
4630                  * record of it but the image got flattened so it no
4631                  * longer has a parent.  When the parent of a
4632                  * layered image disappears we immediately set the
4633                  * overlap to 0.  The effect of this is that all new
4634                  * requests will be treated as if the image had no
4635                  * parent.
4636                  */
4637                 if (rbd_dev->parent_overlap) {
4638                         rbd_dev->parent_overlap = 0;
4639                         rbd_dev_parent_put(rbd_dev);
4640                         pr_info("%s: clone image has been flattened\n",
4641                                 rbd_dev->disk->disk_name);
4642                 }
4643
4644                 goto out;       /* No parent?  No problem. */
4645         }
4646
4647         /* The ceph file layout needs to fit pool id in 32 bits */
4648
4649         ret = -EIO;
4650         if (pool_id > (u64)U32_MAX) {
4651                 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
4652                         (unsigned long long)pool_id, U32_MAX);
4653                 goto out_err;
4654         }
4655
4656         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4657         if (IS_ERR(image_id)) {
4658                 ret = PTR_ERR(image_id);
4659                 goto out_err;
4660         }
4661         ceph_decode_64_safe(&p, end, snap_id, out_err);
4662         ceph_decode_64_safe(&p, end, overlap, out_err);
4663
4664         /*
4665          * The parent won't change (except when the clone is
4666          * flattened, already handled that).  So we only need to
4667          * record the parent spec we have not already done so.
4668          */
4669         if (!rbd_dev->parent_spec) {
4670                 parent_spec->pool_id = pool_id;
4671                 parent_spec->image_id = image_id;
4672                 parent_spec->snap_id = snap_id;
4673
4674                 /* TODO: support cloning across namespaces */
4675                 if (rbd_dev->spec->pool_ns) {
4676                         parent_spec->pool_ns = kstrdup(rbd_dev->spec->pool_ns,
4677                                                        GFP_KERNEL);
4678                         if (!parent_spec->pool_ns) {
4679                                 ret = -ENOMEM;
4680                                 goto out_err;
4681                         }
4682                 }
4683
4684                 rbd_dev->parent_spec = parent_spec;
4685                 parent_spec = NULL;     /* rbd_dev now owns this */
4686         } else {
4687                 kfree(image_id);
4688         }
4689
4690         /*
4691          * We always update the parent overlap.  If it's zero we issue
4692          * a warning, as we will proceed as if there was no parent.
4693          */
4694         if (!overlap) {
4695                 if (parent_spec) {
4696                         /* refresh, careful to warn just once */
4697                         if (rbd_dev->parent_overlap)
4698                                 rbd_warn(rbd_dev,
4699                                     "clone now standalone (overlap became 0)");
4700                 } else {
4701                         /* initial probe */
4702                         rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
4703                 }
4704         }
4705         rbd_dev->parent_overlap = overlap;
4706
4707 out:
4708         ret = 0;
4709 out_err:
4710         kfree(reply_buf);
4711         rbd_spec_put(parent_spec);
4712
4713         return ret;
4714 }
4715
4716 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4717 {
4718         struct {
4719                 __le64 stripe_unit;
4720                 __le64 stripe_count;
4721         } __attribute__ ((packed)) striping_info_buf = { 0 };
4722         size_t size = sizeof (striping_info_buf);
4723         void *p;
4724         int ret;
4725
4726         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4727                                 &rbd_dev->header_oloc, "get_stripe_unit_count",
4728                                 NULL, 0, &striping_info_buf, size);
4729         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4730         if (ret < 0)
4731                 return ret;
4732         if (ret < size)
4733                 return -ERANGE;
4734
4735         p = &striping_info_buf;
4736         rbd_dev->header.stripe_unit = ceph_decode_64(&p);
4737         rbd_dev->header.stripe_count = ceph_decode_64(&p);
4738         return 0;
4739 }
4740
4741 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev)
4742 {
4743         __le64 data_pool_id;
4744         int ret;
4745
4746         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4747                                   &rbd_dev->header_oloc, "get_data_pool",
4748                                   NULL, 0, &data_pool_id, sizeof(data_pool_id));
4749         if (ret < 0)
4750                 return ret;
4751         if (ret < sizeof(data_pool_id))
4752                 return -EBADMSG;
4753
4754         rbd_dev->header.data_pool_id = le64_to_cpu(data_pool_id);
4755         WARN_ON(rbd_dev->header.data_pool_id == CEPH_NOPOOL);
4756         return 0;
4757 }
4758
4759 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4760 {
4761         CEPH_DEFINE_OID_ONSTACK(oid);
4762         size_t image_id_size;
4763         char *image_id;
4764         void *p;
4765         void *end;
4766         size_t size;
4767         void *reply_buf = NULL;
4768         size_t len = 0;
4769         char *image_name = NULL;
4770         int ret;
4771
4772         rbd_assert(!rbd_dev->spec->image_name);
4773
4774         len = strlen(rbd_dev->spec->image_id);
4775         image_id_size = sizeof (__le32) + len;
4776         image_id = kmalloc(image_id_size, GFP_KERNEL);
4777         if (!image_id)
4778                 return NULL;
4779
4780         p = image_id;
4781         end = image_id + image_id_size;
4782         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4783
4784         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4785         reply_buf = kmalloc(size, GFP_KERNEL);
4786         if (!reply_buf)
4787                 goto out;
4788
4789         ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
4790         ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
4791                                   "dir_get_name", image_id, image_id_size,
4792                                   reply_buf, size);
4793         if (ret < 0)
4794                 goto out;
4795         p = reply_buf;
4796         end = reply_buf + ret;
4797
4798         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4799         if (IS_ERR(image_name))
4800                 image_name = NULL;
4801         else
4802                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4803 out:
4804         kfree(reply_buf);
4805         kfree(image_id);
4806
4807         return image_name;
4808 }
4809
4810 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4811 {
4812         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4813         const char *snap_name;
4814         u32 which = 0;
4815
4816         /* Skip over names until we find the one we are looking for */
4817
4818         snap_name = rbd_dev->header.snap_names;
4819         while (which < snapc->num_snaps) {
4820                 if (!strcmp(name, snap_name))
4821                         return snapc->snaps[which];
4822                 snap_name += strlen(snap_name) + 1;
4823                 which++;
4824         }
4825         return CEPH_NOSNAP;
4826 }
4827
4828 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4829 {
4830         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4831         u32 which;
4832         bool found = false;
4833         u64 snap_id;
4834
4835         for (which = 0; !found && which < snapc->num_snaps; which++) {
4836                 const char *snap_name;
4837
4838                 snap_id = snapc->snaps[which];
4839                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4840                 if (IS_ERR(snap_name)) {
4841                         /* ignore no-longer existing snapshots */
4842                         if (PTR_ERR(snap_name) == -ENOENT)
4843                                 continue;
4844                         else
4845                                 break;
4846                 }
4847                 found = !strcmp(name, snap_name);
4848                 kfree(snap_name);
4849         }
4850         return found ? snap_id : CEPH_NOSNAP;
4851 }
4852
4853 /*
4854  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4855  * no snapshot by that name is found, or if an error occurs.
