Merge tag 'ceph-for-6.3-rc1' of https://github.com/ceph/ceph-client
[linux-2.6-block.git] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/striper.h>
36 #include <linux/ceph/decode.h>
37 #include <linux/fs_parser.h>
38 #include <linux/bsearch.h>
39
40 #include <linux/kernel.h>
41 #include <linux/device.h>
42 #include <linux/module.h>
43 #include <linux/blk-mq.h>
44 #include <linux/fs.h>
45 #include <linux/blkdev.h>
46 #include <linux/slab.h>
47 #include <linux/idr.h>
48 #include <linux/workqueue.h>
49
50 #include "rbd_types.h"
51
52 #define RBD_DEBUG       /* Activate rbd_assert() calls */
53
54 /*
55  * Increment the given counter and return its updated value.
56  * If the counter is already 0 it will not be incremented.
57  * If the counter is already at its maximum value returns
58  * -EINVAL without updating it.
59  */
60 static int atomic_inc_return_safe(atomic_t *v)
61 {
62         unsigned int counter;
63
64         counter = (unsigned int)atomic_fetch_add_unless(v, 1, 0);
65         if (counter <= (unsigned int)INT_MAX)
66                 return (int)counter;
67
68         atomic_dec(v);
69
70         return -EINVAL;
71 }
72
73 /* Decrement the counter.  Return the resulting value, or -EINVAL */
74 static int atomic_dec_return_safe(atomic_t *v)
75 {
76         int counter;
77
78         counter = atomic_dec_return(v);
79         if (counter >= 0)
80                 return counter;
81
82         atomic_inc(v);
83
84         return -EINVAL;
85 }
86
87 #define RBD_DRV_NAME "rbd"
88
89 #define RBD_MINORS_PER_MAJOR            256
90 #define RBD_SINGLE_MAJOR_PART_SHIFT     4
91
92 #define RBD_MAX_PARENT_CHAIN_LEN        16
93
94 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
95 #define RBD_MAX_SNAP_NAME_LEN   \
96                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
97
98 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
99
100 #define RBD_SNAP_HEAD_NAME      "-"
101
102 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
103
104 /* This allows a single page to hold an image name sent by OSD */
105 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
106 #define RBD_IMAGE_ID_LEN_MAX    64
107
108 #define RBD_OBJ_PREFIX_LEN_MAX  64
109
110 #define RBD_NOTIFY_TIMEOUT      5       /* seconds */
111 #define RBD_RETRY_DELAY         msecs_to_jiffies(1000)
112
113 /* Feature bits */
114
115 #define RBD_FEATURE_LAYERING            (1ULL<<0)
116 #define RBD_FEATURE_STRIPINGV2          (1ULL<<1)
117 #define RBD_FEATURE_EXCLUSIVE_LOCK      (1ULL<<2)
118 #define RBD_FEATURE_OBJECT_MAP          (1ULL<<3)
119 #define RBD_FEATURE_FAST_DIFF           (1ULL<<4)
120 #define RBD_FEATURE_DEEP_FLATTEN        (1ULL<<5)
121 #define RBD_FEATURE_DATA_POOL           (1ULL<<7)
122 #define RBD_FEATURE_OPERATIONS          (1ULL<<8)
123
124 #define RBD_FEATURES_ALL        (RBD_FEATURE_LAYERING |         \
125                                  RBD_FEATURE_STRIPINGV2 |       \
126                                  RBD_FEATURE_EXCLUSIVE_LOCK |   \
127                                  RBD_FEATURE_OBJECT_MAP |       \
128                                  RBD_FEATURE_FAST_DIFF |        \
129                                  RBD_FEATURE_DEEP_FLATTEN |     \
130                                  RBD_FEATURE_DATA_POOL |        \
131                                  RBD_FEATURE_OPERATIONS)
132
133 /* Features supported by this (client software) implementation. */
134
135 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
136
137 /*
138  * An RBD device name will be "rbd#", where the "rbd" comes from
139  * RBD_DRV_NAME above, and # is a unique integer identifier.
140  */
141 #define DEV_NAME_LEN            32
142
143 /*
144  * block device image metadata (in-memory version)
145  */
146 struct rbd_image_header {
147         /* These six fields never change for a given rbd image */
148         char *object_prefix;
149         __u8 obj_order;
150         u64 stripe_unit;
151         u64 stripe_count;
152         s64 data_pool_id;
153         u64 features;           /* Might be changeable someday? */
154
155         /* The remaining fields need to be updated occasionally */
156         u64 image_size;
157         struct ceph_snap_context *snapc;
158         char *snap_names;       /* format 1 only */
159         u64 *snap_sizes;        /* format 1 only */
160 };
161
162 /*
163  * An rbd image specification.
164  *
165  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
166  * identify an image.  Each rbd_dev structure includes a pointer to
167  * an rbd_spec structure that encapsulates this identity.
168  *
169  * Each of the id's in an rbd_spec has an associated name.  For a
170  * user-mapped image, the names are supplied and the id's associated
171  * with them are looked up.  For a layered image, a parent image is
172  * defined by the tuple, and the names are looked up.
173  *
174  * An rbd_dev structure contains a parent_spec pointer which is
175  * non-null if the image it represents is a child in a layered
176  * image.  This pointer will refer to the rbd_spec structure used
177  * by the parent rbd_dev for its own identity (i.e., the structure
178  * is shared between the parent and child).
179  *
180  * Since these structures are populated once, during the discovery
181  * phase of image construction, they are effectively immutable so
182  * we make no effort to synchronize access to them.
183  *
184  * Note that code herein does not assume the image name is known (it
185  * could be a null pointer).
186  */
187 struct rbd_spec {
188         u64             pool_id;
189         const char      *pool_name;
190         const char      *pool_ns;       /* NULL if default, never "" */
191
192         const char      *image_id;
193         const char      *image_name;
194
195         u64             snap_id;
196         const char      *snap_name;
197
198         struct kref     kref;
199 };
200
201 /*
202  * an instance of the client.  multiple devices may share an rbd client.
203  */
204 struct rbd_client {
205         struct ceph_client      *client;
206         struct kref             kref;
207         struct list_head        node;
208 };
209
210 struct pending_result {
211         int                     result;         /* first nonzero result */
212         int                     num_pending;
213 };
214
215 struct rbd_img_request;
216
217 enum obj_request_type {
218         OBJ_REQUEST_NODATA = 1,
219         OBJ_REQUEST_BIO,        /* pointer into provided bio (list) */
220         OBJ_REQUEST_BVECS,      /* pointer into provided bio_vec array */
221         OBJ_REQUEST_OWN_BVECS,  /* private bio_vec array, doesn't own pages */
222 };
223
224 enum obj_operation_type {
225         OBJ_OP_READ = 1,
226         OBJ_OP_WRITE,
227         OBJ_OP_DISCARD,
228         OBJ_OP_ZEROOUT,
229 };
230
231 #define RBD_OBJ_FLAG_DELETION                   (1U << 0)
232 #define RBD_OBJ_FLAG_COPYUP_ENABLED             (1U << 1)
233 #define RBD_OBJ_FLAG_COPYUP_ZEROS               (1U << 2)
234 #define RBD_OBJ_FLAG_MAY_EXIST                  (1U << 3)
235 #define RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT       (1U << 4)
236
237 enum rbd_obj_read_state {
238         RBD_OBJ_READ_START = 1,
239         RBD_OBJ_READ_OBJECT,
240         RBD_OBJ_READ_PARENT,
241 };
242
243 /*
244  * Writes go through the following state machine to deal with
245  * layering:
246  *
247  *            . . . . . RBD_OBJ_WRITE_GUARD. . . . . . . . . . . . . .
248  *            .                 |                                    .
249  *            .                 v                                    .
250  *            .    RBD_OBJ_WRITE_READ_FROM_PARENT. . .               .
251  *            .                 |                    .               .
252  *            .                 v                    v (deep-copyup  .
253  *    (image  .   RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC   .  not needed)  .
254  * flattened) v                 |                    .               .
255  *            .                 v                    .               .
256  *            . . . .RBD_OBJ_WRITE_COPYUP_OPS. . . . .      (copyup  .
257  *                              |                        not needed) v
258  *                              v                                    .
259  *                            done . . . . . . . . . . . . . . . . . .
260  *                              ^
261  *                              |
262  *                     RBD_OBJ_WRITE_FLAT
263  *
264  * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether
265  * assert_exists guard is needed or not (in some cases it's not needed
266  * even if there is a parent).
267  */
268 enum rbd_obj_write_state {
269         RBD_OBJ_WRITE_START = 1,
270         RBD_OBJ_WRITE_PRE_OBJECT_MAP,
271         RBD_OBJ_WRITE_OBJECT,
272         __RBD_OBJ_WRITE_COPYUP,
273         RBD_OBJ_WRITE_COPYUP,
274         RBD_OBJ_WRITE_POST_OBJECT_MAP,
275 };
276
277 enum rbd_obj_copyup_state {
278         RBD_OBJ_COPYUP_START = 1,
279         RBD_OBJ_COPYUP_READ_PARENT,
280         __RBD_OBJ_COPYUP_OBJECT_MAPS,
281         RBD_OBJ_COPYUP_OBJECT_MAPS,
282         __RBD_OBJ_COPYUP_WRITE_OBJECT,
283         RBD_OBJ_COPYUP_WRITE_OBJECT,
284 };
285
286 struct rbd_obj_request {
287         struct ceph_object_extent ex;
288         unsigned int            flags;  /* RBD_OBJ_FLAG_* */
289         union {
290                 enum rbd_obj_read_state  read_state;    /* for reads */
291                 enum rbd_obj_write_state write_state;   /* for writes */
292         };
293
294         struct rbd_img_request  *img_request;
295         struct ceph_file_extent *img_extents;
296         u32                     num_img_extents;
297
298         union {
299                 struct ceph_bio_iter    bio_pos;
300                 struct {
301                         struct ceph_bvec_iter   bvec_pos;
302                         u32                     bvec_count;
303                         u32                     bvec_idx;
304                 };
305         };
306
307         enum rbd_obj_copyup_state copyup_state;
308         struct bio_vec          *copyup_bvecs;
309         u32                     copyup_bvec_count;
310
311         struct list_head        osd_reqs;       /* w/ r_private_item */
312
313         struct mutex            state_mutex;
314         struct pending_result   pending;
315         struct kref             kref;
316 };
317
318 enum img_req_flags {
319         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
320         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
321 };
322
323 enum rbd_img_state {
324         RBD_IMG_START = 1,
325         RBD_IMG_EXCLUSIVE_LOCK,
326         __RBD_IMG_OBJECT_REQUESTS,
327         RBD_IMG_OBJECT_REQUESTS,
328 };
329
330 struct rbd_img_request {
331         struct rbd_device       *rbd_dev;
332         enum obj_operation_type op_type;
333         enum obj_request_type   data_type;
334         unsigned long           flags;
335         enum rbd_img_state      state;
336         union {
337                 u64                     snap_id;        /* for reads */
338                 struct ceph_snap_context *snapc;        /* for writes */
339         };
340         struct rbd_obj_request  *obj_request;   /* obj req initiator */
341
342         struct list_head        lock_item;
343         struct list_head        object_extents; /* obj_req.ex structs */
344
345         struct mutex            state_mutex;
346         struct pending_result   pending;
347         struct work_struct      work;
348         int                     work_result;
349 };
350
351 #define for_each_obj_request(ireq, oreq) \
352         list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item)
353 #define for_each_obj_request_safe(ireq, oreq, n) \
354         list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item)
355
356 enum rbd_watch_state {
357         RBD_WATCH_STATE_UNREGISTERED,
358         RBD_WATCH_STATE_REGISTERED,
359         RBD_WATCH_STATE_ERROR,
360 };
361
362 enum rbd_lock_state {
363         RBD_LOCK_STATE_UNLOCKED,
364         RBD_LOCK_STATE_LOCKED,
365         RBD_LOCK_STATE_RELEASING,
366 };
367
368 /* WatchNotify::ClientId */
369 struct rbd_client_id {
370         u64 gid;
371         u64 handle;
372 };
373
374 struct rbd_mapping {
375         u64                     size;
376 };
377
378 /*
379  * a single device
380  */
381 struct rbd_device {
382         int                     dev_id;         /* blkdev unique id */
383
384         int                     major;          /* blkdev assigned major */
385         int                     minor;
386         struct gendisk          *disk;          /* blkdev's gendisk and rq */
387
388         u32                     image_format;   /* Either 1 or 2 */
389         struct rbd_client       *rbd_client;
390
391         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
392
393         spinlock_t              lock;           /* queue, flags, open_count */
394
395         struct rbd_image_header header;
396         unsigned long           flags;          /* possibly lock protected */
397         struct rbd_spec         *spec;
398         struct rbd_options      *opts;
399         char                    *config_info;   /* add{,_single_major} string */
400
401         struct ceph_object_id   header_oid;
402         struct ceph_object_locator header_oloc;
403
404         struct ceph_file_layout layout;         /* used for all rbd requests */
405
406         struct mutex            watch_mutex;
407         enum rbd_watch_state    watch_state;
408         struct ceph_osd_linger_request *watch_handle;
409         u64                     watch_cookie;
410         struct delayed_work     watch_dwork;
411
412         struct rw_semaphore     lock_rwsem;
413         enum rbd_lock_state     lock_state;
414         char                    lock_cookie[32];
415         struct rbd_client_id    owner_cid;
416         struct work_struct      acquired_lock_work;
417         struct work_struct      released_lock_work;
418         struct delayed_work     lock_dwork;
419         struct work_struct      unlock_work;
420         spinlock_t              lock_lists_lock;
421         struct list_head        acquiring_list;
422         struct list_head        running_list;
423         struct completion       acquire_wait;
424         int                     acquire_err;
425         struct completion       releasing_wait;
426
427         spinlock_t              object_map_lock;
428         u8                      *object_map;
429         u64                     object_map_size;        /* in objects */
430         u64                     object_map_flags;
431
432         struct workqueue_struct *task_wq;
433
434         struct rbd_spec         *parent_spec;
435         u64                     parent_overlap;
436         atomic_t                parent_ref;
437         struct rbd_device       *parent;
438
439         /* Block layer tags. */
440         struct blk_mq_tag_set   tag_set;
441
442         /* protects updating the header */
443         struct rw_semaphore     header_rwsem;
444
445         struct rbd_mapping      mapping;
446
447         struct list_head        node;
448
449         /* sysfs related */
450         struct device           dev;
451         unsigned long           open_count;     /* protected by lock */
452 };
453
454 /*
455  * Flag bits for rbd_dev->flags:
456  * - REMOVING (which is coupled with rbd_dev->open_count) is protected
457  *   by rbd_dev->lock
458  */
459 enum rbd_dev_flags {
460         RBD_DEV_FLAG_EXISTS,    /* rbd_dev_device_setup() ran */
461         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
462         RBD_DEV_FLAG_READONLY,  /* -o ro or snapshot */
463 };
464
465 static DEFINE_MUTEX(client_mutex);      /* Serialize client creation */
466
467 static LIST_HEAD(rbd_dev_list);    /* devices */
468 static DEFINE_SPINLOCK(rbd_dev_list_lock);
469
470 static LIST_HEAD(rbd_client_list);              /* clients */
471 static DEFINE_SPINLOCK(rbd_client_list_lock);
472
473 /* Slab caches for frequently-allocated structures */
474
475 static struct kmem_cache        *rbd_img_request_cache;
476 static struct kmem_cache        *rbd_obj_request_cache;
477
478 static int rbd_major;
479 static DEFINE_IDA(rbd_dev_id_ida);
480
481 static struct workqueue_struct *rbd_wq;
482
483 static struct ceph_snap_context rbd_empty_snapc = {
484         .nref = REFCOUNT_INIT(1),
485 };
486
487 /*
488  * single-major requires >= 0.75 version of userspace rbd utility.
489  */
490 static bool single_major = true;
491 module_param(single_major, bool, 0444);
492 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)");
493
494 static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count);
495 static ssize_t remove_store(struct bus_type *bus, const char *buf,
496                             size_t count);
497 static ssize_t add_single_major_store(struct bus_type *bus, const char *buf,
498                                       size_t count);
499 static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf,
500                                          size_t count);
501 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
502
503 static int rbd_dev_id_to_minor(int dev_id)
504 {
505         return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
506 }
507
508 static int minor_to_rbd_dev_id(int minor)
509 {
510         return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
511 }
512
513 static bool rbd_is_ro(struct rbd_device *rbd_dev)
514 {
515         return test_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
516 }
517
518 static bool rbd_is_snap(struct rbd_device *rbd_dev)
519 {
520         return rbd_dev->spec->snap_id != CEPH_NOSNAP;
521 }
522
523 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
524 {
525         lockdep_assert_held(&rbd_dev->lock_rwsem);
526
527         return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
528                rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
529 }
530
531 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
532 {
533         bool is_lock_owner;
534
535         down_read(&rbd_dev->lock_rwsem);
536         is_lock_owner = __rbd_is_lock_owner(rbd_dev);
537         up_read(&rbd_dev->lock_rwsem);
538         return is_lock_owner;
539 }
540
541 static ssize_t supported_features_show(struct bus_type *bus, char *buf)
542 {
543         return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
544 }
545
546 static BUS_ATTR_WO(add);
547 static BUS_ATTR_WO(remove);
548 static BUS_ATTR_WO(add_single_major);
549 static BUS_ATTR_WO(remove_single_major);
550 static BUS_ATTR_RO(supported_features);
551
552 static struct attribute *rbd_bus_attrs[] = {
553         &bus_attr_add.attr,
554         &bus_attr_remove.attr,
555         &bus_attr_add_single_major.attr,
556         &bus_attr_remove_single_major.attr,
557         &bus_attr_supported_features.attr,
558         NULL,
559 };
560
561 static umode_t rbd_bus_is_visible(struct kobject *kobj,
562                                   struct attribute *attr, int index)
563 {
564         if (!single_major &&
565             (attr == &bus_attr_add_single_major.attr ||
566              attr == &bus_attr_remove_single_major.attr))
567                 return 0;
568
569         return attr->mode;
570 }
571
572 static const struct attribute_group rbd_bus_group = {
573         .attrs = rbd_bus_attrs,
574         .is_visible = rbd_bus_is_visible,
575 };
576 __ATTRIBUTE_GROUPS(rbd_bus);
577
578 static struct bus_type rbd_bus_type = {
579         .name           = "rbd",
580         .bus_groups     = rbd_bus_groups,
581 };
582
583 static void rbd_root_dev_release(struct device *dev)
584 {
585 }
586
587 static struct device rbd_root_dev = {
588         .init_name =    "rbd",
589         .release =      rbd_root_dev_release,
590 };
591
592 static __printf(2, 3)
593 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
594 {
595         struct va_format vaf;
596         va_list args;
597
598         va_start(args, fmt);
599         vaf.fmt = fmt;
600         vaf.va = &args;
601
602         if (!rbd_dev)
603                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
604         else if (rbd_dev->disk)
605                 printk(KERN_WARNING "%s: %s: %pV\n",
606                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
607         else if (rbd_dev->spec && rbd_dev->spec->image_name)
608                 printk(KERN_WARNING "%s: image %s: %pV\n",
609                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
610         else if (rbd_dev->spec && rbd_dev->spec->image_id)
611                 printk(KERN_WARNING "%s: id %s: %pV\n",
612                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
613         else    /* punt */
614                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
615                         RBD_DRV_NAME, rbd_dev, &vaf);
616         va_end(args);
617 }
618
619 #ifdef RBD_DEBUG
620 #define rbd_assert(expr)                                                \
621                 if (unlikely(!(expr))) {                                \
622                         printk(KERN_ERR "\nAssertion failure in %s() "  \
623                                                 "at line %d:\n\n"       \
624                                         "\trbd_assert(%s);\n\n",        \
625                                         __func__, __LINE__, #expr);     \
626                         BUG();                                          \
627                 }
628 #else /* !RBD_DEBUG */
629 #  define rbd_assert(expr)      ((void) 0)
630 #endif /* !RBD_DEBUG */
631
632 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
633
634 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
635 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
636 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
637 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
638 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
639                                         u64 snap_id);
640 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
641                                 u8 *order, u64 *snap_size);
642 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev);
643
644 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result);
645 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result);
646
647 /*
648  * Return true if nothing else is pending.
649  */
650 static bool pending_result_dec(struct pending_result *pending, int *result)
651 {
652         rbd_assert(pending->num_pending > 0);
653
654         if (*result && !pending->result)
655                 pending->result = *result;
656         if (--pending->num_pending)
657                 return false;
658
659         *result = pending->result;
660         return true;
661 }
662
663 static int rbd_open(struct block_device *bdev, fmode_t mode)
664 {
665         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
666         bool removing = false;
667
668         spin_lock_irq(&rbd_dev->lock);
669         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
670                 removing = true;
671         else
672                 rbd_dev->open_count++;
673         spin_unlock_irq(&rbd_dev->lock);
674         if (removing)
675                 return -ENOENT;
676
677         (void) get_device(&rbd_dev->dev);
678
679         return 0;
680 }
681
682 static void rbd_release(struct gendisk *disk, fmode_t mode)
683 {
684         struct rbd_device *rbd_dev = disk->private_data;
685         unsigned long open_count_before;
686
687         spin_lock_irq(&rbd_dev->lock);
688         open_count_before = rbd_dev->open_count--;
689         spin_unlock_irq(&rbd_dev->lock);
690         rbd_assert(open_count_before > 0);
691
692         put_device(&rbd_dev->dev);
693 }
694
695 static const struct block_device_operations rbd_bd_ops = {
696         .owner                  = THIS_MODULE,
697         .open                   = rbd_open,
698         .release                = rbd_release,
699 };
700
701 /*
702  * Initialize an rbd client instance.  Success or not, this function
703  * consumes ceph_opts.  Caller holds client_mutex.
704  */
705 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
706 {
707         struct rbd_client *rbdc;
708         int ret = -ENOMEM;
709
710         dout("%s:\n", __func__);
711         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
712         if (!rbdc)
713                 goto out_opt;
714
715         kref_init(&rbdc->kref);
716         INIT_LIST_HEAD(&rbdc->node);
717
718         rbdc->client = ceph_create_client(ceph_opts, rbdc);
719         if (IS_ERR(rbdc->client))
720                 goto out_rbdc;
721         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
722
723         ret = ceph_open_session(rbdc->client);
724         if (ret < 0)
725                 goto out_client;
726
727         spin_lock(&rbd_client_list_lock);
728         list_add_tail(&rbdc->node, &rbd_client_list);
729         spin_unlock(&rbd_client_list_lock);
730
731         dout("%s: rbdc %p\n", __func__, rbdc);
732
733         return rbdc;
734 out_client:
735         ceph_destroy_client(rbdc->client);
736 out_rbdc:
737         kfree(rbdc);
738 out_opt:
739         if (ceph_opts)
740                 ceph_destroy_options(ceph_opts);
741         dout("%s: error %d\n", __func__, ret);
742
743         return ERR_PTR(ret);
744 }
745
746 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
747 {
748         kref_get(&rbdc->kref);
749
750         return rbdc;
751 }
752
753 /*
754  * Find a ceph client with specific addr and configuration.  If
755  * found, bump its reference count.
756  */
757 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
758 {
759         struct rbd_client *rbdc = NULL, *iter;
760
761         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
762                 return NULL;
763
764         spin_lock(&rbd_client_list_lock);
765         list_for_each_entry(iter, &rbd_client_list, node) {
766                 if (!ceph_compare_options(ceph_opts, iter->client)) {
767                         __rbd_get_client(iter);
768
769                         rbdc = iter;
770                         break;
771                 }
772         }
773         spin_unlock(&rbd_client_list_lock);
774
775         return rbdc;
776 }
777
778 /*
779  * (Per device) rbd map options
780  */
781 enum {
782         Opt_queue_depth,
783         Opt_alloc_size,
784         Opt_lock_timeout,
785         /* int args above */
786         Opt_pool_ns,
787         Opt_compression_hint,
788         /* string args above */
789         Opt_read_only,
790         Opt_read_write,
791         Opt_lock_on_read,
792         Opt_exclusive,
793         Opt_notrim,
794 };
795
796 enum {
797         Opt_compression_hint_none,
798         Opt_compression_hint_compressible,
799         Opt_compression_hint_incompressible,
800 };
801
802 static const struct constant_table rbd_param_compression_hint[] = {
803         {"none",                Opt_compression_hint_none},
804         {"compressible",        Opt_compression_hint_compressible},
805         {"incompressible",      Opt_compression_hint_incompressible},
806         {}
807 };
808
809 static const struct fs_parameter_spec rbd_parameters[] = {
810         fsparam_u32     ("alloc_size",                  Opt_alloc_size),
811         fsparam_enum    ("compression_hint",            Opt_compression_hint,
812                          rbd_param_compression_hint),
813         fsparam_flag    ("exclusive",                   Opt_exclusive),
814         fsparam_flag    ("lock_on_read",                Opt_lock_on_read),
815         fsparam_u32     ("lock_timeout",                Opt_lock_timeout),
816         fsparam_flag    ("notrim",                      Opt_notrim),
817         fsparam_string  ("_pool_ns",                    Opt_pool_ns),
818         fsparam_u32     ("queue_depth",                 Opt_queue_depth),
819         fsparam_flag    ("read_only",                   Opt_read_only),
820         fsparam_flag    ("read_write",                  Opt_read_write),
821         fsparam_flag    ("ro",                          Opt_read_only),
822         fsparam_flag    ("rw",                          Opt_read_write),
823         {}
824 };
825
826 struct rbd_options {
827         int     queue_depth;
828         int     alloc_size;
829         unsigned long   lock_timeout;
830         bool    read_only;
831         bool    lock_on_read;
832         bool    exclusive;
833         bool    trim;
834
835         u32 alloc_hint_flags;  /* CEPH_OSD_OP_ALLOC_HINT_FLAG_* */
836 };
837
838 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_DEFAULT_RQ
839 #define RBD_ALLOC_SIZE_DEFAULT  (64 * 1024)
840 #define RBD_LOCK_TIMEOUT_DEFAULT 0  /* no timeout */
841 #define RBD_READ_ONLY_DEFAULT   false
842 #define RBD_LOCK_ON_READ_DEFAULT false
843 #define RBD_EXCLUSIVE_DEFAULT   false
844 #define RBD_TRIM_DEFAULT        true
845
846 struct rbd_parse_opts_ctx {
847         struct rbd_spec         *spec;
848         struct ceph_options     *copts;
849         struct rbd_options      *opts;
850 };
851
852 static char* obj_op_name(enum obj_operation_type op_type)
853 {
854         switch (op_type) {
855         case OBJ_OP_READ:
856                 return "read";
857         case OBJ_OP_WRITE:
858                 return "write";
859         case OBJ_OP_DISCARD:
860                 return "discard";
861         case OBJ_OP_ZEROOUT:
862                 return "zeroout";
863         default:
864                 return "???";
865         }
866 }
867
868 /*
869  * Destroy ceph client
870  *
871  * Caller must hold rbd_client_list_lock.
872  */
873 static void rbd_client_release(struct kref *kref)
874 {
875         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
876
877         dout("%s: rbdc %p\n", __func__, rbdc);
878         spin_lock(&rbd_client_list_lock);
879         list_del(&rbdc->node);
880         spin_unlock(&rbd_client_list_lock);
881
882         ceph_destroy_client(rbdc->client);
883         kfree(rbdc);
884 }
885
886 /*
887  * Drop reference to ceph client node. If it's not referenced anymore, release
888  * it.
889  */
890 static void rbd_put_client(struct rbd_client *rbdc)
891 {
892         if (rbdc)
893                 kref_put(&rbdc->kref, rbd_client_release);
894 }
895
896 /*
897  * Get a ceph client with specific addr and configuration, if one does
898  * not exist create it.  Either way, ceph_opts is consumed by this
899  * function.
900  */
901 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
902 {
903         struct rbd_client *rbdc;
904         int ret;
905
906         mutex_lock(&client_mutex);
907         rbdc = rbd_client_find(ceph_opts);
908         if (rbdc) {
909                 ceph_destroy_options(ceph_opts);
910
911                 /*
912                  * Using an existing client.  Make sure ->pg_pools is up to
913                  * date before we look up the pool id in do_rbd_add().
914                  */
915                 ret = ceph_wait_for_latest_osdmap(rbdc->client,
916                                         rbdc->client->options->mount_timeout);
917                 if (ret) {
918                         rbd_warn(NULL, "failed to get latest osdmap: %d", ret);
919                         rbd_put_client(rbdc);
920                         rbdc = ERR_PTR(ret);
921                 }
922         } else {
923                 rbdc = rbd_client_create(ceph_opts);
924         }
925         mutex_unlock(&client_mutex);
926
927         return rbdc;
928 }
929
930 static bool rbd_image_format_valid(u32 image_format)
931 {
932         return image_format == 1 || image_format == 2;
933 }
934
935 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
936 {
937         size_t size;
938         u32 snap_count;
939
940         /* The header has to start with the magic rbd header text */
941         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
942                 return false;
943
944         /* The bio layer requires at least sector-sized I/O */
945
946         if (ondisk->options.order < SECTOR_SHIFT)
947                 return false;
948
949         /* If we use u64 in a few spots we may be able to loosen this */
950
951         if (ondisk->options.order > 8 * sizeof (int) - 1)
952                 return false;
953
954         /*
955          * The size of a snapshot header has to fit in a size_t, and
956          * that limits the number of snapshots.
