00ca8a1d8c46fff787295b2d0097fd101450cd3a
[linux-block.git] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/striper.h>
36 #include <linux/ceph/decode.h>
37 #include <linux/fs_parser.h>
38 #include <linux/bsearch.h>
39
40 #include <linux/kernel.h>
41 #include <linux/device.h>
42 #include <linux/module.h>
43 #include <linux/blk-mq.h>
44 #include <linux/fs.h>
45 #include <linux/blkdev.h>
46 #include <linux/slab.h>
47 #include <linux/idr.h>
48 #include <linux/workqueue.h>
49
50 #include "rbd_types.h"
51
52 #define RBD_DEBUG       /* Activate rbd_assert() calls */
53
54 /*
55  * Increment the given counter and return its updated value.
56  * If the counter is already 0 it will not be incremented.
57  * If the counter is already at its maximum value returns
58  * -EINVAL without updating it.
59  */
60 static int atomic_inc_return_safe(atomic_t *v)
61 {
62         unsigned int counter;
63
64         counter = (unsigned int)atomic_fetch_add_unless(v, 1, 0);
65         if (counter <= (unsigned int)INT_MAX)
66                 return (int)counter;
67
68         atomic_dec(v);
69
70         return -EINVAL;
71 }
72
73 /* Decrement the counter.  Return the resulting value, or -EINVAL */
74 static int atomic_dec_return_safe(atomic_t *v)
75 {
76         int counter;
77
78         counter = atomic_dec_return(v);
79         if (counter >= 0)
80                 return counter;
81
82         atomic_inc(v);
83
84         return -EINVAL;
85 }
86
87 #define RBD_DRV_NAME "rbd"
88
89 #define RBD_MINORS_PER_MAJOR            256
90 #define RBD_SINGLE_MAJOR_PART_SHIFT     4
91
92 #define RBD_MAX_PARENT_CHAIN_LEN        16
93
94 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
95 #define RBD_MAX_SNAP_NAME_LEN   \
96                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
97
98 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
99
100 #define RBD_SNAP_HEAD_NAME      "-"
101
102 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
103
104 /* This allows a single page to hold an image name sent by OSD */
105 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
106 #define RBD_IMAGE_ID_LEN_MAX    64
107
108 #define RBD_OBJ_PREFIX_LEN_MAX  64
109
110 #define RBD_NOTIFY_TIMEOUT      5       /* seconds */
111 #define RBD_RETRY_DELAY         msecs_to_jiffies(1000)
112
113 /* Feature bits */
114
115 #define RBD_FEATURE_LAYERING            (1ULL<<0)
116 #define RBD_FEATURE_STRIPINGV2          (1ULL<<1)
117 #define RBD_FEATURE_EXCLUSIVE_LOCK      (1ULL<<2)
118 #define RBD_FEATURE_OBJECT_MAP          (1ULL<<3)
119 #define RBD_FEATURE_FAST_DIFF           (1ULL<<4)
120 #define RBD_FEATURE_DEEP_FLATTEN        (1ULL<<5)
121 #define RBD_FEATURE_DATA_POOL           (1ULL<<7)
122 #define RBD_FEATURE_OPERATIONS          (1ULL<<8)
123
124 #define RBD_FEATURES_ALL        (RBD_FEATURE_LAYERING |         \
125                                  RBD_FEATURE_STRIPINGV2 |       \
126                                  RBD_FEATURE_EXCLUSIVE_LOCK |   \
127                                  RBD_FEATURE_OBJECT_MAP |       \
128                                  RBD_FEATURE_FAST_DIFF |        \
129                                  RBD_FEATURE_DEEP_FLATTEN |     \
130                                  RBD_FEATURE_DATA_POOL |        \
131                                  RBD_FEATURE_OPERATIONS)
132
133 /* Features supported by this (client software) implementation. */
134
135 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
136
137 /*
138  * An RBD device name will be "rbd#", where the "rbd" comes from
139  * RBD_DRV_NAME above, and # is a unique integer identifier.
140  */
141 #define DEV_NAME_LEN            32
142
143 /*
144  * block device image metadata (in-memory version)
145  */
146 struct rbd_image_header {
147         /* These six fields never change for a given rbd image */
148         char *object_prefix;
149         __u8 obj_order;
150         u64 stripe_unit;
151         u64 stripe_count;
152         s64 data_pool_id;
153         u64 features;           /* Might be changeable someday? */
154
155         /* The remaining fields need to be updated occasionally */
156         u64 image_size;
157         struct ceph_snap_context *snapc;
158         char *snap_names;       /* format 1 only */
159         u64 *snap_sizes;        /* format 1 only */
160 };
161
162 /*
163  * An rbd image specification.
164  *
165  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
166  * identify an image.  Each rbd_dev structure includes a pointer to
167  * an rbd_spec structure that encapsulates this identity.
168  *
169  * Each of the id's in an rbd_spec has an associated name.  For a
170  * user-mapped image, the names are supplied and the id's associated
171  * with them are looked up.  For a layered image, a parent image is
172  * defined by the tuple, and the names are looked up.
173  *
174  * An rbd_dev structure contains a parent_spec pointer which is
175  * non-null if the image it represents is a child in a layered
176  * image.  This pointer will refer to the rbd_spec structure used
177  * by the parent rbd_dev for its own identity (i.e., the structure
178  * is shared between the parent and child).
179  *
180  * Since these structures are populated once, during the discovery
181  * phase of image construction, they are effectively immutable so
182  * we make no effort to synchronize access to them.
183  *
184  * Note that code herein does not assume the image name is known (it
185  * could be a null pointer).
186  */
187 struct rbd_spec {
188         u64             pool_id;
189         const char      *pool_name;
190         const char      *pool_ns;       /* NULL if default, never "" */
191
192         const char      *image_id;
193         const char      *image_name;
194
195         u64             snap_id;
196         const char      *snap_name;
197
198         struct kref     kref;
199 };
200
201 /*
202  * an instance of the client.  multiple devices may share an rbd client.
203  */
204 struct rbd_client {
205         struct ceph_client      *client;
206         struct kref             kref;
207         struct list_head        node;
208 };
209
210 struct pending_result {
211         int                     result;         /* first nonzero result */
212         int                     num_pending;
213 };
214
215 struct rbd_img_request;
216
217 enum obj_request_type {
218         OBJ_REQUEST_NODATA = 1,
219         OBJ_REQUEST_BIO,        /* pointer into provided bio (list) */
220         OBJ_REQUEST_BVECS,      /* pointer into provided bio_vec array */
221         OBJ_REQUEST_OWN_BVECS,  /* private bio_vec array, doesn't own pages */
222 };
223
224 enum obj_operation_type {
225         OBJ_OP_READ = 1,
226         OBJ_OP_WRITE,
227         OBJ_OP_DISCARD,
228         OBJ_OP_ZEROOUT,
229 };
230
231 #define RBD_OBJ_FLAG_DELETION                   (1U << 0)
232 #define RBD_OBJ_FLAG_COPYUP_ENABLED             (1U << 1)
233 #define RBD_OBJ_FLAG_COPYUP_ZEROS               (1U << 2)
234 #define RBD_OBJ_FLAG_MAY_EXIST                  (1U << 3)
235 #define RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT       (1U << 4)
236
237 enum rbd_obj_read_state {
238         RBD_OBJ_READ_START = 1,
239         RBD_OBJ_READ_OBJECT,
240         RBD_OBJ_READ_PARENT,
241 };
242
243 /*
244  * Writes go through the following state machine to deal with
245  * layering:
246  *
247  *            . . . . . RBD_OBJ_WRITE_GUARD. . . . . . . . . . . . . .
248  *            .                 |                                    .
249  *            .                 v                                    .
250  *            .    RBD_OBJ_WRITE_READ_FROM_PARENT. . .               .
251  *            .                 |                    .               .
252  *            .                 v                    v (deep-copyup  .
253  *    (image  .   RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC   .  not needed)  .
254  * flattened) v                 |                    .               .
255  *            .                 v                    .               .
256  *            . . . .RBD_OBJ_WRITE_COPYUP_OPS. . . . .      (copyup  .
257  *                              |                        not needed) v
258  *                              v                                    .
259  *                            done . . . . . . . . . . . . . . . . . .
260  *                              ^
261  *                              |
262  *                     RBD_OBJ_WRITE_FLAT
263  *
264  * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether
265  * assert_exists guard is needed or not (in some cases it's not needed
266  * even if there is a parent).
267  */
268 enum rbd_obj_write_state {
269         RBD_OBJ_WRITE_START = 1,
270         RBD_OBJ_WRITE_PRE_OBJECT_MAP,
271         RBD_OBJ_WRITE_OBJECT,
272         __RBD_OBJ_WRITE_COPYUP,
273         RBD_OBJ_WRITE_COPYUP,
274         RBD_OBJ_WRITE_POST_OBJECT_MAP,
275 };
276
277 enum rbd_obj_copyup_state {
278         RBD_OBJ_COPYUP_START = 1,
279         RBD_OBJ_COPYUP_READ_PARENT,
280         __RBD_OBJ_COPYUP_OBJECT_MAPS,
281         RBD_OBJ_COPYUP_OBJECT_MAPS,
282         __RBD_OBJ_COPYUP_WRITE_OBJECT,
283         RBD_OBJ_COPYUP_WRITE_OBJECT,
284 };
285
286 struct rbd_obj_request {
287         struct ceph_object_extent ex;
288         unsigned int            flags;  /* RBD_OBJ_FLAG_* */
289         union {
290                 enum rbd_obj_read_state  read_state;    /* for reads */
291                 enum rbd_obj_write_state write_state;   /* for writes */
292         };
293
294         struct rbd_img_request  *img_request;
295         struct ceph_file_extent *img_extents;
296         u32                     num_img_extents;
297
298         union {
299                 struct ceph_bio_iter    bio_pos;
300                 struct {
301                         struct ceph_bvec_iter   bvec_pos;
302                         u32                     bvec_count;
303                         u32                     bvec_idx;
304                 };
305         };
306
307         enum rbd_obj_copyup_state copyup_state;
308         struct bio_vec          *copyup_bvecs;
309         u32                     copyup_bvec_count;
310
311         struct list_head        osd_reqs;       /* w/ r_private_item */
312
313         struct mutex            state_mutex;
314         struct pending_result   pending;
315         struct kref             kref;
316 };
317
318 enum img_req_flags {
319         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
320         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
321 };
322
323 enum rbd_img_state {
324         RBD_IMG_START = 1,
325         RBD_IMG_EXCLUSIVE_LOCK,
326         __RBD_IMG_OBJECT_REQUESTS,
327         RBD_IMG_OBJECT_REQUESTS,
328 };
329
330 struct rbd_img_request {
331         struct rbd_device       *rbd_dev;
332         enum obj_operation_type op_type;
333         enum obj_request_type   data_type;
334         unsigned long           flags;
335         enum rbd_img_state      state;
336         union {
337                 u64                     snap_id;        /* for reads */
338                 struct ceph_snap_context *snapc;        /* for writes */
339         };
340         struct rbd_obj_request  *obj_request;   /* obj req initiator */
341
342         struct list_head        lock_item;
343         struct list_head        object_extents; /* obj_req.ex structs */
344
345         struct mutex            state_mutex;
346         struct pending_result   pending;
347         struct work_struct      work;
348         int                     work_result;
349 };
350
351 #define for_each_obj_request(ireq, oreq) \
352         list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item)
353 #define for_each_obj_request_safe(ireq, oreq, n) \
354         list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item)
355
356 enum rbd_watch_state {
357         RBD_WATCH_STATE_UNREGISTERED,
358         RBD_WATCH_STATE_REGISTERED,
359         RBD_WATCH_STATE_ERROR,
360 };
361
362 enum rbd_lock_state {
363         RBD_LOCK_STATE_UNLOCKED,
364         RBD_LOCK_STATE_LOCKED,
365         RBD_LOCK_STATE_RELEASING,
366 };
367
368 /* WatchNotify::ClientId */
369 struct rbd_client_id {
370         u64 gid;
371         u64 handle;
372 };
373
374 struct rbd_mapping {
375         u64                     size;
376 };
377
378 /*
379  * a single device
380  */
381 struct rbd_device {
382         int                     dev_id;         /* blkdev unique id */
383
384         int                     major;          /* blkdev assigned major */
385         int                     minor;
386         struct gendisk          *disk;          /* blkdev's gendisk and rq */
387
388         u32                     image_format;   /* Either 1 or 2 */
389         struct rbd_client       *rbd_client;
390
391         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
392
393         spinlock_t              lock;           /* queue, flags, open_count */
394
395         struct rbd_image_header header;
396         unsigned long           flags;          /* possibly lock protected */
397         struct rbd_spec         *spec;
398         struct rbd_options      *opts;
399         char                    *config_info;   /* add{,_single_major} string */
400
401         struct ceph_object_id   header_oid;
402         struct ceph_object_locator header_oloc;
403
404         struct ceph_file_layout layout;         /* used for all rbd requests */
405
406         struct mutex            watch_mutex;
407         enum rbd_watch_state    watch_state;
408         struct ceph_osd_linger_request *watch_handle;
409         u64                     watch_cookie;
410         struct delayed_work     watch_dwork;
411
412         struct rw_semaphore     lock_rwsem;
413         enum rbd_lock_state     lock_state;
414         char                    lock_cookie[32];
415         struct rbd_client_id    owner_cid;
416         struct work_struct      acquired_lock_work;
417         struct work_struct      released_lock_work;
418         struct delayed_work     lock_dwork;
419         struct work_struct      unlock_work;
420         spinlock_t              lock_lists_lock;
421         struct list_head        acquiring_list;
422         struct list_head        running_list;
423         struct completion       acquire_wait;
424         int                     acquire_err;
425         struct completion       releasing_wait;
426
427         spinlock_t              object_map_lock;
428         u8                      *object_map;
429         u64                     object_map_size;        /* in objects */
430         u64                     object_map_flags;
431
432         struct workqueue_struct *task_wq;
433
434         struct rbd_spec         *parent_spec;
435         u64                     parent_overlap;
436         atomic_t                parent_ref;
437         struct rbd_device       *parent;
438
439         /* Block layer tags. */
440         struct blk_mq_tag_set   tag_set;
441
442         /* protects updating the header */
443         struct rw_semaphore     header_rwsem;
444
445         struct rbd_mapping      mapping;
446
447         struct list_head        node;
448
449         /* sysfs related */
450         struct device           dev;
451         unsigned long           open_count;     /* protected by lock */
452 };
453
454 /*
455  * Flag bits for rbd_dev->flags:
456  * - REMOVING (which is coupled with rbd_dev->open_count) is protected
457  *   by rbd_dev->lock
458  */
459 enum rbd_dev_flags {
460         RBD_DEV_FLAG_EXISTS,    /* rbd_dev_device_setup() ran */
461         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
462         RBD_DEV_FLAG_READONLY,  /* -o ro or snapshot */
463 };
464
465 static DEFINE_MUTEX(client_mutex);      /* Serialize client creation */
466
467 static LIST_HEAD(rbd_dev_list);    /* devices */
468 static DEFINE_SPINLOCK(rbd_dev_list_lock);
469
470 static LIST_HEAD(rbd_client_list);              /* clients */
471 static DEFINE_SPINLOCK(rbd_client_list_lock);
472
473 /* Slab caches for frequently-allocated structures */
474
475 static struct kmem_cache        *rbd_img_request_cache;
476 static struct kmem_cache        *rbd_obj_request_cache;
477
478 static int rbd_major;
479 static DEFINE_IDA(rbd_dev_id_ida);
480
481 static struct workqueue_struct *rbd_wq;
482
483 static struct ceph_snap_context rbd_empty_snapc = {
484         .nref = REFCOUNT_INIT(1),
485 };
486
487 /*
488  * single-major requires >= 0.75 version of userspace rbd utility.
489  */
490 static bool single_major = true;
491 module_param(single_major, bool, 0444);
492 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)");
493
494 static ssize_t add_store(const struct bus_type *bus, const char *buf, size_t count);
495 static ssize_t remove_store(const struct bus_type *bus, const char *buf,
496                             size_t count);
497 static ssize_t add_single_major_store(const struct bus_type *bus, const char *buf,
498                                       size_t count);
499 static ssize_t remove_single_major_store(const struct bus_type *bus, const char *buf,
500                                          size_t count);
501 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
502
503 static int rbd_dev_id_to_minor(int dev_id)
504 {
505         return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
506 }
507
508 static int minor_to_rbd_dev_id(int minor)
509 {
510         return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
511 }
512
513 static bool rbd_is_ro(struct rbd_device *rbd_dev)
514 {
515         return test_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
516 }
517
518 static bool rbd_is_snap(struct rbd_device *rbd_dev)
519 {
520         return rbd_dev->spec->snap_id != CEPH_NOSNAP;
521 }
522
523 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
524 {
525         lockdep_assert_held(&rbd_dev->lock_rwsem);
526
527         return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
528                rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
529 }
530
531 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
532 {
533         bool is_lock_owner;
534
535         down_read(&rbd_dev->lock_rwsem);
536         is_lock_owner = __rbd_is_lock_owner(rbd_dev);
537         up_read(&rbd_dev->lock_rwsem);
538         return is_lock_owner;
539 }
540
541 static ssize_t supported_features_show(const struct bus_type *bus, char *buf)
542 {
543         return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
544 }
545
546 static BUS_ATTR_WO(add);
547 static BUS_ATTR_WO(remove);
548 static BUS_ATTR_WO(add_single_major);
549 static BUS_ATTR_WO(remove_single_major);
550 static BUS_ATTR_RO(supported_features);
551
552 static struct attribute *rbd_bus_attrs[] = {
553         &bus_attr_add.attr,
554         &bus_attr_remove.attr,
555         &bus_attr_add_single_major.attr,
556         &bus_attr_remove_single_major.attr,
557         &bus_attr_supported_features.attr,
558         NULL,
559 };
560
561 static umode_t rbd_bus_is_visible(struct kobject *kobj,
562                                   struct attribute *attr, int index)
563 {
564         if (!single_major &&
565             (attr == &bus_attr_add_single_major.attr ||
566              attr == &bus_attr_remove_single_major.attr))
567                 return 0;
568
569         return attr->mode;
570 }
571
572 static const struct attribute_group rbd_bus_group = {
573         .attrs = rbd_bus_attrs,
574         .is_visible = rbd_bus_is_visible,
575 };
576 __ATTRIBUTE_GROUPS(rbd_bus);
577
578 static const struct bus_type rbd_bus_type = {
579         .name           = "rbd",
580         .bus_groups     = rbd_bus_groups,
581 };
582
583 static void rbd_root_dev_release(struct device *dev)
584 {
585 }
586
587 static struct device rbd_root_dev = {
588         .init_name =    "rbd",
589         .release =      rbd_root_dev_release,
590 };
591
592 static __printf(2, 3)
593 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
594 {
595         struct va_format vaf;
596         va_list args;
597
598         va_start(args, fmt);
599         vaf.fmt = fmt;
600         vaf.va = &args;
601
602         if (!rbd_dev)
603                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
604         else if (rbd_dev->disk)
605                 printk(KERN_WARNING "%s: %s: %pV\n",
606                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
607         else if (rbd_dev->spec && rbd_dev->spec->image_name)
608                 printk(KERN_WARNING "%s: image %s: %pV\n",
609                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
610         else if (rbd_dev->spec && rbd_dev->spec->image_id)
611                 printk(KERN_WARNING "%s: id %s: %pV\n",
612                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
613         else    /* punt */
614                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
615                         RBD_DRV_NAME, rbd_dev, &vaf);
616         va_end(args);
617 }
618
619 #ifdef RBD_DEBUG
620 #define rbd_assert(expr)                                                \
621                 if (unlikely(!(expr))) {                                \
622                         printk(KERN_ERR "\nAssertion failure in %s() "  \
623                                                 "at line %d:\n\n"       \
624                                         "\trbd_assert(%s);\n\n",        \
625                                         __func__, __LINE__, #expr);     \
626                         BUG();                                          \
627                 }
628 #else /* !RBD_DEBUG */
629 #  define rbd_assert(expr)      ((void) 0)
630 #endif /* !RBD_DEBUG */
631
632 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
633
634 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
635 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev,
636                                      struct rbd_image_header *header);
637 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
638                                         u64 snap_id);
639 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
640                                 u8 *order, u64 *snap_size);
641 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev);
642
643 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result);
644 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result);
645
646 /*
647  * Return true if nothing else is pending.
648  */
649 static bool pending_result_dec(struct pending_result *pending, int *result)
650 {
651         rbd_assert(pending->num_pending > 0);
652
653         if (*result && !pending->result)
654                 pending->result = *result;
655         if (--pending->num_pending)
656                 return false;
657
658         *result = pending->result;
659         return true;
660 }
661
662 static int rbd_open(struct gendisk *disk, blk_mode_t mode)
663 {
664         struct rbd_device *rbd_dev = disk->private_data;
665         bool removing = false;
666
667         spin_lock_irq(&rbd_dev->lock);
668         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
669                 removing = true;
670         else
671                 rbd_dev->open_count++;
672         spin_unlock_irq(&rbd_dev->lock);
673         if (removing)
674                 return -ENOENT;
675
676         (void) get_device(&rbd_dev->dev);
677
678         return 0;
679 }
680
681 static void rbd_release(struct gendisk *disk)
682 {
683         struct rbd_device *rbd_dev = disk->private_data;
684         unsigned long open_count_before;
685
686         spin_lock_irq(&rbd_dev->lock);
687         open_count_before = rbd_dev->open_count--;
688         spin_unlock_irq(&rbd_dev->lock);
689         rbd_assert(open_count_before > 0);
690
691         put_device(&rbd_dev->dev);
692 }
693
694 static const struct block_device_operations rbd_bd_ops = {
695         .owner                  = THIS_MODULE,
696         .open                   = rbd_open,
697         .release                = rbd_release,
698 };
699
700 /*
701  * Initialize an rbd client instance.  Success or not, this function
702  * consumes ceph_opts.  Caller holds client_mutex.
703  */
704 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
705 {
706         struct rbd_client *rbdc;
707         int ret = -ENOMEM;
708
709         dout("%s:\n", __func__);
710         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
711         if (!rbdc)
712                 goto out_opt;
713
714         kref_init(&rbdc->kref);
715         INIT_LIST_HEAD(&rbdc->node);
716
717         rbdc->client = ceph_create_client(ceph_opts, rbdc);
718         if (IS_ERR(rbdc->client))
719                 goto out_rbdc;
720         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
721
722         ret = ceph_open_session(rbdc->client);
723         if (ret < 0)
724                 goto out_client;
725
726         spin_lock(&rbd_client_list_lock);
727         list_add_tail(&rbdc->node, &rbd_client_list);
728         spin_unlock(&rbd_client_list_lock);
729
730         dout("%s: rbdc %p\n", __func__, rbdc);
731
732         return rbdc;
733 out_client:
734         ceph_destroy_client(rbdc->client);
735 out_rbdc:
736         kfree(rbdc);
737 out_opt:
738         if (ceph_opts)
739                 ceph_destroy_options(ceph_opts);
740         dout("%s: error %d\n", __func__, ret);
741
742         return ERR_PTR(ret);
743 }
744
745 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
746 {
747         kref_get(&rbdc->kref);
748
749         return rbdc;
750 }
751
752 /*
753  * Find a ceph client with specific addr and configuration.  If
754  * found, bump its reference count.
755  */
756 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
757 {
758         struct rbd_client *rbdc = NULL, *iter;
759
760         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
761                 return NULL;
762
763         spin_lock(&rbd_client_list_lock);
764         list_for_each_entry(iter, &rbd_client_list, node) {
765                 if (!ceph_compare_options(ceph_opts, iter->client)) {
766                         __rbd_get_client(iter);
767
768                         rbdc = iter;
769                         break;
770                 }
771         }
772         spin_unlock(&rbd_client_list_lock);
773
774         return rbdc;
775 }
776
777 /*
778  * (Per device) rbd map options
779  */
780 enum {
781         Opt_queue_depth,
782         Opt_alloc_size,
783         Opt_lock_timeout,
784         /* int args above */
785         Opt_pool_ns,
786         Opt_compression_hint,
787         /* string args above */
788         Opt_read_only,
789         Opt_read_write,
790         Opt_lock_on_read,
791         Opt_exclusive,
792         Opt_notrim,
793 };
794
795 enum {
796         Opt_compression_hint_none,
797         Opt_compression_hint_compressible,
798         Opt_compression_hint_incompressible,
799 };
800
801 static const struct constant_table rbd_param_compression_hint[] = {
802         {"none",                Opt_compression_hint_none},
803         {"compressible",        Opt_compression_hint_compressible},
804         {"incompressible",      Opt_compression_hint_incompressible},
805         {}
806 };
807
808 static const struct fs_parameter_spec rbd_parameters[] = {
809         fsparam_u32     ("alloc_size",                  Opt_alloc_size),
810         fsparam_enum    ("compression_hint",            Opt_compression_hint,
811                          rbd_param_compression_hint),
812         fsparam_flag    ("exclusive",                   Opt_exclusive),
813         fsparam_flag    ("lock_on_read",                Opt_lock_on_read),
814         fsparam_u32     ("lock_timeout",                Opt_lock_timeout),
815         fsparam_flag    ("notrim",                      Opt_notrim),
816         fsparam_string  ("_pool_ns",                    Opt_pool_ns),
817         fsparam_u32     ("queue_depth",                 Opt_queue_depth),
818         fsparam_flag    ("read_only",                   Opt_read_only),
819         fsparam_flag    ("read_write",                  Opt_read_write),
820         fsparam_flag    ("ro",                          Opt_read_only),
821         fsparam_flag    ("rw",                          Opt_read_write),
822         {}
823 };
824
825 struct rbd_options {
826         int     queue_depth;
827         int     alloc_size;
828         unsigned long   lock_timeout;
829         bool    read_only;
830         bool    lock_on_read;
831         bool    exclusive;
832         bool    trim;
833
834         u32 alloc_hint_flags;  /* CEPH_OSD_OP_ALLOC_HINT_FLAG_* */
835 };
836
837 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_DEFAULT_RQ
838 #define RBD_ALLOC_SIZE_DEFAULT  (64 * 1024)
839 #define RBD_LOCK_TIMEOUT_DEFAULT 0  /* no timeout */
840 #define RBD_READ_ONLY_DEFAULT   false
841 #define RBD_LOCK_ON_READ_DEFAULT false
842 #define RBD_EXCLUSIVE_DEFAULT   false
843 #define RBD_TRIM_DEFAULT        true
844
845 struct rbd_parse_opts_ctx {
846         struct rbd_spec         *spec;
847         struct ceph_options     *copts;
848         struct rbd_options      *opts;
849 };
850
851 static char* obj_op_name(enum obj_operation_type op_type)
852 {
853         switch (op_type) {
854         case OBJ_OP_READ:
855                 return "read";
856         case OBJ_OP_WRITE:
857                 return "write";
858         case OBJ_OP_DISCARD:
859                 return "discard";
860         case OBJ_OP_ZEROOUT:
861                 return "zeroout";
862         default:
863                 return "???";
864         }
865 }
866
867 /*
868  * Destroy ceph client
869  *
870  * Caller must hold rbd_client_list_lock.