4856  */
4857 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4858 {
4859         if (rbd_dev->image_format == 1)
4860                 return rbd_v1_snap_id_by_name(rbd_dev, name);
4861
4862         return rbd_v2_snap_id_by_name(rbd_dev, name);
4863 }
4864
4865 /*
4866  * An image being mapped will have everything but the snap id.
4867  */
4868 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
4869 {
4870         struct rbd_spec *spec = rbd_dev->spec;
4871
4872         rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
4873         rbd_assert(spec->image_id && spec->image_name);
4874         rbd_assert(spec->snap_name);
4875
4876         if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4877                 u64 snap_id;
4878
4879                 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4880                 if (snap_id == CEPH_NOSNAP)
4881                         return -ENOENT;
4882
4883                 spec->snap_id = snap_id;
4884         } else {
4885                 spec->snap_id = CEPH_NOSNAP;
4886         }
4887
4888         return 0;
4889 }
4890
4891 /*
4892  * A parent image will have all ids but none of the names.
4893  *
4894  * All names in an rbd spec are dynamically allocated.  It's OK if we
4895  * can't figure out the name for an image id.
4896  */
4897 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
4898 {
4899         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4900         struct rbd_spec *spec = rbd_dev->spec;
4901         const char *pool_name;
4902         const char *image_name;
4903         const char *snap_name;
4904         int ret;
4905
4906         rbd_assert(spec->pool_id != CEPH_NOPOOL);
4907         rbd_assert(spec->image_id);
4908         rbd_assert(spec->snap_id != CEPH_NOSNAP);
4909
4910         /* Get the pool name; we have to make our own copy of this */
4911
4912         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4913         if (!pool_name) {
4914                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4915                 return -EIO;
4916         }
4917         pool_name = kstrdup(pool_name, GFP_KERNEL);
4918         if (!pool_name)
4919                 return -ENOMEM;
4920
4921         /* Fetch the image name; tolerate failure here */
4922
4923         image_name = rbd_dev_image_name(rbd_dev);
4924         if (!image_name)
4925                 rbd_warn(rbd_dev, "unable to get image name");
4926
4927         /* Fetch the snapshot name */
4928
4929         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4930         if (IS_ERR(snap_name)) {
4931                 ret = PTR_ERR(snap_name);
4932                 goto out_err;
4933         }
4934
4935         spec->pool_name = pool_name;
4936         spec->image_name = image_name;
4937         spec->snap_name = snap_name;
4938
4939         return 0;
4940
4941 out_err:
4942         kfree(image_name);
4943         kfree(pool_name);
4944         return ret;
4945 }
4946
4947 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4948 {
4949         size_t size;
4950         int ret;
4951         void *reply_buf;
4952         void *p;
4953         void *end;
4954         u64 seq;
4955         u32 snap_count;
4956         struct ceph_snap_context *snapc;
4957         u32 i;
4958
4959         /*
4960          * We'll need room for the seq value (maximum snapshot id),
4961          * snapshot count, and array of that many snapshot ids.
4962          * For now we have a fixed upper limit on the number we're
4963          * prepared to receive.
4964          */
4965         size = sizeof (__le64) + sizeof (__le32) +
4966                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
4967         reply_buf = kzalloc(size, GFP_KERNEL);
4968         if (!reply_buf)
4969                 return -ENOMEM;
4970
4971         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4972                                   &rbd_dev->header_oloc, "get_snapcontext",
4973                                   NULL, 0, reply_buf, size);
4974         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4975         if (ret < 0)
4976                 goto out;
4977
4978         p = reply_buf;
4979         end = reply_buf + ret;
4980         ret = -ERANGE;
4981         ceph_decode_64_safe(&p, end, seq, out);
4982         ceph_decode_32_safe(&p, end, snap_count, out);
4983
4984         /*
4985          * Make sure the reported number of snapshot ids wouldn't go
4986          * beyond the end of our buffer.  But before checking that,
4987          * make sure the computed size of the snapshot context we
4988          * allocate is representable in a size_t.