957          */
958         snap_count = le32_to_cpu(ondisk->snap_count);
959         size = SIZE_MAX - sizeof (struct ceph_snap_context);
960         if (snap_count > size / sizeof (__le64))
961                 return false;
962
963         /*
964          * Not only that, but the size of the entire the snapshot
965          * header must also be representable in a size_t.
966          */
967         size -= snap_count * sizeof (__le64);
968         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
969                 return false;
970
971         return true;
972 }
973
974 /*
975  * returns the size of an object in the image
976  */
977 static u32 rbd_obj_bytes(struct rbd_image_header *header)
978 {
979         return 1U << header->obj_order;
980 }
981
982 static void rbd_init_layout(struct rbd_device *rbd_dev)
983 {
984         if (rbd_dev->header.stripe_unit == 0 ||
985             rbd_dev->header.stripe_count == 0) {
986                 rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
987                 rbd_dev->header.stripe_count = 1;
988         }
989
990         rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
991         rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
992         rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
993         rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
994                           rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
995         RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
996 }
997
998 /*
999  * Fill an rbd image header with information from the given format 1
1000  * on-disk header.
1001  */
1002 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
1003                                  struct rbd_image_header_ondisk *ondisk)
1004 {
1005         struct rbd_image_header *header = &rbd_dev->header;
1006         bool first_time = header->object_prefix == NULL;
1007         struct ceph_snap_context *snapc;
1008         char *object_prefix = NULL;
1009         char *snap_names = NULL;
1010         u64 *snap_sizes = NULL;
1011         u32 snap_count;
1012         int ret = -ENOMEM;
1013         u32 i;
1014
1015         /* Allocate this now to avoid having to handle failure below */
1016
1017         if (first_time) {
1018                 object_prefix = kstrndup(ondisk->object_prefix,
1019                                          sizeof(ondisk->object_prefix),
1020                                          GFP_KERNEL);
1021                 if (!object_prefix)
1022                         return -ENOMEM;
1023         }
1024
1025         /* Allocate the snapshot context and fill it in */
1026
1027         snap_count = le32_to_cpu(ondisk->snap_count);
1028         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1029         if (!snapc)
1030                 goto out_err;
1031         snapc->seq = le64_to_cpu(ondisk->snap_seq);
1032         if (snap_count) {
1033                 struct rbd_image_snap_ondisk *snaps;
1034                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1035
1036                 /* We'll keep a copy of the snapshot names... */
1037
1038                 if (snap_names_len > (u64)SIZE_MAX)
1039                         goto out_2big;
1040                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1041                 if (!snap_names)
1042                         goto out_err;
1043
1044                 /* ...as well as the array of their sizes. */
1045                 snap_sizes = kmalloc_array(snap_count,
1046                                            sizeof(*header->snap_sizes),
1047                                            GFP_KERNEL);
1048                 if (!snap_sizes)
1049                         goto out_err;
1050
1051                 /*
1052                  * Copy the names, and fill in each snapshot's id
1053                  * and size.
1054                  *
1055                  * Note that rbd_dev_v1_header_info() guarantees the
1056                  * ondisk buffer we're working with has
1057                  * snap_names_len bytes beyond the end of the
1058                  * snapshot id array, this memcpy() is safe.
1059                  */
1060                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1061                 snaps = ondisk->snaps;
1062                 for (i = 0; i < snap_count; i++) {
1063                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1064                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1065                 }
1066         }
1067
1068         /* We won't fail any more, fill in the header */
1069
1070         if (first_time) {
1071                 header->object_prefix = object_prefix;
1072                 header->obj_order = ondisk->options.order;
1073                 rbd_init_layout(rbd_dev);
1074         } else {
1075                 ceph_put_snap_context(header->snapc);
1076                 kfree(header->snap_names);
1077                 kfree(header->snap_sizes);
1078         }
1079
1080         /* The remaining fields always get updated (when we refresh) */
1081
1082         header->image_size = le64_to_cpu(ondisk->image_size);
1083         header->snapc = snapc;
1084         header->snap_names = snap_names;
1085         header->snap_sizes = snap_sizes;
1086
1087         return 0;
1088 out_2big:
1089         ret = -EIO;
1090 out_err:
1091         kfree(snap_sizes);
1092         kfree(snap_names);
1093         ceph_put_snap_context(snapc);
1094         kfree(object_prefix);
1095
1096         return ret;
1097 }
1098
1099 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1100 {
1101         const char *snap_name;
1102
1103         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1104
1105         /* Skip over names until we find the one we are looking for */
1106
1107         snap_name = rbd_dev->header.snap_names;
1108         while (which--)
1109                 snap_name += strlen(snap_name) + 1;
1110
1111         return kstrdup(snap_name, GFP_KERNEL);
1112 }
1113
1114 /*
1115  * Snapshot id comparison function for use with qsort()/bsearch().
1116  * Note that result is for snapshots in *descending* order.
1117  */
1118 static int snapid_compare_reverse(const void *s1, const void *s2)
1119 {
1120         u64 snap_id1 = *(u64 *)s1;
1121         u64 snap_id2 = *(u64 *)s2;
1122
1123         if (snap_id1 < snap_id2)
1124                 return 1;
1125         return snap_id1 == snap_id2 ? 0 : -1;
1126 }
1127
1128 /*
1129  * Search a snapshot context to see if the given snapshot id is
1130  * present.
1131  *
1132  * Returns the position of the snapshot id in the array if it's found,
1133  * or BAD_SNAP_INDEX otherwise.
1134  *
1135  * Note: The snapshot array is in kept sorted (by the osd) in
1136  * reverse order, highest snapshot id first.
1137  */
1138 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1139 {
1140         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1141         u64 *found;
1142
1143         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1144                                 sizeof (snap_id), snapid_compare_reverse);
1145
1146         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1147 }
1148
1149 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1150                                         u64 snap_id)
1151 {
1152         u32 which;
1153         const char *snap_name;
1154
1155         which = rbd_dev_snap_index(rbd_dev, snap_id);
1156         if (which == BAD_SNAP_INDEX)
1157                 return ERR_PTR(-ENOENT);
1158
1159         snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1160         return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1161 }
1162
1163 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1164 {
1165         if (snap_id == CEPH_NOSNAP)
1166                 return RBD_SNAP_HEAD_NAME;
1167
1168         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1169         if (rbd_dev->image_format == 1)
1170                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1171
1172         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1173 }
1174
1175 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1176                                 u64 *snap_size)
1177 {
1178         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1179         if (snap_id == CEPH_NOSNAP) {
1180                 *snap_size = rbd_dev->header.image_size;
1181         } else if (rbd_dev->image_format == 1) {
1182                 u32 which;
1183
1184                 which = rbd_dev_snap_index(rbd_dev, snap_id);
1185                 if (which == BAD_SNAP_INDEX)
1186                         return -ENOENT;
1187
1188                 *snap_size = rbd_dev->header.snap_sizes[which];
1189         } else {
1190                 u64 size = 0;
1191                 int ret;
1192
1193                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1194                 if (ret)
1195                         return ret;
1196
1197                 *snap_size = size;
1198         }
1199         return 0;
1200 }
1201
1202 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1203 {
1204         u64 snap_id = rbd_dev->spec->snap_id;
1205         u64 size = 0;
1206         int ret;
1207
1208         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1209         if (ret)
1210                 return ret;
1211
1212         rbd_dev->mapping.size = size;
1213         return 0;
1214 }
1215
1216 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1217 {
1218         rbd_dev->mapping.size = 0;
1219 }
1220
1221 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes)
1222 {
1223         struct ceph_bio_iter it = *bio_pos;
1224
1225         ceph_bio_iter_advance(&it, off);
1226         ceph_bio_iter_advance_step(&it, bytes, ({
1227                 memzero_bvec(&bv);
1228         }));
1229 }
1230
1231 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes)
1232 {
1233         struct ceph_bvec_iter it = *bvec_pos;
1234
1235         ceph_bvec_iter_advance(&it, off);
1236         ceph_bvec_iter_advance_step(&it, bytes, ({
1237                 memzero_bvec(&bv);
1238         }));
1239 }
1240
1241 /*
1242  * Zero a range in @obj_req data buffer defined by a bio (list) or
1243  * (private) bio_vec array.
1244  *
1245  * @off is relative to the start of the data buffer.
1246  */
1247 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off,
1248                                u32 bytes)
1249 {
1250         dout("%s %p data buf %u~%u\n", __func__, obj_req, off, bytes);
1251
1252         switch (obj_req->img_request->data_type) {
1253         case OBJ_REQUEST_BIO:
1254                 zero_bios(&obj_req->bio_pos, off, bytes);
1255                 break;
1256         case OBJ_REQUEST_BVECS:
1257         case OBJ_REQUEST_OWN_BVECS:
1258                 zero_bvecs(&obj_req->bvec_pos, off, bytes);
1259                 break;
1260         default:
1261                 BUG();
1262         }
1263 }
1264
1265 static void rbd_obj_request_destroy(struct kref *kref);
1266 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1267 {
1268         rbd_assert(obj_request != NULL);
1269         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1270                 kref_read(&obj_request->kref));
1271         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1272 }
1273
1274 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1275                                         struct rbd_obj_request *obj_request)
1276 {
1277         rbd_assert(obj_request->img_request == NULL);
1278
1279         /* Image request now owns object's original reference */
1280         obj_request->img_request = img_request;
1281         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1282 }
1283
1284 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1285                                         struct rbd_obj_request *obj_request)
1286 {
1287         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1288         list_del(&obj_request->ex.oe_item);
1289         rbd_assert(obj_request->img_request == img_request);
1290         rbd_obj_request_put(obj_request);
1291 }
1292
1293 static void rbd_osd_submit(struct ceph_osd_request *osd_req)
1294 {
1295         struct rbd_obj_request *obj_req = osd_req->r_priv;
1296
1297         dout("%s osd_req %p for obj_req %p objno %llu %llu~%llu\n",
1298              __func__, osd_req, obj_req, obj_req->ex.oe_objno,
1299              obj_req->ex.oe_off, obj_req->ex.oe_len);
1300         ceph_osdc_start_request(osd_req->r_osdc, osd_req);
1301 }
1302
1303 /*
1304  * The default/initial value for all image request flags is 0.  Each
1305  * is conditionally set to 1 at image request initialization time
1306  * and currently never change thereafter.
1307  */
1308 static void img_request_layered_set(struct rbd_img_request *img_request)
1309 {
1310         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1311 }
1312
1313 static bool img_request_layered_test(struct rbd_img_request *img_request)
1314 {
1315         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1316 }
1317
1318 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req)
1319 {
1320         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1321
1322         return !obj_req->ex.oe_off &&
1323                obj_req->ex.oe_len == rbd_dev->layout.object_size;
1324 }
1325
1326 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req)
1327 {
1328         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1329
1330         return obj_req->ex.oe_off + obj_req->ex.oe_len ==
1331                                         rbd_dev->layout.object_size;
1332 }
1333
1334 /*
1335  * Must be called after rbd_obj_calc_img_extents().
1336  */
1337 static bool rbd_obj_copyup_enabled(struct rbd_obj_request *obj_req)
1338 {
1339         if (!obj_req->num_img_extents ||
1340             (rbd_obj_is_entire(obj_req) &&
1341              !obj_req->img_request->snapc->num_snaps))
1342                 return false;
1343
1344         return true;
1345 }
1346
1347 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req)
1348 {
1349         return ceph_file_extents_bytes(obj_req->img_extents,
1350                                        obj_req->num_img_extents);
1351 }
1352
1353 static bool rbd_img_is_write(struct rbd_img_request *img_req)
1354 {
1355         switch (img_req->op_type) {
1356         case OBJ_OP_READ:
1357                 return false;
1358         case OBJ_OP_WRITE:
1359         case OBJ_OP_DISCARD:
1360         case OBJ_OP_ZEROOUT:
1361                 return true;
1362         default:
1363                 BUG();
1364         }
1365 }
1366
1367 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1368 {
1369         struct rbd_obj_request *obj_req = osd_req->r_priv;
1370         int result;
1371
1372         dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1373              osd_req->r_result, obj_req);
1374
1375         /*
1376          * Writes aren't allowed to return a data payload.  In some
1377          * guarded write cases (e.g. stat + zero on an empty object)
1378          * a stat response makes it through, but we don't care.
1379          */
1380         if (osd_req->r_result > 0 && rbd_img_is_write(obj_req->img_request))
1381                 result = 0;
1382         else
1383                 result = osd_req->r_result;
1384
1385         rbd_obj_handle_request(obj_req, result);
1386 }
1387
1388 static void rbd_osd_format_read(struct ceph_osd_request *osd_req)
1389 {
1390         struct rbd_obj_request *obj_request = osd_req->r_priv;
1391         struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1392         struct ceph_options *opt = rbd_dev->rbd_client->client->options;
1393
1394         osd_req->r_flags = CEPH_OSD_FLAG_READ | opt->read_from_replica;
1395         osd_req->r_snapid = obj_request->img_request->snap_id;
1396 }
1397
1398 static void rbd_osd_format_write(struct ceph_osd_request *osd_req)
1399 {
1400         struct rbd_obj_request *obj_request = osd_req->r_priv;
1401
1402         osd_req->r_flags = CEPH_OSD_FLAG_WRITE;
1403         ktime_get_real_ts64(&osd_req->r_mtime);
1404         osd_req->r_data_offset = obj_request->ex.oe_off;
1405 }
1406
1407 static struct ceph_osd_request *
1408 __rbd_obj_add_osd_request(struct rbd_obj_request *obj_req,
1409                           struct ceph_snap_context *snapc, int num_ops)
1410 {
1411         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1412         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1413         struct ceph_osd_request *req;
1414         const char *name_format = rbd_dev->image_format == 1 ?
1415                                       RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1416         int ret;
1417
1418         req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO);
1419         if (!req)
1420                 return ERR_PTR(-ENOMEM);
1421
1422         list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
1423         req->r_callback = rbd_osd_req_callback;
1424         req->r_priv = obj_req;
1425
1426         /*
1427          * Data objects may be stored in a separate pool, but always in
1428          * the same namespace in that pool as the header in its pool.
1429          */
1430         ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
1431         req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1432
1433         ret = ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1434                                rbd_dev->header.object_prefix,
1435                                obj_req->ex.oe_objno);
1436         if (ret)
1437                 return ERR_PTR(ret);
1438
1439         return req;
1440 }
1441
1442 static struct ceph_osd_request *
1443 rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, int num_ops)
1444 {
1445         return __rbd_obj_add_osd_request(obj_req, obj_req->img_request->snapc,
1446                                          num_ops);
1447 }
1448
1449 static struct rbd_obj_request *rbd_obj_request_create(void)
1450 {
1451         struct rbd_obj_request *obj_request;
1452
1453         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
1454         if (!obj_request)
1455                 return NULL;
1456
1457         ceph_object_extent_init(&obj_request->ex);
1458         INIT_LIST_HEAD(&obj_request->osd_reqs);
1459         mutex_init(&obj_request->state_mutex);
1460         kref_init(&obj_request->kref);
1461
1462         dout("%s %p\n", __func__, obj_request);
1463         return obj_request;
1464 }
1465
1466 static void rbd_obj_request_destroy(struct kref *kref)
1467 {
1468         struct rbd_obj_request *obj_request;
1469         struct ceph_osd_request *osd_req;
1470         u32 i;
1471
1472         obj_request = container_of(kref, struct rbd_obj_request, kref);
1473
1474         dout("%s: obj %p\n", __func__, obj_request);
1475
1476         while (!list_empty(&obj_request->osd_reqs)) {
1477                 osd_req = list_first_entry(&obj_request->osd_reqs,
1478                                     struct ceph_osd_request, r_private_item);
1479                 list_del_init(&osd_req->r_private_item);
1480                 ceph_osdc_put_request(osd_req);
1481         }
1482
1483         switch (obj_request->img_request->data_type) {
1484         case OBJ_REQUEST_NODATA:
1485         case OBJ_REQUEST_BIO:
1486         case OBJ_REQUEST_BVECS:
1487                 break;          /* Nothing to do */
1488         case OBJ_REQUEST_OWN_BVECS:
1489                 kfree(obj_request->bvec_pos.bvecs);
1490                 break;
1491         default:
1492                 BUG();
1493         }
1494
1495         kfree(obj_request->img_extents);
1496         if (obj_request->copyup_bvecs) {
1497                 for (i = 0; i < obj_request->copyup_bvec_count; i++) {
1498                         if (obj_request->copyup_bvecs[i].bv_page)
1499                                 __free_page(obj_request->copyup_bvecs[i].bv_page);
1500                 }
1501                 kfree(obj_request->copyup_bvecs);
1502         }
1503
1504         kmem_cache_free(rbd_obj_request_cache, obj_request);
1505 }
1506
1507 /* It's OK to call this for a device with no parent */
1508
1509 static void rbd_spec_put(struct rbd_spec *spec);
1510 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1511 {
1512         rbd_dev_remove_parent(rbd_dev);
1513         rbd_spec_put(rbd_dev->parent_spec);
1514         rbd_dev->parent_spec = NULL;
1515         rbd_dev->parent_overlap = 0;
1516 }
1517
1518 /*
1519  * Parent image reference counting is used to determine when an
1520  * image's parent fields can be safely torn down--after there are no
1521  * more in-flight requests to the parent image.  When the last
1522  * reference is dropped, cleaning them up is safe.
1523  */
1524 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1525 {
1526         int counter;
1527
1528         if (!rbd_dev->parent_spec)
1529                 return;
1530
1531         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1532         if (counter > 0)
1533                 return;
1534
1535         /* Last reference; clean up parent data structures */
1536
1537         if (!counter)
1538                 rbd_dev_unparent(rbd_dev);
1539         else
1540                 rbd_warn(rbd_dev, "parent reference underflow");
1541 }
1542
1543 /*
1544  * If an image has a non-zero parent overlap, get a reference to its
1545  * parent.
1546  *
1547  * Returns true if the rbd device has a parent with a non-zero
1548  * overlap and a reference for it was successfully taken, or
1549  * false otherwise.
1550  */
1551 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1552 {
1553         int counter = 0;
1554
1555         if (!rbd_dev->parent_spec)
1556                 return false;
1557
1558         if (rbd_dev->parent_overlap)
1559                 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1560
1561         if (counter < 0)
1562                 rbd_warn(rbd_dev, "parent reference overflow");
1563
1564         return counter > 0;
1565 }
1566
1567 static void rbd_img_request_init(struct rbd_img_request *img_request,
1568                                  struct rbd_device *rbd_dev,
1569                                  enum obj_operation_type op_type)
1570 {
1571         memset(img_request, 0, sizeof(*img_request));
1572
1573         img_request->rbd_dev = rbd_dev;
1574         img_request->op_type = op_type;
1575
1576         INIT_LIST_HEAD(&img_request->lock_item);
1577         INIT_LIST_HEAD(&img_request->object_extents);
1578         mutex_init(&img_request->state_mutex);
1579 }
1580
1581 static void rbd_img_capture_header(struct rbd_img_request *img_req)
1582 {
1583         struct rbd_device *rbd_dev = img_req->rbd_dev;
1584
1585         lockdep_assert_held(&rbd_dev->header_rwsem);
1586
1587         if (rbd_img_is_write(img_req))
1588                 img_req->snapc = ceph_get_snap_context(rbd_dev->header.snapc);
1589         else
1590                 img_req->snap_id = rbd_dev->spec->snap_id;
1591
1592         if (rbd_dev_parent_get(rbd_dev))
1593                 img_request_layered_set(img_req);
1594 }
1595
1596 static void rbd_img_request_destroy(struct rbd_img_request *img_request)
1597 {
1598         struct rbd_obj_request *obj_request;
1599         struct rbd_obj_request *next_obj_request;
1600
1601         dout("%s: img %p\n", __func__, img_request);
1602
1603         WARN_ON(!list_empty(&img_request->lock_item));
1604         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1605                 rbd_img_obj_request_del(img_request, obj_request);
1606
1607         if (img_request_layered_test(img_request))
1608                 rbd_dev_parent_put(img_request->rbd_dev);
1609
1610         if (rbd_img_is_write(img_request))
1611                 ceph_put_snap_context(img_request->snapc);
1612
1613         if (test_bit(IMG_REQ_CHILD, &img_request->flags))
1614                 kmem_cache_free(rbd_img_request_cache, img_request);
1615 }
1616
1617 #define BITS_PER_OBJ    2
1618 #define OBJS_PER_BYTE   (BITS_PER_BYTE / BITS_PER_OBJ)
1619 #define OBJ_MASK        ((1 << BITS_PER_OBJ) - 1)
1620
1621 static void __rbd_object_map_index(struct rbd_device *rbd_dev, u64 objno,
1622                                    u64 *index, u8 *shift)
1623 {
1624         u32 off;
1625
1626         rbd_assert(objno < rbd_dev->object_map_size);
1627         *index = div_u64_rem(objno, OBJS_PER_BYTE, &off);
1628         *shift = (OBJS_PER_BYTE - off - 1) * BITS_PER_OBJ;
1629 }
1630
1631 static u8 __rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1632 {
1633         u64 index;
1634         u8 shift;
1635
1636         lockdep_assert_held(&rbd_dev->object_map_lock);
1637         __rbd_object_map_index(rbd_dev, objno, &index, &shift);
1638         return (rbd_dev->object_map[index] >> shift) & OBJ_MASK;
1639 }
1640
1641 static void __rbd_object_map_set(struct rbd_device *rbd_dev, u64 objno, u8 val)
1642 {
1643         u64 index;
1644         u8 shift;
1645         u8 *p;
1646
1647         lockdep_assert_held(&rbd_dev->object_map_lock);
1648         rbd_assert(!(val & ~OBJ_MASK));
1649
1650         __rbd_object_map_index(rbd_dev, objno, &index, &shift);
1651         p = &rbd_dev->object_map[index];
1652         *p = (*p & ~(OBJ_MASK << shift)) | (val << shift);
1653 }
1654
1655 static u8 rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1656 {
1657         u8 state;
1658
1659         spin_lock(&rbd_dev->object_map_lock);
1660         state = __rbd_object_map_get(rbd_dev, objno);
1661         spin_unlock(&rbd_dev->object_map_lock);
1662         return state;
1663 }
1664
1665 static bool use_object_map(struct rbd_device *rbd_dev)
1666 {
1667         /*
1668          * An image mapped read-only can't use the object map -- it isn't
1669          * loaded because the header lock isn't acquired.  Someone else can
1670          * write to the image and update the object map behind our back.
1671          *
1672          * A snapshot can't be written to, so using the object map is always
1673          * safe.
1674          */
1675         if (!rbd_is_snap(rbd_dev) && rbd_is_ro(rbd_dev))
1676                 return false;
1677
1678         return ((rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) &&
1679                 !(rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID));
1680 }
1681
1682 static bool rbd_object_map_may_exist(struct rbd_device *rbd_dev, u64 objno)
1683 {
1684         u8 state;
1685
1686         /* fall back to default logic if object map is disabled or invalid */
1687         if (!use_object_map(rbd_dev))
1688                 return true;
1689
1690         state = rbd_object_map_get(rbd_dev, objno);
1691         return state != OBJECT_NONEXISTENT;
1692 }
1693
1694 static void rbd_object_map_name(struct rbd_device *rbd_dev, u64 snap_id,
1695                                 struct ceph_object_id *oid)
1696 {
1697         if (snap_id == CEPH_NOSNAP)
1698                 ceph_oid_printf(oid, "%s%s", RBD_OBJECT_MAP_PREFIX,
1699                                 rbd_dev->spec->image_id);
1700         else
1701                 ceph_oid_printf(oid, "%s%s.%016llx", RBD_OBJECT_MAP_PREFIX,
1702                                 rbd_dev->spec->image_id, snap_id);
1703 }
1704
1705 static int rbd_object_map_lock(struct rbd_device *rbd_dev)
1706 {
1707         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1708         CEPH_DEFINE_OID_ONSTACK(oid);
1709         u8 lock_type;
1710         char *lock_tag;
1711         struct ceph_locker *lockers;
1712         u32 num_lockers;
1713         bool broke_lock = false;
1714         int ret;
1715
1716         rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1717
1718 again:
1719         ret = ceph_cls_lock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1720                             CEPH_CLS_LOCK_EXCLUSIVE, "", "", "", 0);
1721         if (ret != -EBUSY || broke_lock) {
1722                 if (ret == -EEXIST)
1723                         ret = 0; /* already locked by myself */
1724                 if (ret)
1725                         rbd_warn(rbd_dev, "failed to lock object map: %d", ret);
1726                 return ret;
1727         }
1728
1729         ret = ceph_cls_lock_info(osdc, &oid, &rbd_dev->header_oloc,
1730                                  RBD_LOCK_NAME, &lock_type, &lock_tag,
1731                                  &lockers, &num_lockers);
1732         if (ret) {
1733                 if (ret == -ENOENT)
1734                         goto again;
1735
1736                 rbd_warn(rbd_dev, "failed to get object map lockers: %d", ret);
1737                 return ret;
1738         }
1739
1740         kfree(lock_tag);
1741         if (num_lockers == 0)
1742                 goto again;
1743
1744         rbd_warn(rbd_dev, "breaking object map lock owned by %s%llu",
1745                  ENTITY_NAME(lockers[0].id.name));
1746
1747         ret = ceph_cls_break_lock(osdc, &oid, &rbd_dev->header_oloc,
1748                                   RBD_LOCK_NAME, lockers[0].id.cookie,
1749                                   &lockers[0].id.name);
1750         ceph_free_lockers(lockers, num_lockers);
1751         if (ret) {
1752                 if (ret == -ENOENT)
1753                         goto again;
1754
1755                 rbd_warn(rbd_dev, "failed to break object map lock: %d", ret);
1756                 return ret;
1757         }
1758
1759         broke_lock = true;
1760         goto again;
1761 }
1762
1763 static void rbd_object_map_unlock(struct rbd_device *rbd_dev)
1764 {
1765         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1766         CEPH_DEFINE_OID_ONSTACK(oid);
1767         int ret;
1768
1769         rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1770
1771         ret = ceph_cls_unlock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1772                               "");
1773         if (ret && ret != -ENOENT)
1774                 rbd_warn(rbd_dev, "failed to unlock object map: %d", ret);
1775 }
1776
1777 static int decode_object_map_header(void **p, void *end, u64 *object_map_size)
1778 {
1779         u8 struct_v;
1780         u32 struct_len;
1781         u32 header_len;
1782         void *header_end;
1783         int ret;
1784
1785         ceph_decode_32_safe(p, end, header_len, e_inval);
1786         header_end = *p + header_len;
1787
1788         ret = ceph_start_decoding(p, end, 1, "BitVector header", &struct_v,
1789                                   &struct_len);
1790         if (ret)
1791                 return ret;
1792
1793         ceph_decode_64_safe(p, end, *object_map_size, e_inval);
1794
1795         *p = header_end;
1796         return 0;
1797
1798 e_inval:
1799         return -EINVAL;
1800 }
1801
1802 static int __rbd_object_map_load(struct rbd_device *rbd_dev)
1803 {
1804         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1805         CEPH_DEFINE_OID_ONSTACK(oid);
1806         struct page **pages;
1807         void *p, *end;
1808         size_t reply_len;
1809         u64 num_objects;
1810         u64 object_map_bytes;
1811         u64 object_map_size;
1812         int num_pages;
1813         int ret;
1814
1815         rbd_assert(!rbd_dev->object_map && !rbd_dev->object_map_size);
1816
1817         num_objects = ceph_get_num_objects(&rbd_dev->layout,
1818                                            rbd_dev->mapping.size);
1819         object_map_bytes = DIV_ROUND_UP_ULL(num_objects * BITS_PER_OBJ,
1820                                             BITS_PER_BYTE);
1821         num_pages = calc_pages_for(0, object_map_bytes) + 1;
1822         pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
1823         if (IS_ERR(pages))
1824                 return PTR_ERR(pages);
1825
1826         reply_len = num_pages * PAGE_SIZE;
1827         rbd_object_map_name(rbd_dev, rbd_dev->spec->snap_id, &oid);
1828         ret = ceph_osdc_call(osdc, &oid, &rbd_dev->header_oloc,
1829                              "rbd", "object_map_load", CEPH_OSD_FLAG_READ,
1830                              NULL, 0, pages, &reply_len);
1831         if (ret)
1832                 goto out;
1833
1834         p = page_address(pages[0]);
1835         end = p + min(reply_len, (size_t)PAGE_SIZE);
1836         ret = decode_object_map_header(&p, end, &object_map_size);
1837         if (ret)
1838                 goto out;
1839
1840         if (object_map_size != num_objects) {
1841                 rbd_warn(rbd_dev, "object map size mismatch: %llu vs %llu",
1842                          object_map_size, num_objects);
1843                 ret = -EINVAL;
1844                 goto out;
1845         }
1846
1847         if (offset_in_page(p) + object_map_bytes > reply_len) {
1848                 ret = -EINVAL;
1849                 goto out;
1850         }
1851
1852         rbd_dev->object_map = kvmalloc(object_map_bytes, GFP_KERNEL);
1853         if (!rbd_dev->object_map) {
1854                 ret = -ENOMEM;
1855                 goto out;
1856         }
1857
1858         rbd_dev->object_map_size = object_map_size;
1859         ceph_copy_from_page_vector(pages, rbd_dev->object_map,
1860                                    offset_in_page(p), object_map_bytes);
1861
1862 out:
1863         ceph_release_page_vector(pages, num_pages);
1864         return ret;
1865 }
1866
1867 static void rbd_object_map_free(struct rbd_device *rbd_dev)
1868 {
1869         kvfree(rbd_dev->object_map);
1870         rbd_dev->object_map = NULL;
1871         rbd_dev->object_map_size = 0;
1872 }
1873
1874 static int rbd_object_map_load(struct rbd_device *rbd_dev)
1875 {
1876         int ret;
1877
1878         ret = __rbd_object_map_load(rbd_dev);
1879         if (ret)
1880                 return ret;
1881
1882         ret = rbd_dev_v2_get_flags(rbd_dev);
1883         if (ret) {
1884                 rbd_object_map_free(rbd_dev);
1885                 return ret;
1886         }
1887
1888         if (rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID)
1889                 rbd_warn(rbd_dev, "object map is invalid");
1890
1891         return 0;
1892 }
1893
1894 static int rbd_object_map_open(struct rbd_device *rbd_dev)
1895 {
1896         int ret;
1897
1898         ret = rbd_object_map_lock(rbd_dev);
1899         if (ret)
1900                 return ret;
1901
1902         ret = rbd_object_map_load(rbd_dev);
1903         if (ret) {
1904                 rbd_object_map_unlock(rbd_dev);
1905                 return ret;
1906         }
1907
1908         return 0;
1909 }
1910
1911 static void rbd_object_map_close(struct rbd_device *rbd_dev)
1912 {
1913         rbd_object_map_free(rbd_dev);
1914         rbd_object_map_unlock(rbd_dev);
1915 }
1916
1917 /*
1918  * This function needs snap_id (or more precisely just something to
1919  * distinguish between HEAD and snapshot object maps), new_state and
1920  * current_state that were passed to rbd_object_map_update().