871  */
872 static void rbd_client_release(struct kref *kref)
873 {
874         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
875
876         dout("%s: rbdc %p\n", __func__, rbdc);
877         spin_lock(&rbd_client_list_lock);
878         list_del(&rbdc->node);
879         spin_unlock(&rbd_client_list_lock);
880
881         ceph_destroy_client(rbdc->client);
882         kfree(rbdc);
883 }
884
885 /*
886  * Drop reference to ceph client node. If it's not referenced anymore, release
887  * it.
888  */
889 static void rbd_put_client(struct rbd_client *rbdc)
890 {
891         if (rbdc)
892                 kref_put(&rbdc->kref, rbd_client_release);
893 }
894
895 /*
896  * Get a ceph client with specific addr and configuration, if one does
897  * not exist create it.  Either way, ceph_opts is consumed by this
898  * function.
899  */
900 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
901 {
902         struct rbd_client *rbdc;
903         int ret;
904
905         mutex_lock(&client_mutex);
906         rbdc = rbd_client_find(ceph_opts);
907         if (rbdc) {
908                 ceph_destroy_options(ceph_opts);
909
910                 /*
911                  * Using an existing client.  Make sure ->pg_pools is up to
912                  * date before we look up the pool id in do_rbd_add().
913                  */
914                 ret = ceph_wait_for_latest_osdmap(rbdc->client,
915                                         rbdc->client->options->mount_timeout);
916                 if (ret) {
917                         rbd_warn(NULL, "failed to get latest osdmap: %d", ret);
918                         rbd_put_client(rbdc);
919                         rbdc = ERR_PTR(ret);
920                 }
921         } else {
922                 rbdc = rbd_client_create(ceph_opts);
923         }
924         mutex_unlock(&client_mutex);
925
926         return rbdc;
927 }
928
929 static bool rbd_image_format_valid(u32 image_format)
930 {
931         return image_format == 1 || image_format == 2;
932 }
933
934 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
935 {
936         size_t size;
937         u32 snap_count;
938
939         /* The header has to start with the magic rbd header text */
940         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
941                 return false;
942
943         /* The bio layer requires at least sector-sized I/O */
944
945         if (ondisk->options.order < SECTOR_SHIFT)
946                 return false;
947
948         /* If we use u64 in a few spots we may be able to loosen this */
949
950         if (ondisk->options.order > 8 * sizeof (int) - 1)
951                 return false;
952
953         /*
954          * The size of a snapshot header has to fit in a size_t, and
955          * that limits the number of snapshots.
956          */
957         snap_count = le32_to_cpu(ondisk->snap_count);
958         size = SIZE_MAX - sizeof (struct ceph_snap_context);
959         if (snap_count > size / sizeof (__le64))
960                 return false;
961
962         /*
963          * Not only that, but the size of the entire the snapshot
964          * header must also be representable in a size_t.
965          */
966         size -= snap_count * sizeof (__le64);
967         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
968                 return false;
969
970         return true;
971 }
972
973 /*
974  * returns the size of an object in the image
975  */
976 static u32 rbd_obj_bytes(struct rbd_image_header *header)
977 {
978         return 1U << header->obj_order;
979 }
980
981 static void rbd_init_layout(struct rbd_device *rbd_dev)
982 {
983         if (rbd_dev->header.stripe_unit == 0 ||
984             rbd_dev->header.stripe_count == 0) {
985                 rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
986                 rbd_dev->header.stripe_count = 1;
987         }
988
989         rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
990         rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
991         rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
992         rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
993                           rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
994         RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
995 }
996
997 static void rbd_image_header_cleanup(struct rbd_image_header *header)
998 {
999         kfree(header->object_prefix);
1000         ceph_put_snap_context(header->snapc);
1001         kfree(header->snap_sizes);
1002         kfree(header->snap_names);
1003
1004         memset(header, 0, sizeof(*header));
1005 }
1006
1007 /*
1008  * Fill an rbd image header with information from the given format 1
1009  * on-disk header.
1010  */
1011 static int rbd_header_from_disk(struct rbd_image_header *header,
1012                                 struct rbd_image_header_ondisk *ondisk,
1013                                 bool first_time)
1014 {
1015         struct ceph_snap_context *snapc;
1016         char *object_prefix = NULL;
1017         char *snap_names = NULL;
1018         u64 *snap_sizes = NULL;
1019         u32 snap_count;
1020         int ret = -ENOMEM;
1021         u32 i;
1022
1023         /* Allocate this now to avoid having to handle failure below */
1024
1025         if (first_time) {
1026                 object_prefix = kstrndup(ondisk->object_prefix,
1027                                          sizeof(ondisk->object_prefix),
1028                                          GFP_KERNEL);
1029                 if (!object_prefix)
1030                         return -ENOMEM;
1031         }
1032
1033         /* Allocate the snapshot context and fill it in */
1034
1035         snap_count = le32_to_cpu(ondisk->snap_count);
1036         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1037         if (!snapc)
1038                 goto out_err;
1039         snapc->seq = le64_to_cpu(ondisk->snap_seq);
1040         if (snap_count) {
1041                 struct rbd_image_snap_ondisk *snaps;
1042                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1043
1044                 /* We'll keep a copy of the snapshot names... */
1045
1046                 if (snap_names_len > (u64)SIZE_MAX)
1047                         goto out_2big;
1048                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1049                 if (!snap_names)
1050                         goto out_err;
1051
1052                 /* ...as well as the array of their sizes. */
1053                 snap_sizes = kmalloc_array(snap_count,
1054                                            sizeof(*header->snap_sizes),
1055                                            GFP_KERNEL);
1056                 if (!snap_sizes)
1057                         goto out_err;
1058
1059                 /*
1060                  * Copy the names, and fill in each snapshot's id
1061                  * and size.
1062                  *
1063                  * Note that rbd_dev_v1_header_info() guarantees the
1064                  * ondisk buffer we're working with has
1065                  * snap_names_len bytes beyond the end of the
1066                  * snapshot id array, this memcpy() is safe.
1067                  */
1068                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1069                 snaps = ondisk->snaps;
1070                 for (i = 0; i < snap_count; i++) {
1071                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1072                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1073                 }
1074         }
1075
1076         /* We won't fail any more, fill in the header */
1077
1078         if (first_time) {
1079                 header->object_prefix = object_prefix;
1080                 header->obj_order = ondisk->options.order;
1081         }
1082
1083         /* The remaining fields always get updated (when we refresh) */
1084
1085         header->image_size = le64_to_cpu(ondisk->image_size);
1086         header->snapc = snapc;
1087         header->snap_names = snap_names;
1088         header->snap_sizes = snap_sizes;
1089
1090         return 0;
1091 out_2big:
1092         ret = -EIO;
1093 out_err:
1094         kfree(snap_sizes);
1095         kfree(snap_names);
1096         ceph_put_snap_context(snapc);
1097         kfree(object_prefix);
1098
1099         return ret;
1100 }
1101
1102 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1103 {
1104         const char *snap_name;
1105
1106         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1107
1108         /* Skip over names until we find the one we are looking for */
1109
1110         snap_name = rbd_dev->header.snap_names;
1111         while (which--)
1112                 snap_name += strlen(snap_name) + 1;
1113
1114         return kstrdup(snap_name, GFP_KERNEL);
1115 }
1116
1117 /*
1118  * Snapshot id comparison function for use with qsort()/bsearch().
1119  * Note that result is for snapshots in *descending* order.
1120  */
1121 static int snapid_compare_reverse(const void *s1, const void *s2)
1122 {
1123         u64 snap_id1 = *(u64 *)s1;
1124         u64 snap_id2 = *(u64 *)s2;
1125
1126         if (snap_id1 < snap_id2)
1127                 return 1;
1128         return snap_id1 == snap_id2 ? 0 : -1;
1129 }
1130
1131 /*
1132  * Search a snapshot context to see if the given snapshot id is
1133  * present.
1134  *
1135  * Returns the position of the snapshot id in the array if it's found,
1136  * or BAD_SNAP_INDEX otherwise.
1137  *
1138  * Note: The snapshot array is in kept sorted (by the osd) in
1139  * reverse order, highest snapshot id first.
1140  */
1141 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1142 {
1143         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1144         u64 *found;
1145
1146         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1147                                 sizeof (snap_id), snapid_compare_reverse);
1148
1149         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1150 }
1151
1152 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1153                                         u64 snap_id)
1154 {
1155         u32 which;
1156         const char *snap_name;
1157
1158         which = rbd_dev_snap_index(rbd_dev, snap_id);
1159         if (which == BAD_SNAP_INDEX)
1160                 return ERR_PTR(-ENOENT);
1161
1162         snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1163         return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1164 }
1165
1166 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1167 {
1168         if (snap_id == CEPH_NOSNAP)
1169                 return RBD_SNAP_HEAD_NAME;
1170
1171         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1172         if (rbd_dev->image_format == 1)
1173                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1174
1175         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1176 }
1177
1178 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1179                                 u64 *snap_size)
1180 {
1181         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1182         if (snap_id == CEPH_NOSNAP) {
1183                 *snap_size = rbd_dev->header.image_size;
1184         } else if (rbd_dev->image_format == 1) {
1185                 u32 which;
1186
1187                 which = rbd_dev_snap_index(rbd_dev, snap_id);
1188                 if (which == BAD_SNAP_INDEX)
1189                         return -ENOENT;
1190
1191                 *snap_size = rbd_dev->header.snap_sizes[which];
1192         } else {
1193                 u64 size = 0;
1194                 int ret;
1195
1196                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1197                 if (ret)
1198                         return ret;
1199
1200                 *snap_size = size;
1201         }
1202         return 0;
1203 }
1204
1205 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1206 {
1207         u64 snap_id = rbd_dev->spec->snap_id;
1208         u64 size = 0;
1209         int ret;
1210
1211         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1212         if (ret)
1213                 return ret;
1214
1215         rbd_dev->mapping.size = size;
1216         return 0;
1217 }
1218
1219 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1220 {
1221         rbd_dev->mapping.size = 0;
1222 }
1223
1224 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes)
1225 {
1226         struct ceph_bio_iter it = *bio_pos;
1227
1228         ceph_bio_iter_advance(&it, off);
1229         ceph_bio_iter_advance_step(&it, bytes, ({
1230                 memzero_bvec(&bv);
1231         }));
1232 }
1233
1234 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes)
1235 {
1236         struct ceph_bvec_iter it = *bvec_pos;
1237
1238         ceph_bvec_iter_advance(&it, off);
1239         ceph_bvec_iter_advance_step(&it, bytes, ({
1240                 memzero_bvec(&bv);
1241         }));
1242 }
1243
1244 /*
1245  * Zero a range in @obj_req data buffer defined by a bio (list) or
1246  * (private) bio_vec array.
1247  *
1248  * @off is relative to the start of the data buffer.
1249  */
1250 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off,
1251                                u32 bytes)
1252 {
1253         dout("%s %p data buf %u~%u\n", __func__, obj_req, off, bytes);
1254
1255         switch (obj_req->img_request->data_type) {
1256         case OBJ_REQUEST_BIO:
1257                 zero_bios(&obj_req->bio_pos, off, bytes);
1258                 break;
1259         case OBJ_REQUEST_BVECS:
1260         case OBJ_REQUEST_OWN_BVECS:
1261                 zero_bvecs(&obj_req->bvec_pos, off, bytes);
1262                 break;
1263         default:
1264                 BUG();
1265         }
1266 }
1267
1268 static void rbd_obj_request_destroy(struct kref *kref);
1269 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1270 {
1271         rbd_assert(obj_request != NULL);
1272         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1273                 kref_read(&obj_request->kref));
1274         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1275 }
1276
1277 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1278                                         struct rbd_obj_request *obj_request)
1279 {
1280         rbd_assert(obj_request->img_request == NULL);
1281
1282         /* Image request now owns object's original reference */
1283         obj_request->img_request = img_request;
1284         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1285 }
1286
1287 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1288                                         struct rbd_obj_request *obj_request)
1289 {
1290         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1291         list_del(&obj_request->ex.oe_item);
1292         rbd_assert(obj_request->img_request == img_request);
1293         rbd_obj_request_put(obj_request);
1294 }
1295
1296 static void rbd_osd_submit(struct ceph_osd_request *osd_req)
1297 {
1298         struct rbd_obj_request *obj_req = osd_req->r_priv;
1299
1300         dout("%s osd_req %p for obj_req %p objno %llu %llu~%llu\n",
1301              __func__, osd_req, obj_req, obj_req->ex.oe_objno,
1302              obj_req->ex.oe_off, obj_req->ex.oe_len);
1303         ceph_osdc_start_request(osd_req->r_osdc, osd_req);
1304 }
1305
1306 /*
1307  * The default/initial value for all image request flags is 0.  Each
1308  * is conditionally set to 1 at image request initialization time
1309  * and currently never change thereafter.
1310  */
1311 static void img_request_layered_set(struct rbd_img_request *img_request)
1312 {
1313         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1314 }
1315
1316 static bool img_request_layered_test(struct rbd_img_request *img_request)
1317 {
1318         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1319 }
1320
1321 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req)
1322 {
1323         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1324
1325         return !obj_req->ex.oe_off &&
1326                obj_req->ex.oe_len == rbd_dev->layout.object_size;
1327 }
1328
1329 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req)
1330 {
1331         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1332
1333         return obj_req->ex.oe_off + obj_req->ex.oe_len ==
1334                                         rbd_dev->layout.object_size;
1335 }
1336
1337 /*
1338  * Must be called after rbd_obj_calc_img_extents().
1339  */
1340 static void rbd_obj_set_copyup_enabled(struct rbd_obj_request *obj_req)
1341 {
1342         rbd_assert(obj_req->img_request->snapc);
1343
1344         if (obj_req->img_request->op_type == OBJ_OP_DISCARD) {
1345                 dout("%s %p objno %llu discard\n", __func__, obj_req,
1346                      obj_req->ex.oe_objno);
1347                 return;
1348         }
1349
1350         if (!obj_req->num_img_extents) {
1351                 dout("%s %p objno %llu not overlapping\n", __func__, obj_req,
1352                      obj_req->ex.oe_objno);
1353                 return;
1354         }
1355
1356         if (rbd_obj_is_entire(obj_req) &&
1357             !obj_req->img_request->snapc->num_snaps) {
1358                 dout("%s %p objno %llu entire\n", __func__, obj_req,
1359                      obj_req->ex.oe_objno);
1360                 return;
1361         }
1362
1363         obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
1364 }
1365
1366 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req)
1367 {
1368         return ceph_file_extents_bytes(obj_req->img_extents,
1369                                        obj_req->num_img_extents);
1370 }
1371
1372 static bool rbd_img_is_write(struct rbd_img_request *img_req)
1373 {
1374         switch (img_req->op_type) {
1375         case OBJ_OP_READ:
1376                 return false;
1377         case OBJ_OP_WRITE:
1378         case OBJ_OP_DISCARD:
1379         case OBJ_OP_ZEROOUT:
1380                 return true;
1381         default:
1382                 BUG();
1383         }
1384 }
1385
1386 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1387 {
1388         struct rbd_obj_request *obj_req = osd_req->r_priv;
1389         int result;
1390
1391         dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1392              osd_req->r_result, obj_req);
1393
1394         /*
1395          * Writes aren't allowed to return a data payload.  In some
1396          * guarded write cases (e.g. stat + zero on an empty object)
1397          * a stat response makes it through, but we don't care.
1398          */
1399         if (osd_req->r_result > 0 && rbd_img_is_write(obj_req->img_request))
1400                 result = 0;
1401         else
1402                 result = osd_req->r_result;
1403
1404         rbd_obj_handle_request(obj_req, result);
1405 }
1406
1407 static void rbd_osd_format_read(struct ceph_osd_request *osd_req)
1408 {
1409         struct rbd_obj_request *obj_request = osd_req->r_priv;
1410         struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1411         struct ceph_options *opt = rbd_dev->rbd_client->client->options;
1412
1413         osd_req->r_flags = CEPH_OSD_FLAG_READ | opt->read_from_replica;
1414         osd_req->r_snapid = obj_request->img_request->snap_id;
1415 }
1416
1417 static void rbd_osd_format_write(struct ceph_osd_request *osd_req)
1418 {
1419         struct rbd_obj_request *obj_request = osd_req->r_priv;
1420
1421         osd_req->r_flags = CEPH_OSD_FLAG_WRITE;
1422         ktime_get_real_ts64(&osd_req->r_mtime);
1423         osd_req->r_data_offset = obj_request->ex.oe_off;
1424 }
1425
1426 static struct ceph_osd_request *
1427 __rbd_obj_add_osd_request(struct rbd_obj_request *obj_req,
1428                           struct ceph_snap_context *snapc, int num_ops)
1429 {
1430         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1431         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1432         struct ceph_osd_request *req;
1433         const char *name_format = rbd_dev->image_format == 1 ?
1434                                       RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1435         int ret;
1436
1437         req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO);
1438         if (!req)
1439                 return ERR_PTR(-ENOMEM);
1440
1441         list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
1442         req->r_callback = rbd_osd_req_callback;
1443         req->r_priv = obj_req;
1444
1445         /*
1446          * Data objects may be stored in a separate pool, but always in
1447          * the same namespace in that pool as the header in its pool.
1448          */
1449         ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
1450         req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1451
1452         ret = ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1453                                rbd_dev->header.object_prefix,
1454                                obj_req->ex.oe_objno);
1455         if (ret)
1456                 return ERR_PTR(ret);
1457
1458         return req;
1459 }
1460
1461 static struct ceph_osd_request *
1462 rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, int num_ops)
1463 {
1464         rbd_assert(obj_req->img_request->snapc);
1465         return __rbd_obj_add_osd_request(obj_req, obj_req->img_request->snapc,
1466                                          num_ops);
1467 }
1468
1469 static struct rbd_obj_request *rbd_obj_request_create(void)
1470 {
1471         struct rbd_obj_request *obj_request;
1472
1473         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
1474         if (!obj_request)
1475                 return NULL;
1476
1477         ceph_object_extent_init(&obj_request->ex);
1478         INIT_LIST_HEAD(&obj_request->osd_reqs);
1479         mutex_init(&obj_request->state_mutex);
1480         kref_init(&obj_request->kref);
1481
1482         dout("%s %p\n", __func__, obj_request);
1483         return obj_request;
1484 }
1485
1486 static void rbd_obj_request_destroy(struct kref *kref)
1487 {
1488         struct rbd_obj_request *obj_request;
1489         struct ceph_osd_request *osd_req;
1490         u32 i;
1491
1492         obj_request = container_of(kref, struct rbd_obj_request, kref);
1493
1494         dout("%s: obj %p\n", __func__, obj_request);
1495
1496         while (!list_empty(&obj_request->osd_reqs)) {
1497                 osd_req = list_first_entry(&obj_request->osd_reqs,
1498                                     struct ceph_osd_request, r_private_item);
1499                 list_del_init(&osd_req->r_private_item);
1500                 ceph_osdc_put_request(osd_req);
1501         }
1502
1503         switch (obj_request->img_request->data_type) {
1504         case OBJ_REQUEST_NODATA:
1505         case OBJ_REQUEST_BIO:
1506         case OBJ_REQUEST_BVECS:
1507                 break;          /* Nothing to do */
1508         case OBJ_REQUEST_OWN_BVECS:
1509                 kfree(obj_request->bvec_pos.bvecs);
1510                 break;
1511         default:
1512                 BUG();
1513         }
1514
1515         kfree(obj_request->img_extents);
1516         if (obj_request->copyup_bvecs) {
1517                 for (i = 0; i < obj_request->copyup_bvec_count; i++) {
1518                         if (obj_request->copyup_bvecs[i].bv_page)
1519                                 __free_page(obj_request->copyup_bvecs[i].bv_page);
1520                 }
1521                 kfree(obj_request->copyup_bvecs);
1522         }
1523
1524         kmem_cache_free(rbd_obj_request_cache, obj_request);
1525 }
1526
1527 /* It's OK to call this for a device with no parent */
1528
1529 static void rbd_spec_put(struct rbd_spec *spec);
1530 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1531 {
1532         rbd_dev_remove_parent(rbd_dev);
1533         rbd_spec_put(rbd_dev->parent_spec);
1534         rbd_dev->parent_spec = NULL;
1535         rbd_dev->parent_overlap = 0;
1536 }
1537
1538 /*
1539  * Parent image reference counting is used to determine when an
1540  * image's parent fields can be safely torn down--after there are no
1541  * more in-flight requests to the parent image.  When the last
1542  * reference is dropped, cleaning them up is safe.
1543  */
1544 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1545 {
1546         int counter;
1547
1548         if (!rbd_dev->parent_spec)
1549                 return;
1550
1551         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1552         if (counter > 0)
1553                 return;
1554
1555         /* Last reference; clean up parent data structures */
1556
1557         if (!counter)
1558                 rbd_dev_unparent(rbd_dev);
1559         else
1560                 rbd_warn(rbd_dev, "parent reference underflow");
1561 }
1562
1563 /*
1564  * If an image has a non-zero parent overlap, get a reference to its
1565  * parent.
1566  *
1567  * Returns true if the rbd device has a parent with a non-zero
1568  * overlap and a reference for it was successfully taken, or
1569  * false otherwise.
1570  */
1571 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1572 {
1573         int counter = 0;
1574
1575         if (!rbd_dev->parent_spec)
1576                 return false;
1577
1578         if (rbd_dev->parent_overlap)
1579                 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1580
1581         if (counter < 0)
1582                 rbd_warn(rbd_dev, "parent reference overflow");
1583
1584         return counter > 0;
1585 }
1586
1587 static void rbd_img_request_init(struct rbd_img_request *img_request,
1588                                  struct rbd_device *rbd_dev,
1589                                  enum obj_operation_type op_type)
1590 {
1591         memset(img_request, 0, sizeof(*img_request));
1592
1593         img_request->rbd_dev = rbd_dev;
1594         img_request->op_type = op_type;
1595
1596         INIT_LIST_HEAD(&img_request->lock_item);
1597         INIT_LIST_HEAD(&img_request->object_extents);
1598         mutex_init(&img_request->state_mutex);
1599 }
1600
1601 /*
1602  * Only snap_id is captured here, for reads.  For writes, snapshot
1603  * context is captured in rbd_img_object_requests() after exclusive
1604  * lock is ensured to be held.
1605  */
1606 static void rbd_img_capture_header(struct rbd_img_request *img_req)
1607 {
1608         struct rbd_device *rbd_dev = img_req->rbd_dev;
1609
1610         lockdep_assert_held(&rbd_dev->header_rwsem);
1611
1612         if (!rbd_img_is_write(img_req))
1613                 img_req->snap_id = rbd_dev->spec->snap_id;
1614
1615         if (rbd_dev_parent_get(rbd_dev))
1616                 img_request_layered_set(img_req);
1617 }
1618
1619 static void rbd_img_request_destroy(struct rbd_img_request *img_request)
1620 {
1621         struct rbd_obj_request *obj_request;
1622         struct rbd_obj_request *next_obj_request;
1623
1624         dout("%s: img %p\n", __func__, img_request);
1625
1626         WARN_ON(!list_empty(&img_request->lock_item));
1627         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1628                 rbd_img_obj_request_del(img_request, obj_request);
1629
1630         if (img_request_layered_test(img_request))
1631                 rbd_dev_parent_put(img_request->rbd_dev);
1632
1633         if (rbd_img_is_write(img_request))
1634                 ceph_put_snap_context(img_request->snapc);
1635
1636         if (test_bit(IMG_REQ_CHILD, &img_request->flags))
1637                 kmem_cache_free(rbd_img_request_cache, img_request);
1638 }
1639
1640 #define BITS_PER_OBJ    2
1641 #define OBJS_PER_BYTE   (BITS_PER_BYTE / BITS_PER_OBJ)
1642 #define OBJ_MASK        ((1 << BITS_PER_OBJ) - 1)
1643
1644 static void __rbd_object_map_index(struct rbd_device *rbd_dev, u64 objno,
1645                                    u64 *index, u8 *shift)
1646 {
1647         u32 off;
1648
1649         rbd_assert(objno < rbd_dev->object_map_size);
1650         *index = div_u64_rem(objno, OBJS_PER_BYTE, &off);
1651         *shift = (OBJS_PER_BYTE - off - 1) * BITS_PER_OBJ;
1652 }
1653
1654 static u8 __rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1655 {
1656         u64 index;
1657         u8 shift;
1658
1659         lockdep_assert_held(&rbd_dev->object_map_lock);
1660         __rbd_object_map_index(rbd_dev, objno, &index, &shift);
1661         return (rbd_dev->object_map[index] >> shift) & OBJ_MASK;
1662 }
1663
1664 static void __rbd_object_map_set(struct rbd_device *rbd_dev, u64 objno, u8 val)
1665 {
1666         u64 index;
1667         u8 shift;
1668         u8 *p;
1669
1670         lockdep_assert_held(&rbd_dev->object_map_lock);
1671         rbd_assert(!(val & ~OBJ_MASK));
1672
1673         __rbd_object_map_index(rbd_dev, objno, &index, &shift);
1674         p = &rbd_dev->object_map[index];
1675         *p = (*p & ~(OBJ_MASK << shift)) | (val << shift);
1676 }
1677
1678 static u8 rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1679 {
1680         u8 state;
1681
1682         spin_lock(&rbd_dev->object_map_lock);
1683         state = __rbd_object_map_get(rbd_dev, objno);
1684         spin_unlock(&rbd_dev->object_map_lock);
1685         return state;
1686 }
1687
1688 static bool use_object_map(struct rbd_device *rbd_dev)
1689 {
1690         /*
1691          * An image mapped read-only can't use the object map -- it isn't
1692          * loaded because the header lock isn't acquired.  Someone else can
1693          * write to the image and update the object map behind our back.