4989          */
4990         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4991                                  / sizeof (u64)) {
4992                 ret = -EINVAL;
4993                 goto out;
4994         }
4995         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4996                 goto out;
4997         ret = 0;
4998
4999         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
5000         if (!snapc) {
5001                 ret = -ENOMEM;
5002                 goto out;
5003         }
5004         snapc->seq = seq;
5005         for (i = 0; i < snap_count; i++)
5006                 snapc->snaps[i] = ceph_decode_64(&p);
5007
5008         ceph_put_snap_context(rbd_dev->header.snapc);
5009         rbd_dev->header.snapc = snapc;
5010
5011         dout("  snap context seq = %llu, snap_count = %u\n",
5012                 (unsigned long long)seq, (unsigned int)snap_count);
5013 out:
5014         kfree(reply_buf);
5015
5016         return ret;
5017 }
5018
5019 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
5020                                         u64 snap_id)
5021 {
5022         size_t size;
5023         void *reply_buf;
5024         __le64 snapid;
5025         int ret;
5026         void *p;
5027         void *end;
5028         char *snap_name;
5029
5030         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
5031         reply_buf = kmalloc(size, GFP_KERNEL);
5032         if (!reply_buf)
5033                 return ERR_PTR(-ENOMEM);
5034
5035         snapid = cpu_to_le64(snap_id);
5036         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5037                                   &rbd_dev->header_oloc, "get_snapshot_name",
5038                                   &snapid, sizeof(snapid), reply_buf, size);
5039         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5040         if (ret < 0) {
5041                 snap_name = ERR_PTR(ret);
5042                 goto out;
5043         }
5044
5045         p = reply_buf;
5046         end = reply_buf + ret;
5047         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5048         if (IS_ERR(snap_name))
5049                 goto out;
5050
5051         dout("  snap_id 0x%016llx snap_name = %s\n",
5052                 (unsigned long long)snap_id, snap_name);
5053 out:
5054         kfree(reply_buf);
5055
5056         return snap_name;
5057 }
5058
5059 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
5060 {
5061         bool first_time = rbd_dev->header.object_prefix == NULL;
5062         int ret;
5063
5064         ret = rbd_dev_v2_image_size(rbd_dev);
5065         if (ret)
5066                 return ret;
5067
5068         if (first_time) {
5069                 ret = rbd_dev_v2_header_onetime(rbd_dev);
5070                 if (ret)
5071                         return ret;
5072         }
5073
5074         ret = rbd_dev_v2_snap_context(rbd_dev);
5075         if (ret && first_time) {
5076                 kfree(rbd_dev->header.object_prefix);
5077                 rbd_dev->header.object_prefix = NULL;
5078         }
5079
5080         return ret;
5081 }
5082
5083 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
5084 {
5085         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5086
5087         if (rbd_dev->image_format == 1)
5088                 return rbd_dev_v1_header_info(rbd_dev);
5089
5090         return rbd_dev_v2_header_info(rbd_dev);
5091 }
5092
5093 /*
5094  * Skips over white space at *buf, and updates *buf to point to the
5095  * first found non-space character (if any). Returns the length of
5096  * the token (string of non-white space characters) found.  Note
5097  * that *buf must be terminated with '\0'.
5098  */
5099 static inline size_t next_token(const char **buf)
5100 {
5101         /*
5102         * These are the characters that produce nonzero for
5103         * isspace() in the "C" and "POSIX" locales.
5104         */
5105         const char *spaces = " \f\n\r\t\v";
5106
5107         *buf += strspn(*buf, spaces);   /* Find start of token */
5108
5109         return strcspn(*buf, spaces);   /* Return token length */
5110 }
5111
5112 /*
5113  * Finds the next token in *buf, dynamically allocates a buffer big
5114  * enough to hold a copy of it, and copies the token into the new
5115  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
5116  * that a duplicate buffer is created even for a zero-length token.
5117  *
5118  * Returns a pointer to the newly-allocated duplicate, or a null
5119  * pointer if memory for the duplicate was not available.  If
5120  * the lenp argument is a non-null pointer, the length of the token
5121  * (not including the '\0') is returned in *lenp.
5122  *
5123  * If successful, the *buf pointer will be updated to point beyond
5124  * the end of the found token.
5125  *
5126  * Note: uses GFP_KERNEL for allocation.
5127  */
5128 static inline char *dup_token(const char **buf, size_t *lenp)
5129 {
5130         char *dup;
5131         size_t len;
5132
5133         len = next_token(buf);
5134         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
5135         if (!dup)
5136                 return NULL;
5137         *(dup + len) = '\0';
5138         *buf += len;
5139
5140         if (lenp)
5141                 *lenp = len;
5142
5143         return dup;
5144 }
5145
5146 /*
5147  * Parse the options provided for an "rbd add" (i.e., rbd image
5148  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
5149  * and the data written is passed here via a NUL-terminated buffer.
5150  * Returns 0 if successful or an error code otherwise.
5151  *
5152  * The information extracted from these options is recorded in
5153  * the other parameters which return dynamically-allocated
5154  * structures:
5155  *  ceph_opts
5156  *      The address of a pointer that will refer to a ceph options
5157  *      structure.  Caller must release the returned pointer using
5158  *      ceph_destroy_options() when it is no longer needed.
5159  *  rbd_opts
5160  *      Address of an rbd options pointer.  Fully initialized by
5161  *      this function; caller must release with kfree().
5162  *  spec
5163  *      Address of an rbd image specification pointer.  Fully
5164  *      initialized by this function based on parsed options.
5165  *      Caller must release with rbd_spec_put().
5166  *
5167  * The options passed take this form:
5168  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
5169  * where:
5170  *  <mon_addrs>
5171  *      A comma-separated list of one or more monitor addresses.
5172  *      A monitor address is an ip address, optionally followed
5173  *      by a port number (separated by a colon).
5174  *        I.e.:  ip1[:port1][,ip2[:port2]...]
5175  *  <options>
5176  *      A comma-separated list of ceph and/or rbd options.
5177  *  <pool_name>
5178  *      The name of the rados pool containing the rbd image.