1921  *
1922  * To avoid allocating and stashing a context we piggyback on the OSD
1923  * request.  A HEAD update has two ops (assert_locked).  For new_state
1924  * and current_state we decode our own object_map_update op, encoded in
1925  * rbd_cls_object_map_update().
1926  */
1927 static int rbd_object_map_update_finish(struct rbd_obj_request *obj_req,
1928                                         struct ceph_osd_request *osd_req)
1929 {
1930         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1931         struct ceph_osd_data *osd_data;
1932         u64 objno;
1933         u8 state, new_state, current_state;
1934         bool has_current_state;
1935         void *p;
1936
1937         if (osd_req->r_result)
1938                 return osd_req->r_result;
1939
1940         /*
1941          * Nothing to do for a snapshot object map.
1942          */
1943         if (osd_req->r_num_ops == 1)
1944                 return 0;
1945
1946         /*
1947          * Update in-memory HEAD object map.
1948          */
1949         rbd_assert(osd_req->r_num_ops == 2);
1950         osd_data = osd_req_op_data(osd_req, 1, cls, request_data);
1951         rbd_assert(osd_data->type == CEPH_OSD_DATA_TYPE_PAGES);
1952
1953         p = page_address(osd_data->pages[0]);
1954         objno = ceph_decode_64(&p);
1955         rbd_assert(objno == obj_req->ex.oe_objno);
1956         rbd_assert(ceph_decode_64(&p) == objno + 1);
1957         new_state = ceph_decode_8(&p);
1958         has_current_state = ceph_decode_8(&p);
1959         if (has_current_state)
1960                 current_state = ceph_decode_8(&p);
1961
1962         spin_lock(&rbd_dev->object_map_lock);
1963         state = __rbd_object_map_get(rbd_dev, objno);
1964         if (!has_current_state || current_state == state ||
1965             (current_state == OBJECT_EXISTS && state == OBJECT_EXISTS_CLEAN))
1966                 __rbd_object_map_set(rbd_dev, objno, new_state);
1967         spin_unlock(&rbd_dev->object_map_lock);
1968
1969         return 0;
1970 }
1971
1972 static void rbd_object_map_callback(struct ceph_osd_request *osd_req)
1973 {
1974         struct rbd_obj_request *obj_req = osd_req->r_priv;
1975         int result;
1976
1977         dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1978              osd_req->r_result, obj_req);
1979
1980         result = rbd_object_map_update_finish(obj_req, osd_req);
1981         rbd_obj_handle_request(obj_req, result);
1982 }
1983
1984 static bool update_needed(struct rbd_device *rbd_dev, u64 objno, u8 new_state)
1985 {
1986         u8 state = rbd_object_map_get(rbd_dev, objno);
1987
1988         if (state == new_state ||
1989             (new_state == OBJECT_PENDING && state == OBJECT_NONEXISTENT) ||
1990             (new_state == OBJECT_NONEXISTENT && state != OBJECT_PENDING))
1991                 return false;
1992
1993         return true;
1994 }
1995
1996 static int rbd_cls_object_map_update(struct ceph_osd_request *req,
1997                                      int which, u64 objno, u8 new_state,
1998                                      const u8 *current_state)
1999 {
2000         struct page **pages;
2001         void *p, *start;
2002         int ret;
2003
2004         ret = osd_req_op_cls_init(req, which, "rbd", "object_map_update");
2005         if (ret)
2006                 return ret;
2007
2008         pages = ceph_alloc_page_vector(1, GFP_NOIO);
2009         if (IS_ERR(pages))
2010                 return PTR_ERR(pages);
2011
2012         p = start = page_address(pages[0]);
2013         ceph_encode_64(&p, objno);
2014         ceph_encode_64(&p, objno + 1);
2015         ceph_encode_8(&p, new_state);
2016         if (current_state) {
2017                 ceph_encode_8(&p, 1);
2018                 ceph_encode_8(&p, *current_state);
2019         } else {
2020                 ceph_encode_8(&p, 0);
2021         }
2022
2023         osd_req_op_cls_request_data_pages(req, which, pages, p - start, 0,
2024                                           false, true);
2025         return 0;
2026 }
2027
2028 /*
2029  * Return:
2030  *   0 - object map update sent
2031  *   1 - object map update isn't needed
2032  *  <0 - error
2033  */
2034 static int rbd_object_map_update(struct rbd_obj_request *obj_req, u64 snap_id,
2035                                  u8 new_state, const u8 *current_state)
2036 {
2037         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2038         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2039         struct ceph_osd_request *req;
2040         int num_ops = 1;
2041         int which = 0;
2042         int ret;
2043
2044         if (snap_id == CEPH_NOSNAP) {
2045                 if (!update_needed(rbd_dev, obj_req->ex.oe_objno, new_state))
2046                         return 1;
2047
2048                 num_ops++; /* assert_locked */
2049         }
2050
2051         req = ceph_osdc_alloc_request(osdc, NULL, num_ops, false, GFP_NOIO);
2052         if (!req)
2053                 return -ENOMEM;
2054
2055         list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
2056         req->r_callback = rbd_object_map_callback;
2057         req->r_priv = obj_req;
2058
2059         rbd_object_map_name(rbd_dev, snap_id, &req->r_base_oid);
2060         ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
2061         req->r_flags = CEPH_OSD_FLAG_WRITE;
2062         ktime_get_real_ts64(&req->r_mtime);
2063
2064         if (snap_id == CEPH_NOSNAP) {
2065                 /*
2066                  * Protect against possible race conditions during lock
2067                  * ownership transitions.
2068                  */
2069                 ret = ceph_cls_assert_locked(req, which++, RBD_LOCK_NAME,
2070                                              CEPH_CLS_LOCK_EXCLUSIVE, "", "");
2071                 if (ret)
2072                         return ret;
2073         }
2074
2075         ret = rbd_cls_object_map_update(req, which, obj_req->ex.oe_objno,
2076                                         new_state, current_state);
2077         if (ret)
2078                 return ret;
2079
2080         ret = ceph_osdc_alloc_messages(req, GFP_NOIO);
2081         if (ret)
2082                 return ret;
2083
2084         ceph_osdc_start_request(osdc, req);
2085         return 0;
2086 }
2087
2088 static void prune_extents(struct ceph_file_extent *img_extents,
2089                           u32 *num_img_extents, u64 overlap)
2090 {
2091         u32 cnt = *num_img_extents;
2092
2093         /* drop extents completely beyond the overlap */
2094         while (cnt && img_extents[cnt - 1].fe_off >= overlap)
2095                 cnt--;
2096
2097         if (cnt) {
2098                 struct ceph_file_extent *ex = &img_extents[cnt - 1];
2099
2100                 /* trim final overlapping extent */
2101                 if (ex->fe_off + ex->fe_len > overlap)
2102                         ex->fe_len = overlap - ex->fe_off;
2103         }
2104
2105         *num_img_extents = cnt;
2106 }
2107
2108 /*
2109  * Determine the byte range(s) covered by either just the object extent
2110  * or the entire object in the parent image.
2111  */
2112 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req,
2113                                     bool entire)
2114 {
2115         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2116         int ret;
2117
2118         if (!rbd_dev->parent_overlap)
2119                 return 0;
2120
2121         ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno,
2122                                   entire ? 0 : obj_req->ex.oe_off,
2123                                   entire ? rbd_dev->layout.object_size :
2124                                                         obj_req->ex.oe_len,
2125                                   &obj_req->img_extents,
2126                                   &obj_req->num_img_extents);
2127         if (ret)
2128                 return ret;
2129
2130         prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
2131                       rbd_dev->parent_overlap);
2132         return 0;
2133 }
2134
2135 static void rbd_osd_setup_data(struct ceph_osd_request *osd_req, int which)
2136 {
2137         struct rbd_obj_request *obj_req = osd_req->r_priv;
2138
2139         switch (obj_req->img_request->data_type) {
2140         case OBJ_REQUEST_BIO:
2141                 osd_req_op_extent_osd_data_bio(osd_req, which,
2142                                                &obj_req->bio_pos,
2143                                                obj_req->ex.oe_len);
2144                 break;
2145         case OBJ_REQUEST_BVECS:
2146         case OBJ_REQUEST_OWN_BVECS:
2147                 rbd_assert(obj_req->bvec_pos.iter.bi_size ==
2148                                                         obj_req->ex.oe_len);
2149                 rbd_assert(obj_req->bvec_idx == obj_req->bvec_count);
2150                 osd_req_op_extent_osd_data_bvec_pos(osd_req, which,
2151                                                     &obj_req->bvec_pos);
2152                 break;
2153         default:
2154                 BUG();
2155         }
2156 }
2157
2158 static int rbd_osd_setup_stat(struct ceph_osd_request *osd_req, int which)
2159 {
2160         struct page **pages;
2161
2162         /*
2163          * The response data for a STAT call consists of:
2164          *     le64 length;
2165          *     struct {
2166          *         le32 tv_sec;
2167          *         le32 tv_nsec;
2168          *     } mtime;
2169          */
2170         pages = ceph_alloc_page_vector(1, GFP_NOIO);
2171         if (IS_ERR(pages))
2172                 return PTR_ERR(pages);
2173
2174         osd_req_op_init(osd_req, which, CEPH_OSD_OP_STAT, 0);
2175         osd_req_op_raw_data_in_pages(osd_req, which, pages,
2176                                      8 + sizeof(struct ceph_timespec),
2177                                      0, false, true);
2178         return 0;
2179 }
2180
2181 static int rbd_osd_setup_copyup(struct ceph_osd_request *osd_req, int which,
2182                                 u32 bytes)
2183 {
2184         struct rbd_obj_request *obj_req = osd_req->r_priv;
2185         int ret;
2186
2187         ret = osd_req_op_cls_init(osd_req, which, "rbd", "copyup");
2188         if (ret)
2189                 return ret;
2190
2191         osd_req_op_cls_request_data_bvecs(osd_req, which, obj_req->copyup_bvecs,
2192                                           obj_req->copyup_bvec_count, bytes);
2193         return 0;
2194 }
2195
2196 static int rbd_obj_init_read(struct rbd_obj_request *obj_req)
2197 {
2198         obj_req->read_state = RBD_OBJ_READ_START;
2199         return 0;
2200 }
2201
2202 static void __rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2203                                       int which)
2204 {
2205         struct rbd_obj_request *obj_req = osd_req->r_priv;
2206         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2207         u16 opcode;
2208
2209         if (!use_object_map(rbd_dev) ||
2210             !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) {
2211                 osd_req_op_alloc_hint_init(osd_req, which++,
2212                                            rbd_dev->layout.object_size,
2213                                            rbd_dev->layout.object_size,
2214                                            rbd_dev->opts->alloc_hint_flags);
2215         }
2216
2217         if (rbd_obj_is_entire(obj_req))
2218                 opcode = CEPH_OSD_OP_WRITEFULL;
2219         else
2220                 opcode = CEPH_OSD_OP_WRITE;
2221
2222         osd_req_op_extent_init(osd_req, which, opcode,
2223                                obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2224         rbd_osd_setup_data(osd_req, which);
2225 }
2226
2227 static int rbd_obj_init_write(struct rbd_obj_request *obj_req)
2228 {
2229         int ret;
2230
2231         /* reverse map the entire object onto the parent */
2232         ret = rbd_obj_calc_img_extents(obj_req, true);
2233         if (ret)
2234                 return ret;
2235
2236         if (rbd_obj_copyup_enabled(obj_req))
2237                 obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
2238
2239         obj_req->write_state = RBD_OBJ_WRITE_START;
2240         return 0;
2241 }
2242
2243 static u16 truncate_or_zero_opcode(struct rbd_obj_request *obj_req)
2244 {
2245         return rbd_obj_is_tail(obj_req) ? CEPH_OSD_OP_TRUNCATE :
2246                                           CEPH_OSD_OP_ZERO;
2247 }
2248
2249 static void __rbd_osd_setup_discard_ops(struct ceph_osd_request *osd_req,
2250                                         int which)
2251 {
2252         struct rbd_obj_request *obj_req = osd_req->r_priv;
2253
2254         if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) {
2255                 rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2256                 osd_req_op_init(osd_req, which, CEPH_OSD_OP_DELETE, 0);
2257         } else {
2258                 osd_req_op_extent_init(osd_req, which,
2259                                        truncate_or_zero_opcode(obj_req),
2260                                        obj_req->ex.oe_off, obj_req->ex.oe_len,
2261                                        0, 0);
2262         }
2263 }
2264
2265 static int rbd_obj_init_discard(struct rbd_obj_request *obj_req)
2266 {
2267         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2268         u64 off, next_off;
2269         int ret;
2270
2271         /*
2272          * Align the range to alloc_size boundary and punt on discards
2273          * that are too small to free up any space.
2274          *
2275          * alloc_size == object_size && is_tail() is a special case for
2276          * filestore with filestore_punch_hole = false, needed to allow
2277          * truncate (in addition to delete).
2278          */
2279         if (rbd_dev->opts->alloc_size != rbd_dev->layout.object_size ||
2280             !rbd_obj_is_tail(obj_req)) {
2281                 off = round_up(obj_req->ex.oe_off, rbd_dev->opts->alloc_size);
2282                 next_off = round_down(obj_req->ex.oe_off + obj_req->ex.oe_len,
2283                                       rbd_dev->opts->alloc_size);
2284                 if (off >= next_off)
2285                         return 1;
2286
2287                 dout("%s %p %llu~%llu -> %llu~%llu\n", __func__,
2288                      obj_req, obj_req->ex.oe_off, obj_req->ex.oe_len,
2289                      off, next_off - off);
2290                 obj_req->ex.oe_off = off;
2291                 obj_req->ex.oe_len = next_off - off;
2292         }
2293
2294         /* reverse map the entire object onto the parent */
2295         ret = rbd_obj_calc_img_extents(obj_req, true);
2296         if (ret)
2297                 return ret;
2298
2299         obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2300         if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents)
2301                 obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2302
2303         obj_req->write_state = RBD_OBJ_WRITE_START;
2304         return 0;
2305 }
2306
2307 static void __rbd_osd_setup_zeroout_ops(struct ceph_osd_request *osd_req,
2308                                         int which)
2309 {
2310         struct rbd_obj_request *obj_req = osd_req->r_priv;
2311         u16 opcode;
2312
2313         if (rbd_obj_is_entire(obj_req)) {
2314                 if (obj_req->num_img_extents) {
2315                         if (!(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2316                                 osd_req_op_init(osd_req, which++,
2317                                                 CEPH_OSD_OP_CREATE, 0);
2318                         opcode = CEPH_OSD_OP_TRUNCATE;
2319                 } else {
2320                         rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2321                         osd_req_op_init(osd_req, which++,
2322                                         CEPH_OSD_OP_DELETE, 0);
2323                         opcode = 0;
2324                 }
2325         } else {
2326                 opcode = truncate_or_zero_opcode(obj_req);
2327         }
2328
2329         if (opcode)
2330                 osd_req_op_extent_init(osd_req, which, opcode,
2331                                        obj_req->ex.oe_off, obj_req->ex.oe_len,
2332                                        0, 0);
2333 }
2334
2335 static int rbd_obj_init_zeroout(struct rbd_obj_request *obj_req)
2336 {
2337         int ret;
2338
2339         /* reverse map the entire object onto the parent */
2340         ret = rbd_obj_calc_img_extents(obj_req, true);
2341         if (ret)
2342                 return ret;
2343
2344         if (rbd_obj_copyup_enabled(obj_req))
2345                 obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
2346         if (!obj_req->num_img_extents) {
2347                 obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2348                 if (rbd_obj_is_entire(obj_req))
2349                         obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2350         }
2351
2352         obj_req->write_state = RBD_OBJ_WRITE_START;
2353         return 0;
2354 }
2355
2356 static int count_write_ops(struct rbd_obj_request *obj_req)
2357 {
2358         struct rbd_img_request *img_req = obj_req->img_request;
2359
2360         switch (img_req->op_type) {
2361         case OBJ_OP_WRITE:
2362                 if (!use_object_map(img_req->rbd_dev) ||
2363                     !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST))
2364                         return 2; /* setallochint + write/writefull */
2365
2366                 return 1; /* write/writefull */
2367         case OBJ_OP_DISCARD:
2368                 return 1; /* delete/truncate/zero */
2369         case OBJ_OP_ZEROOUT:
2370                 if (rbd_obj_is_entire(obj_req) && obj_req->num_img_extents &&
2371                     !(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2372                         return 2; /* create + truncate */
2373
2374                 return 1; /* delete/truncate/zero */
2375         default:
2376                 BUG();
2377         }
2378 }
2379
2380 static void rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2381                                     int which)
2382 {
2383         struct rbd_obj_request *obj_req = osd_req->r_priv;
2384
2385         switch (obj_req->img_request->op_type) {
2386         case OBJ_OP_WRITE:
2387                 __rbd_osd_setup_write_ops(osd_req, which);
2388                 break;
2389         case OBJ_OP_DISCARD:
2390                 __rbd_osd_setup_discard_ops(osd_req, which);
2391                 break;
2392         case OBJ_OP_ZEROOUT:
2393                 __rbd_osd_setup_zeroout_ops(osd_req, which);
2394                 break;
2395         default:
2396                 BUG();
2397         }
2398 }
2399
2400 /*
2401  * Prune the list of object requests (adjust offset and/or length, drop
2402  * redundant requests).  Prepare object request state machines and image
2403  * request state machine for execution.
2404  */
2405 static int __rbd_img_fill_request(struct rbd_img_request *img_req)
2406 {
2407         struct rbd_obj_request *obj_req, *next_obj_req;
2408         int ret;
2409
2410         for_each_obj_request_safe(img_req, obj_req, next_obj_req) {
2411                 switch (img_req->op_type) {
2412                 case OBJ_OP_READ:
2413                         ret = rbd_obj_init_read(obj_req);
2414                         break;
2415                 case OBJ_OP_WRITE:
2416                         ret = rbd_obj_init_write(obj_req);
2417                         break;
2418                 case OBJ_OP_DISCARD:
2419                         ret = rbd_obj_init_discard(obj_req);
2420                         break;
2421                 case OBJ_OP_ZEROOUT:
2422                         ret = rbd_obj_init_zeroout(obj_req);
2423                         break;
2424                 default:
2425                         BUG();
2426                 }
2427                 if (ret < 0)
2428                         return ret;
2429                 if (ret > 0) {
2430                         rbd_img_obj_request_del(img_req, obj_req);
2431                         continue;
2432                 }
2433         }
2434
2435         img_req->state = RBD_IMG_START;
2436         return 0;
2437 }
2438
2439 union rbd_img_fill_iter {
2440         struct ceph_bio_iter    bio_iter;
2441         struct ceph_bvec_iter   bvec_iter;
2442 };
2443
2444 struct rbd_img_fill_ctx {
2445         enum obj_request_type   pos_type;
2446         union rbd_img_fill_iter *pos;
2447         union rbd_img_fill_iter iter;
2448         ceph_object_extent_fn_t set_pos_fn;
2449         ceph_object_extent_fn_t count_fn;
2450         ceph_object_extent_fn_t copy_fn;
2451 };
2452
2453 static struct ceph_object_extent *alloc_object_extent(void *arg)
2454 {
2455         struct rbd_img_request *img_req = arg;
2456         struct rbd_obj_request *obj_req;
2457
2458         obj_req = rbd_obj_request_create();
2459         if (!obj_req)
2460                 return NULL;
2461
2462         rbd_img_obj_request_add(img_req, obj_req);
2463         return &obj_req->ex;
2464 }
2465
2466 /*
2467  * While su != os && sc == 1 is technically not fancy (it's the same
2468  * layout as su == os && sc == 1), we can't use the nocopy path for it
2469  * because ->set_pos_fn() should be called only once per object.
2470  * ceph_file_to_extents() invokes action_fn once per stripe unit, so
2471  * treat su != os && sc == 1 as fancy.
2472  */
2473 static bool rbd_layout_is_fancy(struct ceph_file_layout *l)
2474 {
2475         return l->stripe_unit != l->object_size;
2476 }
2477
2478 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req,
2479                                        struct ceph_file_extent *img_extents,
2480                                        u32 num_img_extents,
2481                                        struct rbd_img_fill_ctx *fctx)
2482 {
2483         u32 i;
2484         int ret;
2485
2486         img_req->data_type = fctx->pos_type;
2487
2488         /*
2489          * Create object requests and set each object request's starting
2490          * position in the provided bio (list) or bio_vec array.
2491          */
2492         fctx->iter = *fctx->pos;
2493         for (i = 0; i < num_img_extents; i++) {
2494                 ret = ceph_file_to_extents(&img_req->rbd_dev->layout,
2495                                            img_extents[i].fe_off,
2496                                            img_extents[i].fe_len,
2497                                            &img_req->object_extents,
2498                                            alloc_object_extent, img_req,
2499                                            fctx->set_pos_fn, &fctx->iter);
2500                 if (ret)
2501                         return ret;
2502         }
2503
2504         return __rbd_img_fill_request(img_req);
2505 }
2506
2507 /*
2508  * Map a list of image extents to a list of object extents, create the
2509  * corresponding object requests (normally each to a different object,
2510  * but not always) and add them to @img_req.  For each object request,
2511  * set up its data descriptor to point to the corresponding chunk(s) of
2512  * @fctx->pos data buffer.
2513  *
2514  * Because ceph_file_to_extents() will merge adjacent object extents
2515  * together, each object request's data descriptor may point to multiple
2516  * different chunks of @fctx->pos data buffer.
2517  *
2518  * @fctx->pos data buffer is assumed to be large enough.
2519  */
2520 static int rbd_img_fill_request(struct rbd_img_request *img_req,
2521                                 struct ceph_file_extent *img_extents,
2522                                 u32 num_img_extents,
2523                                 struct rbd_img_fill_ctx *fctx)
2524 {
2525         struct rbd_device *rbd_dev = img_req->rbd_dev;
2526         struct rbd_obj_request *obj_req;
2527         u32 i;
2528         int ret;
2529
2530         if (fctx->pos_type == OBJ_REQUEST_NODATA ||
2531             !rbd_layout_is_fancy(&rbd_dev->layout))
2532                 return rbd_img_fill_request_nocopy(img_req, img_extents,
2533                                                    num_img_extents, fctx);
2534
2535         img_req->data_type = OBJ_REQUEST_OWN_BVECS;
2536
2537         /*
2538          * Create object requests and determine ->bvec_count for each object
2539          * request.  Note that ->bvec_count sum over all object requests may
2540          * be greater than the number of bio_vecs in the provided bio (list)
2541          * or bio_vec array because when mapped, those bio_vecs can straddle
2542          * stripe unit boundaries.
2543          */
2544         fctx->iter = *fctx->pos;
2545         for (i = 0; i < num_img_extents; i++) {
2546                 ret = ceph_file_to_extents(&rbd_dev->layout,
2547                                            img_extents[i].fe_off,
2548                                            img_extents[i].fe_len,
2549                                            &img_req->object_extents,
2550                                            alloc_object_extent, img_req,
2551                                            fctx->count_fn, &fctx->iter);
2552                 if (ret)
2553                         return ret;
2554         }
2555
2556         for_each_obj_request(img_req, obj_req) {
2557                 obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count,
2558                                               sizeof(*obj_req->bvec_pos.bvecs),
2559                                               GFP_NOIO);
2560                 if (!obj_req->bvec_pos.bvecs)
2561                         return -ENOMEM;
2562         }
2563
2564         /*
2565          * Fill in each object request's private bio_vec array, splitting and
2566          * rearranging the provided bio_vecs in stripe unit chunks as needed.