1694          *
1695          * A snapshot can't be written to, so using the object map is always
1696          * safe.
1697          */
1698         if (!rbd_is_snap(rbd_dev) && rbd_is_ro(rbd_dev))
1699                 return false;
1700
1701         return ((rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) &&
1702                 !(rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID));
1703 }
1704
1705 static bool rbd_object_map_may_exist(struct rbd_device *rbd_dev, u64 objno)
1706 {
1707         u8 state;
1708
1709         /* fall back to default logic if object map is disabled or invalid */
1710         if (!use_object_map(rbd_dev))
1711                 return true;
1712
1713         state = rbd_object_map_get(rbd_dev, objno);
1714         return state != OBJECT_NONEXISTENT;
1715 }
1716
1717 static void rbd_object_map_name(struct rbd_device *rbd_dev, u64 snap_id,
1718                                 struct ceph_object_id *oid)
1719 {
1720         if (snap_id == CEPH_NOSNAP)
1721                 ceph_oid_printf(oid, "%s%s", RBD_OBJECT_MAP_PREFIX,
1722                                 rbd_dev->spec->image_id);
1723         else
1724                 ceph_oid_printf(oid, "%s%s.%016llx", RBD_OBJECT_MAP_PREFIX,
1725                                 rbd_dev->spec->image_id, snap_id);
1726 }
1727
1728 static int rbd_object_map_lock(struct rbd_device *rbd_dev)
1729 {
1730         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1731         CEPH_DEFINE_OID_ONSTACK(oid);
1732         u8 lock_type;
1733         char *lock_tag;
1734         struct ceph_locker *lockers;
1735         u32 num_lockers;
1736         bool broke_lock = false;
1737         int ret;
1738
1739         rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1740
1741 again:
1742         ret = ceph_cls_lock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1743                             CEPH_CLS_LOCK_EXCLUSIVE, "", "", "", 0);
1744         if (ret != -EBUSY || broke_lock) {
1745                 if (ret == -EEXIST)
1746                         ret = 0; /* already locked by myself */
1747                 if (ret)
1748                         rbd_warn(rbd_dev, "failed to lock object map: %d", ret);
1749                 return ret;
1750         }
1751
1752         ret = ceph_cls_lock_info(osdc, &oid, &rbd_dev->header_oloc,
1753                                  RBD_LOCK_NAME, &lock_type, &lock_tag,
1754                                  &lockers, &num_lockers);
1755         if (ret) {
1756                 if (ret == -ENOENT)
1757                         goto again;
1758
1759                 rbd_warn(rbd_dev, "failed to get object map lockers: %d", ret);
1760                 return ret;
1761         }
1762
1763         kfree(lock_tag);
1764         if (num_lockers == 0)
1765                 goto again;
1766
1767         rbd_warn(rbd_dev, "breaking object map lock owned by %s%llu",
1768                  ENTITY_NAME(lockers[0].id.name));
1769
1770         ret = ceph_cls_break_lock(osdc, &oid, &rbd_dev->header_oloc,
1771                                   RBD_LOCK_NAME, lockers[0].id.cookie,
1772                                   &lockers[0].id.name);
1773         ceph_free_lockers(lockers, num_lockers);
1774         if (ret) {
1775                 if (ret == -ENOENT)
1776                         goto again;
1777
1778                 rbd_warn(rbd_dev, "failed to break object map lock: %d", ret);
1779                 return ret;
1780         }
1781
1782         broke_lock = true;
1783         goto again;
1784 }
1785
1786 static void rbd_object_map_unlock(struct rbd_device *rbd_dev)
1787 {
1788         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1789         CEPH_DEFINE_OID_ONSTACK(oid);
1790         int ret;
1791
1792         rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1793
1794         ret = ceph_cls_unlock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1795                               "");
1796         if (ret && ret != -ENOENT)
1797                 rbd_warn(rbd_dev, "failed to unlock object map: %d", ret);
1798 }
1799
1800 static int decode_object_map_header(void **p, void *end, u64 *object_map_size)
1801 {
1802         u8 struct_v;
1803         u32 struct_len;
1804         u32 header_len;
1805         void *header_end;
1806         int ret;
1807
1808         ceph_decode_32_safe(p, end, header_len, e_inval);
1809         header_end = *p + header_len;
1810
1811         ret = ceph_start_decoding(p, end, 1, "BitVector header", &struct_v,
1812                                   &struct_len);
1813         if (ret)
1814                 return ret;
1815
1816         ceph_decode_64_safe(p, end, *object_map_size, e_inval);
1817
1818         *p = header_end;
1819         return 0;
1820
1821 e_inval:
1822         return -EINVAL;
1823 }
1824
1825 static int __rbd_object_map_load(struct rbd_device *rbd_dev)
1826 {
1827         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1828         CEPH_DEFINE_OID_ONSTACK(oid);
1829         struct page **pages;
1830         void *p, *end;
1831         size_t reply_len;
1832         u64 num_objects;
1833         u64 object_map_bytes;
1834         u64 object_map_size;
1835         int num_pages;
1836         int ret;
1837
1838         rbd_assert(!rbd_dev->object_map && !rbd_dev->object_map_size);
1839
1840         num_objects = ceph_get_num_objects(&rbd_dev->layout,
1841                                            rbd_dev->mapping.size);
1842         object_map_bytes = DIV_ROUND_UP_ULL(num_objects * BITS_PER_OBJ,
1843                                             BITS_PER_BYTE);
1844         num_pages = calc_pages_for(0, object_map_bytes) + 1;
1845         pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
1846         if (IS_ERR(pages))
1847                 return PTR_ERR(pages);
1848
1849         reply_len = num_pages * PAGE_SIZE;
1850         rbd_object_map_name(rbd_dev, rbd_dev->spec->snap_id, &oid);
1851         ret = ceph_osdc_call(osdc, &oid, &rbd_dev->header_oloc,
1852                              "rbd", "object_map_load", CEPH_OSD_FLAG_READ,
1853                              NULL, 0, pages, &reply_len);
1854         if (ret)
1855                 goto out;
1856
1857         p = page_address(pages[0]);
1858         end = p + min(reply_len, (size_t)PAGE_SIZE);
1859         ret = decode_object_map_header(&p, end, &object_map_size);
1860         if (ret)
1861                 goto out;
1862
1863         if (object_map_size != num_objects) {
1864                 rbd_warn(rbd_dev, "object map size mismatch: %llu vs %llu",
1865                          object_map_size, num_objects);
1866                 ret = -EINVAL;
1867                 goto out;
1868         }
1869
1870         if (offset_in_page(p) + object_map_bytes > reply_len) {
1871                 ret = -EINVAL;
1872                 goto out;
1873         }
1874
1875         rbd_dev->object_map = kvmalloc(object_map_bytes, GFP_KERNEL);
1876         if (!rbd_dev->object_map) {
1877                 ret = -ENOMEM;
1878                 goto out;
1879         }
1880
1881         rbd_dev->object_map_size = object_map_size;
1882         ceph_copy_from_page_vector(pages, rbd_dev->object_map,
1883                                    offset_in_page(p), object_map_bytes);
1884
1885 out:
1886         ceph_release_page_vector(pages, num_pages);
1887         return ret;
1888 }
1889
1890 static void rbd_object_map_free(struct rbd_device *rbd_dev)
1891 {
1892         kvfree(rbd_dev->object_map);
1893         rbd_dev->object_map = NULL;
1894         rbd_dev->object_map_size = 0;
1895 }
1896
1897 static int rbd_object_map_load(struct rbd_device *rbd_dev)
1898 {
1899         int ret;
1900
1901         ret = __rbd_object_map_load(rbd_dev);
1902         if (ret)
1903                 return ret;
1904
1905         ret = rbd_dev_v2_get_flags(rbd_dev);
1906         if (ret) {
1907                 rbd_object_map_free(rbd_dev);
1908                 return ret;
1909         }
1910
1911         if (rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID)
1912                 rbd_warn(rbd_dev, "object map is invalid");
1913
1914         return 0;
1915 }
1916
1917 static int rbd_object_map_open(struct rbd_device *rbd_dev)
1918 {
1919         int ret;
1920
1921         ret = rbd_object_map_lock(rbd_dev);
1922         if (ret)
1923                 return ret;
1924
1925         ret = rbd_object_map_load(rbd_dev);
1926         if (ret) {
1927                 rbd_object_map_unlock(rbd_dev);
1928                 return ret;
1929         }
1930
1931         return 0;
1932 }
1933
1934 static void rbd_object_map_close(struct rbd_device *rbd_dev)
1935 {
1936         rbd_object_map_free(rbd_dev);
1937         rbd_object_map_unlock(rbd_dev);
1938 }
1939
1940 /*
1941  * This function needs snap_id (or more precisely just something to
1942  * distinguish between HEAD and snapshot object maps), new_state and
1943  * current_state that were passed to rbd_object_map_update().
1944  *
1945  * To avoid allocating and stashing a context we piggyback on the OSD
1946  * request.  A HEAD update has two ops (assert_locked).  For new_state
1947  * and current_state we decode our own object_map_update op, encoded in
1948  * rbd_cls_object_map_update().
1949  */
1950 static int rbd_object_map_update_finish(struct rbd_obj_request *obj_req,
1951                                         struct ceph_osd_request *osd_req)
1952 {
1953         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1954         struct ceph_osd_data *osd_data;
1955         u64 objno;
1956         u8 state, new_state, current_state;
1957         bool has_current_state;
1958         void *p;
1959
1960         if (osd_req->r_result)
1961                 return osd_req->r_result;
1962
1963         /*
1964          * Nothing to do for a snapshot object map.
1965          */
1966         if (osd_req->r_num_ops == 1)
1967                 return 0;
1968
1969         /*
1970          * Update in-memory HEAD object map.
1971          */
1972         rbd_assert(osd_req->r_num_ops == 2);
1973         osd_data = osd_req_op_data(osd_req, 1, cls, request_data);
1974         rbd_assert(osd_data->type == CEPH_OSD_DATA_TYPE_PAGES);
1975
1976         p = page_address(osd_data->pages[0]);
1977         objno = ceph_decode_64(&p);
1978         rbd_assert(objno == obj_req->ex.oe_objno);
1979         rbd_assert(ceph_decode_64(&p) == objno + 1);
1980         new_state = ceph_decode_8(&p);
1981         has_current_state = ceph_decode_8(&p);
1982         if (has_current_state)
1983                 current_state = ceph_decode_8(&p);
1984
1985         spin_lock(&rbd_dev->object_map_lock);
1986         state = __rbd_object_map_get(rbd_dev, objno);
1987         if (!has_current_state || current_state == state ||
1988             (current_state == OBJECT_EXISTS && state == OBJECT_EXISTS_CLEAN))
1989                 __rbd_object_map_set(rbd_dev, objno, new_state);
1990         spin_unlock(&rbd_dev->object_map_lock);
1991
1992         return 0;
1993 }
1994
1995 static void rbd_object_map_callback(struct ceph_osd_request *osd_req)
1996 {
1997         struct rbd_obj_request *obj_req = osd_req->r_priv;
1998         int result;
1999
2000         dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
2001              osd_req->r_result, obj_req);
2002
2003         result = rbd_object_map_update_finish(obj_req, osd_req);
2004         rbd_obj_handle_request(obj_req, result);
2005 }
2006
2007 static bool update_needed(struct rbd_device *rbd_dev, u64 objno, u8 new_state)
2008 {
2009         u8 state = rbd_object_map_get(rbd_dev, objno);
2010
2011         if (state == new_state ||
2012             (new_state == OBJECT_PENDING && state == OBJECT_NONEXISTENT) ||
2013             (new_state == OBJECT_NONEXISTENT && state != OBJECT_PENDING))
2014                 return false;
2015
2016         return true;
2017 }
2018
2019 static int rbd_cls_object_map_update(struct ceph_osd_request *req,
2020                                      int which, u64 objno, u8 new_state,
2021                                      const u8 *current_state)
2022 {
2023         struct page **pages;
2024         void *p, *start;
2025         int ret;
2026
2027         ret = osd_req_op_cls_init(req, which, "rbd", "object_map_update");
2028         if (ret)
2029                 return ret;
2030
2031         pages = ceph_alloc_page_vector(1, GFP_NOIO);
2032         if (IS_ERR(pages))
2033                 return PTR_ERR(pages);
2034
2035         p = start = page_address(pages[0]);
2036         ceph_encode_64(&p, objno);
2037         ceph_encode_64(&p, objno + 1);
2038         ceph_encode_8(&p, new_state);
2039         if (current_state) {
2040                 ceph_encode_8(&p, 1);
2041                 ceph_encode_8(&p, *current_state);
2042         } else {
2043                 ceph_encode_8(&p, 0);
2044         }
2045
2046         osd_req_op_cls_request_data_pages(req, which, pages, p - start, 0,
2047                                           false, true);
2048         return 0;
2049 }
2050
2051 /*
2052  * Return:
2053  *   0 - object map update sent
2054  *   1 - object map update isn't needed
2055  *  <0 - error
2056  */
2057 static int rbd_object_map_update(struct rbd_obj_request *obj_req, u64 snap_id,
2058                                  u8 new_state, const u8 *current_state)
2059 {
2060         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2061         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2062         struct ceph_osd_request *req;
2063         int num_ops = 1;
2064         int which = 0;
2065         int ret;
2066
2067         if (snap_id == CEPH_NOSNAP) {
2068                 if (!update_needed(rbd_dev, obj_req->ex.oe_objno, new_state))
2069                         return 1;
2070
2071                 num_ops++; /* assert_locked */
2072         }
2073
2074         req = ceph_osdc_alloc_request(osdc, NULL, num_ops, false, GFP_NOIO);
2075         if (!req)
2076                 return -ENOMEM;
2077
2078         list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
2079         req->r_callback = rbd_object_map_callback;
2080         req->r_priv = obj_req;
2081
2082         rbd_object_map_name(rbd_dev, snap_id, &req->r_base_oid);
2083         ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
2084         req->r_flags = CEPH_OSD_FLAG_WRITE;
2085         ktime_get_real_ts64(&req->r_mtime);
2086
2087         if (snap_id == CEPH_NOSNAP) {
2088                 /*
2089                  * Protect against possible race conditions during lock
2090                  * ownership transitions.
2091                  */
2092                 ret = ceph_cls_assert_locked(req, which++, RBD_LOCK_NAME,
2093                                              CEPH_CLS_LOCK_EXCLUSIVE, "", "");
2094                 if (ret)
2095                         return ret;
2096         }
2097
2098         ret = rbd_cls_object_map_update(req, which, obj_req->ex.oe_objno,
2099                                         new_state, current_state);
2100         if (ret)
2101                 return ret;
2102
2103         ret = ceph_osdc_alloc_messages(req, GFP_NOIO);
2104         if (ret)
2105                 return ret;
2106
2107         ceph_osdc_start_request(osdc, req);
2108         return 0;
2109 }
2110
2111 static void prune_extents(struct ceph_file_extent *img_extents,
2112                           u32 *num_img_extents, u64 overlap)
2113 {
2114         u32 cnt = *num_img_extents;
2115
2116         /* drop extents completely beyond the overlap */
2117         while (cnt && img_extents[cnt - 1].fe_off >= overlap)
2118                 cnt--;
2119
2120         if (cnt) {
2121                 struct ceph_file_extent *ex = &img_extents[cnt - 1];
2122
2123                 /* trim final overlapping extent */
2124                 if (ex->fe_off + ex->fe_len > overlap)
2125                         ex->fe_len = overlap - ex->fe_off;
2126         }
2127
2128         *num_img_extents = cnt;
2129 }
2130
2131 /*
2132  * Determine the byte range(s) covered by either just the object extent
2133  * or the entire object in the parent image.
2134  */
2135 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req,
2136                                     bool entire)
2137 {
2138         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2139         int ret;
2140
2141         if (!rbd_dev->parent_overlap)
2142                 return 0;
2143
2144         ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno,
2145                                   entire ? 0 : obj_req->ex.oe_off,
2146                                   entire ? rbd_dev->layout.object_size :
2147                                                         obj_req->ex.oe_len,
2148                                   &obj_req->img_extents,
2149                                   &obj_req->num_img_extents);
2150         if (ret)
2151                 return ret;
2152
2153         prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
2154                       rbd_dev->parent_overlap);
2155         return 0;
2156 }
2157
2158 static void rbd_osd_setup_data(struct ceph_osd_request *osd_req, int which)
2159 {
2160         struct rbd_obj_request *obj_req = osd_req->r_priv;
2161
2162         switch (obj_req->img_request->data_type) {
2163         case OBJ_REQUEST_BIO:
2164                 osd_req_op_extent_osd_data_bio(osd_req, which,
2165                                                &obj_req->bio_pos,
2166                                                obj_req->ex.oe_len);
2167                 break;
2168         case OBJ_REQUEST_BVECS:
2169         case OBJ_REQUEST_OWN_BVECS:
2170                 rbd_assert(obj_req->bvec_pos.iter.bi_size ==
2171                                                         obj_req->ex.oe_len);
2172                 rbd_assert(obj_req->bvec_idx == obj_req->bvec_count);
2173                 osd_req_op_extent_osd_data_bvec_pos(osd_req, which,
2174                                                     &obj_req->bvec_pos);
2175                 break;
2176         default:
2177                 BUG();
2178         }
2179 }
2180
2181 static int rbd_osd_setup_stat(struct ceph_osd_request *osd_req, int which)
2182 {
2183         struct page **pages;
2184
2185         /*
2186          * The response data for a STAT call consists of:
2187          *     le64 length;
2188          *     struct {
2189          *         le32 tv_sec;
2190          *         le32 tv_nsec;
2191          *     } mtime;
2192          */
2193         pages = ceph_alloc_page_vector(1, GFP_NOIO);
2194         if (IS_ERR(pages))
2195                 return PTR_ERR(pages);
2196
2197         osd_req_op_init(osd_req, which, CEPH_OSD_OP_STAT, 0);
2198         osd_req_op_raw_data_in_pages(osd_req, which, pages,
2199                                      8 + sizeof(struct ceph_timespec),
2200                                      0, false, true);
2201         return 0;
2202 }
2203
2204 static int rbd_osd_setup_copyup(struct ceph_osd_request *osd_req, int which,
2205                                 u32 bytes)
2206 {
2207         struct rbd_obj_request *obj_req = osd_req->r_priv;
2208         int ret;
2209
2210         ret = osd_req_op_cls_init(osd_req, which, "rbd", "copyup");
2211         if (ret)
2212                 return ret;
2213
2214         osd_req_op_cls_request_data_bvecs(osd_req, which, obj_req->copyup_bvecs,
2215                                           obj_req->copyup_bvec_count, bytes);
2216         return 0;
2217 }
2218
2219 static int rbd_obj_init_read(struct rbd_obj_request *obj_req)
2220 {
2221         obj_req->read_state = RBD_OBJ_READ_START;
2222         return 0;
2223 }
2224
2225 static void __rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2226                                       int which)
2227 {
2228         struct rbd_obj_request *obj_req = osd_req->r_priv;
2229         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2230         u16 opcode;
2231
2232         if (!use_object_map(rbd_dev) ||
2233             !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) {
2234                 osd_req_op_alloc_hint_init(osd_req, which++,
2235                                            rbd_dev->layout.object_size,
2236                                            rbd_dev->layout.object_size,
2237                                            rbd_dev->opts->alloc_hint_flags);
2238         }
2239
2240         if (rbd_obj_is_entire(obj_req))
2241                 opcode = CEPH_OSD_OP_WRITEFULL;
2242         else
2243                 opcode = CEPH_OSD_OP_WRITE;
2244
2245         osd_req_op_extent_init(osd_req, which, opcode,
2246                                obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2247         rbd_osd_setup_data(osd_req, which);
2248 }
2249
2250 static int rbd_obj_init_write(struct rbd_obj_request *obj_req)
2251 {
2252         int ret;
2253
2254         /* reverse map the entire object onto the parent */
2255         ret = rbd_obj_calc_img_extents(obj_req, true);
2256         if (ret)
2257                 return ret;
2258
2259         obj_req->write_state = RBD_OBJ_WRITE_START;
2260         return 0;
2261 }
2262
2263 static u16 truncate_or_zero_opcode(struct rbd_obj_request *obj_req)
2264 {
2265         return rbd_obj_is_tail(obj_req) ? CEPH_OSD_OP_TRUNCATE :
2266                                           CEPH_OSD_OP_ZERO;
2267 }
2268
2269 static void __rbd_osd_setup_discard_ops(struct ceph_osd_request *osd_req,
2270                                         int which)
2271 {
2272         struct rbd_obj_request *obj_req = osd_req->r_priv;
2273
2274         if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) {
2275                 rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2276                 osd_req_op_init(osd_req, which, CEPH_OSD_OP_DELETE, 0);
2277         } else {
2278                 osd_req_op_extent_init(osd_req, which,
2279                                        truncate_or_zero_opcode(obj_req),
2280                                        obj_req->ex.oe_off, obj_req->ex.oe_len,
2281                                        0, 0);
2282         }
2283 }
2284
2285 static int rbd_obj_init_discard(struct rbd_obj_request *obj_req)
2286 {
2287         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2288         u64 off, next_off;
2289         int ret;
2290
2291         /*
2292          * Align the range to alloc_size boundary and punt on discards
2293          * that are too small to free up any space.
2294          *
2295          * alloc_size == object_size && is_tail() is a special case for
2296          * filestore with filestore_punch_hole = false, needed to allow
2297          * truncate (in addition to delete).
2298          */
2299         if (rbd_dev->opts->alloc_size != rbd_dev->layout.object_size ||
2300             !rbd_obj_is_tail(obj_req)) {
2301                 off = round_up(obj_req->ex.oe_off, rbd_dev->opts->alloc_size);
2302                 next_off = round_down(obj_req->ex.oe_off + obj_req->ex.oe_len,
2303                                       rbd_dev->opts->alloc_size);
2304                 if (off >= next_off)
2305                         return 1;
2306
2307                 dout("%s %p %llu~%llu -> %llu~%llu\n", __func__,
2308                      obj_req, obj_req->ex.oe_off, obj_req->ex.oe_len,
2309                      off, next_off - off);
2310                 obj_req->ex.oe_off = off;
2311                 obj_req->ex.oe_len = next_off - off;
2312         }
2313
2314         /* reverse map the entire object onto the parent */
2315         ret = rbd_obj_calc_img_extents(obj_req, true);
2316         if (ret)
2317                 return ret;
2318
2319         obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2320         if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents)
2321                 obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2322
2323         obj_req->write_state = RBD_OBJ_WRITE_START;
2324         return 0;
2325 }
2326
2327 static void __rbd_osd_setup_zeroout_ops(struct ceph_osd_request *osd_req,
2328                                         int which)
2329 {
2330         struct rbd_obj_request *obj_req = osd_req->r_priv;
2331         u16 opcode;
2332
2333         if (rbd_obj_is_entire(obj_req)) {
2334                 if (obj_req->num_img_extents) {
2335                         if (!(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2336                                 osd_req_op_init(osd_req, which++,
2337                                                 CEPH_OSD_OP_CREATE, 0);
2338                         opcode = CEPH_OSD_OP_TRUNCATE;
2339                 } else {
2340                         rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2341                         osd_req_op_init(osd_req, which++,
2342                                         CEPH_OSD_OP_DELETE, 0);
2343                         opcode = 0;
2344                 }
2345         } else {
2346                 opcode = truncate_or_zero_opcode(obj_req);
2347         }
2348
2349         if (opcode)
2350                 osd_req_op_extent_init(osd_req, which, opcode,
2351                                        obj_req->ex.oe_off, obj_req->ex.oe_len,
2352                                        0, 0);
2353 }
2354
2355 static int rbd_obj_init_zeroout(struct rbd_obj_request *obj_req)
2356 {
2357         int ret;
2358
2359         /* reverse map the entire object onto the parent */
2360         ret = rbd_obj_calc_img_extents(obj_req, true);
2361         if (ret)
2362                 return ret;
2363
2364         if (!obj_req->num_img_extents) {
2365                 obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2366                 if (rbd_obj_is_entire(obj_req))
2367                         obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2368         }
2369
2370         obj_req->write_state = RBD_OBJ_WRITE_START;
2371         return 0;
2372 }
2373
2374 static int count_write_ops(struct rbd_obj_request *obj_req)
2375 {
2376         struct rbd_img_request *img_req = obj_req->img_request;
2377
2378         switch (img_req->op_type) {
2379         case OBJ_OP_WRITE:
2380                 if (!use_object_map(img_req->rbd_dev) ||
2381                     !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST))
2382                         return 2; /* setallochint + write/writefull */
2383
2384                 return 1; /* write/writefull */
2385         case OBJ_OP_DISCARD:
2386                 return 1; /* delete/truncate/zero */
2387         case OBJ_OP_ZEROOUT:
2388                 if (rbd_obj_is_entire(obj_req) && obj_req->num_img_extents &&
2389                     !(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2390                         return 2; /* create + truncate */
2391
2392                 return 1; /* delete/truncate/zero */
2393         default:
2394                 BUG();
2395         }
2396 }
2397
2398 static void rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2399                                     int which)
2400 {
2401         struct rbd_obj_request *obj_req = osd_req->r_priv;
2402
2403         switch (obj_req->img_request->op_type) {
2404         case OBJ_OP_WRITE:
2405                 __rbd_osd_setup_write_ops(osd_req, which);
2406                 break;
2407         case OBJ_OP_DISCARD:
2408                 __rbd_osd_setup_discard_ops(osd_req, which);
2409                 break;
2410         case OBJ_OP_ZEROOUT:
2411                 __rbd_osd_setup_zeroout_ops(osd_req, which);
2412                 break;
2413         default:
2414                 BUG();
2415         }
2416 }
2417
2418 /*
2419  * Prune the list of object requests (adjust offset and/or length, drop
2420  * redundant requests).  Prepare object request state machines and image
2421  * request state machine for execution.