5179  *  <image_name>
5180  *      The name of the image in that pool to map.
5181  *  <snap_id>
5182  *      An optional snapshot id.  If provided, the mapping will
5183  *      present data from the image at the time that snapshot was
5184  *      created.  The image head is used if no snapshot id is
5185  *      provided.  Snapshot mappings are always read-only.
5186  */
5187 static int rbd_add_parse_args(const char *buf,
5188                                 struct ceph_options **ceph_opts,
5189                                 struct rbd_options **opts,
5190                                 struct rbd_spec **rbd_spec)
5191 {
5192         size_t len;
5193         char *options;
5194         const char *mon_addrs;
5195         char *snap_name;
5196         size_t mon_addrs_size;
5197         struct parse_rbd_opts_ctx pctx = { 0 };
5198         struct ceph_options *copts;
5199         int ret;
5200
5201         /* The first four tokens are required */
5202
5203         len = next_token(&buf);
5204         if (!len) {
5205                 rbd_warn(NULL, "no monitor address(es) provided");
5206                 return -EINVAL;
5207         }
5208         mon_addrs = buf;
5209         mon_addrs_size = len + 1;
5210         buf += len;
5211
5212         ret = -EINVAL;
5213         options = dup_token(&buf, NULL);
5214         if (!options)
5215                 return -ENOMEM;
5216         if (!*options) {
5217                 rbd_warn(NULL, "no options provided");
5218                 goto out_err;
5219         }
5220
5221         pctx.spec = rbd_spec_alloc();
5222         if (!pctx.spec)
5223                 goto out_mem;
5224
5225         pctx.spec->pool_name = dup_token(&buf, NULL);
5226         if (!pctx.spec->pool_name)
5227                 goto out_mem;
5228         if (!*pctx.spec->pool_name) {
5229                 rbd_warn(NULL, "no pool name provided");
5230                 goto out_err;
5231         }
5232
5233         pctx.spec->image_name = dup_token(&buf, NULL);
5234         if (!pctx.spec->image_name)
5235                 goto out_mem;
5236         if (!*pctx.spec->image_name) {
5237                 rbd_warn(NULL, "no image name provided");
5238                 goto out_err;
5239         }
5240
5241         /*
5242          * Snapshot name is optional; default is to use "-"
5243          * (indicating the head/no snapshot).
5244          */
5245         len = next_token(&buf);
5246         if (!len) {
5247                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
5248                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
5249         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
5250                 ret = -ENAMETOOLONG;
5251                 goto out_err;
5252         }
5253         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
5254         if (!snap_name)
5255                 goto out_mem;
5256         *(snap_name + len) = '\0';
5257         pctx.spec->snap_name = snap_name;
5258
5259         /* Initialize all rbd options to the defaults */
5260
5261         pctx.opts = kzalloc(sizeof(*pctx.opts), GFP_KERNEL);
5262         if (!pctx.opts)
5263                 goto out_mem;
5264
5265         pctx.opts->read_only = RBD_READ_ONLY_DEFAULT;
5266         pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
5267         pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT;
5268         pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
5269         pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
5270         pctx.opts->trim = RBD_TRIM_DEFAULT;
5271
5272         copts = ceph_parse_options(options, mon_addrs,
5273                                    mon_addrs + mon_addrs_size - 1,
5274                                    parse_rbd_opts_token, &pctx);
5275         if (IS_ERR(copts)) {
5276                 ret = PTR_ERR(copts);
5277                 goto out_err;
5278         }
5279         kfree(options);
5280
5281         *ceph_opts = copts;
5282         *opts = pctx.opts;
5283         *rbd_spec = pctx.spec;
5284
5285         return 0;
5286 out_mem:
5287         ret = -ENOMEM;
5288 out_err:
5289         kfree(pctx.opts);
5290         rbd_spec_put(pctx.spec);
5291         kfree(options);
5292
5293         return ret;
5294 }
5295
5296 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
5297 {
5298         down_write(&rbd_dev->lock_rwsem);
5299         if (__rbd_is_lock_owner(rbd_dev))
5300                 rbd_unlock(rbd_dev);
5301         up_write(&rbd_dev->lock_rwsem);
5302 }
5303
5304 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
5305 {
5306         int ret;
5307
5308         if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
5309                 rbd_warn(rbd_dev, "exclusive-lock feature is not enabled");
5310                 return -EINVAL;
5311         }
5312
5313         /* FIXME: "rbd map --exclusive" should be in interruptible */
5314         down_read(&rbd_dev->lock_rwsem);
5315         ret = rbd_wait_state_locked(rbd_dev, true);
5316         up_read(&rbd_dev->lock_rwsem);
5317         if (ret) {
5318                 rbd_warn(rbd_dev, "failed to acquire exclusive lock");
5319                 return -EROFS;
5320         }
5321
5322         return 0;
5323 }
5324
5325 /*
5326  * An rbd format 2 image has a unique identifier, distinct from the
5327  * name given to it by the user.  Internally, that identifier is
5328  * what's used to specify the names of objects related to the image.
5329  *
5330  * A special "rbd id" object is used to map an rbd image name to its
5331  * id.  If that object doesn't exist, then there is no v2 rbd image
5332  * with the supplied name.
5333  *
5334  * This function will record the given rbd_dev's image_id field if
5335  * it can be determined, and in that case will return 0.  If any
5336  * errors occur a negative errno will be returned and the rbd_dev's
5337  * image_id field will be unchanged (and should be NULL).
5338  */
5339 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5340 {
5341         int ret;
5342         size_t size;
5343         CEPH_DEFINE_OID_ONSTACK(oid);
5344         void *response;
5345         char *image_id;
5346
5347         /*
5348          * When probing a parent image, the image id is already
5349          * known (and the image name likely is not).  There's no
5350          * need to fetch the image id again in this case.  We
5351          * do still need to set the image format though.