2567          */
2568         fctx->iter = *fctx->pos;
2569         for (i = 0; i < num_img_extents; i++) {
2570                 ret = ceph_iterate_extents(&rbd_dev->layout,
2571                                            img_extents[i].fe_off,
2572                                            img_extents[i].fe_len,
2573                                            &img_req->object_extents,
2574                                            fctx->copy_fn, &fctx->iter);
2575                 if (ret)
2576                         return ret;
2577         }
2578
2579         return __rbd_img_fill_request(img_req);
2580 }
2581
2582 static int rbd_img_fill_nodata(struct rbd_img_request *img_req,
2583                                u64 off, u64 len)
2584 {
2585         struct ceph_file_extent ex = { off, len };
2586         union rbd_img_fill_iter dummy = {};
2587         struct rbd_img_fill_ctx fctx = {
2588                 .pos_type = OBJ_REQUEST_NODATA,
2589                 .pos = &dummy,
2590         };
2591
2592         return rbd_img_fill_request(img_req, &ex, 1, &fctx);
2593 }
2594
2595 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2596 {
2597         struct rbd_obj_request *obj_req =
2598             container_of(ex, struct rbd_obj_request, ex);
2599         struct ceph_bio_iter *it = arg;
2600
2601         dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2602         obj_req->bio_pos = *it;
2603         ceph_bio_iter_advance(it, bytes);
2604 }
2605
2606 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2607 {
2608         struct rbd_obj_request *obj_req =
2609             container_of(ex, struct rbd_obj_request, ex);
2610         struct ceph_bio_iter *it = arg;
2611
2612         dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2613         ceph_bio_iter_advance_step(it, bytes, ({
2614                 obj_req->bvec_count++;
2615         }));
2616
2617 }
2618
2619 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2620 {
2621         struct rbd_obj_request *obj_req =
2622             container_of(ex, struct rbd_obj_request, ex);
2623         struct ceph_bio_iter *it = arg;
2624
2625         dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2626         ceph_bio_iter_advance_step(it, bytes, ({
2627                 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2628                 obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2629         }));
2630 }
2631
2632 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2633                                    struct ceph_file_extent *img_extents,
2634                                    u32 num_img_extents,
2635                                    struct ceph_bio_iter *bio_pos)
2636 {
2637         struct rbd_img_fill_ctx fctx = {
2638                 .pos_type = OBJ_REQUEST_BIO,
2639                 .pos = (union rbd_img_fill_iter *)bio_pos,
2640                 .set_pos_fn = set_bio_pos,
2641                 .count_fn = count_bio_bvecs,
2642                 .copy_fn = copy_bio_bvecs,
2643         };
2644
2645         return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2646                                     &fctx);
2647 }
2648
2649 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2650                                  u64 off, u64 len, struct bio *bio)
2651 {
2652         struct ceph_file_extent ex = { off, len };
2653         struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter };
2654
2655         return __rbd_img_fill_from_bio(img_req, &ex, 1, &it);
2656 }
2657
2658 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2659 {
2660         struct rbd_obj_request *obj_req =
2661             container_of(ex, struct rbd_obj_request, ex);
2662         struct ceph_bvec_iter *it = arg;
2663
2664         obj_req->bvec_pos = *it;
2665         ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes);
2666         ceph_bvec_iter_advance(it, bytes);
2667 }
2668
2669 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2670 {
2671         struct rbd_obj_request *obj_req =
2672             container_of(ex, struct rbd_obj_request, ex);
2673         struct ceph_bvec_iter *it = arg;
2674
2675         ceph_bvec_iter_advance_step(it, bytes, ({
2676                 obj_req->bvec_count++;
2677         }));
2678 }
2679
2680 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2681 {
2682         struct rbd_obj_request *obj_req =
2683             container_of(ex, struct rbd_obj_request, ex);
2684         struct ceph_bvec_iter *it = arg;
2685
2686         ceph_bvec_iter_advance_step(it, bytes, ({
2687                 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2688                 obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2689         }));
2690 }
2691
2692 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2693                                      struct ceph_file_extent *img_extents,
2694                                      u32 num_img_extents,
2695                                      struct ceph_bvec_iter *bvec_pos)
2696 {
2697         struct rbd_img_fill_ctx fctx = {
2698                 .pos_type = OBJ_REQUEST_BVECS,
2699                 .pos = (union rbd_img_fill_iter *)bvec_pos,
2700                 .set_pos_fn = set_bvec_pos,
2701                 .count_fn = count_bvecs,
2702                 .copy_fn = copy_bvecs,
2703         };
2704
2705         return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2706                                     &fctx);
2707 }
2708
2709 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2710                                    struct ceph_file_extent *img_extents,
2711                                    u32 num_img_extents,
2712                                    struct bio_vec *bvecs)
2713 {
2714         struct ceph_bvec_iter it = {
2715                 .bvecs = bvecs,
2716                 .iter = { .bi_size = ceph_file_extents_bytes(img_extents,
2717                                                              num_img_extents) },
2718         };
2719
2720         return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents,
2721                                          &it);
2722 }
2723
2724 static void rbd_img_handle_request_work(struct work_struct *work)
2725 {
2726         struct rbd_img_request *img_req =
2727             container_of(work, struct rbd_img_request, work);
2728
2729         rbd_img_handle_request(img_req, img_req->work_result);
2730 }
2731
2732 static void rbd_img_schedule(struct rbd_img_request *img_req, int result)
2733 {
2734         INIT_WORK(&img_req->work, rbd_img_handle_request_work);
2735         img_req->work_result = result;
2736         queue_work(rbd_wq, &img_req->work);
2737 }
2738
2739 static bool rbd_obj_may_exist(struct rbd_obj_request *obj_req)
2740 {
2741         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2742
2743         if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) {
2744                 obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2745                 return true;
2746         }
2747
2748         dout("%s %p objno %llu assuming dne\n", __func__, obj_req,
2749              obj_req->ex.oe_objno);
2750         return false;
2751 }
2752
2753 static int rbd_obj_read_object(struct rbd_obj_request *obj_req)
2754 {
2755         struct ceph_osd_request *osd_req;
2756         int ret;
2757
2758         osd_req = __rbd_obj_add_osd_request(obj_req, NULL, 1);
2759         if (IS_ERR(osd_req))
2760                 return PTR_ERR(osd_req);
2761
2762         osd_req_op_extent_init(osd_req, 0, CEPH_OSD_OP_READ,
2763                                obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2764         rbd_osd_setup_data(osd_req, 0);
2765         rbd_osd_format_read(osd_req);
2766
2767         ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2768         if (ret)
2769                 return ret;
2770
2771         rbd_osd_submit(osd_req);
2772         return 0;
2773 }
2774
2775 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req)
2776 {
2777         struct rbd_img_request *img_req = obj_req->img_request;
2778         struct rbd_device *parent = img_req->rbd_dev->parent;
2779         struct rbd_img_request *child_img_req;
2780         int ret;
2781
2782         child_img_req = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2783         if (!child_img_req)
2784                 return -ENOMEM;
2785
2786         rbd_img_request_init(child_img_req, parent, OBJ_OP_READ);
2787         __set_bit(IMG_REQ_CHILD, &child_img_req->flags);
2788         child_img_req->obj_request = obj_req;
2789
2790         down_read(&parent->header_rwsem);
2791         rbd_img_capture_header(child_img_req);
2792         up_read(&parent->header_rwsem);
2793
2794         dout("%s child_img_req %p for obj_req %p\n", __func__, child_img_req,
2795              obj_req);
2796
2797         if (!rbd_img_is_write(img_req)) {
2798                 switch (img_req->data_type) {
2799                 case OBJ_REQUEST_BIO:
2800                         ret = __rbd_img_fill_from_bio(child_img_req,
2801                                                       obj_req->img_extents,
2802                                                       obj_req->num_img_extents,
2803                                                       &obj_req->bio_pos);
2804                         break;
2805                 case OBJ_REQUEST_BVECS:
2806                 case OBJ_REQUEST_OWN_BVECS:
2807                         ret = __rbd_img_fill_from_bvecs(child_img_req,
2808                                                       obj_req->img_extents,
2809                                                       obj_req->num_img_extents,
2810                                                       &obj_req->bvec_pos);
2811                         break;
2812                 default:
2813                         BUG();
2814                 }
2815         } else {
2816                 ret = rbd_img_fill_from_bvecs(child_img_req,
2817                                               obj_req->img_extents,
2818                                               obj_req->num_img_extents,
2819                                               obj_req->copyup_bvecs);
2820         }
2821         if (ret) {
2822                 rbd_img_request_destroy(child_img_req);
2823                 return ret;
2824         }
2825
2826         /* avoid parent chain recursion */
2827         rbd_img_schedule(child_img_req, 0);
2828         return 0;
2829 }
2830
2831 static bool rbd_obj_advance_read(struct rbd_obj_request *obj_req, int *result)
2832 {
2833         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2834         int ret;
2835
2836 again:
2837         switch (obj_req->read_state) {
2838         case RBD_OBJ_READ_START:
2839                 rbd_assert(!*result);
2840
2841                 if (!rbd_obj_may_exist(obj_req)) {
2842                         *result = -ENOENT;
2843                         obj_req->read_state = RBD_OBJ_READ_OBJECT;
2844                         goto again;
2845                 }
2846
2847                 ret = rbd_obj_read_object(obj_req);
2848                 if (ret) {
2849                         *result = ret;
2850                         return true;
2851                 }
2852                 obj_req->read_state = RBD_OBJ_READ_OBJECT;
2853                 return false;
2854         case RBD_OBJ_READ_OBJECT:
2855                 if (*result == -ENOENT && rbd_dev->parent_overlap) {
2856                         /* reverse map this object extent onto the parent */
2857                         ret = rbd_obj_calc_img_extents(obj_req, false);
2858                         if (ret) {
2859                                 *result = ret;
2860                                 return true;
2861                         }
2862                         if (obj_req->num_img_extents) {
2863                                 ret = rbd_obj_read_from_parent(obj_req);
2864                                 if (ret) {
2865                                         *result = ret;
2866                                         return true;
2867                                 }
2868                                 obj_req->read_state = RBD_OBJ_READ_PARENT;
2869                                 return false;
2870                         }
2871                 }
2872
2873                 /*
2874                  * -ENOENT means a hole in the image -- zero-fill the entire
2875                  * length of the request.  A short read also implies zero-fill
2876                  * to the end of the request.
2877                  */
2878                 if (*result == -ENOENT) {
2879                         rbd_obj_zero_range(obj_req, 0, obj_req->ex.oe_len);
2880                         *result = 0;
2881                 } else if (*result >= 0) {
2882                         if (*result < obj_req->ex.oe_len)
2883                                 rbd_obj_zero_range(obj_req, *result,
2884                                                 obj_req->ex.oe_len - *result);
2885                         else
2886                                 rbd_assert(*result == obj_req->ex.oe_len);
2887                         *result = 0;
2888                 }
2889                 return true;
2890         case RBD_OBJ_READ_PARENT:
2891                 /*
2892                  * The parent image is read only up to the overlap -- zero-fill
2893                  * from the overlap to the end of the request.
2894                  */
2895                 if (!*result) {
2896                         u32 obj_overlap = rbd_obj_img_extents_bytes(obj_req);
2897
2898                         if (obj_overlap < obj_req->ex.oe_len)
2899                                 rbd_obj_zero_range(obj_req, obj_overlap,
2900                                             obj_req->ex.oe_len - obj_overlap);
2901                 }
2902                 return true;
2903         default:
2904                 BUG();
2905         }
2906 }
2907
2908 static bool rbd_obj_write_is_noop(struct rbd_obj_request *obj_req)
2909 {
2910         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2911
2912         if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno))
2913                 obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2914
2915         if (!(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST) &&
2916             (obj_req->flags & RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT)) {
2917                 dout("%s %p noop for nonexistent\n", __func__, obj_req);
2918                 return true;
2919         }
2920
2921         return false;
2922 }
2923
2924 /*
2925  * Return:
2926  *   0 - object map update sent
2927  *   1 - object map update isn't needed
2928  *  <0 - error
2929  */
2930 static int rbd_obj_write_pre_object_map(struct rbd_obj_request *obj_req)
2931 {
2932         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2933         u8 new_state;
2934
2935         if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
2936                 return 1;
2937
2938         if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
2939                 new_state = OBJECT_PENDING;
2940         else
2941                 new_state = OBJECT_EXISTS;
2942
2943         return rbd_object_map_update(obj_req, CEPH_NOSNAP, new_state, NULL);
2944 }
2945
2946 static int rbd_obj_write_object(struct rbd_obj_request *obj_req)
2947 {
2948         struct ceph_osd_request *osd_req;
2949         int num_ops = count_write_ops(obj_req);
2950         int which = 0;
2951         int ret;
2952
2953         if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)
2954                 num_ops++; /* stat */
2955
2956         osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
2957         if (IS_ERR(osd_req))
2958                 return PTR_ERR(osd_req);
2959
2960         if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
2961                 ret = rbd_osd_setup_stat(osd_req, which++);
2962                 if (ret)
2963                         return ret;
2964         }
2965
2966         rbd_osd_setup_write_ops(osd_req, which);
2967         rbd_osd_format_write(osd_req);
2968
2969         ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2970         if (ret)
2971                 return ret;
2972
2973         rbd_osd_submit(osd_req);
2974         return 0;
2975 }
2976
2977 /*
2978  * copyup_bvecs pages are never highmem pages
2979  */
2980 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes)
2981 {
2982         struct ceph_bvec_iter it = {
2983                 .bvecs = bvecs,
2984                 .iter = { .bi_size = bytes },
2985         };
2986
2987         ceph_bvec_iter_advance_step(&it, bytes, ({
2988                 if (memchr_inv(bvec_virt(&bv), 0, bv.bv_len))
2989                         return false;
2990         }));
2991         return true;
2992 }
2993
2994 #define MODS_ONLY       U32_MAX
2995
2996 static int rbd_obj_copyup_empty_snapc(struct rbd_obj_request *obj_req,
2997                                       u32 bytes)
2998 {
2999         struct ceph_osd_request *osd_req;
3000         int ret;
3001
3002         dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3003         rbd_assert(bytes > 0 && bytes != MODS_ONLY);
3004
3005         osd_req = __rbd_obj_add_osd_request(obj_req, &rbd_empty_snapc, 1);
3006         if (IS_ERR(osd_req))
3007                 return PTR_ERR(osd_req);
3008
3009         ret = rbd_osd_setup_copyup(osd_req, 0, bytes);
3010         if (ret)
3011                 return ret;
3012
3013         rbd_osd_format_write(osd_req);
3014
3015         ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3016         if (ret)
3017                 return ret;
3018
3019         rbd_osd_submit(osd_req);
3020         return 0;
3021 }
3022
3023 static int rbd_obj_copyup_current_snapc(struct rbd_obj_request *obj_req,
3024                                         u32 bytes)
3025 {
3026         struct ceph_osd_request *osd_req;
3027         int num_ops = count_write_ops(obj_req);
3028         int which = 0;
3029         int ret;
3030
3031         dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3032
3033         if (bytes != MODS_ONLY)
3034                 num_ops++; /* copyup */
3035
3036         osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
3037         if (IS_ERR(osd_req))
3038                 return PTR_ERR(osd_req);
3039
3040         if (bytes != MODS_ONLY) {
3041                 ret = rbd_osd_setup_copyup(osd_req, which++, bytes);
3042                 if (ret)
3043                         return ret;
3044         }
3045
3046         rbd_osd_setup_write_ops(osd_req, which);
3047         rbd_osd_format_write(osd_req);
3048
3049         ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3050         if (ret)
3051                 return ret;
3052
3053         rbd_osd_submit(osd_req);
3054         return 0;
3055 }
3056
3057 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap)
3058 {
3059         u32 i;
3060
3061         rbd_assert(!obj_req->copyup_bvecs);
3062         obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap);
3063         obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count,
3064                                         sizeof(*obj_req->copyup_bvecs),
3065                                         GFP_NOIO);
3066         if (!obj_req->copyup_bvecs)
3067                 return -ENOMEM;
3068
3069         for (i = 0; i < obj_req->copyup_bvec_count; i++) {
3070                 unsigned int len = min(obj_overlap, (u64)PAGE_SIZE);
3071                 struct page *page = alloc_page(GFP_NOIO);
3072
3073                 if (!page)
3074                         return -ENOMEM;
3075
3076                 bvec_set_page(&obj_req->copyup_bvecs[i], page, len, 0);
3077                 obj_overlap -= len;
3078         }
3079
3080         rbd_assert(!obj_overlap);
3081         return 0;
3082 }
3083
3084 /*
3085  * The target object doesn't exist.  Read the data for the entire
3086  * target object up to the overlap point (if any) from the parent,
3087  * so we can use it for a copyup.
3088  */
3089 static int rbd_obj_copyup_read_parent(struct rbd_obj_request *obj_req)
3090 {
3091         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3092         int ret;
3093
3094         rbd_assert(obj_req->num_img_extents);
3095         prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
3096                       rbd_dev->parent_overlap);
3097         if (!obj_req->num_img_extents) {
3098                 /*
3099                  * The overlap has become 0 (most likely because the
3100                  * image has been flattened).  Re-submit the original write
3101                  * request -- pass MODS_ONLY since the copyup isn't needed
3102                  * anymore.
3103                  */
3104                 return rbd_obj_copyup_current_snapc(obj_req, MODS_ONLY);
3105         }
3106
3107         ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req));
3108         if (ret)
3109                 return ret;
3110
3111         return rbd_obj_read_from_parent(obj_req);
3112 }
3113
3114 static void rbd_obj_copyup_object_maps(struct rbd_obj_request *obj_req)
3115 {
3116         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3117         struct ceph_snap_context *snapc = obj_req->img_request->snapc;
3118         u8 new_state;
3119         u32 i;
3120         int ret;
3121
3122         rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3123
3124         if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3125                 return;
3126
3127         if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3128                 return;
3129
3130         for (i = 0; i < snapc->num_snaps; i++) {
3131                 if ((rbd_dev->header.features & RBD_FEATURE_FAST_DIFF) &&
3132                     i + 1 < snapc->num_snaps)
3133                         new_state = OBJECT_EXISTS_CLEAN;
3134                 else
3135                         new_state = OBJECT_EXISTS;
3136
3137                 ret = rbd_object_map_update(obj_req, snapc->snaps[i],
3138                                             new_state, NULL);
3139                 if (ret < 0) {
3140                         obj_req->pending.result = ret;
3141                         return;
3142                 }
3143
3144                 rbd_assert(!ret);
3145                 obj_req->pending.num_pending++;
3146         }
3147 }
3148
3149 static void rbd_obj_copyup_write_object(struct rbd_obj_request *obj_req)
3150 {
3151         u32 bytes = rbd_obj_img_extents_bytes(obj_req);
3152         int ret;
3153
3154         rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3155
3156         /*
3157          * Only send non-zero copyup data to save some I/O and network
3158          * bandwidth -- zero copyup data is equivalent to the object not
3159          * existing.
3160          */
3161         if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3162                 bytes = 0;
3163
3164         if (obj_req->img_request->snapc->num_snaps && bytes > 0) {
3165                 /*
3166                  * Send a copyup request with an empty snapshot context to
3167                  * deep-copyup the object through all existing snapshots.
3168                  * A second request with the current snapshot context will be
3169                  * sent for the actual modification.
3170                  */
3171                 ret = rbd_obj_copyup_empty_snapc(obj_req, bytes);
3172                 if (ret) {
3173                         obj_req->pending.result = ret;
3174                         return;
3175                 }
3176
3177                 obj_req->pending.num_pending++;
3178                 bytes = MODS_ONLY;
3179         }
3180
3181         ret = rbd_obj_copyup_current_snapc(obj_req, bytes);
3182         if (ret) {
3183                 obj_req->pending.result = ret;
3184                 return;
3185         }
3186
3187         obj_req->pending.num_pending++;
3188 }
3189
3190 static bool rbd_obj_advance_copyup(struct rbd_obj_request *obj_req, int *result)
3191 {
3192         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3193         int ret;
3194
3195 again:
3196         switch (obj_req->copyup_state) {
3197         case RBD_OBJ_COPYUP_START:
3198                 rbd_assert(!*result);
3199
3200                 ret = rbd_obj_copyup_read_parent(obj_req);
3201                 if (ret) {
3202                         *result = ret;
3203                         return true;
3204                 }
3205                 if (obj_req->num_img_extents)
3206                         obj_req->copyup_state = RBD_OBJ_COPYUP_READ_PARENT;
3207                 else
3208                         obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3209                 return false;
3210         case RBD_OBJ_COPYUP_READ_PARENT:
3211                 if (*result)
3212                         return true;
3213
3214                 if (is_zero_bvecs(obj_req->copyup_bvecs,
3215                                   rbd_obj_img_extents_bytes(obj_req))) {
3216                         dout("%s %p detected zeros\n", __func__, obj_req);
3217                         obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ZEROS;
3218                 }
3219
3220                 rbd_obj_copyup_object_maps(obj_req);
3221                 if (!obj_req->pending.num_pending) {
3222                         *result = obj_req->pending.result;
3223                         obj_req->copyup_state = RBD_OBJ_COPYUP_OBJECT_MAPS;
3224                         goto again;
3225                 }
3226                 obj_req->copyup_state = __RBD_OBJ_COPYUP_OBJECT_MAPS;
3227                 return false;
3228         case __RBD_OBJ_COPYUP_OBJECT_MAPS:
3229                 if (!pending_result_dec(&obj_req->pending, result))
3230                         return false;
3231                 fallthrough;
3232         case RBD_OBJ_COPYUP_OBJECT_MAPS:
3233                 if (*result) {
3234                         rbd_warn(rbd_dev, "snap object map update failed: %d",
3235                                  *result);
3236                         return true;
3237                 }
3238
3239                 rbd_obj_copyup_write_object(obj_req);
3240                 if (!obj_req->pending.num_pending) {
3241                         *result = obj_req->pending.result;
3242                         obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3243                         goto again;
3244                 }
3245                 obj_req->copyup_state = __RBD_OBJ_COPYUP_WRITE_OBJECT;
3246                 return false;
3247         case __RBD_OBJ_COPYUP_WRITE_OBJECT:
3248                 if (!pending_result_dec(&obj_req->pending, result))
3249                         return false;
3250                 fallthrough;
3251         case RBD_OBJ_COPYUP_WRITE_OBJECT:
3252                 return true;
3253         default:
3254                 BUG();
3255         }
3256 }
3257
3258 /*
3259  * Return:
3260  *   0 - object map update sent
3261  *   1 - object map update isn't needed
3262  *  <0 - error
3263  */
3264 static int rbd_obj_write_post_object_map(struct rbd_obj_request *obj_req)
3265 {
3266         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3267         u8 current_state = OBJECT_PENDING;
3268
3269         if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3270                 return 1;
3271
3272         if (!(obj_req->flags & RBD_OBJ_FLAG_DELETION))
3273                 return 1;
3274
3275         return rbd_object_map_update(obj_req, CEPH_NOSNAP, OBJECT_NONEXISTENT,
3276                                      &current_state);
3277 }
3278
3279 static bool rbd_obj_advance_write(struct rbd_obj_request *obj_req, int *result)
3280 {
3281         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3282         int ret;
3283
3284 again:
3285         switch (obj_req->write_state) {
3286         case RBD_OBJ_WRITE_START:
3287                 rbd_assert(!*result);
3288
3289                 if (rbd_obj_write_is_noop(obj_req))
3290                         return true;
3291
3292                 ret = rbd_obj_write_pre_object_map(obj_req);
3293                 if (ret < 0) {
3294                         *result = ret;
3295                         return true;
3296                 }
3297                 obj_req->write_state = RBD_OBJ_WRITE_PRE_OBJECT_MAP;
3298                 if (ret > 0)
3299                         goto again;
3300                 return false;
3301         case RBD_OBJ_WRITE_PRE_OBJECT_MAP:
3302                 if (*result) {
3303                         rbd_warn(rbd_dev, "pre object map update failed: %d",
3304                                  *result);
3305                         return true;
3306                 }
3307                 ret = rbd_obj_write_object(obj_req);
3308                 if (ret) {
3309                         *result = ret;
3310                         return true;
3311                 }
3312                 obj_req->write_state = RBD_OBJ_WRITE_OBJECT;
3313                 return false;
3314         case RBD_OBJ_WRITE_OBJECT:
3315                 if (*result == -ENOENT) {
3316                         if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
3317                                 *result = 0;
3318                                 obj_req->copyup_state = RBD_OBJ_COPYUP_START;
3319                                 obj_req->write_state = __RBD_OBJ_WRITE_COPYUP;
3320                                 goto again;
3321                         }
3322                         /*
3323                          * On a non-existent object:
3324                          *   delete - -ENOENT, truncate/zero - 0
3325                          */
3326                         if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
3327                                 *result = 0;
3328                 }
3329                 if (*result)
3330                         return true;
3331
3332                 obj_req->write_state = RBD_OBJ_WRITE_COPYUP;
3333                 goto again;
3334         case __RBD_OBJ_WRITE_COPYUP:
3335                 if (!rbd_obj_advance_copyup(obj_req, result))
3336                         return false;
3337                 fallthrough;
3338         case RBD_OBJ_WRITE_COPYUP:
3339                 if (*result) {
3340                         rbd_warn(rbd_dev, "copyup failed: %d", *result);
3341                         return true;
3342                 }
3343                 ret = rbd_obj_write_post_object_map(obj_req);
3344                 if (ret < 0) {
3345                         *result = ret;
3346                         return true;
3347                 }
3348                 obj_req->write_state = RBD_OBJ_WRITE_POST_OBJECT_MAP;
3349                 if (ret > 0)
3350                         goto again;
3351                 return false;
3352         case RBD_OBJ_WRITE_POST_OBJECT_MAP:
3353                 if (*result)
3354                         rbd_warn(rbd_dev, "post object map update failed: %d",
3355                                  *result);
3356                 return true;
3357         default:
3358                 BUG();
3359         }
3360 }
3361
3362 /*
3363  * Return true if @obj_req is completed.
3364  */
3365 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req,
3366                                      int *result)
3367 {
3368         struct rbd_img_request *img_req = obj_req->img_request;
3369         struct rbd_device *rbd_dev = img_req->rbd_dev;
3370         bool done;
3371
3372         mutex_lock(&obj_req->state_mutex);
3373         if (!rbd_img_is_write(img_req))
3374                 done = rbd_obj_advance_read(obj_req, result);
3375         else
3376                 done = rbd_obj_advance_write(obj_req, result);
3377         mutex_unlock(&obj_req->state_mutex);
3378
3379         if (done && *result) {
3380                 rbd_assert(*result < 0);
3381                 rbd_warn(rbd_dev, "%s at objno %llu %llu~%llu result %d",
3382                          obj_op_name(img_req->op_type), obj_req->ex.oe_objno,
3383                          obj_req->ex.oe_off, obj_req->ex.oe_len, *result);
3384         }
3385         return done;
3386 }
3387
3388 /*
3389  * This is open-coded in rbd_img_handle_request() to avoid parent chain
3390  * recursion.
3391  */
3392 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result)
3393 {
3394         if (__rbd_obj_handle_request(obj_req, &result))
3395                 rbd_img_handle_request(obj_req->img_request, result);
3396 }
3397
3398 static bool need_exclusive_lock(struct rbd_img_request *img_req)
3399 {
3400         struct rbd_device *rbd_dev = img_req->rbd_dev;
3401
3402         if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK))
3403                 return false;
3404
3405         if (rbd_is_ro(rbd_dev))
3406                 return false;
3407
3408         rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags));
3409         if (rbd_dev->opts->lock_on_read ||
3410             (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3411                 return true;
3412
3413         return rbd_img_is_write(img_req);
3414 }
3415
3416 static bool rbd_lock_add_request(struct rbd_img_request *img_req)
3417 {
3418         struct rbd_device *rbd_dev = img_req->rbd_dev;
3419         bool locked;
3420
3421         lockdep_assert_held(&rbd_dev->lock_rwsem);
3422         locked = rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED;
3423         spin_lock(&rbd_dev->lock_lists_lock);
3424         rbd_assert(list_empty(&img_req->lock_item));
3425         if (!locked)
3426                 list_add_tail(&img_req->lock_item, &rbd_dev->acquiring_list);
3427         else
3428                 list_add_tail(&img_req->lock_item, &rbd_dev->running_list);
3429         spin_unlock(&rbd_dev->lock_lists_lock);
3430         return locked;
3431 }
3432
3433 static void rbd_lock_del_request(struct rbd_img_request *img_req)
3434 {
3435         struct rbd_device *rbd_dev = img_req->rbd_dev;
3436         bool need_wakeup;
3437
3438         lockdep_assert_held(&rbd_dev->lock_rwsem);
3439         spin_lock(&rbd_dev->lock_lists_lock);
3440         rbd_assert(!list_empty(&img_req->lock_item));
3441         list_del_init(&img_req->lock_item);
3442         need_wakeup = (rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING &&
3443                        list_empty(&rbd_dev->running_list));
3444         spin_unlock(&rbd_dev->lock_lists_lock);
3445         if (need_wakeup)
3446                 complete(&rbd_dev->releasing_wait);
3447 }
3448
3449 static int rbd_img_exclusive_lock(struct rbd_img_request *img_req)
3450 {
3451         struct rbd_device *rbd_dev = img_req->rbd_dev;
3452
3453         if (!need_exclusive_lock(img_req))
3454                 return 1;
3455
3456         if (rbd_lock_add_request(img_req))
3457                 return 1;
3458
3459         if (rbd_dev->opts->exclusive) {
3460                 WARN_ON(1); /* lock got released? */
3461                 return -EROFS;
3462         }
3463
3464         /*
3465          * Note the use of mod_delayed_work() in rbd_acquire_lock()
3466          * and cancel_delayed_work() in wake_lock_waiters().
3467          */
3468         dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3469         queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3470         return 0;
3471 }
3472
3473 static void rbd_img_object_requests(struct rbd_img_request *img_req)
3474 {
3475         struct rbd_obj_request *obj_req;
3476
3477         rbd_assert(!img_req->pending.result && !img_req->pending.num_pending);
3478
3479         for_each_obj_request(img_req, obj_req) {
3480                 int result = 0;
3481
3482                 if (__rbd_obj_handle_request(obj_req, &result)) {
3483                         if (result) {
3484                                 img_req->pending.result = result;
3485                                 return;
3486                         }
3487                 } else {
3488                         img_req->pending.num_pending++;
3489                 }
3490         }
3491 }
3492
3493 static bool rbd_img_advance(struct rbd_img_request *img_req, int *result)
3494 {
3495         struct rbd_device *rbd_dev = img_req->rbd_dev;
3496         int ret;
3497
3498 again:
3499         switch (img_req->state) {
3500         case RBD_IMG_START:
3501                 rbd_assert(!*result);
3502
3503                 ret = rbd_img_exclusive_lock(img_req);
3504                 if (ret < 0) {
3505                         *result = ret;
3506                         return true;
3507                 }
3508                 img_req->state = RBD_IMG_EXCLUSIVE_LOCK;
3509                 if (ret > 0)
3510                         goto again;
3511                 return false;
3512         case RBD_IMG_EXCLUSIVE_LOCK:
3513                 if (*result)
3514                         return true;
3515
3516                 rbd_assert(!need_exclusive_lock(img_req) ||
3517                            __rbd_is_lock_owner(rbd_dev));
3518
3519                 rbd_img_object_requests(img_req);
3520                 if (!img_req->pending.num_pending) {
3521                         *result = img_req->pending.result;
3522                         img_req->state = RBD_IMG_OBJECT_REQUESTS;
3523                         goto again;
3524                 }
3525                 img_req->state = __RBD_IMG_OBJECT_REQUESTS;
3526                 return false;
3527         case __RBD_IMG_OBJECT_REQUESTS:
3528                 if (!pending_result_dec(&img_req->pending, result))
3529                         return false;
3530                 fallthrough;
3531         case RBD_IMG_OBJECT_REQUESTS:
3532                 return true;
3533         default:
3534                 BUG();
3535         }
3536 }
3537
3538 /*
3539  * Return true if @img_req is completed.