2422  */
2423 static int __rbd_img_fill_request(struct rbd_img_request *img_req)
2424 {
2425         struct rbd_obj_request *obj_req, *next_obj_req;
2426         int ret;
2427
2428         for_each_obj_request_safe(img_req, obj_req, next_obj_req) {
2429                 switch (img_req->op_type) {
2430                 case OBJ_OP_READ:
2431                         ret = rbd_obj_init_read(obj_req);
2432                         break;
2433                 case OBJ_OP_WRITE:
2434                         ret = rbd_obj_init_write(obj_req);
2435                         break;
2436                 case OBJ_OP_DISCARD:
2437                         ret = rbd_obj_init_discard(obj_req);
2438                         break;
2439                 case OBJ_OP_ZEROOUT:
2440                         ret = rbd_obj_init_zeroout(obj_req);
2441                         break;
2442                 default:
2443                         BUG();
2444                 }
2445                 if (ret < 0)
2446                         return ret;
2447                 if (ret > 0) {
2448                         rbd_img_obj_request_del(img_req, obj_req);
2449                         continue;
2450                 }
2451         }
2452
2453         img_req->state = RBD_IMG_START;
2454         return 0;
2455 }
2456
2457 union rbd_img_fill_iter {
2458         struct ceph_bio_iter    bio_iter;
2459         struct ceph_bvec_iter   bvec_iter;
2460 };
2461
2462 struct rbd_img_fill_ctx {
2463         enum obj_request_type   pos_type;
2464         union rbd_img_fill_iter *pos;
2465         union rbd_img_fill_iter iter;
2466         ceph_object_extent_fn_t set_pos_fn;
2467         ceph_object_extent_fn_t count_fn;
2468         ceph_object_extent_fn_t copy_fn;
2469 };
2470
2471 static struct ceph_object_extent *alloc_object_extent(void *arg)
2472 {
2473         struct rbd_img_request *img_req = arg;
2474         struct rbd_obj_request *obj_req;
2475
2476         obj_req = rbd_obj_request_create();
2477         if (!obj_req)
2478                 return NULL;
2479
2480         rbd_img_obj_request_add(img_req, obj_req);
2481         return &obj_req->ex;
2482 }
2483
2484 /*
2485  * While su != os && sc == 1 is technically not fancy (it's the same
2486  * layout as su == os && sc == 1), we can't use the nocopy path for it
2487  * because ->set_pos_fn() should be called only once per object.
2488  * ceph_file_to_extents() invokes action_fn once per stripe unit, so
2489  * treat su != os && sc == 1 as fancy.
2490  */
2491 static bool rbd_layout_is_fancy(struct ceph_file_layout *l)
2492 {
2493         return l->stripe_unit != l->object_size;
2494 }
2495
2496 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req,
2497                                        struct ceph_file_extent *img_extents,
2498                                        u32 num_img_extents,
2499                                        struct rbd_img_fill_ctx *fctx)
2500 {
2501         u32 i;
2502         int ret;
2503
2504         img_req->data_type = fctx->pos_type;
2505
2506         /*
2507          * Create object requests and set each object request's starting
2508          * position in the provided bio (list) or bio_vec array.
2509          */
2510         fctx->iter = *fctx->pos;
2511         for (i = 0; i < num_img_extents; i++) {
2512                 ret = ceph_file_to_extents(&img_req->rbd_dev->layout,
2513                                            img_extents[i].fe_off,
2514                                            img_extents[i].fe_len,
2515                                            &img_req->object_extents,
2516                                            alloc_object_extent, img_req,
2517                                            fctx->set_pos_fn, &fctx->iter);
2518                 if (ret)
2519                         return ret;
2520         }
2521
2522         return __rbd_img_fill_request(img_req);
2523 }
2524
2525 /*
2526  * Map a list of image extents to a list of object extents, create the
2527  * corresponding object requests (normally each to a different object,
2528  * but not always) and add them to @img_req.  For each object request,
2529  * set up its data descriptor to point to the corresponding chunk(s) of
2530  * @fctx->pos data buffer.
2531  *
2532  * Because ceph_file_to_extents() will merge adjacent object extents
2533  * together, each object request's data descriptor may point to multiple
2534  * different chunks of @fctx->pos data buffer.
2535  *
2536  * @fctx->pos data buffer is assumed to be large enough.
2537  */
2538 static int rbd_img_fill_request(struct rbd_img_request *img_req,
2539                                 struct ceph_file_extent *img_extents,
2540                                 u32 num_img_extents,
2541                                 struct rbd_img_fill_ctx *fctx)
2542 {
2543         struct rbd_device *rbd_dev = img_req->rbd_dev;
2544         struct rbd_obj_request *obj_req;
2545         u32 i;
2546         int ret;
2547
2548         if (fctx->pos_type == OBJ_REQUEST_NODATA ||
2549             !rbd_layout_is_fancy(&rbd_dev->layout))
2550                 return rbd_img_fill_request_nocopy(img_req, img_extents,
2551                                                    num_img_extents, fctx);
2552
2553         img_req->data_type = OBJ_REQUEST_OWN_BVECS;
2554
2555         /*
2556          * Create object requests and determine ->bvec_count for each object
2557          * request.  Note that ->bvec_count sum over all object requests may
2558          * be greater than the number of bio_vecs in the provided bio (list)
2559          * or bio_vec array because when mapped, those bio_vecs can straddle
2560          * stripe unit boundaries.
2561          */
2562         fctx->iter = *fctx->pos;
2563         for (i = 0; i < num_img_extents; i++) {
2564                 ret = ceph_file_to_extents(&rbd_dev->layout,
2565                                            img_extents[i].fe_off,
2566                                            img_extents[i].fe_len,
2567                                            &img_req->object_extents,
2568                                            alloc_object_extent, img_req,
2569                                            fctx->count_fn, &fctx->iter);
2570                 if (ret)
2571                         return ret;
2572         }
2573
2574         for_each_obj_request(img_req, obj_req) {
2575                 obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count,
2576                                               sizeof(*obj_req->bvec_pos.bvecs),
2577                                               GFP_NOIO);
2578                 if (!obj_req->bvec_pos.bvecs)
2579                         return -ENOMEM;
2580         }
2581
2582         /*
2583          * Fill in each object request's private bio_vec array, splitting and
2584          * rearranging the provided bio_vecs in stripe unit chunks as needed.
2585          */
2586         fctx->iter = *fctx->pos;
2587         for (i = 0; i < num_img_extents; i++) {
2588                 ret = ceph_iterate_extents(&rbd_dev->layout,
2589                                            img_extents[i].fe_off,
2590                                            img_extents[i].fe_len,
2591                                            &img_req->object_extents,
2592                                            fctx->copy_fn, &fctx->iter);
2593                 if (ret)
2594                         return ret;
2595         }
2596
2597         return __rbd_img_fill_request(img_req);
2598 }
2599
2600 static int rbd_img_fill_nodata(struct rbd_img_request *img_req,
2601                                u64 off, u64 len)
2602 {
2603         struct ceph_file_extent ex = { off, len };
2604         union rbd_img_fill_iter dummy = {};
2605         struct rbd_img_fill_ctx fctx = {
2606                 .pos_type = OBJ_REQUEST_NODATA,
2607                 .pos = &dummy,
2608         };
2609
2610         return rbd_img_fill_request(img_req, &ex, 1, &fctx);
2611 }
2612
2613 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2614 {
2615         struct rbd_obj_request *obj_req =
2616             container_of(ex, struct rbd_obj_request, ex);
2617         struct ceph_bio_iter *it = arg;
2618
2619         dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2620         obj_req->bio_pos = *it;
2621         ceph_bio_iter_advance(it, bytes);
2622 }
2623
2624 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2625 {
2626         struct rbd_obj_request *obj_req =
2627             container_of(ex, struct rbd_obj_request, ex);
2628         struct ceph_bio_iter *it = arg;
2629
2630         dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2631         ceph_bio_iter_advance_step(it, bytes, ({
2632                 obj_req->bvec_count++;
2633         }));
2634
2635 }
2636
2637 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2638 {
2639         struct rbd_obj_request *obj_req =
2640             container_of(ex, struct rbd_obj_request, ex);
2641         struct ceph_bio_iter *it = arg;
2642
2643         dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2644         ceph_bio_iter_advance_step(it, bytes, ({
2645                 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2646                 obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2647         }));
2648 }
2649
2650 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2651                                    struct ceph_file_extent *img_extents,
2652                                    u32 num_img_extents,
2653                                    struct ceph_bio_iter *bio_pos)
2654 {
2655         struct rbd_img_fill_ctx fctx = {
2656                 .pos_type = OBJ_REQUEST_BIO,
2657                 .pos = (union rbd_img_fill_iter *)bio_pos,
2658                 .set_pos_fn = set_bio_pos,
2659                 .count_fn = count_bio_bvecs,
2660                 .copy_fn = copy_bio_bvecs,
2661         };
2662
2663         return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2664                                     &fctx);
2665 }
2666
2667 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2668                                  u64 off, u64 len, struct bio *bio)
2669 {
2670         struct ceph_file_extent ex = { off, len };
2671         struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter };
2672
2673         return __rbd_img_fill_from_bio(img_req, &ex, 1, &it);
2674 }
2675
2676 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2677 {
2678         struct rbd_obj_request *obj_req =
2679             container_of(ex, struct rbd_obj_request, ex);
2680         struct ceph_bvec_iter *it = arg;
2681
2682         obj_req->bvec_pos = *it;
2683         ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes);
2684         ceph_bvec_iter_advance(it, bytes);
2685 }
2686
2687 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2688 {
2689         struct rbd_obj_request *obj_req =
2690             container_of(ex, struct rbd_obj_request, ex);
2691         struct ceph_bvec_iter *it = arg;
2692
2693         ceph_bvec_iter_advance_step(it, bytes, ({
2694                 obj_req->bvec_count++;
2695         }));
2696 }
2697
2698 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2699 {
2700         struct rbd_obj_request *obj_req =
2701             container_of(ex, struct rbd_obj_request, ex);
2702         struct ceph_bvec_iter *it = arg;
2703
2704         ceph_bvec_iter_advance_step(it, bytes, ({
2705                 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2706                 obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2707         }));
2708 }
2709
2710 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2711                                      struct ceph_file_extent *img_extents,
2712                                      u32 num_img_extents,
2713                                      struct ceph_bvec_iter *bvec_pos)
2714 {
2715         struct rbd_img_fill_ctx fctx = {
2716                 .pos_type = OBJ_REQUEST_BVECS,
2717                 .pos = (union rbd_img_fill_iter *)bvec_pos,
2718                 .set_pos_fn = set_bvec_pos,
2719                 .count_fn = count_bvecs,
2720                 .copy_fn = copy_bvecs,
2721         };
2722
2723         return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2724                                     &fctx);
2725 }
2726
2727 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2728                                    struct ceph_file_extent *img_extents,
2729                                    u32 num_img_extents,
2730                                    struct bio_vec *bvecs)
2731 {
2732         struct ceph_bvec_iter it = {
2733                 .bvecs = bvecs,
2734                 .iter = { .bi_size = ceph_file_extents_bytes(img_extents,
2735                                                              num_img_extents) },
2736         };
2737
2738         return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents,
2739                                          &it);
2740 }
2741
2742 static void rbd_img_handle_request_work(struct work_struct *work)
2743 {
2744         struct rbd_img_request *img_req =
2745             container_of(work, struct rbd_img_request, work);
2746
2747         rbd_img_handle_request(img_req, img_req->work_result);
2748 }
2749
2750 static void rbd_img_schedule(struct rbd_img_request *img_req, int result)
2751 {
2752         INIT_WORK(&img_req->work, rbd_img_handle_request_work);
2753         img_req->work_result = result;
2754         queue_work(rbd_wq, &img_req->work);
2755 }
2756
2757 static bool rbd_obj_may_exist(struct rbd_obj_request *obj_req)
2758 {
2759         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2760
2761         if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) {
2762                 obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2763                 return true;
2764         }
2765
2766         dout("%s %p objno %llu assuming dne\n", __func__, obj_req,
2767              obj_req->ex.oe_objno);
2768         return false;
2769 }
2770
2771 static int rbd_obj_read_object(struct rbd_obj_request *obj_req)
2772 {
2773         struct ceph_osd_request *osd_req;
2774         int ret;
2775
2776         osd_req = __rbd_obj_add_osd_request(obj_req, NULL, 1);
2777         if (IS_ERR(osd_req))
2778                 return PTR_ERR(osd_req);
2779
2780         osd_req_op_extent_init(osd_req, 0, CEPH_OSD_OP_READ,
2781                                obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2782         rbd_osd_setup_data(osd_req, 0);
2783         rbd_osd_format_read(osd_req);
2784
2785         ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2786         if (ret)
2787                 return ret;
2788
2789         rbd_osd_submit(osd_req);
2790         return 0;
2791 }
2792
2793 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req)
2794 {
2795         struct rbd_img_request *img_req = obj_req->img_request;
2796         struct rbd_device *parent = img_req->rbd_dev->parent;
2797         struct rbd_img_request *child_img_req;
2798         int ret;
2799
2800         child_img_req = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2801         if (!child_img_req)
2802                 return -ENOMEM;
2803
2804         rbd_img_request_init(child_img_req, parent, OBJ_OP_READ);
2805         __set_bit(IMG_REQ_CHILD, &child_img_req->flags);
2806         child_img_req->obj_request = obj_req;
2807
2808         down_read(&parent->header_rwsem);
2809         rbd_img_capture_header(child_img_req);
2810         up_read(&parent->header_rwsem);
2811
2812         dout("%s child_img_req %p for obj_req %p\n", __func__, child_img_req,
2813              obj_req);
2814
2815         if (!rbd_img_is_write(img_req)) {
2816                 switch (img_req->data_type) {
2817                 case OBJ_REQUEST_BIO:
2818                         ret = __rbd_img_fill_from_bio(child_img_req,
2819                                                       obj_req->img_extents,
2820                                                       obj_req->num_img_extents,
2821                                                       &obj_req->bio_pos);
2822                         break;
2823                 case OBJ_REQUEST_BVECS:
2824                 case OBJ_REQUEST_OWN_BVECS:
2825                         ret = __rbd_img_fill_from_bvecs(child_img_req,
2826                                                       obj_req->img_extents,
2827                                                       obj_req->num_img_extents,
2828                                                       &obj_req->bvec_pos);
2829                         break;
2830                 default:
2831                         BUG();
2832                 }
2833         } else {
2834                 ret = rbd_img_fill_from_bvecs(child_img_req,
2835                                               obj_req->img_extents,
2836                                               obj_req->num_img_extents,
2837                                               obj_req->copyup_bvecs);
2838         }
2839         if (ret) {
2840                 rbd_img_request_destroy(child_img_req);
2841                 return ret;
2842         }
2843
2844         /* avoid parent chain recursion */
2845         rbd_img_schedule(child_img_req, 0);
2846         return 0;
2847 }
2848
2849 static bool rbd_obj_advance_read(struct rbd_obj_request *obj_req, int *result)
2850 {
2851         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2852         int ret;
2853
2854 again:
2855         switch (obj_req->read_state) {
2856         case RBD_OBJ_READ_START:
2857                 rbd_assert(!*result);
2858
2859                 if (!rbd_obj_may_exist(obj_req)) {
2860                         *result = -ENOENT;
2861                         obj_req->read_state = RBD_OBJ_READ_OBJECT;
2862                         goto again;
2863                 }
2864
2865                 ret = rbd_obj_read_object(obj_req);
2866                 if (ret) {
2867                         *result = ret;
2868                         return true;
2869                 }
2870                 obj_req->read_state = RBD_OBJ_READ_OBJECT;
2871                 return false;
2872         case RBD_OBJ_READ_OBJECT:
2873                 if (*result == -ENOENT && rbd_dev->parent_overlap) {
2874                         /* reverse map this object extent onto the parent */
2875                         ret = rbd_obj_calc_img_extents(obj_req, false);
2876                         if (ret) {
2877                                 *result = ret;
2878                                 return true;
2879                         }
2880                         if (obj_req->num_img_extents) {
2881                                 ret = rbd_obj_read_from_parent(obj_req);
2882                                 if (ret) {
2883                                         *result = ret;
2884                                         return true;
2885                                 }
2886                                 obj_req->read_state = RBD_OBJ_READ_PARENT;
2887                                 return false;
2888                         }
2889                 }
2890
2891                 /*
2892                  * -ENOENT means a hole in the image -- zero-fill the entire
2893                  * length of the request.  A short read also implies zero-fill
2894                  * to the end of the request.
2895                  */
2896                 if (*result == -ENOENT) {
2897                         rbd_obj_zero_range(obj_req, 0, obj_req->ex.oe_len);
2898                         *result = 0;
2899                 } else if (*result >= 0) {
2900                         if (*result < obj_req->ex.oe_len)
2901                                 rbd_obj_zero_range(obj_req, *result,
2902                                                 obj_req->ex.oe_len - *result);
2903                         else
2904                                 rbd_assert(*result == obj_req->ex.oe_len);
2905                         *result = 0;
2906                 }
2907                 return true;
2908         case RBD_OBJ_READ_PARENT:
2909                 /*
2910                  * The parent image is read only up to the overlap -- zero-fill
2911                  * from the overlap to the end of the request.
2912                  */
2913                 if (!*result) {
2914                         u32 obj_overlap = rbd_obj_img_extents_bytes(obj_req);
2915
2916                         if (obj_overlap < obj_req->ex.oe_len)
2917                                 rbd_obj_zero_range(obj_req, obj_overlap,
2918                                             obj_req->ex.oe_len - obj_overlap);
2919                 }
2920                 return true;
2921         default:
2922                 BUG();
2923         }
2924 }
2925
2926 static bool rbd_obj_write_is_noop(struct rbd_obj_request *obj_req)
2927 {
2928         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2929
2930         if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno))
2931                 obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2932
2933         if (!(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST) &&
2934             (obj_req->flags & RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT)) {
2935                 dout("%s %p noop for nonexistent\n", __func__, obj_req);
2936                 return true;
2937         }
2938
2939         return false;
2940 }
2941
2942 /*
2943  * Return:
2944  *   0 - object map update sent
2945  *   1 - object map update isn't needed
2946  *  <0 - error
2947  */
2948 static int rbd_obj_write_pre_object_map(struct rbd_obj_request *obj_req)
2949 {
2950         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2951         u8 new_state;
2952
2953         if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
2954                 return 1;
2955
2956         if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
2957                 new_state = OBJECT_PENDING;
2958         else
2959                 new_state = OBJECT_EXISTS;
2960
2961         return rbd_object_map_update(obj_req, CEPH_NOSNAP, new_state, NULL);
2962 }
2963
2964 static int rbd_obj_write_object(struct rbd_obj_request *obj_req)
2965 {
2966         struct ceph_osd_request *osd_req;
2967         int num_ops = count_write_ops(obj_req);
2968         int which = 0;
2969         int ret;
2970
2971         if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)
2972                 num_ops++; /* stat */
2973
2974         osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
2975         if (IS_ERR(osd_req))
2976                 return PTR_ERR(osd_req);
2977
2978         if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
2979                 ret = rbd_osd_setup_stat(osd_req, which++);
2980                 if (ret)
2981                         return ret;
2982         }
2983
2984         rbd_osd_setup_write_ops(osd_req, which);
2985         rbd_osd_format_write(osd_req);
2986
2987         ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2988         if (ret)
2989                 return ret;
2990
2991         rbd_osd_submit(osd_req);
2992         return 0;
2993 }
2994
2995 /*
2996  * copyup_bvecs pages are never highmem pages
2997  */
2998 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes)
2999 {
3000         struct ceph_bvec_iter it = {
3001                 .bvecs = bvecs,
3002                 .iter = { .bi_size = bytes },
3003         };
3004
3005         ceph_bvec_iter_advance_step(&it, bytes, ({
3006                 if (memchr_inv(bvec_virt(&bv), 0, bv.bv_len))
3007                         return false;
3008         }));
3009         return true;
3010 }
3011
3012 #define MODS_ONLY       U32_MAX
3013
3014 static int rbd_obj_copyup_empty_snapc(struct rbd_obj_request *obj_req,
3015                                       u32 bytes)
3016 {
3017         struct ceph_osd_request *osd_req;
3018         int ret;
3019
3020         dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3021         rbd_assert(bytes > 0 && bytes != MODS_ONLY);
3022
3023         osd_req = __rbd_obj_add_osd_request(obj_req, &rbd_empty_snapc, 1);
3024         if (IS_ERR(osd_req))
3025                 return PTR_ERR(osd_req);
3026
3027         ret = rbd_osd_setup_copyup(osd_req, 0, bytes);
3028         if (ret)
3029                 return ret;
3030
3031         rbd_osd_format_write(osd_req);
3032
3033         ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3034         if (ret)
3035                 return ret;
3036
3037         rbd_osd_submit(osd_req);
3038         return 0;
3039 }
3040
3041 static int rbd_obj_copyup_current_snapc(struct rbd_obj_request *obj_req,
3042                                         u32 bytes)
3043 {
3044         struct ceph_osd_request *osd_req;
3045         int num_ops = count_write_ops(obj_req);
3046         int which = 0;
3047         int ret;
3048
3049         dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3050
3051         if (bytes != MODS_ONLY)
3052                 num_ops++; /* copyup */
3053
3054         osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
3055         if (IS_ERR(osd_req))
3056                 return PTR_ERR(osd_req);
3057
3058         if (bytes != MODS_ONLY) {
3059                 ret = rbd_osd_setup_copyup(osd_req, which++, bytes);
3060                 if (ret)
3061                         return ret;
3062         }
3063
3064         rbd_osd_setup_write_ops(osd_req, which);
3065         rbd_osd_format_write(osd_req);
3066
3067         ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3068         if (ret)
3069                 return ret;
3070
3071         rbd_osd_submit(osd_req);
3072         return 0;
3073 }
3074
3075 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap)
3076 {
3077         u32 i;
3078
3079         rbd_assert(!obj_req->copyup_bvecs);
3080         obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap);
3081         obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count,
3082                                         sizeof(*obj_req->copyup_bvecs),
3083                                         GFP_NOIO);
3084         if (!obj_req->copyup_bvecs)
3085                 return -ENOMEM;
3086
3087         for (i = 0; i < obj_req->copyup_bvec_count; i++) {
3088                 unsigned int len = min(obj_overlap, (u64)PAGE_SIZE);
3089                 struct page *page = alloc_page(GFP_NOIO);
3090
3091                 if (!page)
3092                         return -ENOMEM;
3093
3094                 bvec_set_page(&obj_req->copyup_bvecs[i], page, len, 0);
3095                 obj_overlap -= len;
3096         }
3097
3098         rbd_assert(!obj_overlap);
3099         return 0;
3100 }
3101
3102 /*
3103  * The target object doesn't exist.  Read the data for the entire
3104  * target object up to the overlap point (if any) from the parent,
3105  * so we can use it for a copyup.
3106  */
3107 static int rbd_obj_copyup_read_parent(struct rbd_obj_request *obj_req)
3108 {
3109         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3110         int ret;
3111
3112         rbd_assert(obj_req->num_img_extents);
3113         prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
3114                       rbd_dev->parent_overlap);
3115         if (!obj_req->num_img_extents) {
3116                 /*
3117                  * The overlap has become 0 (most likely because the
3118                  * image has been flattened).  Re-submit the original write
3119                  * request -- pass MODS_ONLY since the copyup isn't needed
3120                  * anymore.
3121                  */
3122                 return rbd_obj_copyup_current_snapc(obj_req, MODS_ONLY);
3123         }
3124
3125         ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req));
3126         if (ret)
3127                 return ret;
3128
3129         return rbd_obj_read_from_parent(obj_req);
3130 }
3131
3132 static void rbd_obj_copyup_object_maps(struct rbd_obj_request *obj_req)
3133 {
3134         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3135         struct ceph_snap_context *snapc = obj_req->img_request->snapc;
3136         u8 new_state;
3137         u32 i;
3138         int ret;
3139
3140         rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3141
3142         if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3143                 return;
3144
3145         if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3146                 return;
3147
3148         for (i = 0; i < snapc->num_snaps; i++) {
3149                 if ((rbd_dev->header.features & RBD_FEATURE_FAST_DIFF) &&
3150                     i + 1 < snapc->num_snaps)
3151                         new_state = OBJECT_EXISTS_CLEAN;
3152                 else
3153                         new_state = OBJECT_EXISTS;
3154
3155                 ret = rbd_object_map_update(obj_req, snapc->snaps[i],
3156                                             new_state, NULL);
3157                 if (ret < 0) {
3158                         obj_req->pending.result = ret;
3159                         return;
3160                 }
3161
3162                 rbd_assert(!ret);
3163                 obj_req->pending.num_pending++;
3164         }
3165 }
3166
3167 static void rbd_obj_copyup_write_object(struct rbd_obj_request *obj_req)
3168 {
3169         u32 bytes = rbd_obj_img_extents_bytes(obj_req);
3170         int ret;
3171
3172         rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3173
3174         /*
3175          * Only send non-zero copyup data to save some I/O and network
3176          * bandwidth -- zero copyup data is equivalent to the object not
3177          * existing.
3178          */
3179         if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3180                 bytes = 0;
3181
3182         if (obj_req->img_request->snapc->num_snaps && bytes > 0) {
3183                 /*
3184                  * Send a copyup request with an empty snapshot context to
3185                  * deep-copyup the object through all existing snapshots.
3186                  * A second request with the current snapshot context will be
3187                  * sent for the actual modification.