5352          */
5353         if (rbd_dev->spec->image_id) {
5354                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5355
5356                 return 0;
5357         }
5358
5359         /*
5360          * First, see if the format 2 image id file exists, and if
5361          * so, get the image's persistent id from it.
5362          */
5363         ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
5364                                rbd_dev->spec->image_name);
5365         if (ret)
5366                 return ret;
5367
5368         dout("rbd id object name is %s\n", oid.name);
5369
5370         /* Response will be an encoded string, which includes a length */
5371
5372         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5373         response = kzalloc(size, GFP_NOIO);
5374         if (!response) {
5375                 ret = -ENOMEM;
5376                 goto out;
5377         }
5378
5379         /* If it doesn't exist we'll assume it's a format 1 image */
5380
5381         ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5382                                   "get_id", NULL, 0,
5383                                   response, RBD_IMAGE_ID_LEN_MAX);
5384         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5385         if (ret == -ENOENT) {
5386                 image_id = kstrdup("", GFP_KERNEL);
5387                 ret = image_id ? 0 : -ENOMEM;
5388                 if (!ret)
5389                         rbd_dev->image_format = 1;
5390         } else if (ret >= 0) {
5391                 void *p = response;
5392
5393                 image_id = ceph_extract_encoded_string(&p, p + ret,
5394                                                 NULL, GFP_NOIO);
5395                 ret = PTR_ERR_OR_ZERO(image_id);
5396                 if (!ret)
5397                         rbd_dev->image_format = 2;
5398         }
5399
5400         if (!ret) {
5401                 rbd_dev->spec->image_id = image_id;
5402                 dout("image_id is %s\n", image_id);
5403         }
5404 out:
5405         kfree(response);
5406         ceph_oid_destroy(&oid);
5407         return ret;
5408 }
5409
5410 /*
5411  * Undo whatever state changes are made by v1 or v2 header info
5412  * call.
5413  */
5414 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5415 {
5416         struct rbd_image_header *header;
5417
5418         rbd_dev_parent_put(rbd_dev);
5419
5420         /* Free dynamic fields from the header, then zero it out */
5421
5422         header = &rbd_dev->header;
5423         ceph_put_snap_context(header->snapc);
5424         kfree(header->snap_sizes);
5425         kfree(header->snap_names);
5426         kfree(header->object_prefix);
5427         memset(header, 0, sizeof (*header));
5428 }
5429
5430 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5431 {
5432         int ret;
5433
5434         ret = rbd_dev_v2_object_prefix(rbd_dev);
5435         if (ret)
5436                 goto out_err;
5437
5438         /*
5439          * Get the and check features for the image.  Currently the
5440          * features are assumed to never change.
5441          */
5442         ret = rbd_dev_v2_features(rbd_dev);
5443         if (ret)
5444                 goto out_err;
5445
5446         /* If the image supports fancy striping, get its parameters */
5447
5448         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5449                 ret = rbd_dev_v2_striping_info(rbd_dev);
5450                 if (ret < 0)
5451                         goto out_err;
5452         }
5453
5454         if (rbd_dev->header.features & RBD_FEATURE_DATA_POOL) {
5455                 ret = rbd_dev_v2_data_pool(rbd_dev);
5456                 if (ret)
5457                         goto out_err;
5458         }
5459
5460         rbd_init_layout(rbd_dev);
5461         return 0;
5462
5463 out_err:
5464         rbd_dev->header.features = 0;
5465         kfree(rbd_dev->header.object_prefix);
5466         rbd_dev->header.object_prefix = NULL;
5467         return ret;
5468 }
5469
5470 /*
5471  * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
5472  * rbd_dev_image_probe() recursion depth, which means it's also the
5473  * length of the already discovered part of the parent chain.
5474  */
5475 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
5476 {
5477         struct rbd_device *parent = NULL;
5478         int ret;
5479
5480         if (!rbd_dev->parent_spec)
5481                 return 0;
5482
5483         if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
5484                 pr_info("parent chain is too long (%d)\n", depth);
5485                 ret = -EINVAL;
5486                 goto out_err;
5487         }
5488
5489         parent = __rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec);
5490         if (!parent) {
5491                 ret = -ENOMEM;
5492                 goto out_err;
5493         }
5494
5495         /*
5496          * Images related by parent/child relationships always share
5497          * rbd_client and spec/parent_spec, so bump their refcounts.
5498          */
5499         __rbd_get_client(rbd_dev->rbd_client);
5500         rbd_spec_get(rbd_dev->parent_spec);
5501
5502         ret = rbd_dev_image_probe(parent, depth);
5503         if (ret < 0)
5504                 goto out_err;
5505
5506         rbd_dev->parent = parent;
5507         atomic_set(&rbd_dev->parent_ref, 1);
5508         return 0;
5509
5510 out_err:
5511         rbd_dev_unparent(rbd_dev);
5512         rbd_dev_destroy(parent);
5513         return ret;
5514 }
5515
5516 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
5517 {
5518         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5519         rbd_dev_mapping_clear(rbd_dev);
5520         rbd_free_disk(rbd_dev);
5521         if (!single_major)
5522                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5523 }
5524
5525 /*
5526  * rbd_dev->header_rwsem must be locked for write and will be unlocked
5527  * upon return.