3540  */
3541 static bool __rbd_img_handle_request(struct rbd_img_request *img_req,
3542                                      int *result)
3543 {
3544         struct rbd_device *rbd_dev = img_req->rbd_dev;
3545         bool done;
3546
3547         if (need_exclusive_lock(img_req)) {
3548                 down_read(&rbd_dev->lock_rwsem);
3549                 mutex_lock(&img_req->state_mutex);
3550                 done = rbd_img_advance(img_req, result);
3551                 if (done)
3552                         rbd_lock_del_request(img_req);
3553                 mutex_unlock(&img_req->state_mutex);
3554                 up_read(&rbd_dev->lock_rwsem);
3555         } else {
3556                 mutex_lock(&img_req->state_mutex);
3557                 done = rbd_img_advance(img_req, result);
3558                 mutex_unlock(&img_req->state_mutex);
3559         }
3560
3561         if (done && *result) {
3562                 rbd_assert(*result < 0);
3563                 rbd_warn(rbd_dev, "%s%s result %d",
3564                       test_bit(IMG_REQ_CHILD, &img_req->flags) ? "child " : "",
3565                       obj_op_name(img_req->op_type), *result);
3566         }
3567         return done;
3568 }
3569
3570 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result)
3571 {
3572 again:
3573         if (!__rbd_img_handle_request(img_req, &result))
3574                 return;
3575
3576         if (test_bit(IMG_REQ_CHILD, &img_req->flags)) {
3577                 struct rbd_obj_request *obj_req = img_req->obj_request;
3578
3579                 rbd_img_request_destroy(img_req);
3580                 if (__rbd_obj_handle_request(obj_req, &result)) {
3581                         img_req = obj_req->img_request;
3582                         goto again;
3583                 }
3584         } else {
3585                 struct request *rq = blk_mq_rq_from_pdu(img_req);
3586
3587                 rbd_img_request_destroy(img_req);
3588                 blk_mq_end_request(rq, errno_to_blk_status(result));
3589         }
3590 }
3591
3592 static const struct rbd_client_id rbd_empty_cid;
3593
3594 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
3595                           const struct rbd_client_id *rhs)
3596 {
3597         return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
3598 }
3599
3600 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
3601 {
3602         struct rbd_client_id cid;
3603
3604         mutex_lock(&rbd_dev->watch_mutex);
3605         cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
3606         cid.handle = rbd_dev->watch_cookie;
3607         mutex_unlock(&rbd_dev->watch_mutex);
3608         return cid;
3609 }
3610
3611 /*
3612  * lock_rwsem must be held for write
3613  */
3614 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
3615                               const struct rbd_client_id *cid)
3616 {
3617         dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
3618              rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
3619              cid->gid, cid->handle);
3620         rbd_dev->owner_cid = *cid; /* struct */
3621 }
3622
3623 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
3624 {
3625         mutex_lock(&rbd_dev->watch_mutex);
3626         sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
3627         mutex_unlock(&rbd_dev->watch_mutex);
3628 }
3629
3630 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie)
3631 {
3632         struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3633
3634         rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
3635         strcpy(rbd_dev->lock_cookie, cookie);
3636         rbd_set_owner_cid(rbd_dev, &cid);
3637         queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
3638 }
3639
3640 /*
3641  * lock_rwsem must be held for write
3642  */
3643 static int rbd_lock(struct rbd_device *rbd_dev)
3644 {
3645         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3646         char cookie[32];
3647         int ret;
3648
3649         WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
3650                 rbd_dev->lock_cookie[0] != '\0');
3651
3652         format_lock_cookie(rbd_dev, cookie);
3653         ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3654                             RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
3655                             RBD_LOCK_TAG, "", 0);
3656         if (ret)
3657                 return ret;
3658
3659         __rbd_lock(rbd_dev, cookie);
3660         return 0;
3661 }
3662
3663 /*
3664  * lock_rwsem must be held for write
3665  */
3666 static void rbd_unlock(struct rbd_device *rbd_dev)
3667 {
3668         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3669         int ret;
3670
3671         WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
3672                 rbd_dev->lock_cookie[0] == '\0');
3673
3674         ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3675                               RBD_LOCK_NAME, rbd_dev->lock_cookie);
3676         if (ret && ret != -ENOENT)
3677                 rbd_warn(rbd_dev, "failed to unlock header: %d", ret);
3678
3679         /* treat errors as the image is unlocked */
3680         rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
3681         rbd_dev->lock_cookie[0] = '\0';
3682         rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3683         queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
3684 }
3685
3686 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
3687                                 enum rbd_notify_op notify_op,
3688                                 struct page ***preply_pages,
3689                                 size_t *preply_len)
3690 {
3691         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3692         struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3693         char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN];
3694         int buf_size = sizeof(buf);
3695         void *p = buf;
3696
3697         dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
3698
3699         /* encode *LockPayload NotifyMessage (op + ClientId) */
3700         ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
3701         ceph_encode_32(&p, notify_op);
3702         ceph_encode_64(&p, cid.gid);
3703         ceph_encode_64(&p, cid.handle);
3704
3705         return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
3706                                 &rbd_dev->header_oloc, buf, buf_size,
3707                                 RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
3708 }
3709
3710 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
3711                                enum rbd_notify_op notify_op)
3712 {
3713         __rbd_notify_op_lock(rbd_dev, notify_op, NULL, NULL);
3714 }
3715
3716 static void rbd_notify_acquired_lock(struct work_struct *work)
3717 {
3718         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3719                                                   acquired_lock_work);
3720
3721         rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
3722 }
3723
3724 static void rbd_notify_released_lock(struct work_struct *work)
3725 {
3726         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3727                                                   released_lock_work);
3728
3729         rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
3730 }
3731
3732 static int rbd_request_lock(struct rbd_device *rbd_dev)
3733 {
3734         struct page **reply_pages;
3735         size_t reply_len;
3736         bool lock_owner_responded = false;
3737         int ret;
3738
3739         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3740
3741         ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
3742                                    &reply_pages, &reply_len);
3743         if (ret && ret != -ETIMEDOUT) {
3744                 rbd_warn(rbd_dev, "failed to request lock: %d", ret);
3745                 goto out;
3746         }
3747
3748         if (reply_len > 0 && reply_len <= PAGE_SIZE) {
3749                 void *p = page_address(reply_pages[0]);
3750                 void *const end = p + reply_len;
3751                 u32 n;
3752
3753                 ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
3754                 while (n--) {
3755                         u8 struct_v;
3756                         u32 len;
3757
3758                         ceph_decode_need(&p, end, 8 + 8, e_inval);
3759                         p += 8 + 8; /* skip gid and cookie */
3760
3761                         ceph_decode_32_safe(&p, end, len, e_inval);
3762                         if (!len)
3763                                 continue;
3764
3765                         if (lock_owner_responded) {
3766                                 rbd_warn(rbd_dev,
3767                                          "duplicate lock owners detected");
3768                                 ret = -EIO;
3769                                 goto out;
3770                         }
3771
3772                         lock_owner_responded = true;
3773                         ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
3774                                                   &struct_v, &len);
3775                         if (ret) {
3776                                 rbd_warn(rbd_dev,
3777                                          "failed to decode ResponseMessage: %d",
3778                                          ret);
3779                                 goto e_inval;
3780                         }
3781
3782                         ret = ceph_decode_32(&p);
3783                 }
3784         }
3785
3786         if (!lock_owner_responded) {
3787                 rbd_warn(rbd_dev, "no lock owners detected");
3788                 ret = -ETIMEDOUT;
3789         }
3790
3791 out:
3792         ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3793         return ret;
3794
3795 e_inval:
3796         ret = -EINVAL;
3797         goto out;
3798 }
3799
3800 /*
3801  * Either image request state machine(s) or rbd_add_acquire_lock()
3802  * (i.e. "rbd map").
3803  */
3804 static void wake_lock_waiters(struct rbd_device *rbd_dev, int result)
3805 {
3806         struct rbd_img_request *img_req;
3807
3808         dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3809         lockdep_assert_held_write(&rbd_dev->lock_rwsem);
3810
3811         cancel_delayed_work(&rbd_dev->lock_dwork);
3812         if (!completion_done(&rbd_dev->acquire_wait)) {
3813                 rbd_assert(list_empty(&rbd_dev->acquiring_list) &&
3814                            list_empty(&rbd_dev->running_list));
3815                 rbd_dev->acquire_err = result;
3816                 complete_all(&rbd_dev->acquire_wait);
3817                 return;
3818         }
3819
3820         list_for_each_entry(img_req, &rbd_dev->acquiring_list, lock_item) {
3821                 mutex_lock(&img_req->state_mutex);
3822                 rbd_assert(img_req->state == RBD_IMG_EXCLUSIVE_LOCK);
3823                 rbd_img_schedule(img_req, result);
3824                 mutex_unlock(&img_req->state_mutex);
3825         }
3826
3827         list_splice_tail_init(&rbd_dev->acquiring_list, &rbd_dev->running_list);
3828 }
3829
3830 static int get_lock_owner_info(struct rbd_device *rbd_dev,
3831                                struct ceph_locker **lockers, u32 *num_lockers)
3832 {
3833         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3834         u8 lock_type;
3835         char *lock_tag;
3836         int ret;
3837
3838         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3839
3840         ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
3841                                  &rbd_dev->header_oloc, RBD_LOCK_NAME,
3842                                  &lock_type, &lock_tag, lockers, num_lockers);
3843         if (ret)
3844                 return ret;
3845
3846         if (*num_lockers == 0) {
3847                 dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
3848                 goto out;
3849         }
3850
3851         if (strcmp(lock_tag, RBD_LOCK_TAG)) {
3852                 rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
3853                          lock_tag);
3854                 ret = -EBUSY;
3855                 goto out;
3856         }
3857
3858         if (lock_type == CEPH_CLS_LOCK_SHARED) {
3859                 rbd_warn(rbd_dev, "shared lock type detected");
3860                 ret = -EBUSY;
3861                 goto out;
3862         }
3863
3864         if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX,
3865                     strlen(RBD_LOCK_COOKIE_PREFIX))) {
3866                 rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
3867                          (*lockers)[0].id.cookie);
3868                 ret = -EBUSY;
3869                 goto out;
3870         }
3871
3872 out:
3873         kfree(lock_tag);
3874         return ret;
3875 }
3876
3877 static int find_watcher(struct rbd_device *rbd_dev,
3878                         const struct ceph_locker *locker)
3879 {
3880         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3881         struct ceph_watch_item *watchers;
3882         u32 num_watchers;
3883         u64 cookie;
3884         int i;
3885         int ret;
3886
3887         ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
3888                                       &rbd_dev->header_oloc, &watchers,
3889                                       &num_watchers);
3890         if (ret)
3891                 return ret;
3892
3893         sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
3894         for (i = 0; i < num_watchers; i++) {
3895                 /*
3896                  * Ignore addr->type while comparing.  This mimics
3897                  * entity_addr_t::get_legacy_str() + strcmp().
3898                  */
3899                 if (ceph_addr_equal_no_type(&watchers[i].addr,
3900                                             &locker->info.addr) &&
3901                     watchers[i].cookie == cookie) {
3902                         struct rbd_client_id cid = {
3903                                 .gid = le64_to_cpu(watchers[i].name.num),
3904                                 .handle = cookie,
3905                         };
3906
3907                         dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
3908                              rbd_dev, cid.gid, cid.handle);
3909                         rbd_set_owner_cid(rbd_dev, &cid);
3910                         ret = 1;
3911                         goto out;
3912                 }
3913         }
3914
3915         dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
3916         ret = 0;
3917 out:
3918         kfree(watchers);
3919         return ret;
3920 }
3921
3922 /*
3923  * lock_rwsem must be held for write
3924  */
3925 static int rbd_try_lock(struct rbd_device *rbd_dev)
3926 {
3927         struct ceph_client *client = rbd_dev->rbd_client->client;
3928         struct ceph_locker *lockers;
3929         u32 num_lockers;
3930         int ret;
3931
3932         for (;;) {
3933                 ret = rbd_lock(rbd_dev);
3934                 if (ret != -EBUSY)
3935                         return ret;
3936
3937                 /* determine if the current lock holder is still alive */
3938                 ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers);
3939                 if (ret)
3940                         return ret;
3941
3942                 if (num_lockers == 0)
3943                         goto again;
3944
3945                 ret = find_watcher(rbd_dev, lockers);
3946                 if (ret)
3947                         goto out; /* request lock or error */
3948
3949                 rbd_warn(rbd_dev, "breaking header lock owned by %s%llu",
3950                          ENTITY_NAME(lockers[0].id.name));
3951
3952                 ret = ceph_monc_blocklist_add(&client->monc,
3953                                               &lockers[0].info.addr);
3954                 if (ret) {
3955                         rbd_warn(rbd_dev, "blocklist of %s%llu failed: %d",
3956                                  ENTITY_NAME(lockers[0].id.name), ret);
3957                         goto out;
3958                 }
3959
3960                 ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
3961                                           &rbd_dev->header_oloc, RBD_LOCK_NAME,
3962                                           lockers[0].id.cookie,
3963                                           &lockers[0].id.name);
3964                 if (ret && ret != -ENOENT)
3965                         goto out;
3966
3967 again:
3968                 ceph_free_lockers(lockers, num_lockers);
3969         }
3970
3971 out:
3972         ceph_free_lockers(lockers, num_lockers);
3973         return ret;
3974 }
3975
3976 static int rbd_post_acquire_action(struct rbd_device *rbd_dev)
3977 {
3978         int ret;
3979
3980         if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) {
3981                 ret = rbd_object_map_open(rbd_dev);
3982                 if (ret)
3983                         return ret;
3984         }
3985
3986         return 0;
3987 }
3988
3989 /*
3990  * Return:
3991  *   0 - lock acquired
3992  *   1 - caller should call rbd_request_lock()
3993  *  <0 - error
3994  */
3995 static int rbd_try_acquire_lock(struct rbd_device *rbd_dev)
3996 {
3997         int ret;
3998
3999         down_read(&rbd_dev->lock_rwsem);
4000         dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
4001              rbd_dev->lock_state);
4002         if (__rbd_is_lock_owner(rbd_dev)) {
4003                 up_read(&rbd_dev->lock_rwsem);
4004                 return 0;
4005         }
4006
4007         up_read(&rbd_dev->lock_rwsem);
4008         down_write(&rbd_dev->lock_rwsem);
4009         dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
4010              rbd_dev->lock_state);
4011         if (__rbd_is_lock_owner(rbd_dev)) {
4012                 up_write(&rbd_dev->lock_rwsem);
4013                 return 0;
4014         }
4015
4016         ret = rbd_try_lock(rbd_dev);
4017         if (ret < 0) {
4018                 rbd_warn(rbd_dev, "failed to lock header: %d", ret);
4019                 if (ret == -EBLOCKLISTED)
4020                         goto out;
4021
4022                 ret = 1; /* request lock anyway */
4023         }
4024         if (ret > 0) {
4025                 up_write(&rbd_dev->lock_rwsem);
4026                 return ret;
4027         }
4028
4029         rbd_assert(rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED);
4030         rbd_assert(list_empty(&rbd_dev->running_list));
4031
4032         ret = rbd_post_acquire_action(rbd_dev);
4033         if (ret) {
4034                 rbd_warn(rbd_dev, "post-acquire action failed: %d", ret);
4035                 /*
4036                  * Can't stay in RBD_LOCK_STATE_LOCKED because
4037                  * rbd_lock_add_request() would let the request through,
4038                  * assuming that e.g. object map is locked and loaded.
4039                  */
4040                 rbd_unlock(rbd_dev);
4041         }
4042
4043 out:
4044         wake_lock_waiters(rbd_dev, ret);
4045         up_write(&rbd_dev->lock_rwsem);
4046         return ret;
4047 }
4048
4049 static void rbd_acquire_lock(struct work_struct *work)
4050 {
4051         struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4052                                             struct rbd_device, lock_dwork);
4053         int ret;
4054
4055         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4056 again:
4057         ret = rbd_try_acquire_lock(rbd_dev);
4058         if (ret <= 0) {
4059                 dout("%s rbd_dev %p ret %d - done\n", __func__, rbd_dev, ret);
4060                 return;
4061         }
4062
4063         ret = rbd_request_lock(rbd_dev);
4064         if (ret == -ETIMEDOUT) {
4065                 goto again; /* treat this as a dead client */
4066         } else if (ret == -EROFS) {
4067                 rbd_warn(rbd_dev, "peer will not release lock");
4068                 down_write(&rbd_dev->lock_rwsem);
4069                 wake_lock_waiters(rbd_dev, ret);
4070                 up_write(&rbd_dev->lock_rwsem);
4071         } else if (ret < 0) {
4072                 rbd_warn(rbd_dev, "error requesting lock: %d", ret);
4073                 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4074                                  RBD_RETRY_DELAY);
4075         } else {
4076                 /*
4077                  * lock owner acked, but resend if we don't see them
4078                  * release the lock
4079                  */
4080                 dout("%s rbd_dev %p requeuing lock_dwork\n", __func__,
4081                      rbd_dev);
4082                 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4083                     msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
4084         }
4085 }
4086
4087 static bool rbd_quiesce_lock(struct rbd_device *rbd_dev)
4088 {
4089         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4090         lockdep_assert_held_write(&rbd_dev->lock_rwsem);
4091
4092         if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
4093                 return false;
4094
4095         /*
4096          * Ensure that all in-flight IO is flushed.
4097          */
4098         rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
4099         rbd_assert(!completion_done(&rbd_dev->releasing_wait));
4100         if (list_empty(&rbd_dev->running_list))
4101                 return true;
4102
4103         up_write(&rbd_dev->lock_rwsem);
4104         wait_for_completion(&rbd_dev->releasing_wait);
4105
4106         down_write(&rbd_dev->lock_rwsem);
4107         if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
4108                 return false;
4109
4110         rbd_assert(list_empty(&rbd_dev->running_list));
4111         return true;
4112 }
4113
4114 static void rbd_pre_release_action(struct rbd_device *rbd_dev)
4115 {
4116         if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)
4117                 rbd_object_map_close(rbd_dev);
4118 }
4119
4120 static void __rbd_release_lock(struct rbd_device *rbd_dev)
4121 {
4122         rbd_assert(list_empty(&rbd_dev->running_list));
4123
4124         rbd_pre_release_action(rbd_dev);
4125         rbd_unlock(rbd_dev);
4126 }
4127
4128 /*
4129  * lock_rwsem must be held for write
4130  */
4131 static void rbd_release_lock(struct rbd_device *rbd_dev)
4132 {
4133         if (!rbd_quiesce_lock(rbd_dev))
4134                 return;
4135
4136         __rbd_release_lock(rbd_dev);
4137
4138         /*
4139          * Give others a chance to grab the lock - we would re-acquire
4140          * almost immediately if we got new IO while draining the running
4141          * list otherwise.  We need to ack our own notifications, so this
4142          * lock_dwork will be requeued from rbd_handle_released_lock() by
4143          * way of maybe_kick_acquire().
4144          */
4145         cancel_delayed_work(&rbd_dev->lock_dwork);
4146 }
4147
4148 static void rbd_release_lock_work(struct work_struct *work)
4149 {
4150         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
4151                                                   unlock_work);
4152
4153         down_write(&rbd_dev->lock_rwsem);
4154         rbd_release_lock(rbd_dev);
4155         up_write(&rbd_dev->lock_rwsem);
4156 }
4157
4158 static void maybe_kick_acquire(struct rbd_device *rbd_dev)
4159 {
4160         bool have_requests;
4161
4162         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4163         if (__rbd_is_lock_owner(rbd_dev))
4164                 return;
4165
4166         spin_lock(&rbd_dev->lock_lists_lock);
4167         have_requests = !list_empty(&rbd_dev->acquiring_list);
4168         spin_unlock(&rbd_dev->lock_lists_lock);
4169         if (have_requests || delayed_work_pending(&rbd_dev->lock_dwork)) {
4170                 dout("%s rbd_dev %p kicking lock_dwork\n", __func__, rbd_dev);
4171                 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4172         }
4173 }
4174
4175 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
4176                                      void **p)
4177 {
4178         struct rbd_client_id cid = { 0 };
4179
4180         if (struct_v >= 2) {
4181                 cid.gid = ceph_decode_64(p);
4182                 cid.handle = ceph_decode_64(p);
4183         }
4184
4185         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4186              cid.handle);
4187         if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4188                 down_write(&rbd_dev->lock_rwsem);
4189                 if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4190                         dout("%s rbd_dev %p cid %llu-%llu == owner_cid\n",
4191                              __func__, rbd_dev, cid.gid, cid.handle);
4192                 } else {
4193                         rbd_set_owner_cid(rbd_dev, &cid);
4194                 }
4195                 downgrade_write(&rbd_dev->lock_rwsem);
4196         } else {
4197                 down_read(&rbd_dev->lock_rwsem);
4198         }
4199
4200         maybe_kick_acquire(rbd_dev);
4201         up_read(&rbd_dev->lock_rwsem);
4202 }
4203
4204 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
4205                                      void **p)
4206 {
4207         struct rbd_client_id cid = { 0 };
4208
4209         if (struct_v >= 2) {
4210                 cid.gid = ceph_decode_64(p);
4211                 cid.handle = ceph_decode_64(p);
4212         }
4213
4214         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4215              cid.handle);
4216         if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4217                 down_write(&rbd_dev->lock_rwsem);
4218                 if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4219                         dout("%s rbd_dev %p cid %llu-%llu != owner_cid %llu-%llu\n",
4220                              __func__, rbd_dev, cid.gid, cid.handle,
4221                              rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
4222                 } else {
4223                         rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4224                 }
4225                 downgrade_write(&rbd_dev->lock_rwsem);
4226         } else {
4227                 down_read(&rbd_dev->lock_rwsem);
4228         }
4229
4230         maybe_kick_acquire(rbd_dev);
4231         up_read(&rbd_dev->lock_rwsem);
4232 }
4233
4234 /*
4235  * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
4236  * ResponseMessage is needed.
4237  */
4238 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
4239                                    void **p)
4240 {
4241         struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
4242         struct rbd_client_id cid = { 0 };
4243         int result = 1;
4244
4245         if (struct_v >= 2) {
4246                 cid.gid = ceph_decode_64(p);
4247                 cid.handle = ceph_decode_64(p);
4248         }
4249
4250         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4251              cid.handle);
4252         if (rbd_cid_equal(&cid, &my_cid))
4253                 return result;
4254
4255         down_read(&rbd_dev->lock_rwsem);
4256         if (__rbd_is_lock_owner(rbd_dev)) {
4257                 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
4258                     rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid))
4259                         goto out_unlock;
4260
4261                 /*
4262                  * encode ResponseMessage(0) so the peer can detect
4263                  * a missing owner
4264                  */
4265                 result = 0;
4266
4267                 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
4268                         if (!rbd_dev->opts->exclusive) {
4269                                 dout("%s rbd_dev %p queueing unlock_work\n",
4270                                      __func__, rbd_dev);
4271                                 queue_work(rbd_dev->task_wq,
4272                                            &rbd_dev->unlock_work);
4273                         } else {
4274                                 /* refuse to release the lock */
4275                                 result = -EROFS;
4276                         }
4277                 }
4278         }
4279
4280 out_unlock:
4281         up_read(&rbd_dev->lock_rwsem);
4282         return result;
4283 }
4284
4285 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
4286                                      u64 notify_id, u64 cookie, s32 *result)
4287 {
4288         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4289         char buf[4 + CEPH_ENCODING_START_BLK_LEN];
4290         int buf_size = sizeof(buf);
4291         int ret;
4292
4293         if (result) {
4294                 void *p = buf;
4295
4296                 /* encode ResponseMessage */
4297                 ceph_start_encoding(&p, 1, 1,
4298                                     buf_size - CEPH_ENCODING_START_BLK_LEN);
4299                 ceph_encode_32(&p, *result);
4300         } else {
4301                 buf_size = 0;
4302         }
4303
4304         ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
4305                                    &rbd_dev->header_oloc, notify_id, cookie,
4306                                    buf, buf_size);
4307         if (ret)
4308                 rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
4309 }
4310
4311 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
4312                                    u64 cookie)
4313 {
4314         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4315         __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
4316 }
4317
4318 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
4319                                           u64 notify_id, u64 cookie, s32 result)
4320 {
4321         dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
4322         __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
4323 }
4324
4325 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
4326                          u64 notifier_id, void *data, size_t data_len)
4327 {
4328         struct rbd_device *rbd_dev = arg;
4329         void *p = data;
4330         void *const end = p + data_len;
4331         u8 struct_v = 0;
4332         u32 len;
4333         u32 notify_op;
4334         int ret;
4335
4336         dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
4337              __func__, rbd_dev, cookie, notify_id, data_len);
4338         if (data_len) {
4339                 ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
4340                                           &struct_v, &len);
4341                 if (ret) {
4342                         rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
4343                                  ret);
4344                         return;
4345                 }
4346
4347                 notify_op = ceph_decode_32(&p);
4348         } else {
4349                 /* legacy notification for header updates */
4350                 notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
4351                 len = 0;
4352         }
4353
4354         dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
4355         switch (notify_op) {
4356         case RBD_NOTIFY_OP_ACQUIRED_LOCK:
4357                 rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
4358                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4359                 break;
4360         case RBD_NOTIFY_OP_RELEASED_LOCK:
4361                 rbd_handle_released_lock(rbd_dev, struct_v, &p);
4362                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4363                 break;
4364         case RBD_NOTIFY_OP_REQUEST_LOCK:
4365                 ret = rbd_handle_request_lock(rbd_dev, struct_v, &p);
4366                 if (ret <= 0)
4367                         rbd_acknowledge_notify_result(rbd_dev, notify_id,
4368                                                       cookie, ret);
4369                 else
4370                         rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4371                 break;
4372         case RBD_NOTIFY_OP_HEADER_UPDATE:
4373                 ret = rbd_dev_refresh(rbd_dev);
4374                 if (ret)
4375                         rbd_warn(rbd_dev, "refresh failed: %d", ret);
4376
4377                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4378                 break;
4379         default:
4380                 if (rbd_is_lock_owner(rbd_dev))
4381                         rbd_acknowledge_notify_result(rbd_dev, notify_id,
4382                                                       cookie, -EOPNOTSUPP);
4383                 else
4384                         rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4385                 break;
4386         }
4387 }
4388
4389 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
4390
4391 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
4392 {
4393         struct rbd_device *rbd_dev = arg;
4394
4395         rbd_warn(rbd_dev, "encountered watch error: %d", err);
4396
4397         down_write(&rbd_dev->lock_rwsem);
4398         rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4399         up_write(&rbd_dev->lock_rwsem);
4400
4401         mutex_lock(&rbd_dev->watch_mutex);
4402         if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
4403                 __rbd_unregister_watch(rbd_dev);
4404                 rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
4405
4406                 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
4407         }
4408         mutex_unlock(&rbd_dev->watch_mutex);
4409 }
4410
4411 /*
4412  * watch_mutex must be locked
4413  */
4414 static int __rbd_register_watch(struct rbd_device *rbd_dev)
4415 {
4416         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4417         struct ceph_osd_linger_request *handle;
4418
4419         rbd_assert(!rbd_dev->watch_handle);
4420         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4421
4422         handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
4423                                  &rbd_dev->header_oloc, rbd_watch_cb,
4424                                  rbd_watch_errcb, rbd_dev);
4425         if (IS_ERR(handle))
4426                 return PTR_ERR(handle);
4427
4428         rbd_dev->watch_handle = handle;
4429         return 0;
4430 }
4431
4432 /*
4433  * watch_mutex must be locked
4434  */
4435 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
4436 {
4437         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4438         int ret;
4439
4440         rbd_assert(rbd_dev->watch_handle);
4441         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4442
4443         ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
4444         if (ret)
4445                 rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
4446
4447         rbd_dev->watch_handle = NULL;
4448 }
4449
4450 static int rbd_register_watch(struct rbd_device *rbd_dev)
4451 {
4452         int ret;
4453
4454         mutex_lock(&rbd_dev->watch_mutex);
4455         rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
4456         ret = __rbd_register_watch(rbd_dev);
4457         if (ret)
4458                 goto out;
4459
4460         rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4461         rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4462
4463 out:
4464         mutex_unlock(&rbd_dev->watch_mutex);
4465         return ret;
4466 }
4467
4468 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
4469 {
4470         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4471
4472         cancel_work_sync(&rbd_dev->acquired_lock_work);
4473         cancel_work_sync(&rbd_dev->released_lock_work);
4474         cancel_delayed_work_sync(&rbd_dev->lock_dwork);
4475         cancel_work_sync(&rbd_dev->unlock_work);
4476 }
4477
4478 /*
4479  * header_rwsem must not be held to avoid a deadlock with
4480  * rbd_dev_refresh() when flushing notifies.
4481  */
4482 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
4483 {
4484         cancel_tasks_sync(rbd_dev);
4485
4486         mutex_lock(&rbd_dev->watch_mutex);
4487         if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
4488                 __rbd_unregister_watch(rbd_dev);
4489         rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4490         mutex_unlock(&rbd_dev->watch_mutex);
4491
4492         cancel_delayed_work_sync(&rbd_dev->watch_dwork);
4493         ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
4494 }
4495
4496 /*
4497  * lock_rwsem must be held for write
4498  */
4499 static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
4500 {
4501         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4502         char cookie[32];
4503         int ret;
4504
4505         if (!rbd_quiesce_lock(rbd_dev))
4506                 return;
4507
4508         format_lock_cookie(rbd_dev, cookie);
4509         ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid,
4510                                   &rbd_dev->header_oloc, RBD_LOCK_NAME,
4511                                   CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie,
4512                                   RBD_LOCK_TAG, cookie);
4513         if (ret) {
4514                 if (ret != -EOPNOTSUPP)
4515                         rbd_warn(rbd_dev, "failed to update lock cookie: %d",
4516                                  ret);
4517
4518                 /*
4519                  * Lock cookie cannot be updated on older OSDs, so do
4520                  * a manual release and queue an acquire.