3188                  */
3189                 ret = rbd_obj_copyup_empty_snapc(obj_req, bytes);
3190                 if (ret) {
3191                         obj_req->pending.result = ret;
3192                         return;
3193                 }
3194
3195                 obj_req->pending.num_pending++;
3196                 bytes = MODS_ONLY;
3197         }
3198
3199         ret = rbd_obj_copyup_current_snapc(obj_req, bytes);
3200         if (ret) {
3201                 obj_req->pending.result = ret;
3202                 return;
3203         }
3204
3205         obj_req->pending.num_pending++;
3206 }
3207
3208 static bool rbd_obj_advance_copyup(struct rbd_obj_request *obj_req, int *result)
3209 {
3210         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3211         int ret;
3212
3213 again:
3214         switch (obj_req->copyup_state) {
3215         case RBD_OBJ_COPYUP_START:
3216                 rbd_assert(!*result);
3217
3218                 ret = rbd_obj_copyup_read_parent(obj_req);
3219                 if (ret) {
3220                         *result = ret;
3221                         return true;
3222                 }
3223                 if (obj_req->num_img_extents)
3224                         obj_req->copyup_state = RBD_OBJ_COPYUP_READ_PARENT;
3225                 else
3226                         obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3227                 return false;
3228         case RBD_OBJ_COPYUP_READ_PARENT:
3229                 if (*result)
3230                         return true;
3231
3232                 if (is_zero_bvecs(obj_req->copyup_bvecs,
3233                                   rbd_obj_img_extents_bytes(obj_req))) {
3234                         dout("%s %p detected zeros\n", __func__, obj_req);
3235                         obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ZEROS;
3236                 }
3237
3238                 rbd_obj_copyup_object_maps(obj_req);
3239                 if (!obj_req->pending.num_pending) {
3240                         *result = obj_req->pending.result;
3241                         obj_req->copyup_state = RBD_OBJ_COPYUP_OBJECT_MAPS;
3242                         goto again;
3243                 }
3244                 obj_req->copyup_state = __RBD_OBJ_COPYUP_OBJECT_MAPS;
3245                 return false;
3246         case __RBD_OBJ_COPYUP_OBJECT_MAPS:
3247                 if (!pending_result_dec(&obj_req->pending, result))
3248                         return false;
3249                 fallthrough;
3250         case RBD_OBJ_COPYUP_OBJECT_MAPS:
3251                 if (*result) {
3252                         rbd_warn(rbd_dev, "snap object map update failed: %d",
3253                                  *result);
3254                         return true;
3255                 }
3256
3257                 rbd_obj_copyup_write_object(obj_req);
3258                 if (!obj_req->pending.num_pending) {
3259                         *result = obj_req->pending.result;
3260                         obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3261                         goto again;
3262                 }
3263                 obj_req->copyup_state = __RBD_OBJ_COPYUP_WRITE_OBJECT;
3264                 return false;
3265         case __RBD_OBJ_COPYUP_WRITE_OBJECT:
3266                 if (!pending_result_dec(&obj_req->pending, result))
3267                         return false;
3268                 fallthrough;
3269         case RBD_OBJ_COPYUP_WRITE_OBJECT:
3270                 return true;
3271         default:
3272                 BUG();
3273         }
3274 }
3275
3276 /*
3277  * Return:
3278  *   0 - object map update sent
3279  *   1 - object map update isn't needed
3280  *  <0 - error
3281  */
3282 static int rbd_obj_write_post_object_map(struct rbd_obj_request *obj_req)
3283 {
3284         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3285         u8 current_state = OBJECT_PENDING;
3286
3287         if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3288                 return 1;
3289
3290         if (!(obj_req->flags & RBD_OBJ_FLAG_DELETION))
3291                 return 1;
3292
3293         return rbd_object_map_update(obj_req, CEPH_NOSNAP, OBJECT_NONEXISTENT,
3294                                      &current_state);
3295 }
3296
3297 static bool rbd_obj_advance_write(struct rbd_obj_request *obj_req, int *result)
3298 {
3299         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3300         int ret;
3301
3302 again:
3303         switch (obj_req->write_state) {
3304         case RBD_OBJ_WRITE_START:
3305                 rbd_assert(!*result);
3306
3307                 rbd_obj_set_copyup_enabled(obj_req);
3308                 if (rbd_obj_write_is_noop(obj_req))
3309                         return true;
3310
3311                 ret = rbd_obj_write_pre_object_map(obj_req);
3312                 if (ret < 0) {
3313                         *result = ret;
3314                         return true;
3315                 }
3316                 obj_req->write_state = RBD_OBJ_WRITE_PRE_OBJECT_MAP;
3317                 if (ret > 0)
3318                         goto again;
3319                 return false;
3320         case RBD_OBJ_WRITE_PRE_OBJECT_MAP:
3321                 if (*result) {
3322                         rbd_warn(rbd_dev, "pre object map update failed: %d",
3323                                  *result);
3324                         return true;
3325                 }
3326                 ret = rbd_obj_write_object(obj_req);
3327                 if (ret) {
3328                         *result = ret;
3329                         return true;
3330                 }
3331                 obj_req->write_state = RBD_OBJ_WRITE_OBJECT;
3332                 return false;
3333         case RBD_OBJ_WRITE_OBJECT:
3334                 if (*result == -ENOENT) {
3335                         if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
3336                                 *result = 0;
3337                                 obj_req->copyup_state = RBD_OBJ_COPYUP_START;
3338                                 obj_req->write_state = __RBD_OBJ_WRITE_COPYUP;
3339                                 goto again;
3340                         }
3341                         /*
3342                          * On a non-existent object:
3343                          *   delete - -ENOENT, truncate/zero - 0
3344                          */
3345                         if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
3346                                 *result = 0;
3347                 }
3348                 if (*result)
3349                         return true;
3350
3351                 obj_req->write_state = RBD_OBJ_WRITE_COPYUP;
3352                 goto again;
3353         case __RBD_OBJ_WRITE_COPYUP:
3354                 if (!rbd_obj_advance_copyup(obj_req, result))
3355                         return false;
3356                 fallthrough;
3357         case RBD_OBJ_WRITE_COPYUP:
3358                 if (*result) {
3359                         rbd_warn(rbd_dev, "copyup failed: %d", *result);
3360                         return true;
3361                 }
3362                 ret = rbd_obj_write_post_object_map(obj_req);
3363                 if (ret < 0) {
3364                         *result = ret;
3365                         return true;
3366                 }
3367                 obj_req->write_state = RBD_OBJ_WRITE_POST_OBJECT_MAP;
3368                 if (ret > 0)
3369                         goto again;
3370                 return false;
3371         case RBD_OBJ_WRITE_POST_OBJECT_MAP:
3372                 if (*result)
3373                         rbd_warn(rbd_dev, "post object map update failed: %d",
3374                                  *result);
3375                 return true;
3376         default:
3377                 BUG();
3378         }
3379 }
3380
3381 /*
3382  * Return true if @obj_req is completed.
3383  */
3384 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req,
3385                                      int *result)
3386 {
3387         struct rbd_img_request *img_req = obj_req->img_request;
3388         struct rbd_device *rbd_dev = img_req->rbd_dev;
3389         bool done;
3390
3391         mutex_lock(&obj_req->state_mutex);
3392         if (!rbd_img_is_write(img_req))
3393                 done = rbd_obj_advance_read(obj_req, result);
3394         else
3395                 done = rbd_obj_advance_write(obj_req, result);
3396         mutex_unlock(&obj_req->state_mutex);
3397
3398         if (done && *result) {
3399                 rbd_assert(*result < 0);
3400                 rbd_warn(rbd_dev, "%s at objno %llu %llu~%llu result %d",
3401                          obj_op_name(img_req->op_type), obj_req->ex.oe_objno,
3402                          obj_req->ex.oe_off, obj_req->ex.oe_len, *result);
3403         }
3404         return done;
3405 }
3406
3407 /*
3408  * This is open-coded in rbd_img_handle_request() to avoid parent chain
3409  * recursion.
3410  */
3411 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result)
3412 {
3413         if (__rbd_obj_handle_request(obj_req, &result))
3414                 rbd_img_handle_request(obj_req->img_request, result);
3415 }
3416
3417 static bool need_exclusive_lock(struct rbd_img_request *img_req)
3418 {
3419         struct rbd_device *rbd_dev = img_req->rbd_dev;
3420
3421         if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK))
3422                 return false;
3423
3424         if (rbd_is_ro(rbd_dev))
3425                 return false;
3426
3427         rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags));
3428         if (rbd_dev->opts->lock_on_read ||
3429             (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3430                 return true;
3431
3432         return rbd_img_is_write(img_req);
3433 }
3434
3435 static bool rbd_lock_add_request(struct rbd_img_request *img_req)
3436 {
3437         struct rbd_device *rbd_dev = img_req->rbd_dev;
3438         bool locked;
3439
3440         lockdep_assert_held(&rbd_dev->lock_rwsem);
3441         locked = rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED;
3442         spin_lock(&rbd_dev->lock_lists_lock);
3443         rbd_assert(list_empty(&img_req->lock_item));
3444         if (!locked)
3445                 list_add_tail(&img_req->lock_item, &rbd_dev->acquiring_list);
3446         else
3447                 list_add_tail(&img_req->lock_item, &rbd_dev->running_list);
3448         spin_unlock(&rbd_dev->lock_lists_lock);
3449         return locked;
3450 }
3451
3452 static void rbd_lock_del_request(struct rbd_img_request *img_req)
3453 {
3454         struct rbd_device *rbd_dev = img_req->rbd_dev;
3455         bool need_wakeup = false;
3456
3457         lockdep_assert_held(&rbd_dev->lock_rwsem);
3458         spin_lock(&rbd_dev->lock_lists_lock);
3459         if (!list_empty(&img_req->lock_item)) {
3460                 list_del_init(&img_req->lock_item);
3461                 need_wakeup = (rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING &&
3462                                list_empty(&rbd_dev->running_list));
3463         }
3464         spin_unlock(&rbd_dev->lock_lists_lock);
3465         if (need_wakeup)
3466                 complete(&rbd_dev->releasing_wait);
3467 }
3468
3469 static int rbd_img_exclusive_lock(struct rbd_img_request *img_req)
3470 {
3471         struct rbd_device *rbd_dev = img_req->rbd_dev;
3472
3473         if (!need_exclusive_lock(img_req))
3474                 return 1;
3475
3476         if (rbd_lock_add_request(img_req))
3477                 return 1;
3478
3479         if (rbd_dev->opts->exclusive) {
3480                 WARN_ON(1); /* lock got released? */
3481                 return -EROFS;
3482         }
3483
3484         /*
3485          * Note the use of mod_delayed_work() in rbd_acquire_lock()
3486          * and cancel_delayed_work() in wake_lock_waiters().
3487          */
3488         dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3489         queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3490         return 0;
3491 }
3492
3493 static void rbd_img_object_requests(struct rbd_img_request *img_req)
3494 {
3495         struct rbd_device *rbd_dev = img_req->rbd_dev;
3496         struct rbd_obj_request *obj_req;
3497
3498         rbd_assert(!img_req->pending.result && !img_req->pending.num_pending);
3499         rbd_assert(!need_exclusive_lock(img_req) ||
3500                    __rbd_is_lock_owner(rbd_dev));
3501
3502         if (rbd_img_is_write(img_req)) {
3503                 rbd_assert(!img_req->snapc);
3504                 down_read(&rbd_dev->header_rwsem);
3505                 img_req->snapc = ceph_get_snap_context(rbd_dev->header.snapc);
3506                 up_read(&rbd_dev->header_rwsem);
3507         }
3508
3509         for_each_obj_request(img_req, obj_req) {
3510                 int result = 0;
3511
3512                 if (__rbd_obj_handle_request(obj_req, &result)) {
3513                         if (result) {
3514                                 img_req->pending.result = result;
3515                                 return;
3516                         }
3517                 } else {
3518                         img_req->pending.num_pending++;
3519                 }
3520         }
3521 }
3522
3523 static bool rbd_img_advance(struct rbd_img_request *img_req, int *result)
3524 {
3525         int ret;
3526
3527 again:
3528         switch (img_req->state) {
3529         case RBD_IMG_START:
3530                 rbd_assert(!*result);
3531
3532                 ret = rbd_img_exclusive_lock(img_req);
3533                 if (ret < 0) {
3534                         *result = ret;
3535                         return true;
3536                 }
3537                 img_req->state = RBD_IMG_EXCLUSIVE_LOCK;
3538                 if (ret > 0)
3539                         goto again;
3540                 return false;
3541         case RBD_IMG_EXCLUSIVE_LOCK:
3542                 if (*result)
3543                         return true;
3544
3545                 rbd_img_object_requests(img_req);
3546                 if (!img_req->pending.num_pending) {
3547                         *result = img_req->pending.result;
3548                         img_req->state = RBD_IMG_OBJECT_REQUESTS;
3549                         goto again;
3550                 }
3551                 img_req->state = __RBD_IMG_OBJECT_REQUESTS;
3552                 return false;
3553         case __RBD_IMG_OBJECT_REQUESTS:
3554                 if (!pending_result_dec(&img_req->pending, result))
3555                         return false;
3556                 fallthrough;
3557         case RBD_IMG_OBJECT_REQUESTS:
3558                 return true;
3559         default:
3560                 BUG();
3561         }
3562 }
3563
3564 /*
3565  * Return true if @img_req is completed.
3566  */
3567 static bool __rbd_img_handle_request(struct rbd_img_request *img_req,
3568                                      int *result)
3569 {
3570         struct rbd_device *rbd_dev = img_req->rbd_dev;
3571         bool done;
3572
3573         if (need_exclusive_lock(img_req)) {
3574                 down_read(&rbd_dev->lock_rwsem);
3575                 mutex_lock(&img_req->state_mutex);
3576                 done = rbd_img_advance(img_req, result);
3577                 if (done)
3578                         rbd_lock_del_request(img_req);
3579                 mutex_unlock(&img_req->state_mutex);
3580                 up_read(&rbd_dev->lock_rwsem);
3581         } else {
3582                 mutex_lock(&img_req->state_mutex);
3583                 done = rbd_img_advance(img_req, result);
3584                 mutex_unlock(&img_req->state_mutex);
3585         }
3586
3587         if (done && *result) {
3588                 rbd_assert(*result < 0);
3589                 rbd_warn(rbd_dev, "%s%s result %d",
3590                       test_bit(IMG_REQ_CHILD, &img_req->flags) ? "child " : "",
3591                       obj_op_name(img_req->op_type), *result);
3592         }
3593         return done;
3594 }
3595
3596 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result)
3597 {
3598 again:
3599         if (!__rbd_img_handle_request(img_req, &result))
3600                 return;
3601
3602         if (test_bit(IMG_REQ_CHILD, &img_req->flags)) {
3603                 struct rbd_obj_request *obj_req = img_req->obj_request;
3604
3605                 rbd_img_request_destroy(img_req);
3606                 if (__rbd_obj_handle_request(obj_req, &result)) {
3607                         img_req = obj_req->img_request;
3608                         goto again;
3609                 }
3610         } else {
3611                 struct request *rq = blk_mq_rq_from_pdu(img_req);
3612
3613                 rbd_img_request_destroy(img_req);
3614                 blk_mq_end_request(rq, errno_to_blk_status(result));
3615         }
3616 }
3617
3618 static const struct rbd_client_id rbd_empty_cid;
3619
3620 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
3621                           const struct rbd_client_id *rhs)
3622 {
3623         return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
3624 }
3625
3626 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
3627 {
3628         struct rbd_client_id cid;
3629
3630         mutex_lock(&rbd_dev->watch_mutex);
3631         cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
3632         cid.handle = rbd_dev->watch_cookie;
3633         mutex_unlock(&rbd_dev->watch_mutex);
3634         return cid;
3635 }
3636
3637 /*
3638  * lock_rwsem must be held for write
3639  */
3640 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
3641                               const struct rbd_client_id *cid)
3642 {
3643         dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
3644              rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
3645              cid->gid, cid->handle);
3646         rbd_dev->owner_cid = *cid; /* struct */
3647 }
3648
3649 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
3650 {
3651         mutex_lock(&rbd_dev->watch_mutex);
3652         sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
3653         mutex_unlock(&rbd_dev->watch_mutex);
3654 }
3655
3656 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie)
3657 {
3658         struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3659
3660         rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
3661         strcpy(rbd_dev->lock_cookie, cookie);
3662         rbd_set_owner_cid(rbd_dev, &cid);
3663         queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
3664 }
3665
3666 /*
3667  * lock_rwsem must be held for write
3668  */
3669 static int rbd_lock(struct rbd_device *rbd_dev)
3670 {
3671         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3672         char cookie[32];
3673         int ret;
3674
3675         WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
3676                 rbd_dev->lock_cookie[0] != '\0');
3677
3678         format_lock_cookie(rbd_dev, cookie);
3679         ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3680                             RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
3681                             RBD_LOCK_TAG, "", 0);
3682         if (ret && ret != -EEXIST)
3683                 return ret;
3684
3685         __rbd_lock(rbd_dev, cookie);
3686         return 0;
3687 }
3688
3689 /*
3690  * lock_rwsem must be held for write
3691  */
3692 static void rbd_unlock(struct rbd_device *rbd_dev)
3693 {
3694         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3695         int ret;
3696
3697         WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
3698                 rbd_dev->lock_cookie[0] == '\0');
3699
3700         ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3701                               RBD_LOCK_NAME, rbd_dev->lock_cookie);
3702         if (ret && ret != -ENOENT)
3703                 rbd_warn(rbd_dev, "failed to unlock header: %d", ret);
3704
3705         /* treat errors as the image is unlocked */
3706         rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
3707         rbd_dev->lock_cookie[0] = '\0';
3708         rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3709         queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
3710 }
3711
3712 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
3713                                 enum rbd_notify_op notify_op,
3714                                 struct page ***preply_pages,
3715                                 size_t *preply_len)
3716 {
3717         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3718         struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3719         char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN];
3720         int buf_size = sizeof(buf);
3721         void *p = buf;
3722
3723         dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
3724
3725         /* encode *LockPayload NotifyMessage (op + ClientId) */
3726         ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
3727         ceph_encode_32(&p, notify_op);
3728         ceph_encode_64(&p, cid.gid);
3729         ceph_encode_64(&p, cid.handle);
3730
3731         return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
3732                                 &rbd_dev->header_oloc, buf, buf_size,
3733                                 RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
3734 }
3735
3736 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
3737                                enum rbd_notify_op notify_op)
3738 {
3739         __rbd_notify_op_lock(rbd_dev, notify_op, NULL, NULL);
3740 }
3741
3742 static void rbd_notify_acquired_lock(struct work_struct *work)
3743 {
3744         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3745                                                   acquired_lock_work);
3746
3747         rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
3748 }
3749
3750 static void rbd_notify_released_lock(struct work_struct *work)
3751 {
3752         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3753                                                   released_lock_work);
3754
3755         rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
3756 }
3757
3758 static int rbd_request_lock(struct rbd_device *rbd_dev)
3759 {
3760         struct page **reply_pages;
3761         size_t reply_len;
3762         bool lock_owner_responded = false;
3763         int ret;
3764
3765         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3766
3767         ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
3768                                    &reply_pages, &reply_len);
3769         if (ret && ret != -ETIMEDOUT) {
3770                 rbd_warn(rbd_dev, "failed to request lock: %d", ret);
3771                 goto out;
3772         }
3773
3774         if (reply_len > 0 && reply_len <= PAGE_SIZE) {
3775                 void *p = page_address(reply_pages[0]);
3776                 void *const end = p + reply_len;
3777                 u32 n;
3778
3779                 ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
3780                 while (n--) {
3781                         u8 struct_v;
3782                         u32 len;
3783
3784                         ceph_decode_need(&p, end, 8 + 8, e_inval);
3785                         p += 8 + 8; /* skip gid and cookie */
3786
3787                         ceph_decode_32_safe(&p, end, len, e_inval);
3788                         if (!len)
3789                                 continue;
3790
3791                         if (lock_owner_responded) {
3792                                 rbd_warn(rbd_dev,
3793                                          "duplicate lock owners detected");
3794                                 ret = -EIO;
3795                                 goto out;
3796                         }
3797
3798                         lock_owner_responded = true;
3799                         ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
3800                                                   &struct_v, &len);
3801                         if (ret) {
3802                                 rbd_warn(rbd_dev,
3803                                          "failed to decode ResponseMessage: %d",
3804                                          ret);
3805                                 goto e_inval;
3806                         }
3807
3808                         ret = ceph_decode_32(&p);
3809                 }
3810         }
3811
3812         if (!lock_owner_responded) {
3813                 rbd_warn(rbd_dev, "no lock owners detected");
3814                 ret = -ETIMEDOUT;
3815         }
3816
3817 out:
3818         ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3819         return ret;
3820
3821 e_inval:
3822         ret = -EINVAL;
3823         goto out;
3824 }
3825
3826 /*
3827  * Either image request state machine(s) or rbd_add_acquire_lock()
3828  * (i.e. "rbd map").
3829  */
3830 static void wake_lock_waiters(struct rbd_device *rbd_dev, int result)
3831 {
3832         struct rbd_img_request *img_req;
3833
3834         dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3835         lockdep_assert_held_write(&rbd_dev->lock_rwsem);
3836
3837         cancel_delayed_work(&rbd_dev->lock_dwork);
3838         if (!completion_done(&rbd_dev->acquire_wait)) {
3839                 rbd_assert(list_empty(&rbd_dev->acquiring_list) &&
3840                            list_empty(&rbd_dev->running_list));
3841                 rbd_dev->acquire_err = result;
3842                 complete_all(&rbd_dev->acquire_wait);
3843                 return;
3844         }
3845
3846         while (!list_empty(&rbd_dev->acquiring_list)) {
3847                 img_req = list_first_entry(&rbd_dev->acquiring_list,
3848                                            struct rbd_img_request, lock_item);
3849                 mutex_lock(&img_req->state_mutex);
3850                 rbd_assert(img_req->state == RBD_IMG_EXCLUSIVE_LOCK);
3851                 if (!result)
3852                         list_move_tail(&img_req->lock_item,
3853                                        &rbd_dev->running_list);
3854                 else
3855                         list_del_init(&img_req->lock_item);
3856                 rbd_img_schedule(img_req, result);
3857                 mutex_unlock(&img_req->state_mutex);
3858         }
3859 }
3860
3861 static bool locker_equal(const struct ceph_locker *lhs,
3862                          const struct ceph_locker *rhs)
3863 {
3864         return lhs->id.name.type == rhs->id.name.type &&
3865                lhs->id.name.num == rhs->id.name.num &&
3866                !strcmp(lhs->id.cookie, rhs->id.cookie) &&
3867                ceph_addr_equal_no_type(&lhs->info.addr, &rhs->info.addr);
3868 }
3869
3870 static void free_locker(struct ceph_locker *locker)
3871 {
3872         if (locker)
3873                 ceph_free_lockers(locker, 1);
3874 }
3875
3876 static struct ceph_locker *get_lock_owner_info(struct rbd_device *rbd_dev)
3877 {
3878         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3879         struct ceph_locker *lockers;
3880         u32 num_lockers;
3881         u8 lock_type;
3882         char *lock_tag;
3883         u64 handle;
3884         int ret;
3885
3886         ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
3887                                  &rbd_dev->header_oloc, RBD_LOCK_NAME,
3888                                  &lock_type, &lock_tag, &lockers, &num_lockers);
3889         if (ret) {
3890                 rbd_warn(rbd_dev, "failed to get header lockers: %d", ret);
3891                 return ERR_PTR(ret);
3892         }
3893
3894         if (num_lockers == 0) {
3895                 dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
3896                 lockers = NULL;
3897                 goto out;
3898         }
3899
3900         if (strcmp(lock_tag, RBD_LOCK_TAG)) {
3901                 rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
3902                          lock_tag);
3903                 goto err_busy;
3904         }
3905
3906         if (lock_type != CEPH_CLS_LOCK_EXCLUSIVE) {
3907                 rbd_warn(rbd_dev, "incompatible lock type detected");
3908                 goto err_busy;
3909         }
3910
3911         WARN_ON(num_lockers != 1);
3912         ret = sscanf(lockers[0].id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu",
3913                      &handle);
3914         if (ret != 1) {
3915                 rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
3916                          lockers[0].id.cookie);
3917                 goto err_busy;
3918         }
3919         if (ceph_addr_is_blank(&lockers[0].info.addr)) {
3920                 rbd_warn(rbd_dev, "locker has a blank address");
3921                 goto err_busy;
3922         }
3923
3924         dout("%s rbd_dev %p got locker %s%llu@%pISpc/%u handle %llu\n",
3925              __func__, rbd_dev, ENTITY_NAME(lockers[0].id.name),
3926              &lockers[0].info.addr.in_addr,
3927              le32_to_cpu(lockers[0].info.addr.nonce), handle);
3928
3929 out:
3930         kfree(lock_tag);
3931         return lockers;
3932
3933 err_busy:
3934         kfree(lock_tag);
3935         ceph_free_lockers(lockers, num_lockers);
3936         return ERR_PTR(-EBUSY);
3937 }
3938
3939 static int find_watcher(struct rbd_device *rbd_dev,
3940                         const struct ceph_locker *locker)
3941 {
3942         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3943         struct ceph_watch_item *watchers;
3944         u32 num_watchers;
3945         u64 cookie;
3946         int i;
3947         int ret;
3948
3949         ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
3950                                       &rbd_dev->header_oloc, &watchers,
3951                                       &num_watchers);
3952         if (ret) {
3953                 rbd_warn(rbd_dev, "failed to get watchers: %d", ret);
3954                 return ret;
3955         }
3956
3957         sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
3958         for (i = 0; i < num_watchers; i++) {
3959                 /*
3960                  * Ignore addr->type while comparing.  This mimics
3961                  * entity_addr_t::get_legacy_str() + strcmp().