5528  */
5529 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5530 {
5531         int ret;
5532
5533         /* Record our major and minor device numbers. */
5534
5535         if (!single_major) {
5536                 ret = register_blkdev(0, rbd_dev->name);
5537                 if (ret < 0)
5538                         goto err_out_unlock;
5539
5540                 rbd_dev->major = ret;
5541                 rbd_dev->minor = 0;
5542         } else {
5543                 rbd_dev->major = rbd_major;
5544                 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5545         }
5546
5547         /* Set up the blkdev mapping. */
5548
5549         ret = rbd_init_disk(rbd_dev);
5550         if (ret)
5551                 goto err_out_blkdev;
5552
5553         ret = rbd_dev_mapping_set(rbd_dev);
5554         if (ret)
5555                 goto err_out_disk;
5556
5557         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5558         set_disk_ro(rbd_dev->disk, rbd_dev->opts->read_only);
5559
5560         ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
5561         if (ret)
5562                 goto err_out_mapping;
5563
5564         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5565         up_write(&rbd_dev->header_rwsem);
5566         return 0;
5567
5568 err_out_mapping:
5569         rbd_dev_mapping_clear(rbd_dev);
5570 err_out_disk:
5571         rbd_free_disk(rbd_dev);
5572 err_out_blkdev:
5573         if (!single_major)
5574                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5575 err_out_unlock:
5576         up_write(&rbd_dev->header_rwsem);
5577         return ret;
5578 }
5579
5580 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5581 {
5582         struct rbd_spec *spec = rbd_dev->spec;
5583         int ret;
5584
5585         /* Record the header object name for this rbd image. */
5586
5587         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5588         if (rbd_dev->image_format == 1)
5589                 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
5590                                        spec->image_name, RBD_SUFFIX);
5591         else
5592                 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
5593                                        RBD_HEADER_PREFIX, spec->image_id);
5594
5595         return ret;
5596 }
5597
5598 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5599 {
5600         rbd_dev_unprobe(rbd_dev);
5601         if (rbd_dev->opts)
5602                 rbd_unregister_watch(rbd_dev);
5603         rbd_dev->image_format = 0;
5604         kfree(rbd_dev->spec->image_id);
5605         rbd_dev->spec->image_id = NULL;
5606 }
5607
5608 /*
5609  * Probe for the existence of the header object for the given rbd
5610  * device.  If this image is the one being mapped (i.e., not a
5611  * parent), initiate a watch on its header object before using that
5612  * object to get detailed information about the rbd image.
5613  */
5614 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
5615 {
5616         int ret;
5617
5618         /*
5619          * Get the id from the image id object.  Unless there's an
5620          * error, rbd_dev->spec->image_id will be filled in with
5621          * a dynamically-allocated string, and rbd_dev->image_format
5622          * will be set to either 1 or 2.
5623          */
5624         ret = rbd_dev_image_id(rbd_dev);
5625         if (ret)
5626                 return ret;
5627
5628         ret = rbd_dev_header_name(rbd_dev);
5629         if (ret)
5630                 goto err_out_format;
5631
5632         if (!depth) {
5633                 ret = rbd_register_watch(rbd_dev);
5634                 if (ret) {
5635                         if (ret == -ENOENT)
5636                                 pr_info("image %s/%s%s%s does not exist\n",
5637                                         rbd_dev->spec->pool_name,
5638                                         rbd_dev->spec->pool_ns ?: "",
5639                                         rbd_dev->spec->pool_ns ? "/" : "",
5640                                         rbd_dev->spec->image_name);
5641                         goto err_out_format;
5642                 }
5643         }
5644
5645         ret = rbd_dev_header_info(rbd_dev);
5646         if (ret)
5647                 goto err_out_watch;
5648
5649         /*
5650          * If this image is the one being mapped, we have pool name and
5651          * id, image name and id, and snap name - need to fill snap id.
5652          * Otherwise this is a parent image, identified by pool, image
5653          * and snap ids - need to fill in names for those ids.
5654          */
5655         if (!depth)
5656                 ret = rbd_spec_fill_snap_id(rbd_dev);
5657         else
5658                 ret = rbd_spec_fill_names(rbd_dev);
5659         if (ret) {
5660                 if (ret == -ENOENT)
5661                         pr_info("snap %s/%s%s%s@%s does not exist\n",
5662                                 rbd_dev->spec->pool_name,
5663                                 rbd_dev->spec->pool_ns ?: "",
5664                                 rbd_dev->spec->pool_ns ? "/" : "",
5665                                 rbd_dev->spec->image_name,
5666                                 rbd_dev->spec->snap_name);
5667                 goto err_out_probe;
5668         }
5669
5670         if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
5671                 ret = rbd_dev_v2_parent_info(rbd_dev);
5672                 if (ret)
5673                         goto err_out_probe;
5674
5675                 /*
5676                  * Need to warn users if this image is the one being
5677                  * mapped and has a parent.