4521                  */
4522                 __rbd_release_lock(rbd_dev);
4523                 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4524         } else {
4525                 __rbd_lock(rbd_dev, cookie);
4526                 wake_lock_waiters(rbd_dev, 0);
4527         }
4528 }
4529
4530 static void rbd_reregister_watch(struct work_struct *work)
4531 {
4532         struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4533                                             struct rbd_device, watch_dwork);
4534         int ret;
4535
4536         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4537
4538         mutex_lock(&rbd_dev->watch_mutex);
4539         if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
4540                 mutex_unlock(&rbd_dev->watch_mutex);
4541                 return;
4542         }
4543
4544         ret = __rbd_register_watch(rbd_dev);
4545         if (ret) {
4546                 rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
4547                 if (ret != -EBLOCKLISTED && ret != -ENOENT) {
4548                         queue_delayed_work(rbd_dev->task_wq,
4549                                            &rbd_dev->watch_dwork,
4550                                            RBD_RETRY_DELAY);
4551                         mutex_unlock(&rbd_dev->watch_mutex);
4552                         return;
4553                 }
4554
4555                 mutex_unlock(&rbd_dev->watch_mutex);
4556                 down_write(&rbd_dev->lock_rwsem);
4557                 wake_lock_waiters(rbd_dev, ret);
4558                 up_write(&rbd_dev->lock_rwsem);
4559                 return;
4560         }
4561
4562         rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4563         rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4564         mutex_unlock(&rbd_dev->watch_mutex);
4565
4566         down_write(&rbd_dev->lock_rwsem);
4567         if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
4568                 rbd_reacquire_lock(rbd_dev);
4569         up_write(&rbd_dev->lock_rwsem);
4570
4571         ret = rbd_dev_refresh(rbd_dev);
4572         if (ret)
4573                 rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret);
4574 }
4575
4576 /*
4577  * Synchronous osd object method call.  Returns the number of bytes
4578  * returned in the outbound buffer, or a negative error code.
4579  */
4580 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
4581                              struct ceph_object_id *oid,
4582                              struct ceph_object_locator *oloc,
4583                              const char *method_name,
4584                              const void *outbound,
4585                              size_t outbound_size,
4586                              void *inbound,
4587                              size_t inbound_size)
4588 {
4589         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4590         struct page *req_page = NULL;
4591         struct page *reply_page;
4592         int ret;
4593
4594         /*
4595          * Method calls are ultimately read operations.  The result
4596          * should placed into the inbound buffer provided.  They
4597          * also supply outbound data--parameters for the object
4598          * method.  Currently if this is present it will be a
4599          * snapshot id.
4600          */
4601         if (outbound) {
4602                 if (outbound_size > PAGE_SIZE)
4603                         return -E2BIG;
4604
4605                 req_page = alloc_page(GFP_KERNEL);
4606                 if (!req_page)
4607                         return -ENOMEM;
4608
4609                 memcpy(page_address(req_page), outbound, outbound_size);
4610         }
4611
4612         reply_page = alloc_page(GFP_KERNEL);
4613         if (!reply_page) {
4614                 if (req_page)
4615                         __free_page(req_page);
4616                 return -ENOMEM;
4617         }
4618
4619         ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
4620                              CEPH_OSD_FLAG_READ, req_page, outbound_size,
4621                              &reply_page, &inbound_size);
4622         if (!ret) {
4623                 memcpy(inbound, page_address(reply_page), inbound_size);
4624                 ret = inbound_size;
4625         }
4626
4627         if (req_page)
4628                 __free_page(req_page);
4629         __free_page(reply_page);
4630         return ret;
4631 }
4632
4633 static void rbd_queue_workfn(struct work_struct *work)
4634 {
4635         struct rbd_img_request *img_request =
4636             container_of(work, struct rbd_img_request, work);
4637         struct rbd_device *rbd_dev = img_request->rbd_dev;
4638         enum obj_operation_type op_type = img_request->op_type;
4639         struct request *rq = blk_mq_rq_from_pdu(img_request);
4640         u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
4641         u64 length = blk_rq_bytes(rq);
4642         u64 mapping_size;
4643         int result;
4644
4645         /* Ignore/skip any zero-length requests */
4646         if (!length) {
4647                 dout("%s: zero-length request\n", __func__);
4648                 result = 0;
4649                 goto err_img_request;
4650         }
4651
4652         blk_mq_start_request(rq);
4653
4654         down_read(&rbd_dev->header_rwsem);
4655         mapping_size = rbd_dev->mapping.size;
4656         rbd_img_capture_header(img_request);
4657         up_read(&rbd_dev->header_rwsem);
4658
4659         if (offset + length > mapping_size) {
4660                 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
4661                          length, mapping_size);
4662                 result = -EIO;
4663                 goto err_img_request;
4664         }
4665
4666         dout("%s rbd_dev %p img_req %p %s %llu~%llu\n", __func__, rbd_dev,
4667              img_request, obj_op_name(op_type), offset, length);
4668
4669         if (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_ZEROOUT)
4670                 result = rbd_img_fill_nodata(img_request, offset, length);
4671         else
4672                 result = rbd_img_fill_from_bio(img_request, offset, length,
4673                                                rq->bio);
4674         if (result)
4675                 goto err_img_request;
4676
4677         rbd_img_handle_request(img_request, 0);
4678         return;
4679
4680 err_img_request:
4681         rbd_img_request_destroy(img_request);
4682         if (result)
4683                 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
4684                          obj_op_name(op_type), length, offset, result);
4685         blk_mq_end_request(rq, errno_to_blk_status(result));
4686 }
4687
4688 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
4689                 const struct blk_mq_queue_data *bd)
4690 {
4691         struct rbd_device *rbd_dev = hctx->queue->queuedata;
4692         struct rbd_img_request *img_req = blk_mq_rq_to_pdu(bd->rq);
4693         enum obj_operation_type op_type;
4694
4695         switch (req_op(bd->rq)) {
4696         case REQ_OP_DISCARD:
4697                 op_type = OBJ_OP_DISCARD;
4698                 break;
4699         case REQ_OP_WRITE_ZEROES:
4700                 op_type = OBJ_OP_ZEROOUT;
4701                 break;
4702         case REQ_OP_WRITE:
4703                 op_type = OBJ_OP_WRITE;
4704                 break;
4705         case REQ_OP_READ:
4706                 op_type = OBJ_OP_READ;
4707                 break;
4708         default:
4709                 rbd_warn(rbd_dev, "unknown req_op %d", req_op(bd->rq));
4710                 return BLK_STS_IOERR;
4711         }
4712
4713         rbd_img_request_init(img_req, rbd_dev, op_type);
4714
4715         if (rbd_img_is_write(img_req)) {
4716                 if (rbd_is_ro(rbd_dev)) {
4717                         rbd_warn(rbd_dev, "%s on read-only mapping",
4718                                  obj_op_name(img_req->op_type));
4719                         return BLK_STS_IOERR;
4720                 }
4721                 rbd_assert(!rbd_is_snap(rbd_dev));
4722         }
4723
4724         INIT_WORK(&img_req->work, rbd_queue_workfn);
4725         queue_work(rbd_wq, &img_req->work);
4726         return BLK_STS_OK;
4727 }
4728
4729 static void rbd_free_disk(struct rbd_device *rbd_dev)
4730 {
4731         put_disk(rbd_dev->disk);
4732         blk_mq_free_tag_set(&rbd_dev->tag_set);
4733         rbd_dev->disk = NULL;
4734 }
4735
4736 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
4737                              struct ceph_object_id *oid,
4738                              struct ceph_object_locator *oloc,
4739                              void *buf, int buf_len)
4740
4741 {
4742         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4743         struct ceph_osd_request *req;
4744         struct page **pages;
4745         int num_pages = calc_pages_for(0, buf_len);
4746         int ret;
4747
4748         req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
4749         if (!req)
4750                 return -ENOMEM;
4751
4752         ceph_oid_copy(&req->r_base_oid, oid);
4753         ceph_oloc_copy(&req->r_base_oloc, oloc);
4754         req->r_flags = CEPH_OSD_FLAG_READ;
4755
4756         pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
4757         if (IS_ERR(pages)) {
4758                 ret = PTR_ERR(pages);
4759                 goto out_req;
4760         }
4761
4762         osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
4763         osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
4764                                          true);
4765
4766         ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
4767         if (ret)
4768                 goto out_req;
4769
4770         ceph_osdc_start_request(osdc, req);
4771         ret = ceph_osdc_wait_request(osdc, req);
4772         if (ret >= 0)
4773                 ceph_copy_from_page_vector(pages, buf, 0, ret);
4774
4775 out_req:
4776         ceph_osdc_put_request(req);
4777         return ret;
4778 }
4779
4780 /*
4781  * Read the complete header for the given rbd device.  On successful
4782  * return, the rbd_dev->header field will contain up-to-date
4783  * information about the image.
4784  */
4785 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
4786 {
4787         struct rbd_image_header_ondisk *ondisk = NULL;
4788         u32 snap_count = 0;
4789         u64 names_size = 0;
4790         u32 want_count;
4791         int ret;
4792
4793         /*
4794          * The complete header will include an array of its 64-bit
4795          * snapshot ids, followed by the names of those snapshots as
4796          * a contiguous block of NUL-terminated strings.  Note that
4797          * the number of snapshots could change by the time we read
4798          * it in, in which case we re-read it.
4799          */
4800         do {
4801                 size_t size;
4802
4803                 kfree(ondisk);
4804
4805                 size = sizeof (*ondisk);
4806                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4807                 size += names_size;
4808                 ondisk = kmalloc(size, GFP_KERNEL);
4809                 if (!ondisk)
4810                         return -ENOMEM;
4811
4812                 ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
4813                                         &rbd_dev->header_oloc, ondisk, size);
4814                 if (ret < 0)
4815                         goto out;
4816                 if ((size_t)ret < size) {
4817                         ret = -ENXIO;
4818                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
4819                                 size, ret);
4820                         goto out;
4821                 }
4822                 if (!rbd_dev_ondisk_valid(ondisk)) {
4823                         ret = -ENXIO;
4824                         rbd_warn(rbd_dev, "invalid header");
4825                         goto out;
4826                 }
4827
4828                 names_size = le64_to_cpu(ondisk->snap_names_len);
4829                 want_count = snap_count;
4830                 snap_count = le32_to_cpu(ondisk->snap_count);
4831         } while (snap_count != want_count);
4832
4833         ret = rbd_header_from_disk(rbd_dev, ondisk);
4834 out:
4835         kfree(ondisk);
4836
4837         return ret;
4838 }
4839
4840 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
4841 {
4842         sector_t size;
4843
4844         /*
4845          * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
4846          * try to update its size.  If REMOVING is set, updating size
4847          * is just useless work since the device can't be opened.
4848          */
4849         if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
4850             !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
4851                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
4852                 dout("setting size to %llu sectors", (unsigned long long)size);
4853                 set_capacity_and_notify(rbd_dev->disk, size);
4854         }
4855 }
4856
4857 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
4858 {
4859         u64 mapping_size;
4860         int ret;
4861
4862         down_write(&rbd_dev->header_rwsem);
4863         mapping_size = rbd_dev->mapping.size;
4864
4865         ret = rbd_dev_header_info(rbd_dev);
4866         if (ret)
4867                 goto out;
4868
4869         /*
4870          * If there is a parent, see if it has disappeared due to the
4871          * mapped image getting flattened.
4872          */
4873         if (rbd_dev->parent) {
4874                 ret = rbd_dev_v2_parent_info(rbd_dev);
4875                 if (ret)
4876                         goto out;
4877         }
4878
4879         rbd_assert(!rbd_is_snap(rbd_dev));
4880         rbd_dev->mapping.size = rbd_dev->header.image_size;
4881
4882 out:
4883         up_write(&rbd_dev->header_rwsem);
4884         if (!ret && mapping_size != rbd_dev->mapping.size)
4885                 rbd_dev_update_size(rbd_dev);
4886
4887         return ret;
4888 }
4889
4890 static const struct blk_mq_ops rbd_mq_ops = {
4891         .queue_rq       = rbd_queue_rq,
4892 };
4893
4894 static int rbd_init_disk(struct rbd_device *rbd_dev)
4895 {
4896         struct gendisk *disk;
4897         struct request_queue *q;
4898         unsigned int objset_bytes =
4899             rbd_dev->layout.object_size * rbd_dev->layout.stripe_count;
4900         int err;
4901
4902         memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
4903         rbd_dev->tag_set.ops = &rbd_mq_ops;
4904         rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
4905         rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
4906         rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
4907         rbd_dev->tag_set.nr_hw_queues = num_present_cpus();
4908         rbd_dev->tag_set.cmd_size = sizeof(struct rbd_img_request);
4909
4910         err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
4911         if (err)
4912                 return err;
4913
4914         disk = blk_mq_alloc_disk(&rbd_dev->tag_set, rbd_dev);
4915         if (IS_ERR(disk)) {
4916                 err = PTR_ERR(disk);
4917                 goto out_tag_set;
4918         }
4919         q = disk->queue;
4920
4921         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
4922                  rbd_dev->dev_id);
4923         disk->major = rbd_dev->major;
4924         disk->first_minor = rbd_dev->minor;
4925         if (single_major)
4926                 disk->minors = (1 << RBD_SINGLE_MAJOR_PART_SHIFT);
4927         else
4928                 disk->minors = RBD_MINORS_PER_MAJOR;
4929         disk->fops = &rbd_bd_ops;
4930         disk->private_data = rbd_dev;
4931
4932         blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
4933         /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
4934
4935         blk_queue_max_hw_sectors(q, objset_bytes >> SECTOR_SHIFT);
4936         q->limits.max_sectors = queue_max_hw_sectors(q);
4937         blk_queue_max_segments(q, USHRT_MAX);
4938         blk_queue_max_segment_size(q, UINT_MAX);
4939         blk_queue_io_min(q, rbd_dev->opts->alloc_size);
4940         blk_queue_io_opt(q, rbd_dev->opts->alloc_size);
4941
4942         if (rbd_dev->opts->trim) {
4943                 q->limits.discard_granularity = rbd_dev->opts->alloc_size;
4944                 blk_queue_max_discard_sectors(q, objset_bytes >> SECTOR_SHIFT);
4945                 blk_queue_max_write_zeroes_sectors(q, objset_bytes >> SECTOR_SHIFT);
4946         }
4947
4948         if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
4949                 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
4950
4951         rbd_dev->disk = disk;
4952
4953         return 0;
4954 out_tag_set:
4955         blk_mq_free_tag_set(&rbd_dev->tag_set);
4956         return err;
4957 }
4958
4959 /*
4960   sysfs
4961 */
4962
4963 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
4964 {
4965         return container_of(dev, struct rbd_device, dev);
4966 }
4967
4968 static ssize_t rbd_size_show(struct device *dev,
4969                              struct device_attribute *attr, char *buf)
4970 {
4971         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4972
4973         return sprintf(buf, "%llu\n",
4974                 (unsigned long long)rbd_dev->mapping.size);
4975 }
4976
4977 static ssize_t rbd_features_show(struct device *dev,
4978                              struct device_attribute *attr, char *buf)
4979 {
4980         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4981
4982         return sprintf(buf, "0x%016llx\n", rbd_dev->header.features);
4983 }
4984
4985 static ssize_t rbd_major_show(struct device *dev,
4986                               struct device_attribute *attr, char *buf)
4987 {
4988         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4989
4990         if (rbd_dev->major)
4991                 return sprintf(buf, "%d\n", rbd_dev->major);
4992
4993         return sprintf(buf, "(none)\n");
4994 }
4995
4996 static ssize_t rbd_minor_show(struct device *dev,
4997                               struct device_attribute *attr, char *buf)
4998 {
4999         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5000
5001         return sprintf(buf, "%d\n", rbd_dev->minor);
5002 }
5003
5004 static ssize_t rbd_client_addr_show(struct device *dev,
5005                                     struct device_attribute *attr, char *buf)
5006 {
5007         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5008         struct ceph_entity_addr *client_addr =
5009             ceph_client_addr(rbd_dev->rbd_client->client);
5010
5011         return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
5012                        le32_to_cpu(client_addr->nonce));
5013 }
5014
5015 static ssize_t rbd_client_id_show(struct device *dev,
5016                                   struct device_attribute *attr, char *buf)
5017 {
5018         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5019
5020         return sprintf(buf, "client%lld\n",
5021                        ceph_client_gid(rbd_dev->rbd_client->client));
5022 }
5023
5024 static ssize_t rbd_cluster_fsid_show(struct device *dev,
5025                                      struct device_attribute *attr, char *buf)
5026 {
5027         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5028
5029         return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
5030 }
5031
5032 static ssize_t rbd_config_info_show(struct device *dev,
5033                                     struct device_attribute *attr, char *buf)
5034 {
5035         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5036
5037         if (!capable(CAP_SYS_ADMIN))
5038                 return -EPERM;
5039
5040         return sprintf(buf, "%s\n", rbd_dev->config_info);
5041 }
5042
5043 static ssize_t rbd_pool_show(struct device *dev,
5044                              struct device_attribute *attr, char *buf)
5045 {
5046         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5047
5048         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
5049 }
5050
5051 static ssize_t rbd_pool_id_show(struct device *dev,
5052                              struct device_attribute *attr, char *buf)
5053 {
5054         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5055
5056         return sprintf(buf, "%llu\n",
5057                         (unsigned long long) rbd_dev->spec->pool_id);
5058 }
5059
5060 static ssize_t rbd_pool_ns_show(struct device *dev,
5061                                 struct device_attribute *attr, char *buf)
5062 {
5063         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5064
5065         return sprintf(buf, "%s\n", rbd_dev->spec->pool_ns ?: "");
5066 }
5067
5068 static ssize_t rbd_name_show(struct device *dev,
5069                              struct device_attribute *attr, char *buf)
5070 {
5071         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5072
5073         if (rbd_dev->spec->image_name)
5074                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
5075
5076         return sprintf(buf, "(unknown)\n");
5077 }
5078
5079 static ssize_t rbd_image_id_show(struct device *dev,
5080                              struct device_attribute *attr, char *buf)
5081 {
5082         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5083
5084         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
5085 }
5086
5087 /*
5088  * Shows the name of the currently-mapped snapshot (or
5089  * RBD_SNAP_HEAD_NAME for the base image).
5090  */
5091 static ssize_t rbd_snap_show(struct device *dev,
5092                              struct device_attribute *attr,
5093                              char *buf)
5094 {
5095         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5096
5097         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
5098 }
5099
5100 static ssize_t rbd_snap_id_show(struct device *dev,
5101                                 struct device_attribute *attr, char *buf)
5102 {
5103         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5104
5105         return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
5106 }
5107
5108 /*
5109  * For a v2 image, shows the chain of parent images, separated by empty
5110  * lines.  For v1 images or if there is no parent, shows "(no parent
5111  * image)".
5112  */
5113 static ssize_t rbd_parent_show(struct device *dev,
5114                                struct device_attribute *attr,
5115                                char *buf)
5116 {
5117         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5118         ssize_t count = 0;
5119
5120         if (!rbd_dev->parent)
5121                 return sprintf(buf, "(no parent image)\n");
5122
5123         for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
5124                 struct rbd_spec *spec = rbd_dev->parent_spec;
5125
5126                 count += sprintf(&buf[count], "%s"
5127                             "pool_id %llu\npool_name %s\n"
5128                             "pool_ns %s\n"
5129                             "image_id %s\nimage_name %s\n"
5130                             "snap_id %llu\nsnap_name %s\n"
5131                             "overlap %llu\n",
5132                             !count ? "" : "\n", /* first? */
5133                             spec->pool_id, spec->pool_name,
5134                             spec->pool_ns ?: "",
5135                             spec->image_id, spec->image_name ?: "(unknown)",
5136                             spec->snap_id, spec->snap_name,
5137                             rbd_dev->parent_overlap);
5138         }
5139
5140         return count;
5141 }
5142
5143 static ssize_t rbd_image_refresh(struct device *dev,
5144                                  struct device_attribute *attr,
5145                                  const char *buf,
5146                                  size_t size)
5147 {
5148         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5149         int ret;
5150
5151         if (!capable(CAP_SYS_ADMIN))
5152                 return -EPERM;
5153
5154         ret = rbd_dev_refresh(rbd_dev);
5155         if (ret)
5156                 return ret;
5157
5158         return size;
5159 }
5160
5161 static DEVICE_ATTR(size, 0444, rbd_size_show, NULL);
5162 static DEVICE_ATTR(features, 0444, rbd_features_show, NULL);
5163 static DEVICE_ATTR(major, 0444, rbd_major_show, NULL);
5164 static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL);
5165 static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL);
5166 static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL);
5167 static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL);
5168 static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL);
5169 static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL);
5170 static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL);
5171 static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL);
5172 static DEVICE_ATTR(name, 0444, rbd_name_show, NULL);
5173 static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL);
5174 static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh);
5175 static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL);
5176 static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL);
5177 static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL);
5178
5179 static struct attribute *rbd_attrs[] = {
5180         &dev_attr_size.attr,
5181         &dev_attr_features.attr,
5182         &dev_attr_major.attr,
5183         &dev_attr_minor.attr,
5184         &dev_attr_client_addr.attr,
5185         &dev_attr_client_id.attr,
5186         &dev_attr_cluster_fsid.attr,
5187         &dev_attr_config_info.attr,
5188         &dev_attr_pool.attr,
5189         &dev_attr_pool_id.attr,
5190         &dev_attr_pool_ns.attr,
5191         &dev_attr_name.attr,
5192         &dev_attr_image_id.attr,
5193         &dev_attr_current_snap.attr,
5194         &dev_attr_snap_id.attr,
5195         &dev_attr_parent.attr,
5196         &dev_attr_refresh.attr,
5197         NULL
5198 };
5199
5200 static struct attribute_group rbd_attr_group = {
5201         .attrs = rbd_attrs,
5202 };
5203
5204 static const struct attribute_group *rbd_attr_groups[] = {
5205         &rbd_attr_group,
5206         NULL
5207 };
5208
5209 static void rbd_dev_release(struct device *dev);
5210
5211 static const struct device_type rbd_device_type = {
5212         .name           = "rbd",
5213         .groups         = rbd_attr_groups,
5214         .release        = rbd_dev_release,
5215 };
5216
5217 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
5218 {
5219         kref_get(&spec->kref);
5220
5221         return spec;
5222 }
5223
5224 static void rbd_spec_free(struct kref *kref);
5225 static void rbd_spec_put(struct rbd_spec *spec)
5226 {
5227         if (spec)
5228                 kref_put(&spec->kref, rbd_spec_free);
5229 }
5230
5231 static struct rbd_spec *rbd_spec_alloc(void)
5232 {
5233         struct rbd_spec *spec;
5234
5235         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
5236         if (!spec)
5237                 return NULL;
5238
5239         spec->pool_id = CEPH_NOPOOL;
5240         spec->snap_id = CEPH_NOSNAP;
5241         kref_init(&spec->kref);
5242
5243         return spec;
5244 }
5245
5246 static void rbd_spec_free(struct kref *kref)
5247 {
5248         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
5249
5250         kfree(spec->pool_name);
5251         kfree(spec->pool_ns);
5252         kfree(spec->image_id);
5253         kfree(spec->image_name);
5254         kfree(spec->snap_name);
5255         kfree(spec);
5256 }
5257
5258 static void rbd_dev_free(struct rbd_device *rbd_dev)
5259 {
5260         WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
5261         WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
5262
5263         ceph_oid_destroy(&rbd_dev->header_oid);
5264         ceph_oloc_destroy(&rbd_dev->header_oloc);
5265         kfree(rbd_dev->config_info);
5266
5267         rbd_put_client(rbd_dev->rbd_client);
5268         rbd_spec_put(rbd_dev->spec);
5269         kfree(rbd_dev->opts);
5270         kfree(rbd_dev);
5271 }
5272
5273 static void rbd_dev_release(struct device *dev)
5274 {
5275         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5276         bool need_put = !!rbd_dev->opts;
5277
5278         if (need_put) {
5279                 destroy_workqueue(rbd_dev->task_wq);
5280                 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5281         }
5282
5283         rbd_dev_free(rbd_dev);
5284
5285         /*
5286          * This is racy, but way better than putting module outside of
5287          * the release callback.  The race window is pretty small, so
5288          * doing something similar to dm (dm-builtin.c) is overkill.
5289          */
5290         if (need_put)
5291                 module_put(THIS_MODULE);
5292 }
5293
5294 static struct rbd_device *__rbd_dev_create(struct rbd_spec *spec)
5295 {
5296         struct rbd_device *rbd_dev;
5297
5298         rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
5299         if (!rbd_dev)
5300                 return NULL;
5301
5302         spin_lock_init(&rbd_dev->lock);
5303         INIT_LIST_HEAD(&rbd_dev->node);
5304         init_rwsem(&rbd_dev->header_rwsem);
5305
5306         rbd_dev->header.data_pool_id = CEPH_NOPOOL;
5307         ceph_oid_init(&rbd_dev->header_oid);
5308         rbd_dev->header_oloc.pool = spec->pool_id;
5309         if (spec->pool_ns) {
5310                 WARN_ON(!*spec->pool_ns);
5311                 rbd_dev->header_oloc.pool_ns =
5312                     ceph_find_or_create_string(spec->pool_ns,
5313                                                strlen(spec->pool_ns));
5314         }
5315
5316         mutex_init(&rbd_dev->watch_mutex);
5317         rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
5318         INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
5319
5320         init_rwsem(&rbd_dev->lock_rwsem);
5321         rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
5322         INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
5323         INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
5324         INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
5325         INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
5326         spin_lock_init(&rbd_dev->lock_lists_lock);
5327         INIT_LIST_HEAD(&rbd_dev->acquiring_list);
5328         INIT_LIST_HEAD(&rbd_dev->running_list);
5329         init_completion(&rbd_dev->acquire_wait);
5330         init_completion(&rbd_dev->releasing_wait);
5331
5332         spin_lock_init(&rbd_dev->object_map_lock);
5333
5334         rbd_dev->dev.bus = &rbd_bus_type;
5335         rbd_dev->dev.type = &rbd_device_type;
5336         rbd_dev->dev.parent = &rbd_root_dev;
5337         device_initialize(&rbd_dev->dev);
5338
5339         return rbd_dev;
5340 }
5341
5342 /*
5343  * Create a mapping rbd_dev.
5344  */
5345 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
5346                                          struct rbd_spec *spec,
5347                                          struct rbd_options *opts)
5348 {
5349         struct rbd_device *rbd_dev;
5350
5351         rbd_dev = __rbd_dev_create(spec);
5352         if (!rbd_dev)
5353                 return NULL;
5354
5355         /* get an id and fill in device name */
5356         rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
5357                                          minor_to_rbd_dev_id(1 << MINORBITS),
5358                                          GFP_KERNEL);
5359         if (rbd_dev->dev_id < 0)
5360                 goto fail_rbd_dev;
5361
5362         sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
5363         rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
5364                                                    rbd_dev->name);
5365         if (!rbd_dev->task_wq)
5366                 goto fail_dev_id;
5367
5368         /* we have a ref from do_rbd_add() */
5369         __module_get(THIS_MODULE);
5370
5371         rbd_dev->rbd_client = rbdc;
5372         rbd_dev->spec = spec;
5373         rbd_dev->opts = opts;
5374
5375         dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
5376         return rbd_dev;
5377
5378 fail_dev_id:
5379         ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5380 fail_rbd_dev:
5381         rbd_dev_free(rbd_dev);
5382         return NULL;
5383 }
5384
5385 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
5386 {
5387         if (rbd_dev)
5388                 put_device(&rbd_dev->dev);
5389 }
5390
5391 /*
5392  * Get the size and object order for an image snapshot, or if
5393  * snap_id is CEPH_NOSNAP, gets this information for the base
5394  * image.
5395  */
5396 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
5397                                 u8 *order, u64 *snap_size)
5398 {
5399         __le64 snapid = cpu_to_le64(snap_id);
5400         int ret;
5401         struct {
5402                 u8 order;
5403                 __le64 size;
5404         } __attribute__ ((packed)) size_buf = { 0 };
5405
5406         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5407                                   &rbd_dev->header_oloc, "get_size",
5408                                   &snapid, sizeof(snapid),
5409                                   &size_buf, sizeof(size_buf));
5410         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5411         if (ret < 0)
5412                 return ret;
5413         if (ret < sizeof (size_buf))
5414                 return -ERANGE;
5415
5416         if (order) {
5417                 *order = size_buf.order;
5418                 dout("  order %u", (unsigned int)*order);
5419         }
5420         *snap_size = le64_to_cpu(size_buf.size);
5421
5422         dout("  snap_id 0x%016llx snap_size = %llu\n",
5423                 (unsigned long long)snap_id,
5424                 (unsigned long long)*snap_size);
5425
5426         return 0;
5427 }
5428
5429 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
5430 {
5431         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
5432                                         &rbd_dev->header.obj_order,
5433                                         &rbd_dev->header.image_size);
5434 }
5435
5436 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
5437 {
5438         size_t size;
5439         void *reply_buf;
5440         int ret;
5441         void *p;
5442
5443         /* Response will be an encoded string, which includes a length */
5444         size = sizeof(__le32) + RBD_OBJ_PREFIX_LEN_MAX;
5445         reply_buf = kzalloc(size, GFP_KERNEL);
5446         if (!reply_buf)
5447                 return -ENOMEM;
5448
5449         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5450                                   &rbd_dev->header_oloc, "get_object_prefix",
5451                                   NULL, 0, reply_buf, size);
5452         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5453         if (ret < 0)
5454                 goto out;
5455
5456         p = reply_buf;
5457         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
5458                                                 p + ret, NULL, GFP_NOIO);
5459         ret = 0;
5460
5461         if (IS_ERR(rbd_dev->header.object_prefix)) {
5462                 ret = PTR_ERR(rbd_dev->header.object_prefix);
5463                 rbd_dev->header.object_prefix = NULL;
5464         } else {
5465                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
5466         }
5467 out:
5468         kfree(reply_buf);
5469
5470         return ret;
5471 }
5472
5473 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
5474                                      bool read_only, u64 *snap_features)
5475 {
5476         struct {
5477                 __le64 snap_id;
5478                 u8 read_only;
5479         } features_in;
5480         struct {
5481                 __le64 features;
5482                 __le64 incompat;
5483         } __attribute__ ((packed)) features_buf = { 0 };
5484         u64 unsup;
5485         int ret;
5486
5487         features_in.snap_id = cpu_to_le64(snap_id);
5488         features_in.read_only = read_only;
5489
5490         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5491                                   &rbd_dev->header_oloc, "get_features",
5492                                   &features_in, sizeof(features_in),
5493                                   &features_buf, sizeof(features_buf));
5494         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5495         if (ret < 0)
5496                 return ret;
5497         if (ret < sizeof (features_buf))
5498                 return -ERANGE;
5499
5500         unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
5501         if (unsup) {
5502                 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
5503                          unsup);
5504                 return -ENXIO;
5505         }
5506
5507         *snap_features = le64_to_cpu(features_buf.features);
5508
5509         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
5510                 (unsigned long long)snap_id,
5511                 (unsigned long long)*snap_features,
5512                 (unsigned long long)le64_to_cpu(features_buf.incompat));
5513
5514         return 0;
5515 }
5516
5517 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
5518 {
5519         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
5520                                          rbd_is_ro(rbd_dev),
5521                                          &rbd_dev->header.features);
5522 }
5523
5524 /*
5525  * These are generic image flags, but since they are used only for
5526  * object map, store them in rbd_dev->object_map_flags.