3962                  */
3963                 if (ceph_addr_equal_no_type(&watchers[i].addr,
3964                                             &locker->info.addr) &&
3965                     watchers[i].cookie == cookie) {
3966                         struct rbd_client_id cid = {
3967                                 .gid = le64_to_cpu(watchers[i].name.num),
3968                                 .handle = cookie,
3969                         };
3970
3971                         dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
3972                              rbd_dev, cid.gid, cid.handle);
3973                         rbd_set_owner_cid(rbd_dev, &cid);
3974                         ret = 1;
3975                         goto out;
3976                 }
3977         }
3978
3979         dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
3980         ret = 0;
3981 out:
3982         kfree(watchers);
3983         return ret;
3984 }
3985
3986 /*
3987  * lock_rwsem must be held for write
3988  */
3989 static int rbd_try_lock(struct rbd_device *rbd_dev)
3990 {
3991         struct ceph_client *client = rbd_dev->rbd_client->client;
3992         struct ceph_locker *locker, *refreshed_locker;
3993         int ret;
3994
3995         for (;;) {
3996                 locker = refreshed_locker = NULL;
3997
3998                 ret = rbd_lock(rbd_dev);
3999                 if (!ret)
4000                         goto out;
4001                 if (ret != -EBUSY) {
4002                         rbd_warn(rbd_dev, "failed to lock header: %d", ret);
4003                         goto out;
4004                 }
4005
4006                 /* determine if the current lock holder is still alive */
4007                 locker = get_lock_owner_info(rbd_dev);
4008                 if (IS_ERR(locker)) {
4009                         ret = PTR_ERR(locker);
4010                         locker = NULL;
4011                         goto out;
4012                 }
4013                 if (!locker)
4014                         goto again;
4015
4016                 ret = find_watcher(rbd_dev, locker);
4017                 if (ret)
4018                         goto out; /* request lock or error */
4019
4020                 refreshed_locker = get_lock_owner_info(rbd_dev);
4021                 if (IS_ERR(refreshed_locker)) {
4022                         ret = PTR_ERR(refreshed_locker);
4023                         refreshed_locker = NULL;
4024                         goto out;
4025                 }
4026                 if (!refreshed_locker ||
4027                     !locker_equal(locker, refreshed_locker))
4028                         goto again;
4029
4030                 rbd_warn(rbd_dev, "breaking header lock owned by %s%llu",
4031                          ENTITY_NAME(locker->id.name));
4032
4033                 ret = ceph_monc_blocklist_add(&client->monc,
4034                                               &locker->info.addr);
4035                 if (ret) {
4036                         rbd_warn(rbd_dev, "failed to blocklist %s%llu: %d",
4037                                  ENTITY_NAME(locker->id.name), ret);
4038                         goto out;
4039                 }
4040
4041                 ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
4042                                           &rbd_dev->header_oloc, RBD_LOCK_NAME,
4043                                           locker->id.cookie, &locker->id.name);
4044                 if (ret && ret != -ENOENT) {
4045                         rbd_warn(rbd_dev, "failed to break header lock: %d",
4046                                  ret);
4047                         goto out;
4048                 }
4049
4050 again:
4051                 free_locker(refreshed_locker);
4052                 free_locker(locker);
4053         }
4054
4055 out:
4056         free_locker(refreshed_locker);
4057         free_locker(locker);
4058         return ret;
4059 }
4060
4061 static int rbd_post_acquire_action(struct rbd_device *rbd_dev)
4062 {
4063         int ret;
4064
4065         ret = rbd_dev_refresh(rbd_dev);
4066         if (ret)
4067                 return ret;
4068
4069         if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) {
4070                 ret = rbd_object_map_open(rbd_dev);
4071                 if (ret)
4072                         return ret;
4073         }
4074
4075         return 0;
4076 }
4077
4078 /*
4079  * Return:
4080  *   0 - lock acquired
4081  *   1 - caller should call rbd_request_lock()
4082  *  <0 - error
4083  */
4084 static int rbd_try_acquire_lock(struct rbd_device *rbd_dev)
4085 {
4086         int ret;
4087
4088         down_read(&rbd_dev->lock_rwsem);
4089         dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
4090              rbd_dev->lock_state);
4091         if (__rbd_is_lock_owner(rbd_dev)) {
4092                 up_read(&rbd_dev->lock_rwsem);
4093                 return 0;
4094         }
4095
4096         up_read(&rbd_dev->lock_rwsem);
4097         down_write(&rbd_dev->lock_rwsem);
4098         dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
4099              rbd_dev->lock_state);
4100         if (__rbd_is_lock_owner(rbd_dev)) {
4101                 up_write(&rbd_dev->lock_rwsem);
4102                 return 0;
4103         }
4104
4105         ret = rbd_try_lock(rbd_dev);
4106         if (ret < 0) {
4107                 rbd_warn(rbd_dev, "failed to acquire lock: %d", ret);
4108                 goto out;
4109         }
4110         if (ret > 0) {
4111                 up_write(&rbd_dev->lock_rwsem);
4112                 return ret;
4113         }
4114
4115         rbd_assert(rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED);
4116         rbd_assert(list_empty(&rbd_dev->running_list));
4117
4118         ret = rbd_post_acquire_action(rbd_dev);
4119         if (ret) {
4120                 rbd_warn(rbd_dev, "post-acquire action failed: %d", ret);
4121                 /*
4122                  * Can't stay in RBD_LOCK_STATE_LOCKED because
4123                  * rbd_lock_add_request() would let the request through,
4124                  * assuming that e.g. object map is locked and loaded.
4125                  */
4126                 rbd_unlock(rbd_dev);
4127         }
4128
4129 out:
4130         wake_lock_waiters(rbd_dev, ret);
4131         up_write(&rbd_dev->lock_rwsem);
4132         return ret;
4133 }
4134
4135 static void rbd_acquire_lock(struct work_struct *work)
4136 {
4137         struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4138                                             struct rbd_device, lock_dwork);
4139         int ret;
4140
4141         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4142 again:
4143         ret = rbd_try_acquire_lock(rbd_dev);
4144         if (ret <= 0) {
4145                 dout("%s rbd_dev %p ret %d - done\n", __func__, rbd_dev, ret);
4146                 return;
4147         }
4148
4149         ret = rbd_request_lock(rbd_dev);
4150         if (ret == -ETIMEDOUT) {
4151                 goto again; /* treat this as a dead client */
4152         } else if (ret == -EROFS) {
4153                 rbd_warn(rbd_dev, "peer will not release lock");
4154                 down_write(&rbd_dev->lock_rwsem);
4155                 wake_lock_waiters(rbd_dev, ret);
4156                 up_write(&rbd_dev->lock_rwsem);
4157         } else if (ret < 0) {
4158                 rbd_warn(rbd_dev, "error requesting lock: %d", ret);
4159                 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4160                                  RBD_RETRY_DELAY);
4161         } else {
4162                 /*
4163                  * lock owner acked, but resend if we don't see them
4164                  * release the lock
4165                  */
4166                 dout("%s rbd_dev %p requeuing lock_dwork\n", __func__,
4167                      rbd_dev);
4168                 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4169                     msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
4170         }
4171 }
4172
4173 static bool rbd_quiesce_lock(struct rbd_device *rbd_dev)
4174 {
4175         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4176         lockdep_assert_held_write(&rbd_dev->lock_rwsem);
4177
4178         if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
4179                 return false;
4180
4181         /*
4182          * Ensure that all in-flight IO is flushed.
4183          */
4184         rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
4185         rbd_assert(!completion_done(&rbd_dev->releasing_wait));
4186         if (list_empty(&rbd_dev->running_list))
4187                 return true;
4188
4189         up_write(&rbd_dev->lock_rwsem);
4190         wait_for_completion(&rbd_dev->releasing_wait);
4191
4192         down_write(&rbd_dev->lock_rwsem);
4193         if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
4194                 return false;
4195
4196         rbd_assert(list_empty(&rbd_dev->running_list));
4197         return true;
4198 }
4199
4200 static void rbd_pre_release_action(struct rbd_device *rbd_dev)
4201 {
4202         if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)
4203                 rbd_object_map_close(rbd_dev);
4204 }
4205
4206 static void __rbd_release_lock(struct rbd_device *rbd_dev)
4207 {
4208         rbd_assert(list_empty(&rbd_dev->running_list));
4209
4210         rbd_pre_release_action(rbd_dev);
4211         rbd_unlock(rbd_dev);
4212 }
4213
4214 /*
4215  * lock_rwsem must be held for write
4216  */
4217 static void rbd_release_lock(struct rbd_device *rbd_dev)
4218 {
4219         if (!rbd_quiesce_lock(rbd_dev))
4220                 return;
4221
4222         __rbd_release_lock(rbd_dev);
4223
4224         /*
4225          * Give others a chance to grab the lock - we would re-acquire
4226          * almost immediately if we got new IO while draining the running
4227          * list otherwise.  We need to ack our own notifications, so this
4228          * lock_dwork will be requeued from rbd_handle_released_lock() by
4229          * way of maybe_kick_acquire().
4230          */
4231         cancel_delayed_work(&rbd_dev->lock_dwork);
4232 }
4233
4234 static void rbd_release_lock_work(struct work_struct *work)
4235 {
4236         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
4237                                                   unlock_work);
4238
4239         down_write(&rbd_dev->lock_rwsem);
4240         rbd_release_lock(rbd_dev);
4241         up_write(&rbd_dev->lock_rwsem);
4242 }
4243
4244 static void maybe_kick_acquire(struct rbd_device *rbd_dev)
4245 {
4246         bool have_requests;
4247
4248         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4249         if (__rbd_is_lock_owner(rbd_dev))
4250                 return;
4251
4252         spin_lock(&rbd_dev->lock_lists_lock);
4253         have_requests = !list_empty(&rbd_dev->acquiring_list);
4254         spin_unlock(&rbd_dev->lock_lists_lock);
4255         if (have_requests || delayed_work_pending(&rbd_dev->lock_dwork)) {
4256                 dout("%s rbd_dev %p kicking lock_dwork\n", __func__, rbd_dev);
4257                 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4258         }
4259 }
4260
4261 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
4262                                      void **p)
4263 {
4264         struct rbd_client_id cid = { 0 };
4265
4266         if (struct_v >= 2) {
4267                 cid.gid = ceph_decode_64(p);
4268                 cid.handle = ceph_decode_64(p);
4269         }
4270
4271         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4272              cid.handle);
4273         if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4274                 down_write(&rbd_dev->lock_rwsem);
4275                 if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4276                         dout("%s rbd_dev %p cid %llu-%llu == owner_cid\n",
4277                              __func__, rbd_dev, cid.gid, cid.handle);
4278                 } else {
4279                         rbd_set_owner_cid(rbd_dev, &cid);
4280                 }
4281                 downgrade_write(&rbd_dev->lock_rwsem);
4282         } else {
4283                 down_read(&rbd_dev->lock_rwsem);
4284         }
4285
4286         maybe_kick_acquire(rbd_dev);
4287         up_read(&rbd_dev->lock_rwsem);
4288 }
4289
4290 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
4291                                      void **p)
4292 {
4293         struct rbd_client_id cid = { 0 };
4294
4295         if (struct_v >= 2) {
4296                 cid.gid = ceph_decode_64(p);
4297                 cid.handle = ceph_decode_64(p);
4298         }
4299
4300         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4301              cid.handle);
4302         if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4303                 down_write(&rbd_dev->lock_rwsem);
4304                 if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4305                         dout("%s rbd_dev %p cid %llu-%llu != owner_cid %llu-%llu\n",
4306                              __func__, rbd_dev, cid.gid, cid.handle,
4307                              rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
4308                 } else {
4309                         rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4310                 }
4311                 downgrade_write(&rbd_dev->lock_rwsem);
4312         } else {
4313                 down_read(&rbd_dev->lock_rwsem);
4314         }
4315
4316         maybe_kick_acquire(rbd_dev);
4317         up_read(&rbd_dev->lock_rwsem);
4318 }
4319
4320 /*
4321  * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
4322  * ResponseMessage is needed.
4323  */
4324 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
4325                                    void **p)
4326 {
4327         struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
4328         struct rbd_client_id cid = { 0 };
4329         int result = 1;
4330
4331         if (struct_v >= 2) {
4332                 cid.gid = ceph_decode_64(p);
4333                 cid.handle = ceph_decode_64(p);
4334         }
4335
4336         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4337              cid.handle);
4338         if (rbd_cid_equal(&cid, &my_cid))
4339                 return result;
4340
4341         down_read(&rbd_dev->lock_rwsem);
4342         if (__rbd_is_lock_owner(rbd_dev)) {
4343                 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
4344                     rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid))
4345                         goto out_unlock;
4346
4347                 /*
4348                  * encode ResponseMessage(0) so the peer can detect
4349                  * a missing owner
4350                  */
4351                 result = 0;
4352
4353                 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
4354                         if (!rbd_dev->opts->exclusive) {
4355                                 dout("%s rbd_dev %p queueing unlock_work\n",
4356                                      __func__, rbd_dev);
4357                                 queue_work(rbd_dev->task_wq,
4358                                            &rbd_dev->unlock_work);
4359                         } else {
4360                                 /* refuse to release the lock */
4361                                 result = -EROFS;
4362                         }
4363                 }
4364         }
4365
4366 out_unlock:
4367         up_read(&rbd_dev->lock_rwsem);
4368         return result;
4369 }
4370
4371 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
4372                                      u64 notify_id, u64 cookie, s32 *result)
4373 {
4374         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4375         char buf[4 + CEPH_ENCODING_START_BLK_LEN];
4376         int buf_size = sizeof(buf);
4377         int ret;
4378
4379         if (result) {
4380                 void *p = buf;
4381
4382                 /* encode ResponseMessage */
4383                 ceph_start_encoding(&p, 1, 1,
4384                                     buf_size - CEPH_ENCODING_START_BLK_LEN);
4385                 ceph_encode_32(&p, *result);
4386         } else {
4387                 buf_size = 0;
4388         }
4389
4390         ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
4391                                    &rbd_dev->header_oloc, notify_id, cookie,
4392                                    buf, buf_size);
4393         if (ret)
4394                 rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
4395 }
4396
4397 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
4398                                    u64 cookie)
4399 {
4400         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4401         __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
4402 }
4403
4404 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
4405                                           u64 notify_id, u64 cookie, s32 result)
4406 {
4407         dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
4408         __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
4409 }
4410
4411 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
4412                          u64 notifier_id, void *data, size_t data_len)
4413 {
4414         struct rbd_device *rbd_dev = arg;
4415         void *p = data;
4416         void *const end = p + data_len;
4417         u8 struct_v = 0;
4418         u32 len;
4419         u32 notify_op;
4420         int ret;
4421
4422         dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
4423              __func__, rbd_dev, cookie, notify_id, data_len);
4424         if (data_len) {
4425                 ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
4426                                           &struct_v, &len);
4427                 if (ret) {
4428                         rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
4429                                  ret);
4430                         return;
4431                 }
4432
4433                 notify_op = ceph_decode_32(&p);
4434         } else {
4435                 /* legacy notification for header updates */
4436                 notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
4437                 len = 0;
4438         }
4439
4440         dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
4441         switch (notify_op) {
4442         case RBD_NOTIFY_OP_ACQUIRED_LOCK:
4443                 rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
4444                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4445                 break;
4446         case RBD_NOTIFY_OP_RELEASED_LOCK:
4447                 rbd_handle_released_lock(rbd_dev, struct_v, &p);
4448                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4449                 break;
4450         case RBD_NOTIFY_OP_REQUEST_LOCK:
4451                 ret = rbd_handle_request_lock(rbd_dev, struct_v, &p);
4452                 if (ret <= 0)
4453                         rbd_acknowledge_notify_result(rbd_dev, notify_id,
4454                                                       cookie, ret);
4455                 else
4456                         rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4457                 break;
4458         case RBD_NOTIFY_OP_HEADER_UPDATE:
4459                 ret = rbd_dev_refresh(rbd_dev);
4460                 if (ret)
4461                         rbd_warn(rbd_dev, "refresh failed: %d", ret);
4462
4463                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4464                 break;
4465         default:
4466                 if (rbd_is_lock_owner(rbd_dev))
4467                         rbd_acknowledge_notify_result(rbd_dev, notify_id,
4468                                                       cookie, -EOPNOTSUPP);
4469                 else
4470                         rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4471                 break;
4472         }
4473 }
4474
4475 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
4476
4477 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
4478 {
4479         struct rbd_device *rbd_dev = arg;
4480
4481         rbd_warn(rbd_dev, "encountered watch error: %d", err);
4482
4483         down_write(&rbd_dev->lock_rwsem);
4484         rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4485         up_write(&rbd_dev->lock_rwsem);
4486
4487         mutex_lock(&rbd_dev->watch_mutex);
4488         if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
4489                 __rbd_unregister_watch(rbd_dev);
4490                 rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
4491
4492                 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
4493         }
4494         mutex_unlock(&rbd_dev->watch_mutex);
4495 }
4496
4497 /*
4498  * watch_mutex must be locked
4499  */
4500 static int __rbd_register_watch(struct rbd_device *rbd_dev)
4501 {
4502         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4503         struct ceph_osd_linger_request *handle;
4504
4505         rbd_assert(!rbd_dev->watch_handle);
4506         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4507
4508         handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
4509                                  &rbd_dev->header_oloc, rbd_watch_cb,
4510                                  rbd_watch_errcb, rbd_dev);
4511         if (IS_ERR(handle))
4512                 return PTR_ERR(handle);
4513
4514         rbd_dev->watch_handle = handle;
4515         return 0;
4516 }
4517
4518 /*
4519  * watch_mutex must be locked
4520  */
4521 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
4522 {
4523         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4524         int ret;
4525
4526         rbd_assert(rbd_dev->watch_handle);
4527         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4528
4529         ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
4530         if (ret)
4531                 rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
4532
4533         rbd_dev->watch_handle = NULL;
4534 }
4535
4536 static int rbd_register_watch(struct rbd_device *rbd_dev)
4537 {
4538         int ret;
4539
4540         mutex_lock(&rbd_dev->watch_mutex);
4541         rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
4542         ret = __rbd_register_watch(rbd_dev);
4543         if (ret)
4544                 goto out;
4545
4546         rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4547         rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4548
4549 out:
4550         mutex_unlock(&rbd_dev->watch_mutex);
4551         return ret;
4552 }
4553
4554 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
4555 {
4556         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4557
4558         cancel_work_sync(&rbd_dev->acquired_lock_work);
4559         cancel_work_sync(&rbd_dev->released_lock_work);
4560         cancel_delayed_work_sync(&rbd_dev->lock_dwork);
4561         cancel_work_sync(&rbd_dev->unlock_work);
4562 }
4563
4564 /*
4565  * header_rwsem must not be held to avoid a deadlock with
4566  * rbd_dev_refresh() when flushing notifies.
4567  */
4568 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
4569 {
4570         cancel_tasks_sync(rbd_dev);
4571
4572         mutex_lock(&rbd_dev->watch_mutex);
4573         if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
4574                 __rbd_unregister_watch(rbd_dev);
4575         rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4576         mutex_unlock(&rbd_dev->watch_mutex);
4577
4578         cancel_delayed_work_sync(&rbd_dev->watch_dwork);
4579         ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
4580 }
4581
4582 /*
4583  * lock_rwsem must be held for write
4584  */
4585 static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
4586 {
4587         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4588         char cookie[32];
4589         int ret;
4590
4591         if (!rbd_quiesce_lock(rbd_dev))
4592                 return;
4593
4594         format_lock_cookie(rbd_dev, cookie);
4595         ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid,
4596                                   &rbd_dev->header_oloc, RBD_LOCK_NAME,
4597                                   CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie,
4598                                   RBD_LOCK_TAG, cookie);
4599         if (ret) {
4600                 if (ret != -EOPNOTSUPP)
4601                         rbd_warn(rbd_dev, "failed to update lock cookie: %d",
4602                                  ret);
4603
4604                 /*
4605                  * Lock cookie cannot be updated on older OSDs, so do
4606                  * a manual release and queue an acquire.
4607                  */
4608                 __rbd_release_lock(rbd_dev);
4609                 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4610         } else {
4611                 __rbd_lock(rbd_dev, cookie);
4612                 wake_lock_waiters(rbd_dev, 0);
4613         }
4614 }
4615
4616 static void rbd_reregister_watch(struct work_struct *work)
4617 {
4618         struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4619                                             struct rbd_device, watch_dwork);
4620         int ret;
4621
4622         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4623
4624         mutex_lock(&rbd_dev->watch_mutex);
4625         if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
4626                 mutex_unlock(&rbd_dev->watch_mutex);
4627                 return;
4628         }
4629
4630         ret = __rbd_register_watch(rbd_dev);
4631         if (ret) {
4632                 rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
4633                 if (ret != -EBLOCKLISTED && ret != -ENOENT) {
4634                         queue_delayed_work(rbd_dev->task_wq,
4635                                            &rbd_dev->watch_dwork,
4636                                            RBD_RETRY_DELAY);
4637                         mutex_unlock(&rbd_dev->watch_mutex);
4638                         return;
4639                 }
4640
4641                 mutex_unlock(&rbd_dev->watch_mutex);
4642                 down_write(&rbd_dev->lock_rwsem);
4643                 wake_lock_waiters(rbd_dev, ret);
4644                 up_write(&rbd_dev->lock_rwsem);
4645                 return;
4646         }
4647
4648         rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4649         rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4650         mutex_unlock(&rbd_dev->watch_mutex);
4651
4652         down_write(&rbd_dev->lock_rwsem);
4653         if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
4654                 rbd_reacquire_lock(rbd_dev);
4655         up_write(&rbd_dev->lock_rwsem);
4656
4657         ret = rbd_dev_refresh(rbd_dev);
4658         if (ret)
4659                 rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret);
4660 }
4661
4662 /*
4663  * Synchronous osd object method call.  Returns the number of bytes
4664  * returned in the outbound buffer, or a negative error code.
4665  */
4666 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
4667                              struct ceph_object_id *oid,
4668                              struct ceph_object_locator *oloc,
4669                              const char *method_name,
4670                              const void *outbound,
4671                              size_t outbound_size,
4672                              void *inbound,
4673                              size_t inbound_size)
4674 {
4675         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4676         struct page *req_page = NULL;
4677         struct page *reply_page;
4678         int ret;
4679
4680         /*
4681          * Method calls are ultimately read operations.  The result
4682          * should placed into the inbound buffer provided.  They
4683          * also supply outbound data--parameters for the object
4684          * method.  Currently if this is present it will be a
4685          * snapshot id.
4686          */
4687         if (outbound) {
4688                 if (outbound_size > PAGE_SIZE)
4689                         return -E2BIG;
4690
4691                 req_page = alloc_page(GFP_KERNEL);
4692                 if (!req_page)
4693                         return -ENOMEM;
4694
4695                 memcpy(page_address(req_page), outbound, outbound_size);
4696         }
4697
4698         reply_page = alloc_page(GFP_KERNEL);
4699         if (!reply_page) {
4700                 if (req_page)
4701                         __free_page(req_page);
4702                 return -ENOMEM;
4703         }
4704
4705         ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
4706                              CEPH_OSD_FLAG_READ, req_page, outbound_size,
4707                              &reply_page, &inbound_size);
4708         if (!ret) {
4709                 memcpy(inbound, page_address(reply_page), inbound_size);
4710                 ret = inbound_size;
4711         }
4712
4713         if (req_page)
4714                 __free_page(req_page);
4715         __free_page(reply_page);
4716         return ret;
4717 }
4718
4719 static void rbd_queue_workfn(struct work_struct *work)
4720 {
4721         struct rbd_img_request *img_request =
4722             container_of(work, struct rbd_img_request, work);
4723         struct rbd_device *rbd_dev = img_request->rbd_dev;
4724         enum obj_operation_type op_type = img_request->op_type;
4725         struct request *rq = blk_mq_rq_from_pdu(img_request);
4726         u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
4727         u64 length = blk_rq_bytes(rq);
4728         u64 mapping_size;
4729         int result;
4730
4731         /* Ignore/skip any zero-length requests */
4732         if (!length) {
4733                 dout("%s: zero-length request\n", __func__);
4734                 result = 0;
4735                 goto err_img_request;
4736         }
4737
4738         blk_mq_start_request(rq);
4739
4740         down_read(&rbd_dev->header_rwsem);
4741         mapping_size = rbd_dev->mapping.size;
4742         rbd_img_capture_header(img_request);
4743         up_read(&rbd_dev->header_rwsem);
4744
4745         if (offset + length > mapping_size) {
4746                 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
4747                          length, mapping_size);
4748                 result = -EIO;
4749                 goto err_img_request;
4750         }
4751
4752         dout("%s rbd_dev %p img_req %p %s %llu~%llu\n", __func__, rbd_dev,
4753              img_request, obj_op_name(op_type), offset, length);
4754
4755         if (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_ZEROOUT)
4756                 result = rbd_img_fill_nodata(img_request, offset, length);
4757         else
4758                 result = rbd_img_fill_from_bio(img_request, offset, length,
4759                                                rq->bio);
4760         if (result)
4761                 goto err_img_request;
4762
4763         rbd_img_handle_request(img_request, 0);
4764         return;
4765
4766 err_img_request:
4767         rbd_img_request_destroy(img_request);
4768         if (result)
4769                 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
4770                          obj_op_name(op_type), length, offset, result);
4771         blk_mq_end_request(rq, errno_to_blk_status(result));
4772 }
4773
4774 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
4775                 const struct blk_mq_queue_data *bd)
4776 {
4777         struct rbd_device *rbd_dev = hctx->queue->queuedata;
4778         struct rbd_img_request *img_req = blk_mq_rq_to_pdu(bd->rq);
4779         enum obj_operation_type op_type;
4780
4781         switch (req_op(bd->rq)) {
4782         case REQ_OP_DISCARD:
4783                 op_type = OBJ_OP_DISCARD;
4784                 break;
4785         case REQ_OP_WRITE_ZEROES:
4786                 op_type = OBJ_OP_ZEROOUT;
4787                 break;
4788         case REQ_OP_WRITE:
4789                 op_type = OBJ_OP_WRITE;
4790                 break;
4791         case REQ_OP_READ:
4792                 op_type = OBJ_OP_READ;
4793                 break;
4794         default:
4795                 rbd_warn(rbd_dev, "unknown req_op %d", req_op(bd->rq));
4796                 return BLK_STS_IOERR;
4797         }
4798
4799         rbd_img_request_init(img_req, rbd_dev, op_type);
4800
4801         if (rbd_img_is_write(img_req)) {
4802                 if (rbd_is_ro(rbd_dev)) {
4803                         rbd_warn(rbd_dev, "%s on read-only mapping",
4804                                  obj_op_name(img_req->op_type));
4805                         return BLK_STS_IOERR;
4806                 }
4807                 rbd_assert(!rbd_is_snap(rbd_dev));
4808         }
4809
4810         INIT_WORK(&img_req->work, rbd_queue_workfn);
4811         queue_work(rbd_wq, &img_req->work);
4812         return BLK_STS_OK;
4813 }
4814
4815 static void rbd_free_disk(struct rbd_device *rbd_dev)
4816 {
4817         put_disk(rbd_dev->disk);
4818         blk_mq_free_tag_set(&rbd_dev->tag_set);
4819         rbd_dev->disk = NULL;
4820 }
4821
4822 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
4823                              struct ceph_object_id *oid,
4824                              struct ceph_object_locator *oloc,
4825                              void *buf, int buf_len)
4826
4827 {
4828         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4829         struct ceph_osd_request *req;
4830         struct page **pages;
4831         int num_pages = calc_pages_for(0, buf_len);
4832         int ret;
4833
4834         req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
4835         if (!req)
4836                 return -ENOMEM;
4837
4838         ceph_oid_copy(&req->r_base_oid, oid);
4839         ceph_oloc_copy(&req->r_base_oloc, oloc);
4840         req->r_flags = CEPH_OSD_FLAG_READ;
4841
4842         pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
4843         if (IS_ERR(pages)) {
4844                 ret = PTR_ERR(pages);
4845                 goto out_req;
4846         }
4847
4848         osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
4849         osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
4850                                          true);
4851
4852         ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
4853         if (ret)
4854                 goto out_req;
4855
4856         ceph_osdc_start_request(osdc, req);
4857         ret = ceph_osdc_wait_request(osdc, req);
4858         if (ret >= 0)
4859                 ceph_copy_from_page_vector(pages, buf, 0, ret);
4860
4861 out_req:
4862         ceph_osdc_put_request(req);
4863         return ret;
4864 }
4865
4866 /*
4867  * Read the complete header for the given rbd device.  On successful
4868  * return, the rbd_dev->header field will contain up-to-date
4869  * information about the image.