5678                  */
5679                 if (!depth && rbd_dev->parent_spec)
5680                         rbd_warn(rbd_dev,
5681                                  "WARNING: kernel layering is EXPERIMENTAL!");
5682         }
5683
5684         ret = rbd_dev_probe_parent(rbd_dev, depth);
5685         if (ret)
5686                 goto err_out_probe;
5687
5688         dout("discovered format %u image, header name is %s\n",
5689                 rbd_dev->image_format, rbd_dev->header_oid.name);
5690         return 0;
5691
5692 err_out_probe:
5693         rbd_dev_unprobe(rbd_dev);
5694 err_out_watch:
5695         if (!depth)
5696                 rbd_unregister_watch(rbd_dev);
5697 err_out_format:
5698         rbd_dev->image_format = 0;
5699         kfree(rbd_dev->spec->image_id);
5700         rbd_dev->spec->image_id = NULL;
5701         return ret;
5702 }
5703
5704 static ssize_t do_rbd_add(struct bus_type *bus,
5705                           const char *buf,
5706                           size_t count)
5707 {
5708         struct rbd_device *rbd_dev = NULL;
5709         struct ceph_options *ceph_opts = NULL;
5710         struct rbd_options *rbd_opts = NULL;
5711         struct rbd_spec *spec = NULL;
5712         struct rbd_client *rbdc;
5713         int rc;
5714
5715         if (!try_module_get(THIS_MODULE))
5716                 return -ENODEV;
5717
5718         /* parse add command */
5719         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5720         if (rc < 0)
5721                 goto out;
5722
5723         rbdc = rbd_get_client(ceph_opts);
5724         if (IS_ERR(rbdc)) {
5725                 rc = PTR_ERR(rbdc);
5726                 goto err_out_args;
5727         }
5728
5729         /* pick the pool */
5730         rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name);
5731         if (rc < 0) {
5732                 if (rc == -ENOENT)
5733                         pr_info("pool %s does not exist\n", spec->pool_name);
5734                 goto err_out_client;
5735         }
5736         spec->pool_id = (u64)rc;
5737
5738         rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
5739         if (!rbd_dev) {
5740                 rc = -ENOMEM;
5741                 goto err_out_client;
5742         }
5743         rbdc = NULL;            /* rbd_dev now owns this */
5744         spec = NULL;            /* rbd_dev now owns this */
5745         rbd_opts = NULL;        /* rbd_dev now owns this */
5746
5747         rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
5748         if (!rbd_dev->config_info) {
5749                 rc = -ENOMEM;
5750                 goto err_out_rbd_dev;
5751         }
5752
5753         down_write(&rbd_dev->header_rwsem);
5754         rc = rbd_dev_image_probe(rbd_dev, 0);
5755         if (rc < 0) {
5756                 up_write(&rbd_dev->header_rwsem);
5757                 goto err_out_rbd_dev;
5758         }
5759
5760         /* If we are mapping a snapshot it must be marked read-only */
5761         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5762                 rbd_dev->opts->read_only = true;
5763
5764         rc = rbd_dev_device_setup(rbd_dev);
5765         if (rc)
5766                 goto err_out_image_probe;
5767
5768         if (rbd_dev->opts->exclusive) {
5769                 rc = rbd_add_acquire_lock(rbd_dev);
5770                 if (rc)
5771                         goto err_out_device_setup;
5772         }
5773
5774         /* Everything's ready.  Announce the disk to the world. */
5775
5776         rc = device_add(&rbd_dev->dev);
5777         if (rc)
5778                 goto err_out_image_lock;
5779
5780         add_disk(rbd_dev->disk);
5781         /* see rbd_init_disk() */
5782         blk_put_queue(rbd_dev->disk->queue);
5783
5784         spin_lock(&rbd_dev_list_lock);
5785         list_add_tail(&rbd_dev->node, &rbd_dev_list);
5786         spin_unlock(&rbd_dev_list_lock);
5787
5788         pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
5789                 (unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
5790                 rbd_dev->header.features);
5791         rc = count;
5792 out:
5793         module_put(THIS_MODULE);
5794         return rc;
5795
5796 err_out_image_lock:
5797         rbd_dev_image_unlock(rbd_dev);
5798 err_out_device_setup:
5799         rbd_dev_device_release(rbd_dev);
5800 err_out_image_probe:
5801         rbd_dev_image_release(rbd_dev);
5802 err_out_rbd_dev:
5803         rbd_dev_destroy(rbd_dev);
5804 err_out_client:
5805         rbd_put_client(rbdc);
5806 err_out_args:
5807         rbd_spec_put(spec);
5808         kfree(rbd_opts);
5809         goto out;
5810 }
5811
5812 static ssize_t rbd_add(struct bus_type *bus,
5813                        const char *buf,
5814                        size_t count)
5815 {
5816         if (single_major)
5817                 return -EINVAL;
5818
5819         return do_rbd_add(bus, buf, count);
5820 }
5821
5822 static ssize_t rbd_add_single_major(struct bus_type *bus,
5823                                     const char *buf,
5824                                     size_t count)
5825 {
5826         return do_rbd_add(bus, buf, count);
5827 }
5828
5829 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5830 {
5831         while (rbd_dev->parent) {
5832                 struct rbd_device *first = rbd_dev;
5833                 struct rbd_device *second = first->parent;
5834                 struct rbd_device *third;
5835
5836                 /*
5837                  * Follow to the parent with no grandparent and
5838                  * remove it.
5839                  */
5840                 while (second && (third = second->parent)) {
5841                         first = second;
5842                         second = third;
5843                 }
5844                 rbd_assert(second);
5845                 rbd_dev_image_release(second);
5846                 rbd_dev_destroy(second);
5847                 first->parent = NULL;
5848                 first->parent_overlap = 0;
5849
5850                 rbd_assert(first->parent_spec);
5851                 rbd_spec_put(first->parent_spec);
5852                 first->parent_spec = NULL;
5853         }
5854 }
5855
5856 static ssize_t do_rbd_remove(struct bus_type *bus,
5857                              const char *buf,
5858                              size_t count)
5859 {
5860         struct rbd_device *rbd_dev = NULL;
5861         struct list_head *tmp;
5862         int dev_id;
5863         char opt_buf[6];
5864         bool already = false;
5865         bool force = false;
5866         int ret;
5867
5868         dev_id = -1;
5869         opt_buf[0] = '\0';
5870         sscanf(buf, "%d %5s", &dev_id, opt_buf);
5871         if (dev_id < 0) {
5872                 pr_err("dev_id out of range\n");
5873                 return -EINVAL;
5874         }
5875         if (opt_buf[0] != '\0') {
5876                 if (!strcmp(opt_buf, "force")) {
5877                         force = true;
5878                 } else {
5879                         pr_err("bad remove option at '%s'\n", opt_buf);
5880                         return -EINVAL;
5881                 }
5882         }
5883
5884         ret = -ENOENT;
5885         spin_lock(&rbd_dev_list_lock);
5886         list_for_each(tmp, &rbd_dev_list) {
5887                 rbd_dev = list_entry(tmp, struct rbd_device, node);
5888                 if (rbd_dev->dev_id == dev_id) {
5889                         ret = 0;
5890                         break;
5891                 }
5892         }
5893         if (!ret) {
5894                 spin_lock_irq(&rbd_dev->lock);
5895                 if (rbd_dev->open_count && !force)
5896                         ret = -EBUSY;
5897                 else
5898                         already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5899                                                         &rbd_dev->flags);
5900                 spin_unlock_irq(&rbd_dev->lock);
5901         }
5902         spin_unlock(&rbd_dev_list_lock);
5903         if (ret < 0 || already)
5904                 return ret;
5905
5906         if (force) {
5907                 /*
5908                  * Prevent new IO from being queued and wait for existing
5909                  * IO to complete/fail.