5527  *
5528  * For the same reason, this function is called only on object map
5529  * (re)load and not on header refresh.
5530  */
5531 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev)
5532 {
5533         __le64 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
5534         __le64 flags;
5535         int ret;
5536
5537         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5538                                   &rbd_dev->header_oloc, "get_flags",
5539                                   &snapid, sizeof(snapid),
5540                                   &flags, sizeof(flags));
5541         if (ret < 0)
5542                 return ret;
5543         if (ret < sizeof(flags))
5544                 return -EBADMSG;
5545
5546         rbd_dev->object_map_flags = le64_to_cpu(flags);
5547         return 0;
5548 }
5549
5550 struct parent_image_info {
5551         u64             pool_id;
5552         const char      *pool_ns;
5553         const char      *image_id;
5554         u64             snap_id;
5555
5556         bool            has_overlap;
5557         u64             overlap;
5558 };
5559
5560 /*
5561  * The caller is responsible for @pii.
5562  */
5563 static int decode_parent_image_spec(void **p, void *end,
5564                                     struct parent_image_info *pii)
5565 {
5566         u8 struct_v;
5567         u32 struct_len;
5568         int ret;
5569
5570         ret = ceph_start_decoding(p, end, 1, "ParentImageSpec",
5571                                   &struct_v, &struct_len);
5572         if (ret)
5573                 return ret;
5574
5575         ceph_decode_64_safe(p, end, pii->pool_id, e_inval);
5576         pii->pool_ns = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5577         if (IS_ERR(pii->pool_ns)) {
5578                 ret = PTR_ERR(pii->pool_ns);
5579                 pii->pool_ns = NULL;
5580                 return ret;
5581         }
5582         pii->image_id = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5583         if (IS_ERR(pii->image_id)) {
5584                 ret = PTR_ERR(pii->image_id);
5585                 pii->image_id = NULL;
5586                 return ret;
5587         }
5588         ceph_decode_64_safe(p, end, pii->snap_id, e_inval);
5589         return 0;
5590
5591 e_inval:
5592         return -EINVAL;
5593 }
5594
5595 static int __get_parent_info(struct rbd_device *rbd_dev,
5596                              struct page *req_page,
5597                              struct page *reply_page,
5598                              struct parent_image_info *pii)
5599 {
5600         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5601         size_t reply_len = PAGE_SIZE;
5602         void *p, *end;
5603         int ret;
5604
5605         ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5606                              "rbd", "parent_get", CEPH_OSD_FLAG_READ,
5607                              req_page, sizeof(u64), &reply_page, &reply_len);
5608         if (ret)
5609                 return ret == -EOPNOTSUPP ? 1 : ret;
5610
5611         p = page_address(reply_page);
5612         end = p + reply_len;
5613         ret = decode_parent_image_spec(&p, end, pii);
5614         if (ret)
5615                 return ret;
5616
5617         ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5618                              "rbd", "parent_overlap_get", CEPH_OSD_FLAG_READ,
5619                              req_page, sizeof(u64), &reply_page, &reply_len);
5620         if (ret)
5621                 return ret;
5622
5623         p = page_address(reply_page);
5624         end = p + reply_len;
5625         ceph_decode_8_safe(&p, end, pii->has_overlap, e_inval);
5626         if (pii->has_overlap)
5627                 ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5628
5629         return 0;
5630
5631 e_inval:
5632         return -EINVAL;
5633 }
5634
5635 /*
5636  * The caller is responsible for @pii.
5637  */
5638 static int __get_parent_info_legacy(struct rbd_device *rbd_dev,
5639                                     struct page *req_page,
5640                                     struct page *reply_page,
5641                                     struct parent_image_info *pii)
5642 {
5643         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5644         size_t reply_len = PAGE_SIZE;
5645         void *p, *end;
5646         int ret;
5647
5648         ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5649                              "rbd", "get_parent", CEPH_OSD_FLAG_READ,
5650                              req_page, sizeof(u64), &reply_page, &reply_len);
5651         if (ret)
5652                 return ret;
5653
5654         p = page_address(reply_page);
5655         end = p + reply_len;
5656         ceph_decode_64_safe(&p, end, pii->pool_id, e_inval);
5657         pii->image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5658         if (IS_ERR(pii->image_id)) {
5659                 ret = PTR_ERR(pii->image_id);
5660                 pii->image_id = NULL;
5661                 return ret;
5662         }
5663         ceph_decode_64_safe(&p, end, pii->snap_id, e_inval);
5664         pii->has_overlap = true;
5665         ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5666
5667         return 0;
5668
5669 e_inval:
5670         return -EINVAL;
5671 }
5672
5673 static int get_parent_info(struct rbd_device *rbd_dev,
5674                            struct parent_image_info *pii)
5675 {
5676         struct page *req_page, *reply_page;
5677         void *p;
5678         int ret;
5679
5680         req_page = alloc_page(GFP_KERNEL);
5681         if (!req_page)
5682                 return -ENOMEM;
5683
5684         reply_page = alloc_page(GFP_KERNEL);
5685         if (!reply_page) {
5686                 __free_page(req_page);
5687                 return -ENOMEM;
5688         }
5689
5690         p = page_address(req_page);
5691         ceph_encode_64(&p, rbd_dev->spec->snap_id);
5692         ret = __get_parent_info(rbd_dev, req_page, reply_page, pii);
5693         if (ret > 0)
5694                 ret = __get_parent_info_legacy(rbd_dev, req_page, reply_page,
5695                                                pii);
5696
5697         __free_page(req_page);
5698         __free_page(reply_page);
5699         return ret;
5700 }
5701
5702 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
5703 {
5704         struct rbd_spec *parent_spec;
5705         struct parent_image_info pii = { 0 };
5706         int ret;
5707
5708         parent_spec = rbd_spec_alloc();
5709         if (!parent_spec)
5710                 return -ENOMEM;
5711
5712         ret = get_parent_info(rbd_dev, &pii);
5713         if (ret)
5714                 goto out_err;
5715
5716         dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5717              __func__, pii.pool_id, pii.pool_ns, pii.image_id, pii.snap_id,
5718              pii.has_overlap, pii.overlap);
5719
5720         if (pii.pool_id == CEPH_NOPOOL || !pii.has_overlap) {
5721                 /*
5722                  * Either the parent never existed, or we have
5723                  * record of it but the image got flattened so it no
5724                  * longer has a parent.  When the parent of a
5725                  * layered image disappears we immediately set the
5726                  * overlap to 0.  The effect of this is that all new
5727                  * requests will be treated as if the image had no
5728                  * parent.
5729                  *
5730                  * If !pii.has_overlap, the parent image spec is not
5731                  * applicable.  It's there to avoid duplication in each
5732                  * snapshot record.
5733                  */
5734                 if (rbd_dev->parent_overlap) {
5735                         rbd_dev->parent_overlap = 0;
5736                         rbd_dev_parent_put(rbd_dev);
5737                         pr_info("%s: clone image has been flattened\n",
5738                                 rbd_dev->disk->disk_name);
5739                 }
5740
5741                 goto out;       /* No parent?  No problem. */
5742         }
5743
5744         /* The ceph file layout needs to fit pool id in 32 bits */
5745
5746         ret = -EIO;
5747         if (pii.pool_id > (u64)U32_MAX) {
5748                 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
5749                         (unsigned long long)pii.pool_id, U32_MAX);
5750                 goto out_err;
5751         }
5752
5753         /*
5754          * The parent won't change (except when the clone is
5755          * flattened, already handled that).  So we only need to
5756          * record the parent spec we have not already done so.
5757          */
5758         if (!rbd_dev->parent_spec) {
5759                 parent_spec->pool_id = pii.pool_id;
5760                 if (pii.pool_ns && *pii.pool_ns) {
5761                         parent_spec->pool_ns = pii.pool_ns;
5762                         pii.pool_ns = NULL;
5763                 }
5764                 parent_spec->image_id = pii.image_id;
5765                 pii.image_id = NULL;
5766                 parent_spec->snap_id = pii.snap_id;
5767
5768                 rbd_dev->parent_spec = parent_spec;
5769                 parent_spec = NULL;     /* rbd_dev now owns this */
5770         }
5771
5772         /*
5773          * We always update the parent overlap.  If it's zero we issue
5774          * a warning, as we will proceed as if there was no parent.
5775          */
5776         if (!pii.overlap) {
5777                 if (parent_spec) {
5778                         /* refresh, careful to warn just once */
5779                         if (rbd_dev->parent_overlap)
5780                                 rbd_warn(rbd_dev,
5781                                     "clone now standalone (overlap became 0)");
5782                 } else {
5783                         /* initial probe */
5784                         rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
5785                 }
5786         }
5787         rbd_dev->parent_overlap = pii.overlap;
5788
5789 out:
5790         ret = 0;
5791 out_err:
5792         kfree(pii.pool_ns);
5793         kfree(pii.image_id);
5794         rbd_spec_put(parent_spec);
5795         return ret;
5796 }
5797
5798 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
5799 {
5800         struct {
5801                 __le64 stripe_unit;
5802                 __le64 stripe_count;
5803         } __attribute__ ((packed)) striping_info_buf = { 0 };
5804         size_t size = sizeof (striping_info_buf);
5805         void *p;
5806         int ret;
5807
5808         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5809                                 &rbd_dev->header_oloc, "get_stripe_unit_count",
5810                                 NULL, 0, &striping_info_buf, size);
5811         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5812         if (ret < 0)
5813                 return ret;
5814         if (ret < size)
5815                 return -ERANGE;
5816
5817         p = &striping_info_buf;
5818         rbd_dev->header.stripe_unit = ceph_decode_64(&p);
5819         rbd_dev->header.stripe_count = ceph_decode_64(&p);
5820         return 0;
5821 }
5822
5823 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev)
5824 {
5825         __le64 data_pool_id;
5826         int ret;
5827
5828         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5829                                   &rbd_dev->header_oloc, "get_data_pool",
5830                                   NULL, 0, &data_pool_id, sizeof(data_pool_id));
5831         if (ret < 0)
5832                 return ret;
5833         if (ret < sizeof(data_pool_id))
5834                 return -EBADMSG;
5835
5836         rbd_dev->header.data_pool_id = le64_to_cpu(data_pool_id);
5837         WARN_ON(rbd_dev->header.data_pool_id == CEPH_NOPOOL);
5838         return 0;
5839 }
5840
5841 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
5842 {
5843         CEPH_DEFINE_OID_ONSTACK(oid);
5844         size_t image_id_size;
5845         char *image_id;
5846         void *p;
5847         void *end;
5848         size_t size;
5849         void *reply_buf = NULL;
5850         size_t len = 0;
5851         char *image_name = NULL;
5852         int ret;
5853
5854         rbd_assert(!rbd_dev->spec->image_name);
5855
5856         len = strlen(rbd_dev->spec->image_id);
5857         image_id_size = sizeof (__le32) + len;
5858         image_id = kmalloc(image_id_size, GFP_KERNEL);
5859         if (!image_id)
5860                 return NULL;
5861
5862         p = image_id;
5863         end = image_id + image_id_size;
5864         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
5865
5866         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
5867         reply_buf = kmalloc(size, GFP_KERNEL);
5868         if (!reply_buf)
5869                 goto out;
5870
5871         ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
5872         ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5873                                   "dir_get_name", image_id, image_id_size,
5874                                   reply_buf, size);
5875         if (ret < 0)
5876                 goto out;
5877         p = reply_buf;
5878         end = reply_buf + ret;
5879
5880         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
5881         if (IS_ERR(image_name))
5882                 image_name = NULL;
5883         else
5884                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
5885 out:
5886         kfree(reply_buf);
5887         kfree(image_id);
5888
5889         return image_name;
5890 }
5891
5892 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5893 {
5894         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5895         const char *snap_name;
5896         u32 which = 0;
5897
5898         /* Skip over names until we find the one we are looking for */
5899
5900         snap_name = rbd_dev->header.snap_names;
5901         while (which < snapc->num_snaps) {
5902                 if (!strcmp(name, snap_name))
5903                         return snapc->snaps[which];
5904                 snap_name += strlen(snap_name) + 1;
5905                 which++;
5906         }
5907         return CEPH_NOSNAP;
5908 }
5909
5910 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5911 {
5912         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5913         u32 which;
5914         bool found = false;
5915         u64 snap_id;
5916
5917         for (which = 0; !found && which < snapc->num_snaps; which++) {
5918                 const char *snap_name;
5919
5920                 snap_id = snapc->snaps[which];
5921                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
5922                 if (IS_ERR(snap_name)) {
5923                         /* ignore no-longer existing snapshots */
5924                         if (PTR_ERR(snap_name) == -ENOENT)
5925                                 continue;
5926                         else
5927                                 break;
5928                 }
5929                 found = !strcmp(name, snap_name);
5930                 kfree(snap_name);
5931         }
5932         return found ? snap_id : CEPH_NOSNAP;
5933 }
5934
5935 /*
5936  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
5937  * no snapshot by that name is found, or if an error occurs.
5938  */
5939 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5940 {
5941         if (rbd_dev->image_format == 1)
5942                 return rbd_v1_snap_id_by_name(rbd_dev, name);
5943
5944         return rbd_v2_snap_id_by_name(rbd_dev, name);
5945 }
5946
5947 /*
5948  * An image being mapped will have everything but the snap id.
5949  */
5950 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
5951 {
5952         struct rbd_spec *spec = rbd_dev->spec;
5953
5954         rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
5955         rbd_assert(spec->image_id && spec->image_name);
5956         rbd_assert(spec->snap_name);
5957
5958         if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
5959                 u64 snap_id;
5960
5961                 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
5962                 if (snap_id == CEPH_NOSNAP)
5963                         return -ENOENT;
5964
5965                 spec->snap_id = snap_id;
5966         } else {
5967                 spec->snap_id = CEPH_NOSNAP;
5968         }
5969
5970         return 0;
5971 }
5972
5973 /*
5974  * A parent image will have all ids but none of the names.
5975  *
5976  * All names in an rbd spec are dynamically allocated.  It's OK if we
5977  * can't figure out the name for an image id.
5978  */
5979 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
5980 {
5981         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5982         struct rbd_spec *spec = rbd_dev->spec;
5983         const char *pool_name;
5984         const char *image_name;
5985         const char *snap_name;
5986         int ret;
5987
5988         rbd_assert(spec->pool_id != CEPH_NOPOOL);
5989         rbd_assert(spec->image_id);
5990         rbd_assert(spec->snap_id != CEPH_NOSNAP);
5991
5992         /* Get the pool name; we have to make our own copy of this */
5993
5994         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
5995         if (!pool_name) {
5996                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
5997                 return -EIO;
5998         }
5999         pool_name = kstrdup(pool_name, GFP_KERNEL);
6000         if (!pool_name)
6001                 return -ENOMEM;
6002
6003         /* Fetch the image name; tolerate failure here */
6004
6005         image_name = rbd_dev_image_name(rbd_dev);
6006         if (!image_name)
6007                 rbd_warn(rbd_dev, "unable to get image name");
6008
6009         /* Fetch the snapshot name */
6010
6011         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
6012         if (IS_ERR(snap_name)) {
6013                 ret = PTR_ERR(snap_name);
6014                 goto out_err;
6015         }
6016
6017         spec->pool_name = pool_name;
6018         spec->image_name = image_name;
6019         spec->snap_name = snap_name;
6020
6021         return 0;
6022
6023 out_err:
6024         kfree(image_name);
6025         kfree(pool_name);
6026         return ret;
6027 }
6028
6029 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
6030 {
6031         size_t size;
6032         int ret;
6033         void *reply_buf;
6034         void *p;
6035         void *end;
6036         u64 seq;
6037         u32 snap_count;
6038         struct ceph_snap_context *snapc;
6039         u32 i;
6040
6041         /*
6042          * We'll need room for the seq value (maximum snapshot id),
6043          * snapshot count, and array of that many snapshot ids.
6044          * For now we have a fixed upper limit on the number we're
6045          * prepared to receive.
6046          */
6047         size = sizeof (__le64) + sizeof (__le32) +
6048                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
6049         reply_buf = kzalloc(size, GFP_KERNEL);
6050         if (!reply_buf)
6051                 return -ENOMEM;
6052
6053         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6054                                   &rbd_dev->header_oloc, "get_snapcontext",
6055                                   NULL, 0, reply_buf, size);
6056         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6057         if (ret < 0)
6058                 goto out;
6059
6060         p = reply_buf;
6061         end = reply_buf + ret;
6062         ret = -ERANGE;
6063         ceph_decode_64_safe(&p, end, seq, out);
6064         ceph_decode_32_safe(&p, end, snap_count, out);
6065
6066         /*
6067          * Make sure the reported number of snapshot ids wouldn't go
6068          * beyond the end of our buffer.  But before checking that,
6069          * make sure the computed size of the snapshot context we
6070          * allocate is representable in a size_t.
6071          */
6072         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
6073                                  / sizeof (u64)) {
6074                 ret = -EINVAL;
6075                 goto out;
6076         }
6077         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
6078                 goto out;
6079         ret = 0;
6080
6081         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
6082         if (!snapc) {
6083                 ret = -ENOMEM;
6084                 goto out;
6085         }
6086         snapc->seq = seq;
6087         for (i = 0; i < snap_count; i++)
6088                 snapc->snaps[i] = ceph_decode_64(&p);
6089
6090         ceph_put_snap_context(rbd_dev->header.snapc);
6091         rbd_dev->header.snapc = snapc;
6092
6093         dout("  snap context seq = %llu, snap_count = %u\n",
6094                 (unsigned long long)seq, (unsigned int)snap_count);
6095 out:
6096         kfree(reply_buf);
6097
6098         return ret;
6099 }
6100
6101 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
6102                                         u64 snap_id)
6103 {
6104         size_t size;
6105         void *reply_buf;
6106         __le64 snapid;
6107         int ret;
6108         void *p;
6109         void *end;
6110         char *snap_name;
6111
6112         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
6113         reply_buf = kmalloc(size, GFP_KERNEL);
6114         if (!reply_buf)
6115                 return ERR_PTR(-ENOMEM);
6116
6117         snapid = cpu_to_le64(snap_id);
6118         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6119                                   &rbd_dev->header_oloc, "get_snapshot_name",
6120                                   &snapid, sizeof(snapid), reply_buf, size);
6121         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6122         if (ret < 0) {
6123                 snap_name = ERR_PTR(ret);
6124                 goto out;
6125         }
6126
6127         p = reply_buf;
6128         end = reply_buf + ret;
6129         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
6130         if (IS_ERR(snap_name))
6131                 goto out;
6132
6133         dout("  snap_id 0x%016llx snap_name = %s\n",
6134                 (unsigned long long)snap_id, snap_name);
6135 out:
6136         kfree(reply_buf);
6137
6138         return snap_name;
6139 }
6140
6141 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
6142 {
6143         bool first_time = rbd_dev->header.object_prefix == NULL;
6144         int ret;
6145
6146         ret = rbd_dev_v2_image_size(rbd_dev);
6147         if (ret)
6148                 return ret;
6149
6150         if (first_time) {
6151                 ret = rbd_dev_v2_header_onetime(rbd_dev);
6152                 if (ret)
6153                         return ret;
6154         }
6155
6156         ret = rbd_dev_v2_snap_context(rbd_dev);
6157         if (ret && first_time) {
6158                 kfree(rbd_dev->header.object_prefix);
6159                 rbd_dev->header.object_prefix = NULL;
6160         }
6161
6162         return ret;
6163 }
6164
6165 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
6166 {
6167         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6168
6169         if (rbd_dev->image_format == 1)
6170                 return rbd_dev_v1_header_info(rbd_dev);
6171
6172         return rbd_dev_v2_header_info(rbd_dev);
6173 }
6174
6175 /*
6176  * Skips over white space at *buf, and updates *buf to point to the
6177  * first found non-space character (if any). Returns the length of
6178  * the token (string of non-white space characters) found.  Note
6179  * that *buf must be terminated with '\0'.
6180  */
6181 static inline size_t next_token(const char **buf)
6182 {
6183         /*
6184         * These are the characters that produce nonzero for
6185         * isspace() in the "C" and "POSIX" locales.
6186         */
6187         static const char spaces[] = " \f\n\r\t\v";
6188
6189         *buf += strspn(*buf, spaces);   /* Find start of token */
6190
6191         return strcspn(*buf, spaces);   /* Return token length */
6192 }
6193
6194 /*
6195  * Finds the next token in *buf, dynamically allocates a buffer big
6196  * enough to hold a copy of it, and copies the token into the new
6197  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
6198  * that a duplicate buffer is created even for a zero-length token.
6199  *
6200  * Returns a pointer to the newly-allocated duplicate, or a null
6201  * pointer if memory for the duplicate was not available.  If
6202  * the lenp argument is a non-null pointer, the length of the token
6203  * (not including the '\0') is returned in *lenp.
6204  *
6205  * If successful, the *buf pointer will be updated to point beyond
6206  * the end of the found token.
6207  *
6208  * Note: uses GFP_KERNEL for allocation.
6209  */
6210 static inline char *dup_token(const char **buf, size_t *lenp)
6211 {
6212         char *dup;
6213         size_t len;
6214
6215         len = next_token(buf);
6216         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
6217         if (!dup)
6218                 return NULL;
6219         *(dup + len) = '\0';
6220         *buf += len;
6221
6222         if (lenp)
6223                 *lenp = len;
6224
6225         return dup;
6226 }
6227
6228 static int rbd_parse_param(struct fs_parameter *param,
6229                             struct rbd_parse_opts_ctx *pctx)
6230 {
6231         struct rbd_options *opt = pctx->opts;
6232         struct fs_parse_result result;
6233         struct p_log log = {.prefix = "rbd"};
6234         int token, ret;
6235
6236         ret = ceph_parse_param(param, pctx->copts, NULL);
6237         if (ret != -ENOPARAM)
6238                 return ret;
6239
6240         token = __fs_parse(&log, rbd_parameters, param, &result);
6241         dout("%s fs_parse '%s' token %d\n", __func__, param->key, token);
6242         if (token < 0) {
6243                 if (token == -ENOPARAM)
6244                         return inval_plog(&log, "Unknown parameter '%s'",
6245                                           param->key);
6246                 return token;
6247         }
6248
6249         switch (token) {
6250         case Opt_queue_depth:
6251                 if (result.uint_32 < 1)
6252                         goto out_of_range;
6253                 opt->queue_depth = result.uint_32;
6254                 break;
6255         case Opt_alloc_size:
6256                 if (result.uint_32 < SECTOR_SIZE)
6257                         goto out_of_range;
6258                 if (!is_power_of_2(result.uint_32))
6259                         return inval_plog(&log, "alloc_size must be a power of 2");
6260                 opt->alloc_size = result.uint_32;
6261                 break;
6262         case Opt_lock_timeout:
6263                 /* 0 is "wait forever" (i.e. infinite timeout) */
6264                 if (result.uint_32 > INT_MAX / 1000)
6265                         goto out_of_range;
6266                 opt->lock_timeout = msecs_to_jiffies(result.uint_32 * 1000);
6267                 break;
6268         case Opt_pool_ns:
6269                 kfree(pctx->spec->pool_ns);
6270                 pctx->spec->pool_ns = param->string;
6271                 param->string = NULL;
6272                 break;
6273         case Opt_compression_hint:
6274                 switch (result.uint_32) {
6275                 case Opt_compression_hint_none:
6276                         opt->alloc_hint_flags &=
6277                             ~(CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE |
6278                               CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE);
6279                         break;
6280                 case Opt_compression_hint_compressible:
6281                         opt->alloc_hint_flags |=
6282                             CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6283                         opt->alloc_hint_flags &=
6284                             ~CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6285                         break;
6286                 case Opt_compression_hint_incompressible:
6287                         opt->alloc_hint_flags |=
6288                             CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6289                         opt->alloc_hint_flags &=
6290                             ~CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6291                         break;
6292                 default:
6293                         BUG();
6294                 }
6295                 break;
6296         case Opt_read_only:
6297                 opt->read_only = true;
6298                 break;
6299         case Opt_read_write:
6300                 opt->read_only = false;
6301                 break;
6302         case Opt_lock_on_read:
6303                 opt->lock_on_read = true;
6304                 break;
6305         case Opt_exclusive:
6306                 opt->exclusive = true;
6307                 break;
6308         case Opt_notrim:
6309                 opt->trim = false;
6310                 break;
6311         default:
6312                 BUG();
6313         }
6314
6315         return 0;
6316
6317 out_of_range:
6318         return inval_plog(&log, "%s out of range", param->key);
6319 }
6320
6321 /*
6322  * This duplicates most of generic_parse_monolithic(), untying it from
6323  * fs_context and skipping standard superblock and security options.
6324  */
6325 static int rbd_parse_options(char *options, struct rbd_parse_opts_ctx *pctx)
6326 {
6327         char *key;
6328         int ret = 0;
6329
6330         dout("%s '%s'\n", __func__, options);
6331         while ((key = strsep(&options, ",")) != NULL) {
6332                 if (*key) {
6333                         struct fs_parameter param = {
6334                                 .key    = key,
6335                                 .type   = fs_value_is_flag,
6336                         };
6337                         char *value = strchr(key, '=');
6338                         size_t v_len = 0;
6339
6340                         if (value) {
6341                                 if (value == key)
6342                                         continue;
6343                                 *value++ = 0;
6344                                 v_len = strlen(value);
6345                                 param.string = kmemdup_nul(value, v_len,
6346                                                            GFP_KERNEL);
6347                                 if (!param.string)
6348                                         return -ENOMEM;
6349                                 param.type = fs_value_is_string;
6350                         }
6351                         param.size = v_len;
6352
6353                         ret = rbd_parse_param(&param, pctx);
6354                         kfree(param.string);
6355                         if (ret)
6356                                 break;
6357                 }
6358         }
6359
6360         return ret;
6361 }
6362
6363 /*
6364  * Parse the options provided for an "rbd add" (i.e., rbd image
6365  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
6366  * and the data written is passed here via a NUL-terminated buffer.
6367  * Returns 0 if successful or an error code otherwise.
6368  *
6369  * The information extracted from these options is recorded in
6370  * the other parameters which return dynamically-allocated
6371  * structures:
6372  *  ceph_opts
6373  *      The address of a pointer that will refer to a ceph options
6374  *      structure.  Caller must release the returned pointer using
6375  *      ceph_destroy_options() when it is no longer needed.
6376  *  rbd_opts
6377  *      Address of an rbd options pointer.  Fully initialized by
6378  *      this function; caller must release with kfree().
6379  *  spec
6380  *      Address of an rbd image specification pointer.  Fully
6381  *      initialized by this function based on parsed options.
6382  *      Caller must release with rbd_spec_put().
6383  *
6384  * The options passed take this form:
6385  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
6386  * where:
6387  *  <mon_addrs>
6388  *      A comma-separated list of one or more monitor addresses.
6389  *      A monitor address is an ip address, optionally followed
6390  *      by a port number (separated by a colon).
6391  *        I.e.:  ip1[:port1][,ip2[:port2]...]
6392  *  <options>
6393  *      A comma-separated list of ceph and/or rbd options.
6394  *  <pool_name>
6395  *      The name of the rados pool containing the rbd image.
6396  *  <image_name>
6397  *      The name of the image in that pool to map.
6398  *  <snap_id>
6399  *      An optional snapshot id.  If provided, the mapping will
6400  *      present data from the image at the time that snapshot was
6401  *      created.  The image head is used if no snapshot id is
6402  *      provided.  Snapshot mappings are always read-only.