4870  */
4871 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev,
4872                                   struct rbd_image_header *header,
4873                                   bool first_time)
4874 {
4875         struct rbd_image_header_ondisk *ondisk = NULL;
4876         u32 snap_count = 0;
4877         u64 names_size = 0;
4878         u32 want_count;
4879         int ret;
4880
4881         /*
4882          * The complete header will include an array of its 64-bit
4883          * snapshot ids, followed by the names of those snapshots as
4884          * a contiguous block of NUL-terminated strings.  Note that
4885          * the number of snapshots could change by the time we read
4886          * it in, in which case we re-read it.
4887          */
4888         do {
4889                 size_t size;
4890
4891                 kfree(ondisk);
4892
4893                 size = sizeof (*ondisk);
4894                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4895                 size += names_size;
4896                 ondisk = kmalloc(size, GFP_KERNEL);
4897                 if (!ondisk)
4898                         return -ENOMEM;
4899
4900                 ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
4901                                         &rbd_dev->header_oloc, ondisk, size);
4902                 if (ret < 0)
4903                         goto out;
4904                 if ((size_t)ret < size) {
4905                         ret = -ENXIO;
4906                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
4907                                 size, ret);
4908                         goto out;
4909                 }
4910                 if (!rbd_dev_ondisk_valid(ondisk)) {
4911                         ret = -ENXIO;
4912                         rbd_warn(rbd_dev, "invalid header");
4913                         goto out;
4914                 }
4915
4916                 names_size = le64_to_cpu(ondisk->snap_names_len);
4917                 want_count = snap_count;
4918                 snap_count = le32_to_cpu(ondisk->snap_count);
4919         } while (snap_count != want_count);
4920
4921         ret = rbd_header_from_disk(header, ondisk, first_time);
4922 out:
4923         kfree(ondisk);
4924
4925         return ret;
4926 }
4927
4928 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
4929 {
4930         sector_t size;
4931
4932         /*
4933          * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
4934          * try to update its size.  If REMOVING is set, updating size
4935          * is just useless work since the device can't be opened.
4936          */
4937         if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
4938             !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
4939                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
4940                 dout("setting size to %llu sectors", (unsigned long long)size);
4941                 set_capacity_and_notify(rbd_dev->disk, size);
4942         }
4943 }
4944
4945 static const struct blk_mq_ops rbd_mq_ops = {
4946         .queue_rq       = rbd_queue_rq,
4947 };
4948
4949 static int rbd_init_disk(struct rbd_device *rbd_dev)
4950 {
4951         struct gendisk *disk;
4952         struct request_queue *q;
4953         unsigned int objset_bytes =
4954             rbd_dev->layout.object_size * rbd_dev->layout.stripe_count;
4955         int err;
4956
4957         memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
4958         rbd_dev->tag_set.ops = &rbd_mq_ops;
4959         rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
4960         rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
4961         rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
4962         rbd_dev->tag_set.nr_hw_queues = num_present_cpus();
4963         rbd_dev->tag_set.cmd_size = sizeof(struct rbd_img_request);
4964
4965         err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
4966         if (err)
4967                 return err;
4968
4969         disk = blk_mq_alloc_disk(&rbd_dev->tag_set, rbd_dev);
4970         if (IS_ERR(disk)) {
4971                 err = PTR_ERR(disk);
4972                 goto out_tag_set;
4973         }
4974         q = disk->queue;
4975
4976         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
4977                  rbd_dev->dev_id);
4978         disk->major = rbd_dev->major;
4979         disk->first_minor = rbd_dev->minor;
4980         if (single_major)
4981                 disk->minors = (1 << RBD_SINGLE_MAJOR_PART_SHIFT);
4982         else
4983                 disk->minors = RBD_MINORS_PER_MAJOR;
4984         disk->fops = &rbd_bd_ops;
4985         disk->private_data = rbd_dev;
4986
4987         blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
4988         /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
4989
4990         blk_queue_max_hw_sectors(q, objset_bytes >> SECTOR_SHIFT);
4991         q->limits.max_sectors = queue_max_hw_sectors(q);
4992         blk_queue_max_segments(q, USHRT_MAX);
4993         blk_queue_max_segment_size(q, UINT_MAX);
4994         blk_queue_io_min(q, rbd_dev->opts->alloc_size);
4995         blk_queue_io_opt(q, rbd_dev->opts->alloc_size);
4996
4997         if (rbd_dev->opts->trim) {
4998                 q->limits.discard_granularity = rbd_dev->opts->alloc_size;
4999                 blk_queue_max_discard_sectors(q, objset_bytes >> SECTOR_SHIFT);
5000                 blk_queue_max_write_zeroes_sectors(q, objset_bytes >> SECTOR_SHIFT);
5001         }
5002
5003         if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
5004                 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
5005
5006         rbd_dev->disk = disk;
5007
5008         return 0;
5009 out_tag_set:
5010         blk_mq_free_tag_set(&rbd_dev->tag_set);
5011         return err;
5012 }
5013
5014 /*
5015   sysfs
5016 */
5017
5018 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
5019 {
5020         return container_of(dev, struct rbd_device, dev);
5021 }
5022
5023 static ssize_t rbd_size_show(struct device *dev,
5024                              struct device_attribute *attr, char *buf)
5025 {
5026         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5027
5028         return sprintf(buf, "%llu\n",
5029                 (unsigned long long)rbd_dev->mapping.size);
5030 }
5031
5032 static ssize_t rbd_features_show(struct device *dev,
5033                              struct device_attribute *attr, char *buf)
5034 {
5035         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5036
5037         return sprintf(buf, "0x%016llx\n", rbd_dev->header.features);
5038 }
5039
5040 static ssize_t rbd_major_show(struct device *dev,
5041                               struct device_attribute *attr, char *buf)
5042 {
5043         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5044
5045         if (rbd_dev->major)
5046                 return sprintf(buf, "%d\n", rbd_dev->major);
5047
5048         return sprintf(buf, "(none)\n");
5049 }
5050
5051 static ssize_t rbd_minor_show(struct device *dev,
5052                               struct device_attribute *attr, char *buf)
5053 {
5054         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5055
5056         return sprintf(buf, "%d\n", rbd_dev->minor);
5057 }
5058
5059 static ssize_t rbd_client_addr_show(struct device *dev,
5060                                     struct device_attribute *attr, char *buf)
5061 {
5062         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5063         struct ceph_entity_addr *client_addr =
5064             ceph_client_addr(rbd_dev->rbd_client->client);
5065
5066         return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
5067                        le32_to_cpu(client_addr->nonce));
5068 }
5069
5070 static ssize_t rbd_client_id_show(struct device *dev,
5071                                   struct device_attribute *attr, char *buf)
5072 {
5073         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5074
5075         return sprintf(buf, "client%lld\n",
5076                        ceph_client_gid(rbd_dev->rbd_client->client));
5077 }
5078
5079 static ssize_t rbd_cluster_fsid_show(struct device *dev,
5080                                      struct device_attribute *attr, char *buf)
5081 {
5082         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5083
5084         return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
5085 }
5086
5087 static ssize_t rbd_config_info_show(struct device *dev,
5088                                     struct device_attribute *attr, char *buf)
5089 {
5090         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5091
5092         if (!capable(CAP_SYS_ADMIN))
5093                 return -EPERM;
5094
5095         return sprintf(buf, "%s\n", rbd_dev->config_info);
5096 }
5097
5098 static ssize_t rbd_pool_show(struct device *dev,
5099                              struct device_attribute *attr, char *buf)
5100 {
5101         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5102
5103         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
5104 }
5105
5106 static ssize_t rbd_pool_id_show(struct device *dev,
5107                              struct device_attribute *attr, char *buf)
5108 {
5109         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5110
5111         return sprintf(buf, "%llu\n",
5112                         (unsigned long long) rbd_dev->spec->pool_id);
5113 }
5114
5115 static ssize_t rbd_pool_ns_show(struct device *dev,
5116                                 struct device_attribute *attr, char *buf)
5117 {
5118         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5119
5120         return sprintf(buf, "%s\n", rbd_dev->spec->pool_ns ?: "");
5121 }
5122
5123 static ssize_t rbd_name_show(struct device *dev,
5124                              struct device_attribute *attr, char *buf)
5125 {
5126         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5127
5128         if (rbd_dev->spec->image_name)
5129                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
5130
5131         return sprintf(buf, "(unknown)\n");
5132 }
5133
5134 static ssize_t rbd_image_id_show(struct device *dev,
5135                              struct device_attribute *attr, char *buf)
5136 {
5137         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5138
5139         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
5140 }
5141
5142 /*
5143  * Shows the name of the currently-mapped snapshot (or
5144  * RBD_SNAP_HEAD_NAME for the base image).
5145  */
5146 static ssize_t rbd_snap_show(struct device *dev,
5147                              struct device_attribute *attr,
5148                              char *buf)
5149 {
5150         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5151
5152         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
5153 }
5154
5155 static ssize_t rbd_snap_id_show(struct device *dev,
5156                                 struct device_attribute *attr, char *buf)
5157 {
5158         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5159
5160         return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
5161 }
5162
5163 /*
5164  * For a v2 image, shows the chain of parent images, separated by empty
5165  * lines.  For v1 images or if there is no parent, shows "(no parent
5166  * image)".
5167  */
5168 static ssize_t rbd_parent_show(struct device *dev,
5169                                struct device_attribute *attr,
5170                                char *buf)
5171 {
5172         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5173         ssize_t count = 0;
5174
5175         if (!rbd_dev->parent)
5176                 return sprintf(buf, "(no parent image)\n");
5177
5178         for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
5179                 struct rbd_spec *spec = rbd_dev->parent_spec;
5180
5181                 count += sprintf(&buf[count], "%s"
5182                             "pool_id %llu\npool_name %s\n"
5183                             "pool_ns %s\n"
5184                             "image_id %s\nimage_name %s\n"
5185                             "snap_id %llu\nsnap_name %s\n"
5186                             "overlap %llu\n",
5187                             !count ? "" : "\n", /* first? */
5188                             spec->pool_id, spec->pool_name,
5189                             spec->pool_ns ?: "",
5190                             spec->image_id, spec->image_name ?: "(unknown)",
5191                             spec->snap_id, spec->snap_name,
5192                             rbd_dev->parent_overlap);
5193         }
5194
5195         return count;
5196 }
5197
5198 static ssize_t rbd_image_refresh(struct device *dev,
5199                                  struct device_attribute *attr,
5200                                  const char *buf,
5201                                  size_t size)
5202 {
5203         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5204         int ret;
5205
5206         if (!capable(CAP_SYS_ADMIN))
5207                 return -EPERM;
5208
5209         ret = rbd_dev_refresh(rbd_dev);
5210         if (ret)
5211                 return ret;
5212
5213         return size;
5214 }
5215
5216 static DEVICE_ATTR(size, 0444, rbd_size_show, NULL);
5217 static DEVICE_ATTR(features, 0444, rbd_features_show, NULL);
5218 static DEVICE_ATTR(major, 0444, rbd_major_show, NULL);
5219 static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL);
5220 static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL);
5221 static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL);
5222 static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL);
5223 static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL);
5224 static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL);
5225 static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL);
5226 static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL);
5227 static DEVICE_ATTR(name, 0444, rbd_name_show, NULL);
5228 static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL);
5229 static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh);
5230 static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL);
5231 static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL);
5232 static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL);
5233
5234 static struct attribute *rbd_attrs[] = {
5235         &dev_attr_size.attr,
5236         &dev_attr_features.attr,
5237         &dev_attr_major.attr,
5238         &dev_attr_minor.attr,
5239         &dev_attr_client_addr.attr,
5240         &dev_attr_client_id.attr,
5241         &dev_attr_cluster_fsid.attr,
5242         &dev_attr_config_info.attr,
5243         &dev_attr_pool.attr,
5244         &dev_attr_pool_id.attr,
5245         &dev_attr_pool_ns.attr,
5246         &dev_attr_name.attr,
5247         &dev_attr_image_id.attr,
5248         &dev_attr_current_snap.attr,
5249         &dev_attr_snap_id.attr,
5250         &dev_attr_parent.attr,
5251         &dev_attr_refresh.attr,
5252         NULL
5253 };
5254
5255 static struct attribute_group rbd_attr_group = {
5256         .attrs = rbd_attrs,
5257 };
5258
5259 static const struct attribute_group *rbd_attr_groups[] = {
5260         &rbd_attr_group,
5261         NULL
5262 };
5263
5264 static void rbd_dev_release(struct device *dev);
5265
5266 static const struct device_type rbd_device_type = {
5267         .name           = "rbd",
5268         .groups         = rbd_attr_groups,
5269         .release        = rbd_dev_release,
5270 };
5271
5272 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
5273 {
5274         kref_get(&spec->kref);
5275
5276         return spec;
5277 }
5278
5279 static void rbd_spec_free(struct kref *kref);
5280 static void rbd_spec_put(struct rbd_spec *spec)
5281 {
5282         if (spec)
5283                 kref_put(&spec->kref, rbd_spec_free);
5284 }
5285
5286 static struct rbd_spec *rbd_spec_alloc(void)
5287 {
5288         struct rbd_spec *spec;
5289
5290         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
5291         if (!spec)
5292                 return NULL;
5293
5294         spec->pool_id = CEPH_NOPOOL;
5295         spec->snap_id = CEPH_NOSNAP;
5296         kref_init(&spec->kref);
5297
5298         return spec;
5299 }
5300
5301 static void rbd_spec_free(struct kref *kref)
5302 {
5303         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
5304
5305         kfree(spec->pool_name);
5306         kfree(spec->pool_ns);
5307         kfree(spec->image_id);
5308         kfree(spec->image_name);
5309         kfree(spec->snap_name);
5310         kfree(spec);
5311 }
5312
5313 static void rbd_dev_free(struct rbd_device *rbd_dev)
5314 {
5315         WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
5316         WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
5317
5318         ceph_oid_destroy(&rbd_dev->header_oid);
5319         ceph_oloc_destroy(&rbd_dev->header_oloc);
5320         kfree(rbd_dev->config_info);
5321
5322         rbd_put_client(rbd_dev->rbd_client);
5323         rbd_spec_put(rbd_dev->spec);
5324         kfree(rbd_dev->opts);
5325         kfree(rbd_dev);
5326 }
5327
5328 static void rbd_dev_release(struct device *dev)
5329 {
5330         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5331         bool need_put = !!rbd_dev->opts;
5332
5333         if (need_put) {
5334                 destroy_workqueue(rbd_dev->task_wq);
5335                 ida_free(&rbd_dev_id_ida, rbd_dev->dev_id);
5336         }
5337
5338         rbd_dev_free(rbd_dev);
5339
5340         /*
5341          * This is racy, but way better than putting module outside of
5342          * the release callback.  The race window is pretty small, so
5343          * doing something similar to dm (dm-builtin.c) is overkill.
5344          */
5345         if (need_put)
5346                 module_put(THIS_MODULE);
5347 }
5348
5349 static struct rbd_device *__rbd_dev_create(struct rbd_spec *spec)
5350 {
5351         struct rbd_device *rbd_dev;
5352
5353         rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
5354         if (!rbd_dev)
5355                 return NULL;
5356
5357         spin_lock_init(&rbd_dev->lock);
5358         INIT_LIST_HEAD(&rbd_dev->node);
5359         init_rwsem(&rbd_dev->header_rwsem);
5360
5361         rbd_dev->header.data_pool_id = CEPH_NOPOOL;
5362         ceph_oid_init(&rbd_dev->header_oid);
5363         rbd_dev->header_oloc.pool = spec->pool_id;
5364         if (spec->pool_ns) {
5365                 WARN_ON(!*spec->pool_ns);
5366                 rbd_dev->header_oloc.pool_ns =
5367                     ceph_find_or_create_string(spec->pool_ns,
5368                                                strlen(spec->pool_ns));
5369         }
5370
5371         mutex_init(&rbd_dev->watch_mutex);
5372         rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
5373         INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
5374
5375         init_rwsem(&rbd_dev->lock_rwsem);
5376         rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
5377         INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
5378         INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
5379         INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
5380         INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
5381         spin_lock_init(&rbd_dev->lock_lists_lock);
5382         INIT_LIST_HEAD(&rbd_dev->acquiring_list);
5383         INIT_LIST_HEAD(&rbd_dev->running_list);
5384         init_completion(&rbd_dev->acquire_wait);
5385         init_completion(&rbd_dev->releasing_wait);
5386
5387         spin_lock_init(&rbd_dev->object_map_lock);
5388
5389         rbd_dev->dev.bus = &rbd_bus_type;
5390         rbd_dev->dev.type = &rbd_device_type;
5391         rbd_dev->dev.parent = &rbd_root_dev;
5392         device_initialize(&rbd_dev->dev);
5393
5394         return rbd_dev;
5395 }
5396
5397 /*
5398  * Create a mapping rbd_dev.
5399  */
5400 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
5401                                          struct rbd_spec *spec,
5402                                          struct rbd_options *opts)
5403 {
5404         struct rbd_device *rbd_dev;
5405
5406         rbd_dev = __rbd_dev_create(spec);
5407         if (!rbd_dev)
5408                 return NULL;
5409
5410         /* get an id and fill in device name */
5411         rbd_dev->dev_id = ida_alloc_max(&rbd_dev_id_ida,
5412                                         minor_to_rbd_dev_id(1 << MINORBITS) - 1,
5413                                         GFP_KERNEL);
5414         if (rbd_dev->dev_id < 0)
5415                 goto fail_rbd_dev;
5416
5417         sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
5418         rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
5419                                                    rbd_dev->name);
5420         if (!rbd_dev->task_wq)
5421                 goto fail_dev_id;
5422
5423         /* we have a ref from do_rbd_add() */
5424         __module_get(THIS_MODULE);
5425
5426         rbd_dev->rbd_client = rbdc;
5427         rbd_dev->spec = spec;
5428         rbd_dev->opts = opts;
5429
5430         dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
5431         return rbd_dev;
5432
5433 fail_dev_id:
5434         ida_free(&rbd_dev_id_ida, rbd_dev->dev_id);
5435 fail_rbd_dev:
5436         rbd_dev_free(rbd_dev);
5437         return NULL;
5438 }
5439
5440 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
5441 {
5442         if (rbd_dev)
5443                 put_device(&rbd_dev->dev);
5444 }
5445
5446 /*
5447  * Get the size and object order for an image snapshot, or if
5448  * snap_id is CEPH_NOSNAP, gets this information for the base
5449  * image.
5450  */
5451 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
5452                                 u8 *order, u64 *snap_size)
5453 {
5454         __le64 snapid = cpu_to_le64(snap_id);
5455         int ret;
5456         struct {
5457                 u8 order;
5458                 __le64 size;
5459         } __attribute__ ((packed)) size_buf = { 0 };
5460
5461         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5462                                   &rbd_dev->header_oloc, "get_size",
5463                                   &snapid, sizeof(snapid),
5464                                   &size_buf, sizeof(size_buf));
5465         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5466         if (ret < 0)
5467                 return ret;
5468         if (ret < sizeof (size_buf))
5469                 return -ERANGE;
5470
5471         if (order) {
5472                 *order = size_buf.order;
5473                 dout("  order %u", (unsigned int)*order);
5474         }
5475         *snap_size = le64_to_cpu(size_buf.size);
5476
5477         dout("  snap_id 0x%016llx snap_size = %llu\n",
5478                 (unsigned long long)snap_id,
5479                 (unsigned long long)*snap_size);
5480
5481         return 0;
5482 }
5483
5484 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev,
5485                                     char **pobject_prefix)
5486 {
5487         size_t size;
5488         void *reply_buf;
5489         char *object_prefix;
5490         int ret;
5491         void *p;
5492
5493         /* Response will be an encoded string, which includes a length */
5494         size = sizeof(__le32) + RBD_OBJ_PREFIX_LEN_MAX;
5495         reply_buf = kzalloc(size, GFP_KERNEL);
5496         if (!reply_buf)
5497                 return -ENOMEM;
5498
5499         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5500                                   &rbd_dev->header_oloc, "get_object_prefix",
5501                                   NULL, 0, reply_buf, size);
5502         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5503         if (ret < 0)
5504                 goto out;
5505
5506         p = reply_buf;
5507         object_prefix = ceph_extract_encoded_string(&p, p + ret, NULL,
5508                                                     GFP_NOIO);
5509         if (IS_ERR(object_prefix)) {
5510                 ret = PTR_ERR(object_prefix);
5511                 goto out;
5512         }
5513         ret = 0;
5514
5515         *pobject_prefix = object_prefix;
5516         dout("  object_prefix = %s\n", object_prefix);
5517 out:
5518         kfree(reply_buf);
5519
5520         return ret;
5521 }
5522
5523 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
5524                                      bool read_only, u64 *snap_features)
5525 {
5526         struct {
5527                 __le64 snap_id;
5528                 u8 read_only;
5529         } features_in;
5530         struct {
5531                 __le64 features;
5532                 __le64 incompat;
5533         } __attribute__ ((packed)) features_buf = { 0 };
5534         u64 unsup;
5535         int ret;
5536
5537         features_in.snap_id = cpu_to_le64(snap_id);
5538         features_in.read_only = read_only;
5539
5540         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5541                                   &rbd_dev->header_oloc, "get_features",
5542                                   &features_in, sizeof(features_in),
5543                                   &features_buf, sizeof(features_buf));
5544         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5545         if (ret < 0)
5546                 return ret;
5547         if (ret < sizeof (features_buf))
5548                 return -ERANGE;
5549
5550         unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
5551         if (unsup) {
5552                 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
5553                          unsup);
5554                 return -ENXIO;
5555         }
5556
5557         *snap_features = le64_to_cpu(features_buf.features);
5558
5559         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
5560                 (unsigned long long)snap_id,
5561                 (unsigned long long)*snap_features,
5562                 (unsigned long long)le64_to_cpu(features_buf.incompat));
5563
5564         return 0;
5565 }
5566
5567 /*
5568  * These are generic image flags, but since they are used only for
5569  * object map, store them in rbd_dev->object_map_flags.
5570  *
5571  * For the same reason, this function is called only on object map
5572  * (re)load and not on header refresh.
5573  */
5574 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev)
5575 {
5576         __le64 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
5577         __le64 flags;
5578         int ret;
5579
5580         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5581                                   &rbd_dev->header_oloc, "get_flags",
5582                                   &snapid, sizeof(snapid),
5583                                   &flags, sizeof(flags));
5584         if (ret < 0)
5585                 return ret;
5586         if (ret < sizeof(flags))
5587                 return -EBADMSG;
5588
5589         rbd_dev->object_map_flags = le64_to_cpu(flags);
5590         return 0;
5591 }
5592
5593 struct parent_image_info {
5594         u64             pool_id;
5595         const char      *pool_ns;
5596         const char      *image_id;
5597         u64             snap_id;
5598
5599         bool            has_overlap;
5600         u64             overlap;
5601 };
5602
5603 static void rbd_parent_info_cleanup(struct parent_image_info *pii)
5604 {
5605         kfree(pii->pool_ns);
5606         kfree(pii->image_id);
5607
5608         memset(pii, 0, sizeof(*pii));
5609 }
5610
5611 /*
5612  * The caller is responsible for @pii.
5613  */
5614 static int decode_parent_image_spec(void **p, void *end,
5615                                     struct parent_image_info *pii)
5616 {
5617         u8 struct_v;
5618         u32 struct_len;
5619         int ret;
5620
5621         ret = ceph_start_decoding(p, end, 1, "ParentImageSpec",
5622                                   &struct_v, &struct_len);
5623         if (ret)
5624                 return ret;
5625
5626         ceph_decode_64_safe(p, end, pii->pool_id, e_inval);
5627         pii->pool_ns = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5628         if (IS_ERR(pii->pool_ns)) {
5629                 ret = PTR_ERR(pii->pool_ns);
5630                 pii->pool_ns = NULL;
5631                 return ret;
5632         }
5633         pii->image_id = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5634         if (IS_ERR(pii->image_id)) {
5635                 ret = PTR_ERR(pii->image_id);
5636                 pii->image_id = NULL;
5637                 return ret;
5638         }
5639         ceph_decode_64_safe(p, end, pii->snap_id, e_inval);
5640         return 0;
5641
5642 e_inval:
5643         return -EINVAL;
5644 }
5645
5646 static int __get_parent_info(struct rbd_device *rbd_dev,
5647                              struct page *req_page,
5648                              struct page *reply_page,
5649                              struct parent_image_info *pii)
5650 {
5651         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5652         size_t reply_len = PAGE_SIZE;
5653         void *p, *end;
5654         int ret;
5655
5656         ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5657                              "rbd", "parent_get", CEPH_OSD_FLAG_READ,
5658                              req_page, sizeof(u64), &reply_page, &reply_len);
5659         if (ret)
5660                 return ret == -EOPNOTSUPP ? 1 : ret;
5661
5662         p = page_address(reply_page);
5663         end = p + reply_len;
5664         ret = decode_parent_image_spec(&p, end, pii);
5665         if (ret)
5666                 return ret;
5667
5668         ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5669                              "rbd", "parent_overlap_get", CEPH_OSD_FLAG_READ,
5670                              req_page, sizeof(u64), &reply_page, &reply_len);
5671         if (ret)
5672                 return ret;
5673
5674         p = page_address(reply_page);
5675         end = p + reply_len;
5676         ceph_decode_8_safe(&p, end, pii->has_overlap, e_inval);
5677         if (pii->has_overlap)
5678                 ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5679
5680         dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5681              __func__, pii->pool_id, pii->pool_ns, pii->image_id, pii->snap_id,
5682              pii->has_overlap, pii->overlap);
5683         return 0;
5684
5685 e_inval:
5686         return -EINVAL;
5687 }
5688
5689 /*
5690  * The caller is responsible for @pii.