5910                  */
5911                 blk_mq_freeze_queue(rbd_dev->disk->queue);
5912                 blk_set_queue_dying(rbd_dev->disk->queue);
5913         }
5914
5915         del_gendisk(rbd_dev->disk);
5916         spin_lock(&rbd_dev_list_lock);
5917         list_del_init(&rbd_dev->node);
5918         spin_unlock(&rbd_dev_list_lock);
5919         device_del(&rbd_dev->dev);
5920
5921         rbd_dev_image_unlock(rbd_dev);
5922         rbd_dev_device_release(rbd_dev);
5923         rbd_dev_image_release(rbd_dev);
5924         rbd_dev_destroy(rbd_dev);
5925         return count;
5926 }
5927
5928 static ssize_t rbd_remove(struct bus_type *bus,
5929                           const char *buf,
5930                           size_t count)
5931 {
5932         if (single_major)
5933                 return -EINVAL;
5934
5935         return do_rbd_remove(bus, buf, count);
5936 }
5937
5938 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5939                                        const char *buf,
5940                                        size_t count)
5941 {
5942         return do_rbd_remove(bus, buf, count);
5943 }
5944
5945 /*
5946  * create control files in sysfs
5947  * /sys/bus/rbd/...
5948  */
5949 static int rbd_sysfs_init(void)
5950 {
5951         int ret;
5952
5953         ret = device_register(&rbd_root_dev);
5954         if (ret < 0)
5955                 return ret;
5956
5957         ret = bus_register(&rbd_bus_type);
5958         if (ret < 0)
5959                 device_unregister(&rbd_root_dev);
5960
5961         return ret;
5962 }
5963
5964 static void rbd_sysfs_cleanup(void)
5965 {
5966         bus_unregister(&rbd_bus_type);
5967         device_unregister(&rbd_root_dev);
5968 }
5969
5970 static int rbd_slab_init(void)
5971 {
5972         rbd_assert(!rbd_img_request_cache);
5973         rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
5974         if (!rbd_img_request_cache)
5975                 return -ENOMEM;
5976
5977         rbd_assert(!rbd_obj_request_cache);
5978         rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
5979         if (!rbd_obj_request_cache)
5980                 goto out_err;
5981
5982         return 0;
5983
5984 out_err:
5985         kmem_cache_destroy(rbd_img_request_cache);
5986         rbd_img_request_cache = NULL;
5987         return -ENOMEM;
5988 }
5989
5990 static void rbd_slab_exit(void)
5991 {
5992         rbd_assert(rbd_obj_request_cache);
5993         kmem_cache_destroy(rbd_obj_request_cache);
5994         rbd_obj_request_cache = NULL;
5995
5996         rbd_assert(rbd_img_request_cache);
5997         kmem_cache_destroy(rbd_img_request_cache);
5998         rbd_img_request_cache = NULL;
5999 }
6000
6001 static int __init rbd_init(void)
6002 {
6003         int rc;
6004
6005         if (!libceph_compatible(NULL)) {
6006                 rbd_warn(NULL, "libceph incompatibility (quitting)");
6007                 return -EINVAL;
6008         }
6009
6010         rc = rbd_slab_init();
6011         if (rc)
6012                 return rc;
6013
6014         /*
6015          * The number of active work items is limited by the number of
6016          * rbd devices * queue depth, so leave @max_active at default.
6017          */
6018         rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
6019         if (!rbd_wq) {
6020                 rc = -ENOMEM;
6021                 goto err_out_slab;
6022         }
6023
6024         if (single_major) {
6025                 rbd_major = register_blkdev(0, RBD_DRV_NAME);
6026                 if (rbd_major < 0) {
6027                         rc = rbd_major;
6028                         goto err_out_wq;
6029                 }
6030         }
6031
6032         rc = rbd_sysfs_init();
6033         if (rc)
6034                 goto err_out_blkdev;
6035
6036         if (single_major)
6037                 pr_info("loaded (major %d)\n", rbd_major);
6038         else
6039                 pr_info("loaded\n");
6040
6041         return 0;
6042
6043 err_out_blkdev:
6044         if (single_major)
6045                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
6046 err_out_wq:
6047         destroy_workqueue(rbd_wq);
6048 err_out_slab:
6049         rbd_slab_exit();
6050         return rc;
6051 }
6052
6053 static void __exit rbd_exit(void)
6054 {
6055         ida_destroy(&rbd_dev_id_ida);
6056         rbd_sysfs_cleanup();
6057         if (single_major)
6058                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
6059         destroy_workqueue(rbd_wq);
6060         rbd_slab_exit();
6061 }
6062
6063 module_init(rbd_init);
6064 module_exit(rbd_exit);
6065
6066 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
6067 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
6068 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
6069 /* following authorship retained from original osdblk.c */
6070 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
6071
6072 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
6073 MODULE_LICENSE("GPL");