6403  */
6404 static int rbd_add_parse_args(const char *buf,
6405                                 struct ceph_options **ceph_opts,
6406                                 struct rbd_options **opts,
6407                                 struct rbd_spec **rbd_spec)
6408 {
6409         size_t len;
6410         char *options;
6411         const char *mon_addrs;
6412         char *snap_name;
6413         size_t mon_addrs_size;
6414         struct rbd_parse_opts_ctx pctx = { 0 };
6415         int ret;
6416
6417         /* The first four tokens are required */
6418
6419         len = next_token(&buf);
6420         if (!len) {
6421                 rbd_warn(NULL, "no monitor address(es) provided");
6422                 return -EINVAL;
6423         }
6424         mon_addrs = buf;
6425         mon_addrs_size = len;
6426         buf += len;
6427
6428         ret = -EINVAL;
6429         options = dup_token(&buf, NULL);
6430         if (!options)
6431                 return -ENOMEM;
6432         if (!*options) {
6433                 rbd_warn(NULL, "no options provided");
6434                 goto out_err;
6435         }
6436
6437         pctx.spec = rbd_spec_alloc();
6438         if (!pctx.spec)
6439                 goto out_mem;
6440
6441         pctx.spec->pool_name = dup_token(&buf, NULL);
6442         if (!pctx.spec->pool_name)
6443                 goto out_mem;
6444         if (!*pctx.spec->pool_name) {
6445                 rbd_warn(NULL, "no pool name provided");
6446                 goto out_err;
6447         }
6448
6449         pctx.spec->image_name = dup_token(&buf, NULL);
6450         if (!pctx.spec->image_name)
6451                 goto out_mem;
6452         if (!*pctx.spec->image_name) {
6453                 rbd_warn(NULL, "no image name provided");
6454                 goto out_err;
6455         }
6456
6457         /*
6458          * Snapshot name is optional; default is to use "-"
6459          * (indicating the head/no snapshot).
6460          */
6461         len = next_token(&buf);
6462         if (!len) {
6463                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
6464                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
6465         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
6466                 ret = -ENAMETOOLONG;
6467                 goto out_err;
6468         }
6469         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
6470         if (!snap_name)
6471                 goto out_mem;
6472         *(snap_name + len) = '\0';
6473         pctx.spec->snap_name = snap_name;
6474
6475         pctx.copts = ceph_alloc_options();
6476         if (!pctx.copts)
6477                 goto out_mem;
6478
6479         /* Initialize all rbd options to the defaults */
6480
6481         pctx.opts = kzalloc(sizeof(*pctx.opts), GFP_KERNEL);
6482         if (!pctx.opts)
6483                 goto out_mem;
6484
6485         pctx.opts->read_only = RBD_READ_ONLY_DEFAULT;
6486         pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
6487         pctx.opts->alloc_size = RBD_ALLOC_SIZE_DEFAULT;
6488         pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT;
6489         pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
6490         pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
6491         pctx.opts->trim = RBD_TRIM_DEFAULT;
6492
6493         ret = ceph_parse_mon_ips(mon_addrs, mon_addrs_size, pctx.copts, NULL,
6494                                  ',');
6495         if (ret)
6496                 goto out_err;
6497
6498         ret = rbd_parse_options(options, &pctx);
6499         if (ret)
6500                 goto out_err;
6501
6502         *ceph_opts = pctx.copts;
6503         *opts = pctx.opts;
6504         *rbd_spec = pctx.spec;
6505         kfree(options);
6506         return 0;
6507
6508 out_mem:
6509         ret = -ENOMEM;
6510 out_err:
6511         kfree(pctx.opts);
6512         ceph_destroy_options(pctx.copts);
6513         rbd_spec_put(pctx.spec);
6514         kfree(options);
6515         return ret;
6516 }
6517
6518 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
6519 {
6520         down_write(&rbd_dev->lock_rwsem);
6521         if (__rbd_is_lock_owner(rbd_dev))
6522                 __rbd_release_lock(rbd_dev);
6523         up_write(&rbd_dev->lock_rwsem);
6524 }
6525
6526 /*
6527  * If the wait is interrupted, an error is returned even if the lock
6528  * was successfully acquired.  rbd_dev_image_unlock() will release it
6529  * if needed.
6530  */
6531 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
6532 {
6533         long ret;
6534
6535         if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
6536                 if (!rbd_dev->opts->exclusive && !rbd_dev->opts->lock_on_read)
6537                         return 0;
6538
6539                 rbd_warn(rbd_dev, "exclusive-lock feature is not enabled");
6540                 return -EINVAL;
6541         }
6542
6543         if (rbd_is_ro(rbd_dev))
6544                 return 0;
6545
6546         rbd_assert(!rbd_is_lock_owner(rbd_dev));
6547         queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
6548         ret = wait_for_completion_killable_timeout(&rbd_dev->acquire_wait,
6549                             ceph_timeout_jiffies(rbd_dev->opts->lock_timeout));
6550         if (ret > 0) {
6551                 ret = rbd_dev->acquire_err;
6552         } else {
6553                 cancel_delayed_work_sync(&rbd_dev->lock_dwork);
6554                 if (!ret)
6555                         ret = -ETIMEDOUT;
6556         }
6557
6558         if (ret) {
6559                 rbd_warn(rbd_dev, "failed to acquire exclusive lock: %ld", ret);
6560                 return ret;
6561         }
6562
6563         /*
6564          * The lock may have been released by now, unless automatic lock
6565          * transitions are disabled.
6566          */
6567         rbd_assert(!rbd_dev->opts->exclusive || rbd_is_lock_owner(rbd_dev));
6568         return 0;
6569 }
6570
6571 /*
6572  * An rbd format 2 image has a unique identifier, distinct from the
6573  * name given to it by the user.  Internally, that identifier is
6574  * what's used to specify the names of objects related to the image.
6575  *
6576  * A special "rbd id" object is used to map an rbd image name to its
6577  * id.  If that object doesn't exist, then there is no v2 rbd image
6578  * with the supplied name.
6579  *
6580  * This function will record the given rbd_dev's image_id field if
6581  * it can be determined, and in that case will return 0.  If any
6582  * errors occur a negative errno will be returned and the rbd_dev's
6583  * image_id field will be unchanged (and should be NULL).
6584  */
6585 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
6586 {
6587         int ret;
6588         size_t size;
6589         CEPH_DEFINE_OID_ONSTACK(oid);
6590         void *response;
6591         char *image_id;
6592
6593         /*
6594          * When probing a parent image, the image id is already
6595          * known (and the image name likely is not).  There's no
6596          * need to fetch the image id again in this case.  We
6597          * do still need to set the image format though.
6598          */
6599         if (rbd_dev->spec->image_id) {
6600                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
6601
6602                 return 0;
6603         }
6604
6605         /*
6606          * First, see if the format 2 image id file exists, and if
6607          * so, get the image's persistent id from it.
6608          */
6609         ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
6610                                rbd_dev->spec->image_name);
6611         if (ret)
6612                 return ret;
6613
6614         dout("rbd id object name is %s\n", oid.name);
6615
6616         /* Response will be an encoded string, which includes a length */
6617         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
6618         response = kzalloc(size, GFP_NOIO);
6619         if (!response) {
6620                 ret = -ENOMEM;
6621                 goto out;
6622         }
6623
6624         /* If it doesn't exist we'll assume it's a format 1 image */
6625
6626         ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
6627                                   "get_id", NULL, 0,
6628                                   response, size);
6629         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6630         if (ret == -ENOENT) {
6631                 image_id = kstrdup("", GFP_KERNEL);
6632                 ret = image_id ? 0 : -ENOMEM;
6633                 if (!ret)
6634                         rbd_dev->image_format = 1;
6635         } else if (ret >= 0) {
6636                 void *p = response;
6637
6638                 image_id = ceph_extract_encoded_string(&p, p + ret,
6639                                                 NULL, GFP_NOIO);
6640                 ret = PTR_ERR_OR_ZERO(image_id);
6641                 if (!ret)
6642                         rbd_dev->image_format = 2;
6643         }
6644
6645         if (!ret) {
6646                 rbd_dev->spec->image_id = image_id;
6647                 dout("image_id is %s\n", image_id);
6648         }
6649 out:
6650         kfree(response);
6651         ceph_oid_destroy(&oid);
6652         return ret;
6653 }
6654
6655 /*
6656  * Undo whatever state changes are made by v1 or v2 header info
6657  * call.
6658  */
6659 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
6660 {
6661         struct rbd_image_header *header;
6662
6663         rbd_dev_parent_put(rbd_dev);
6664         rbd_object_map_free(rbd_dev);
6665         rbd_dev_mapping_clear(rbd_dev);
6666
6667         /* Free dynamic fields from the header, then zero it out */
6668
6669         header = &rbd_dev->header;
6670         ceph_put_snap_context(header->snapc);
6671         kfree(header->snap_sizes);
6672         kfree(header->snap_names);
6673         kfree(header->object_prefix);
6674         memset(header, 0, sizeof (*header));
6675 }
6676
6677 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
6678 {
6679         int ret;
6680
6681         ret = rbd_dev_v2_object_prefix(rbd_dev);
6682         if (ret)
6683                 goto out_err;
6684
6685         /*
6686          * Get the and check features for the image.  Currently the
6687          * features are assumed to never change.
6688          */
6689         ret = rbd_dev_v2_features(rbd_dev);
6690         if (ret)
6691                 goto out_err;
6692
6693         /* If the image supports fancy striping, get its parameters */
6694
6695         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
6696                 ret = rbd_dev_v2_striping_info(rbd_dev);
6697                 if (ret < 0)
6698                         goto out_err;
6699         }
6700
6701         if (rbd_dev->header.features & RBD_FEATURE_DATA_POOL) {
6702                 ret = rbd_dev_v2_data_pool(rbd_dev);
6703                 if (ret)
6704                         goto out_err;
6705         }
6706
6707         rbd_init_layout(rbd_dev);
6708         return 0;
6709
6710 out_err:
6711         rbd_dev->header.features = 0;
6712         kfree(rbd_dev->header.object_prefix);
6713         rbd_dev->header.object_prefix = NULL;
6714         return ret;
6715 }
6716
6717 /*
6718  * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
6719  * rbd_dev_image_probe() recursion depth, which means it's also the
6720  * length of the already discovered part of the parent chain.
6721  */
6722 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
6723 {
6724         struct rbd_device *parent = NULL;
6725         int ret;
6726
6727         if (!rbd_dev->parent_spec)
6728                 return 0;
6729
6730         if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
6731                 pr_info("parent chain is too long (%d)\n", depth);
6732                 ret = -EINVAL;
6733                 goto out_err;
6734         }
6735
6736         parent = __rbd_dev_create(rbd_dev->parent_spec);
6737         if (!parent) {
6738                 ret = -ENOMEM;
6739                 goto out_err;
6740         }
6741
6742         /*
6743          * Images related by parent/child relationships always share
6744          * rbd_client and spec/parent_spec, so bump their refcounts.
6745          */
6746         parent->rbd_client = __rbd_get_client(rbd_dev->rbd_client);
6747         parent->spec = rbd_spec_get(rbd_dev->parent_spec);
6748
6749         __set_bit(RBD_DEV_FLAG_READONLY, &parent->flags);
6750
6751         ret = rbd_dev_image_probe(parent, depth);
6752         if (ret < 0)
6753                 goto out_err;
6754
6755         rbd_dev->parent = parent;
6756         atomic_set(&rbd_dev->parent_ref, 1);
6757         return 0;
6758
6759 out_err:
6760         rbd_dev_unparent(rbd_dev);
6761         rbd_dev_destroy(parent);
6762         return ret;
6763 }
6764
6765 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
6766 {
6767         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6768         rbd_free_disk(rbd_dev);
6769         if (!single_major)
6770                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
6771 }
6772
6773 /*
6774  * rbd_dev->header_rwsem must be locked for write and will be unlocked
6775  * upon return.
6776  */
6777 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
6778 {
6779         int ret;
6780
6781         /* Record our major and minor device numbers. */
6782
6783         if (!single_major) {
6784                 ret = register_blkdev(0, rbd_dev->name);
6785                 if (ret < 0)
6786                         goto err_out_unlock;
6787
6788                 rbd_dev->major = ret;
6789                 rbd_dev->minor = 0;
6790         } else {
6791                 rbd_dev->major = rbd_major;
6792                 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
6793         }
6794
6795         /* Set up the blkdev mapping. */
6796
6797         ret = rbd_init_disk(rbd_dev);
6798         if (ret)
6799                 goto err_out_blkdev;
6800
6801         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
6802         set_disk_ro(rbd_dev->disk, rbd_is_ro(rbd_dev));
6803
6804         ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
6805         if (ret)
6806                 goto err_out_disk;
6807
6808         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6809         up_write(&rbd_dev->header_rwsem);
6810         return 0;
6811
6812 err_out_disk:
6813         rbd_free_disk(rbd_dev);
6814 err_out_blkdev:
6815         if (!single_major)
6816                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
6817 err_out_unlock:
6818         up_write(&rbd_dev->header_rwsem);
6819         return ret;
6820 }
6821
6822 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
6823 {
6824         struct rbd_spec *spec = rbd_dev->spec;
6825         int ret;
6826
6827         /* Record the header object name for this rbd image. */
6828
6829         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6830         if (rbd_dev->image_format == 1)
6831                 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6832                                        spec->image_name, RBD_SUFFIX);
6833         else
6834                 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6835                                        RBD_HEADER_PREFIX, spec->image_id);
6836
6837         return ret;
6838 }
6839
6840 static void rbd_print_dne(struct rbd_device *rbd_dev, bool is_snap)
6841 {
6842         if (!is_snap) {
6843                 pr_info("image %s/%s%s%s does not exist\n",
6844                         rbd_dev->spec->pool_name,
6845                         rbd_dev->spec->pool_ns ?: "",
6846                         rbd_dev->spec->pool_ns ? "/" : "",
6847                         rbd_dev->spec->image_name);
6848         } else {
6849                 pr_info("snap %s/%s%s%s@%s does not exist\n",
6850                         rbd_dev->spec->pool_name,
6851                         rbd_dev->spec->pool_ns ?: "",
6852                         rbd_dev->spec->pool_ns ? "/" : "",
6853                         rbd_dev->spec->image_name,
6854                         rbd_dev->spec->snap_name);
6855         }
6856 }
6857
6858 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
6859 {
6860         if (!rbd_is_ro(rbd_dev))
6861                 rbd_unregister_watch(rbd_dev);
6862
6863         rbd_dev_unprobe(rbd_dev);
6864         rbd_dev->image_format = 0;
6865         kfree(rbd_dev->spec->image_id);
6866         rbd_dev->spec->image_id = NULL;
6867 }
6868
6869 /*
6870  * Probe for the existence of the header object for the given rbd
6871  * device.  If this image is the one being mapped (i.e., not a
6872  * parent), initiate a watch on its header object before using that
6873  * object to get detailed information about the rbd image.
6874  *
6875  * On success, returns with header_rwsem held for write if called
6876  * with @depth == 0.
6877  */
6878 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
6879 {
6880         bool need_watch = !rbd_is_ro(rbd_dev);
6881         int ret;
6882
6883         /*
6884          * Get the id from the image id object.  Unless there's an
6885          * error, rbd_dev->spec->image_id will be filled in with
6886          * a dynamically-allocated string, and rbd_dev->image_format
6887          * will be set to either 1 or 2.
6888          */
6889         ret = rbd_dev_image_id(rbd_dev);
6890         if (ret)
6891                 return ret;
6892
6893         ret = rbd_dev_header_name(rbd_dev);
6894         if (ret)
6895                 goto err_out_format;
6896
6897         if (need_watch) {
6898                 ret = rbd_register_watch(rbd_dev);
6899                 if (ret) {
6900                         if (ret == -ENOENT)
6901                                 rbd_print_dne(rbd_dev, false);
6902                         goto err_out_format;
6903                 }
6904         }
6905
6906         if (!depth)
6907                 down_write(&rbd_dev->header_rwsem);
6908
6909         ret = rbd_dev_header_info(rbd_dev);
6910         if (ret) {
6911                 if (ret == -ENOENT && !need_watch)
6912                         rbd_print_dne(rbd_dev, false);
6913                 goto err_out_probe;
6914         }
6915
6916         /*
6917          * If this image is the one being mapped, we have pool name and
6918          * id, image name and id, and snap name - need to fill snap id.
6919          * Otherwise this is a parent image, identified by pool, image
6920          * and snap ids - need to fill in names for those ids.
6921          */
6922         if (!depth)
6923                 ret = rbd_spec_fill_snap_id(rbd_dev);
6924         else
6925                 ret = rbd_spec_fill_names(rbd_dev);
6926         if (ret) {
6927                 if (ret == -ENOENT)
6928                         rbd_print_dne(rbd_dev, true);
6929                 goto err_out_probe;
6930         }
6931
6932         ret = rbd_dev_mapping_set(rbd_dev);
6933         if (ret)
6934                 goto err_out_probe;
6935
6936         if (rbd_is_snap(rbd_dev) &&
6937             (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) {
6938                 ret = rbd_object_map_load(rbd_dev);
6939                 if (ret)
6940                         goto err_out_probe;
6941         }
6942
6943         if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
6944                 ret = rbd_dev_v2_parent_info(rbd_dev);
6945                 if (ret)
6946                         goto err_out_probe;
6947         }
6948
6949         ret = rbd_dev_probe_parent(rbd_dev, depth);
6950         if (ret)
6951                 goto err_out_probe;
6952
6953         dout("discovered format %u image, header name is %s\n",
6954                 rbd_dev->image_format, rbd_dev->header_oid.name);
6955         return 0;
6956
6957 err_out_probe:
6958         if (!depth)
6959                 up_write(&rbd_dev->header_rwsem);
6960         if (need_watch)
6961                 rbd_unregister_watch(rbd_dev);
6962         rbd_dev_unprobe(rbd_dev);
6963 err_out_format:
6964         rbd_dev->image_format = 0;
6965         kfree(rbd_dev->spec->image_id);
6966         rbd_dev->spec->image_id = NULL;
6967         return ret;
6968 }
6969
6970 static ssize_t do_rbd_add(struct bus_type *bus,
6971                           const char *buf,
6972                           size_t count)
6973 {
6974         struct rbd_device *rbd_dev = NULL;
6975         struct ceph_options *ceph_opts = NULL;
6976         struct rbd_options *rbd_opts = NULL;
6977         struct rbd_spec *spec = NULL;
6978         struct rbd_client *rbdc;
6979         int rc;
6980
6981         if (!capable(CAP_SYS_ADMIN))
6982                 return -EPERM;
6983
6984         if (!try_module_get(THIS_MODULE))
6985                 return -ENODEV;
6986
6987         /* parse add command */
6988         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
6989         if (rc < 0)
6990                 goto out;
6991
6992         rbdc = rbd_get_client(ceph_opts);
6993         if (IS_ERR(rbdc)) {
6994                 rc = PTR_ERR(rbdc);
6995                 goto err_out_args;
6996         }
6997
6998         /* pick the pool */
6999         rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name);
7000         if (rc < 0) {
7001                 if (rc == -ENOENT)
7002                         pr_info("pool %s does not exist\n", spec->pool_name);
7003                 goto err_out_client;
7004         }
7005         spec->pool_id = (u64)rc;
7006
7007         rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
7008         if (!rbd_dev) {
7009                 rc = -ENOMEM;
7010                 goto err_out_client;
7011         }
7012         rbdc = NULL;            /* rbd_dev now owns this */
7013         spec = NULL;            /* rbd_dev now owns this */
7014         rbd_opts = NULL;        /* rbd_dev now owns this */
7015
7016         /* if we are mapping a snapshot it will be a read-only mapping */
7017         if (rbd_dev->opts->read_only ||
7018             strcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME))
7019                 __set_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
7020
7021         rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
7022         if (!rbd_dev->config_info) {
7023                 rc = -ENOMEM;
7024                 goto err_out_rbd_dev;
7025         }
7026
7027         rc = rbd_dev_image_probe(rbd_dev, 0);
7028         if (rc < 0)
7029                 goto err_out_rbd_dev;
7030
7031         if (rbd_dev->opts->alloc_size > rbd_dev->layout.object_size) {
7032                 rbd_warn(rbd_dev, "alloc_size adjusted to %u",
7033                          rbd_dev->layout.object_size);
7034                 rbd_dev->opts->alloc_size = rbd_dev->layout.object_size;
7035         }
7036
7037         rc = rbd_dev_device_setup(rbd_dev);
7038         if (rc)
7039                 goto err_out_image_probe;
7040
7041         rc = rbd_add_acquire_lock(rbd_dev);
7042         if (rc)
7043                 goto err_out_image_lock;
7044
7045         /* Everything's ready.  Announce the disk to the world. */
7046
7047         rc = device_add(&rbd_dev->dev);
7048         if (rc)
7049                 goto err_out_image_lock;
7050
7051         rc = device_add_disk(&rbd_dev->dev, rbd_dev->disk, NULL);
7052         if (rc)
7053                 goto err_out_cleanup_disk;
7054
7055         spin_lock(&rbd_dev_list_lock);
7056         list_add_tail(&rbd_dev->node, &rbd_dev_list);
7057         spin_unlock(&rbd_dev_list_lock);
7058
7059         pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
7060                 (unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
7061                 rbd_dev->header.features);
7062         rc = count;
7063 out:
7064         module_put(THIS_MODULE);
7065         return rc;
7066
7067 err_out_cleanup_disk:
7068         rbd_free_disk(rbd_dev);
7069 err_out_image_lock:
7070         rbd_dev_image_unlock(rbd_dev);
7071         rbd_dev_device_release(rbd_dev);
7072 err_out_image_probe:
7073         rbd_dev_image_release(rbd_dev);
7074 err_out_rbd_dev:
7075         rbd_dev_destroy(rbd_dev);
7076 err_out_client:
7077         rbd_put_client(rbdc);
7078 err_out_args:
7079         rbd_spec_put(spec);
7080         kfree(rbd_opts);
7081         goto out;
7082 }
7083
7084 static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count)
7085 {
7086         if (single_major)
7087                 return -EINVAL;
7088
7089         return do_rbd_add(bus, buf, count);
7090 }
7091
7092 static ssize_t add_single_major_store(struct bus_type *bus, const char *buf,
7093                                       size_t count)
7094 {
7095         return do_rbd_add(bus, buf, count);
7096 }
7097
7098 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
7099 {
7100         while (rbd_dev->parent) {
7101                 struct rbd_device *first = rbd_dev;
7102                 struct rbd_device *second = first->parent;
7103                 struct rbd_device *third;
7104
7105                 /*
7106                  * Follow to the parent with no grandparent and
7107                  * remove it.
7108                  */
7109                 while (second && (third = second->parent)) {
7110                         first = second;
7111                         second = third;
7112                 }
7113                 rbd_assert(second);
7114                 rbd_dev_image_release(second);
7115                 rbd_dev_destroy(second);
7116                 first->parent = NULL;
7117                 first->parent_overlap = 0;
7118
7119                 rbd_assert(first->parent_spec);
7120                 rbd_spec_put(first->parent_spec);
7121                 first->parent_spec = NULL;
7122         }
7123 }
7124
7125 static ssize_t do_rbd_remove(struct bus_type *bus,
7126                              const char *buf,
7127                              size_t count)
7128 {
7129         struct rbd_device *rbd_dev = NULL;
7130         struct list_head *tmp;
7131         int dev_id;
7132         char opt_buf[6];
7133         bool force = false;
7134         int ret;
7135
7136         if (!capable(CAP_SYS_ADMIN))
7137                 return -EPERM;
7138
7139         dev_id = -1;
7140         opt_buf[0] = '\0';
7141         sscanf(buf, "%d %5s", &dev_id, opt_buf);
7142         if (dev_id < 0) {
7143                 pr_err("dev_id out of range\n");
7144                 return -EINVAL;
7145         }
7146         if (opt_buf[0] != '\0') {
7147                 if (!strcmp(opt_buf, "force")) {
7148                         force = true;
7149                 } else {
7150                         pr_err("bad remove option at '%s'\n", opt_buf);
7151                         return -EINVAL;
7152                 }
7153         }
7154
7155         ret = -ENOENT;
7156         spin_lock(&rbd_dev_list_lock);
7157         list_for_each(tmp, &rbd_dev_list) {
7158                 rbd_dev = list_entry(tmp, struct rbd_device, node);
7159                 if (rbd_dev->dev_id == dev_id) {
7160                         ret = 0;
7161                         break;
7162                 }
7163         }
7164         if (!ret) {
7165                 spin_lock_irq(&rbd_dev->lock);
7166                 if (rbd_dev->open_count && !force)
7167                         ret = -EBUSY;
7168                 else if (test_and_set_bit(RBD_DEV_FLAG_REMOVING,
7169                                           &rbd_dev->flags))
7170                         ret = -EINPROGRESS;
7171                 spin_unlock_irq(&rbd_dev->lock);
7172         }
7173         spin_unlock(&rbd_dev_list_lock);
7174         if (ret)
7175                 return ret;
7176
7177         if (force) {
7178                 /*
7179                  * Prevent new IO from being queued and wait for existing
7180                  * IO to complete/fail.
7181                  */
7182                 blk_mq_freeze_queue(rbd_dev->disk->queue);
7183                 blk_mark_disk_dead(rbd_dev->disk);
7184         }
7185
7186         del_gendisk(rbd_dev->disk);
7187         spin_lock(&rbd_dev_list_lock);
7188         list_del_init(&rbd_dev->node);
7189         spin_unlock(&rbd_dev_list_lock);
7190         device_del(&rbd_dev->dev);
7191
7192         rbd_dev_image_unlock(rbd_dev);
7193         rbd_dev_device_release(rbd_dev);
7194         rbd_dev_image_release(rbd_dev);
7195         rbd_dev_destroy(rbd_dev);
7196         return count;
7197 }
7198
7199 static ssize_t remove_store(struct bus_type *bus, const char *buf, size_t count)
7200 {
7201         if (single_major)
7202                 return -EINVAL;
7203
7204         return do_rbd_remove(bus, buf, count);
7205 }
7206
7207 static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf,
7208                                          size_t count)
7209 {
7210         return do_rbd_remove(bus, buf, count);
7211 }
7212
7213 /*
7214  * create control files in sysfs
7215  * /sys/bus/rbd/...
7216  */
7217 static int __init rbd_sysfs_init(void)
7218 {
7219         int ret;
7220
7221         ret = device_register(&rbd_root_dev);
7222         if (ret < 0) {
7223                 put_device(&rbd_root_dev);
7224                 return ret;
7225         }
7226
7227         ret = bus_register(&rbd_bus_type);
7228         if (ret < 0)
7229                 device_unregister(&rbd_root_dev);
7230
7231         return ret;
7232 }
7233
7234 static void __exit rbd_sysfs_cleanup(void)
7235 {
7236         bus_unregister(&rbd_bus_type);
7237         device_unregister(&rbd_root_dev);
7238 }
7239
7240 static int __init rbd_slab_init(void)
7241 {
7242         rbd_assert(!rbd_img_request_cache);
7243         rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
7244         if (!rbd_img_request_cache)
7245                 return -ENOMEM;
7246
7247         rbd_assert(!rbd_obj_request_cache);
7248         rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
7249         if (!rbd_obj_request_cache)
7250                 goto out_err;
7251
7252         return 0;
7253
7254 out_err:
7255         kmem_cache_destroy(rbd_img_request_cache);
7256         rbd_img_request_cache = NULL;
7257         return -ENOMEM;
7258 }
7259
7260 static void rbd_slab_exit(void)
7261 {
7262         rbd_assert(rbd_obj_request_cache);
7263         kmem_cache_destroy(rbd_obj_request_cache);
7264         rbd_obj_request_cache = NULL;
7265
7266         rbd_assert(rbd_img_request_cache);
7267         kmem_cache_destroy(rbd_img_request_cache);
7268         rbd_img_request_cache = NULL;
7269 }
7270
7271 static int __init rbd_init(void)
7272 {
7273         int rc;
7274
7275         if (!libceph_compatible(NULL)) {
7276                 rbd_warn(NULL, "libceph incompatibility (quitting)");
7277                 return -EINVAL;
7278         }
7279
7280         rc = rbd_slab_init();
7281         if (rc)
7282                 return rc;
7283
7284         /*
7285          * The number of active work items is limited by the number of
7286          * rbd devices * queue depth, so leave @max_active at default.
7287          */
7288         rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
7289         if (!rbd_wq) {
7290                 rc = -ENOMEM;
7291                 goto err_out_slab;
7292         }
7293
7294         if (single_major) {
7295                 rbd_major = register_blkdev(0, RBD_DRV_NAME);
7296                 if (rbd_major < 0) {
7297                         rc = rbd_major;
7298                         goto err_out_wq;
7299                 }
7300         }
7301
7302         rc = rbd_sysfs_init();
7303         if (rc)
7304                 goto err_out_blkdev;
7305
7306         if (single_major)
7307                 pr_info("loaded (major %d)\n", rbd_major);
7308         else
7309                 pr_info("loaded\n");
7310
7311         return 0;
7312
7313 err_out_blkdev:
7314         if (single_major)
7315                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
7316 err_out_wq:
7317         destroy_workqueue(rbd_wq);
7318 err_out_slab:
7319         rbd_slab_exit();
7320         return rc;
7321 }
7322
7323 static void __exit rbd_exit(void)
7324 {
7325         ida_destroy(&rbd_dev_id_ida);
7326         rbd_sysfs_cleanup();
7327         if (single_major)
7328                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
7329         destroy_workqueue(rbd_wq);
7330         rbd_slab_exit();
7331 }
7332
7333 module_init(rbd_init);
7334 module_exit(rbd_exit);
7335
7336 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
7337 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
7338 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
7339 /* following authorship retained from original osdblk.c */
7340 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
7341
7342 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
7343 MODULE_LICENSE("GPL");