5691  */
5692 static int __get_parent_info_legacy(struct rbd_device *rbd_dev,
5693                                     struct page *req_page,
5694                                     struct page *reply_page,
5695                                     struct parent_image_info *pii)
5696 {
5697         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5698         size_t reply_len = PAGE_SIZE;
5699         void *p, *end;
5700         int ret;
5701
5702         ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5703                              "rbd", "get_parent", CEPH_OSD_FLAG_READ,
5704                              req_page, sizeof(u64), &reply_page, &reply_len);
5705         if (ret)
5706                 return ret;
5707
5708         p = page_address(reply_page);
5709         end = p + reply_len;
5710         ceph_decode_64_safe(&p, end, pii->pool_id, e_inval);
5711         pii->image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5712         if (IS_ERR(pii->image_id)) {
5713                 ret = PTR_ERR(pii->image_id);
5714                 pii->image_id = NULL;
5715                 return ret;
5716         }
5717         ceph_decode_64_safe(&p, end, pii->snap_id, e_inval);
5718         pii->has_overlap = true;
5719         ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5720
5721         dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5722              __func__, pii->pool_id, pii->pool_ns, pii->image_id, pii->snap_id,
5723              pii->has_overlap, pii->overlap);
5724         return 0;
5725
5726 e_inval:
5727         return -EINVAL;
5728 }
5729
5730 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev,
5731                                   struct parent_image_info *pii)
5732 {
5733         struct page *req_page, *reply_page;
5734         void *p;
5735         int ret;
5736
5737         req_page = alloc_page(GFP_KERNEL);
5738         if (!req_page)
5739                 return -ENOMEM;
5740
5741         reply_page = alloc_page(GFP_KERNEL);
5742         if (!reply_page) {
5743                 __free_page(req_page);
5744                 return -ENOMEM;
5745         }
5746
5747         p = page_address(req_page);
5748         ceph_encode_64(&p, rbd_dev->spec->snap_id);
5749         ret = __get_parent_info(rbd_dev, req_page, reply_page, pii);
5750         if (ret > 0)
5751                 ret = __get_parent_info_legacy(rbd_dev, req_page, reply_page,
5752                                                pii);
5753
5754         __free_page(req_page);
5755         __free_page(reply_page);
5756         return ret;
5757 }
5758
5759 static int rbd_dev_setup_parent(struct rbd_device *rbd_dev)
5760 {
5761         struct rbd_spec *parent_spec;
5762         struct parent_image_info pii = { 0 };
5763         int ret;
5764
5765         parent_spec = rbd_spec_alloc();
5766         if (!parent_spec)
5767                 return -ENOMEM;
5768
5769         ret = rbd_dev_v2_parent_info(rbd_dev, &pii);
5770         if (ret)
5771                 goto out_err;
5772
5773         if (pii.pool_id == CEPH_NOPOOL || !pii.has_overlap)
5774                 goto out;       /* No parent?  No problem. */
5775
5776         /* The ceph file layout needs to fit pool id in 32 bits */
5777
5778         ret = -EIO;
5779         if (pii.pool_id > (u64)U32_MAX) {
5780                 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
5781                         (unsigned long long)pii.pool_id, U32_MAX);
5782                 goto out_err;
5783         }
5784
5785         /*
5786          * The parent won't change except when the clone is flattened,
5787          * so we only need to record the parent image spec once.
5788          */
5789         parent_spec->pool_id = pii.pool_id;
5790         if (pii.pool_ns && *pii.pool_ns) {
5791                 parent_spec->pool_ns = pii.pool_ns;
5792                 pii.pool_ns = NULL;
5793         }
5794         parent_spec->image_id = pii.image_id;
5795         pii.image_id = NULL;
5796         parent_spec->snap_id = pii.snap_id;
5797
5798         rbd_assert(!rbd_dev->parent_spec);
5799         rbd_dev->parent_spec = parent_spec;
5800         parent_spec = NULL;     /* rbd_dev now owns this */
5801
5802         /*
5803          * Record the parent overlap.  If it's zero, issue a warning as
5804          * we will proceed as if there is no parent.
5805          */
5806         if (!pii.overlap)
5807                 rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
5808         rbd_dev->parent_overlap = pii.overlap;
5809
5810 out:
5811         ret = 0;
5812 out_err:
5813         rbd_parent_info_cleanup(&pii);
5814         rbd_spec_put(parent_spec);
5815         return ret;
5816 }
5817
5818 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev,
5819                                     u64 *stripe_unit, u64 *stripe_count)
5820 {
5821         struct {
5822                 __le64 stripe_unit;
5823                 __le64 stripe_count;
5824         } __attribute__ ((packed)) striping_info_buf = { 0 };
5825         size_t size = sizeof (striping_info_buf);
5826         int ret;
5827
5828         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5829                                 &rbd_dev->header_oloc, "get_stripe_unit_count",
5830                                 NULL, 0, &striping_info_buf, size);
5831         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5832         if (ret < 0)
5833                 return ret;
5834         if (ret < size)
5835                 return -ERANGE;
5836
5837         *stripe_unit = le64_to_cpu(striping_info_buf.stripe_unit);
5838         *stripe_count = le64_to_cpu(striping_info_buf.stripe_count);
5839         dout("  stripe_unit = %llu stripe_count = %llu\n", *stripe_unit,
5840              *stripe_count);
5841
5842         return 0;
5843 }
5844
5845 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev, s64 *data_pool_id)
5846 {
5847         __le64 data_pool_buf;
5848         int ret;
5849
5850         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5851                                   &rbd_dev->header_oloc, "get_data_pool",
5852                                   NULL, 0, &data_pool_buf,
5853                                   sizeof(data_pool_buf));
5854         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5855         if (ret < 0)
5856                 return ret;
5857         if (ret < sizeof(data_pool_buf))
5858                 return -EBADMSG;
5859
5860         *data_pool_id = le64_to_cpu(data_pool_buf);
5861         dout("  data_pool_id = %lld\n", *data_pool_id);
5862         WARN_ON(*data_pool_id == CEPH_NOPOOL);
5863
5864         return 0;
5865 }
5866
5867 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
5868 {
5869         CEPH_DEFINE_OID_ONSTACK(oid);
5870         size_t image_id_size;
5871         char *image_id;
5872         void *p;
5873         void *end;
5874         size_t size;
5875         void *reply_buf = NULL;
5876         size_t len = 0;
5877         char *image_name = NULL;
5878         int ret;
5879
5880         rbd_assert(!rbd_dev->spec->image_name);
5881
5882         len = strlen(rbd_dev->spec->image_id);
5883         image_id_size = sizeof (__le32) + len;
5884         image_id = kmalloc(image_id_size, GFP_KERNEL);
5885         if (!image_id)
5886                 return NULL;
5887
5888         p = image_id;
5889         end = image_id + image_id_size;
5890         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
5891
5892         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
5893         reply_buf = kmalloc(size, GFP_KERNEL);
5894         if (!reply_buf)
5895                 goto out;
5896
5897         ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
5898         ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5899                                   "dir_get_name", image_id, image_id_size,
5900                                   reply_buf, size);
5901         if (ret < 0)
5902                 goto out;
5903         p = reply_buf;
5904         end = reply_buf + ret;
5905
5906         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
5907         if (IS_ERR(image_name))
5908                 image_name = NULL;
5909         else
5910                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
5911 out:
5912         kfree(reply_buf);
5913         kfree(image_id);
5914
5915         return image_name;
5916 }
5917
5918 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5919 {
5920         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5921         const char *snap_name;
5922         u32 which = 0;
5923
5924         /* Skip over names until we find the one we are looking for */
5925
5926         snap_name = rbd_dev->header.snap_names;
5927         while (which < snapc->num_snaps) {
5928                 if (!strcmp(name, snap_name))
5929                         return snapc->snaps[which];
5930                 snap_name += strlen(snap_name) + 1;
5931                 which++;
5932         }
5933         return CEPH_NOSNAP;
5934 }
5935
5936 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5937 {
5938         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5939         u32 which;
5940         bool found = false;
5941         u64 snap_id;
5942
5943         for (which = 0; !found && which < snapc->num_snaps; which++) {
5944                 const char *snap_name;
5945
5946                 snap_id = snapc->snaps[which];
5947                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
5948                 if (IS_ERR(snap_name)) {
5949                         /* ignore no-longer existing snapshots */
5950                         if (PTR_ERR(snap_name) == -ENOENT)
5951                                 continue;
5952                         else
5953                                 break;
5954                 }
5955                 found = !strcmp(name, snap_name);
5956                 kfree(snap_name);
5957         }
5958         return found ? snap_id : CEPH_NOSNAP;
5959 }
5960
5961 /*
5962  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
5963  * no snapshot by that name is found, or if an error occurs.
5964  */
5965 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5966 {
5967         if (rbd_dev->image_format == 1)
5968                 return rbd_v1_snap_id_by_name(rbd_dev, name);
5969
5970         return rbd_v2_snap_id_by_name(rbd_dev, name);
5971 }
5972
5973 /*
5974  * An image being mapped will have everything but the snap id.
5975  */
5976 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
5977 {
5978         struct rbd_spec *spec = rbd_dev->spec;
5979
5980         rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
5981         rbd_assert(spec->image_id && spec->image_name);
5982         rbd_assert(spec->snap_name);
5983
5984         if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
5985                 u64 snap_id;
5986
5987                 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
5988                 if (snap_id == CEPH_NOSNAP)
5989                         return -ENOENT;
5990
5991                 spec->snap_id = snap_id;
5992         } else {
5993                 spec->snap_id = CEPH_NOSNAP;
5994         }
5995
5996         return 0;
5997 }
5998
5999 /*
6000  * A parent image will have all ids but none of the names.
6001  *
6002  * All names in an rbd spec are dynamically allocated.  It's OK if we
6003  * can't figure out the name for an image id.
6004  */
6005 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
6006 {
6007         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
6008         struct rbd_spec *spec = rbd_dev->spec;
6009         const char *pool_name;
6010         const char *image_name;
6011         const char *snap_name;
6012         int ret;
6013
6014         rbd_assert(spec->pool_id != CEPH_NOPOOL);
6015         rbd_assert(spec->image_id);
6016         rbd_assert(spec->snap_id != CEPH_NOSNAP);
6017
6018         /* Get the pool name; we have to make our own copy of this */
6019
6020         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
6021         if (!pool_name) {
6022                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
6023                 return -EIO;
6024         }
6025         pool_name = kstrdup(pool_name, GFP_KERNEL);
6026         if (!pool_name)
6027                 return -ENOMEM;
6028
6029         /* Fetch the image name; tolerate failure here */
6030
6031         image_name = rbd_dev_image_name(rbd_dev);
6032         if (!image_name)
6033                 rbd_warn(rbd_dev, "unable to get image name");
6034
6035         /* Fetch the snapshot name */
6036
6037         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
6038         if (IS_ERR(snap_name)) {
6039                 ret = PTR_ERR(snap_name);
6040                 goto out_err;
6041         }
6042
6043         spec->pool_name = pool_name;
6044         spec->image_name = image_name;
6045         spec->snap_name = snap_name;
6046
6047         return 0;
6048
6049 out_err:
6050         kfree(image_name);
6051         kfree(pool_name);
6052         return ret;
6053 }
6054
6055 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev,
6056                                    struct ceph_snap_context **psnapc)
6057 {
6058         size_t size;
6059         int ret;
6060         void *reply_buf;
6061         void *p;
6062         void *end;
6063         u64 seq;
6064         u32 snap_count;
6065         struct ceph_snap_context *snapc;
6066         u32 i;
6067
6068         /*
6069          * We'll need room for the seq value (maximum snapshot id),
6070          * snapshot count, and array of that many snapshot ids.
6071          * For now we have a fixed upper limit on the number we're
6072          * prepared to receive.
6073          */
6074         size = sizeof (__le64) + sizeof (__le32) +
6075                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
6076         reply_buf = kzalloc(size, GFP_KERNEL);
6077         if (!reply_buf)
6078                 return -ENOMEM;
6079
6080         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6081                                   &rbd_dev->header_oloc, "get_snapcontext",
6082                                   NULL, 0, reply_buf, size);
6083         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6084         if (ret < 0)
6085                 goto out;
6086
6087         p = reply_buf;
6088         end = reply_buf + ret;
6089         ret = -ERANGE;
6090         ceph_decode_64_safe(&p, end, seq, out);
6091         ceph_decode_32_safe(&p, end, snap_count, out);
6092
6093         /*
6094          * Make sure the reported number of snapshot ids wouldn't go
6095          * beyond the end of our buffer.  But before checking that,
6096          * make sure the computed size of the snapshot context we
6097          * allocate is representable in a size_t.
6098          */
6099         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
6100                                  / sizeof (u64)) {
6101                 ret = -EINVAL;
6102                 goto out;
6103         }
6104         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
6105                 goto out;
6106         ret = 0;
6107
6108         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
6109         if (!snapc) {
6110                 ret = -ENOMEM;
6111                 goto out;
6112         }
6113         snapc->seq = seq;
6114         for (i = 0; i < snap_count; i++)
6115                 snapc->snaps[i] = ceph_decode_64(&p);
6116
6117         *psnapc = snapc;
6118         dout("  snap context seq = %llu, snap_count = %u\n",
6119                 (unsigned long long)seq, (unsigned int)snap_count);
6120 out:
6121         kfree(reply_buf);
6122
6123         return ret;
6124 }
6125
6126 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
6127                                         u64 snap_id)
6128 {
6129         size_t size;
6130         void *reply_buf;
6131         __le64 snapid;
6132         int ret;
6133         void *p;
6134         void *end;
6135         char *snap_name;
6136
6137         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
6138         reply_buf = kmalloc(size, GFP_KERNEL);
6139         if (!reply_buf)
6140                 return ERR_PTR(-ENOMEM);
6141
6142         snapid = cpu_to_le64(snap_id);
6143         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6144                                   &rbd_dev->header_oloc, "get_snapshot_name",
6145                                   &snapid, sizeof(snapid), reply_buf, size);
6146         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6147         if (ret < 0) {
6148                 snap_name = ERR_PTR(ret);
6149                 goto out;
6150         }
6151
6152         p = reply_buf;
6153         end = reply_buf + ret;
6154         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
6155         if (IS_ERR(snap_name))
6156                 goto out;
6157
6158         dout("  snap_id 0x%016llx snap_name = %s\n",
6159                 (unsigned long long)snap_id, snap_name);
6160 out:
6161         kfree(reply_buf);
6162
6163         return snap_name;
6164 }
6165
6166 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev,
6167                                   struct rbd_image_header *header,
6168                                   bool first_time)
6169 {
6170         int ret;
6171
6172         ret = _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
6173                                     first_time ? &header->obj_order : NULL,
6174                                     &header->image_size);
6175         if (ret)
6176                 return ret;
6177
6178         if (first_time) {
6179                 ret = rbd_dev_v2_header_onetime(rbd_dev, header);
6180                 if (ret)
6181                         return ret;
6182         }
6183
6184         ret = rbd_dev_v2_snap_context(rbd_dev, &header->snapc);
6185         if (ret)
6186                 return ret;
6187
6188         return 0;
6189 }
6190
6191 static int rbd_dev_header_info(struct rbd_device *rbd_dev,
6192                                struct rbd_image_header *header,
6193                                bool first_time)
6194 {
6195         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6196         rbd_assert(!header->object_prefix && !header->snapc);
6197
6198         if (rbd_dev->image_format == 1)
6199                 return rbd_dev_v1_header_info(rbd_dev, header, first_time);
6200
6201         return rbd_dev_v2_header_info(rbd_dev, header, first_time);
6202 }
6203
6204 /*
6205  * Skips over white space at *buf, and updates *buf to point to the
6206  * first found non-space character (if any). Returns the length of
6207  * the token (string of non-white space characters) found.  Note
6208  * that *buf must be terminated with '\0'.
6209  */
6210 static inline size_t next_token(const char **buf)
6211 {
6212         /*
6213         * These are the characters that produce nonzero for
6214         * isspace() in the "C" and "POSIX" locales.
6215         */
6216         static const char spaces[] = " \f\n\r\t\v";
6217
6218         *buf += strspn(*buf, spaces);   /* Find start of token */
6219
6220         return strcspn(*buf, spaces);   /* Return token length */
6221 }
6222
6223 /*
6224  * Finds the next token in *buf, dynamically allocates a buffer big
6225  * enough to hold a copy of it, and copies the token into the new
6226  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
6227  * that a duplicate buffer is created even for a zero-length token.
6228  *
6229  * Returns a pointer to the newly-allocated duplicate, or a null
6230  * pointer if memory for the duplicate was not available.  If
6231  * the lenp argument is a non-null pointer, the length of the token
6232  * (not including the '\0') is returned in *lenp.
6233  *
6234  * If successful, the *buf pointer will be updated to point beyond
6235  * the end of the found token.
6236  *
6237  * Note: uses GFP_KERNEL for allocation.
6238  */
6239 static inline char *dup_token(const char **buf, size_t *lenp)
6240 {
6241         char *dup;
6242         size_t len;
6243
6244         len = next_token(buf);
6245         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
6246         if (!dup)
6247                 return NULL;
6248         *(dup + len) = '\0';
6249         *buf += len;
6250
6251         if (lenp)
6252                 *lenp = len;
6253
6254         return dup;
6255 }
6256
6257 static int rbd_parse_param(struct fs_parameter *param,
6258                             struct rbd_parse_opts_ctx *pctx)
6259 {
6260         struct rbd_options *opt = pctx->opts;
6261         struct fs_parse_result result;
6262         struct p_log log = {.prefix = "rbd"};
6263         int token, ret;
6264
6265         ret = ceph_parse_param(param, pctx->copts, NULL);
6266         if (ret != -ENOPARAM)
6267                 return ret;
6268
6269         token = __fs_parse(&log, rbd_parameters, param, &result);
6270         dout("%s fs_parse '%s' token %d\n", __func__, param->key, token);
6271         if (token < 0) {
6272                 if (token == -ENOPARAM)
6273                         return inval_plog(&log, "Unknown parameter '%s'",
6274                                           param->key);
6275                 return token;
6276         }
6277
6278         switch (token) {
6279         case Opt_queue_depth:
6280                 if (result.uint_32 < 1)
6281                         goto out_of_range;
6282                 opt->queue_depth = result.uint_32;
6283                 break;
6284         case Opt_alloc_size:
6285                 if (result.uint_32 < SECTOR_SIZE)
6286                         goto out_of_range;
6287                 if (!is_power_of_2(result.uint_32))
6288                         return inval_plog(&log, "alloc_size must be a power of 2");
6289                 opt->alloc_size = result.uint_32;
6290                 break;
6291         case Opt_lock_timeout:
6292                 /* 0 is "wait forever" (i.e. infinite timeout) */
6293                 if (result.uint_32 > INT_MAX / 1000)
6294                         goto out_of_range;
6295                 opt->lock_timeout = msecs_to_jiffies(result.uint_32 * 1000);
6296                 break;
6297         case Opt_pool_ns:
6298                 kfree(pctx->spec->pool_ns);
6299                 pctx->spec->pool_ns = param->string;
6300                 param->string = NULL;
6301                 break;
6302         case Opt_compression_hint:
6303                 switch (result.uint_32) {
6304                 case Opt_compression_hint_none:
6305                         opt->alloc_hint_flags &=
6306                             ~(CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE |
6307                               CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE);
6308                         break;
6309                 case Opt_compression_hint_compressible:
6310                         opt->alloc_hint_flags |=
6311                             CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6312                         opt->alloc_hint_flags &=
6313                             ~CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6314                         break;
6315                 case Opt_compression_hint_incompressible:
6316                         opt->alloc_hint_flags |=
6317                             CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6318                         opt->alloc_hint_flags &=
6319                             ~CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6320                         break;
6321                 default:
6322                         BUG();
6323                 }
6324                 break;
6325         case Opt_read_only:
6326                 opt->read_only = true;
6327                 break;
6328         case Opt_read_write:
6329                 opt->read_only = false;
6330                 break;
6331         case Opt_lock_on_read:
6332                 opt->lock_on_read = true;
6333                 break;
6334         case Opt_exclusive:
6335                 opt->exclusive = true;
6336                 break;
6337         case Opt_notrim:
6338                 opt->trim = false;
6339                 break;
6340         default:
6341                 BUG();
6342         }
6343
6344         return 0;
6345
6346 out_of_range:
6347         return inval_plog(&log, "%s out of range", param->key);
6348 }
6349
6350 /*
6351  * This duplicates most of generic_parse_monolithic(), untying it from
6352  * fs_context and skipping standard superblock and security options.
6353  */
6354 static int rbd_parse_options(char *options, struct rbd_parse_opts_ctx *pctx)
6355 {
6356         char *key;
6357         int ret = 0;
6358
6359         dout("%s '%s'\n", __func__, options);
6360         while ((key = strsep(&options, ",")) != NULL) {
6361                 if (*key) {
6362                         struct fs_parameter param = {
6363                                 .key    = key,
6364                                 .type   = fs_value_is_flag,
6365                         };
6366                         char *value = strchr(key, '=');
6367                         size_t v_len = 0;
6368
6369                         if (value) {
6370                                 if (value == key)
6371                                         continue;
6372                                 *value++ = 0;
6373                                 v_len = strlen(value);
6374                                 param.string = kmemdup_nul(value, v_len,
6375                                                            GFP_KERNEL);
6376                                 if (!param.string)
6377                                         return -ENOMEM;
6378                                 param.type = fs_value_is_string;
6379                         }
6380                         param.size = v_len;
6381
6382                         ret = rbd_parse_param(&param, pctx);
6383                         kfree(param.string);
6384                         if (ret)
6385                                 break;
6386                 }
6387         }
6388
6389         return ret;
6390 }
6391
6392 /*
6393  * Parse the options provided for an "rbd add" (i.e., rbd image
6394  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
6395  * and the data written is passed here via a NUL-terminated buffer.
6396  * Returns 0 if successful or an error code otherwise.
6397  *
6398  * The information extracted from these options is recorded in
6399  * the other parameters which return dynamically-allocated
6400  * structures:
6401  *  ceph_opts
6402  *      The address of a pointer that will refer to a ceph options
6403  *      structure.  Caller must release the returned pointer using
6404  *      ceph_destroy_options() when it is no longer needed.
6405  *  rbd_opts
6406  *      Address of an rbd options pointer.  Fully initialized by
6407  *      this function; caller must release with kfree().
6408  *  spec
6409  *      Address of an rbd image specification pointer.  Fully
6410  *      initialized by this function based on parsed options.
6411  *      Caller must release with rbd_spec_put().
6412  *
6413  * The options passed take this form:
6414  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
6415  * where:
6416  *  <mon_addrs>
6417  *      A comma-separated list of one or more monitor addresses.
6418  *      A monitor address is an ip address, optionally followed
6419  *      by a port number (separated by a colon).
6420  *        I.e.:  ip1[:port1][,ip2[:port2]...]
6421  *  <options>
6422  *      A comma-separated list of ceph and/or rbd options.
6423  *  <pool_name>
6424  *      The name of the rados pool containing the rbd image.
6425  *  <image_name>
6426  *      The name of the image in that pool to map.
6427  *  <snap_id>
6428  *      An optional snapshot id.  If provided, the mapping will
6429  *      present data from the image at the time that snapshot was
6430  *      created.  The image head is used if no snapshot id is
6431  *      provided.  Snapshot mappings are always read-only.
6432  */
6433 static int rbd_add_parse_args(const char *buf,
6434                                 struct ceph_options **ceph_opts,
6435                                 struct rbd_options **opts,
6436                                 struct rbd_spec **rbd_spec)
6437 {
6438         size_t len;
6439         char *options;
6440         const char *mon_addrs;
6441         char *snap_name;
6442         size_t mon_addrs_size;
6443         struct rbd_parse_opts_ctx pctx = { 0 };
6444         int ret;
6445
6446         /* The first four tokens are required */
6447
6448         len = next_token(&buf);
6449         if (!len) {
6450                 rbd_warn(NULL, "no monitor address(es) provided");
6451                 return -EINVAL;
6452         }
6453         mon_addrs = buf;
6454         mon_addrs_size = len;
6455         buf += len;
6456
6457         ret = -EINVAL;
6458         options = dup_token(&buf, NULL);
6459         if (!options)
6460                 return -ENOMEM;
6461         if (!*options) {
6462                 rbd_warn(NULL, "no options provided");
6463                 goto out_err;
6464         }
6465
6466         pctx.spec = rbd_spec_alloc();
6467         if (!pctx.spec)
6468                 goto out_mem;
6469
6470         pctx.spec->pool_name = dup_token(&buf, NULL);
6471         if (!pctx.spec->pool_name)
6472                 goto out_mem;
6473         if (!*pctx.spec->pool_name) {
6474                 rbd_warn(NULL, "no pool name provided");
6475                 goto out_err;
6476         }
6477
6478         pctx.spec->image_name = dup_token(&buf, NULL);
6479         if (!pctx.spec->image_name)
6480                 goto out_mem;
6481         if (!*pctx.spec->image_name) {
6482                 rbd_warn(NULL, "no image name provided");
6483                 goto out_err;
6484         }
6485
6486         /*
6487          * Snapshot name is optional; default is to use "-"
6488          * (indicating the head/no snapshot).
6489          */
6490         len = next_token(&buf);
6491         if (!len) {
6492                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
6493                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
6494         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
6495                 ret = -ENAMETOOLONG;
6496                 goto out_err;
6497         }
6498         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
6499         if (!snap_name)
6500                 goto out_mem;
6501         *(snap_name + len) = '\0';
6502         pctx.spec->snap_name = snap_name;
6503
6504         pctx.copts = ceph_alloc_options();
6505         if (!pctx.copts)
6506                 goto out_mem;
6507
6508         /* Initialize all rbd options to the defaults */
6509
6510         pctx.opts = kzalloc(sizeof(*pctx.opts), GFP_KERNEL);
6511         if (!pctx.opts)
6512                 goto out_mem;
6513
6514         pctx.opts->read_only = RBD_READ_ONLY_DEFAULT;
6515         pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
6516         pctx.opts->alloc_size = RBD_ALLOC_SIZE_DEFAULT;
6517         pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT;
6518         pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
6519         pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
6520         pctx.opts->trim = RBD_TRIM_DEFAULT;
6521
6522         ret = ceph_parse_mon_ips(mon_addrs, mon_addrs_size, pctx.copts, NULL,
6523                                  ',');
6524         if (ret)
6525                 goto out_err;
6526
6527         ret = rbd_parse_options(options, &pctx);
6528         if (ret)
6529                 goto out_err;
6530
6531         *ceph_opts = pctx.copts;
6532         *opts = pctx.opts;
6533         *rbd_spec = pctx.spec;
6534         kfree(options);
6535         return 0;
6536
6537 out_mem:
6538         ret = -ENOMEM;
6539 out_err:
6540         kfree(pctx.opts);
6541         ceph_destroy_options(pctx.copts);
6542         rbd_spec_put(pctx.spec);
6543         kfree(options);
6544         return ret;
6545 }
6546
6547 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
6548 {
6549         down_write(&rbd_dev->lock_rwsem);
6550         if (__rbd_is_lock_owner(rbd_dev))
6551                 __rbd_release_lock(rbd_dev);
6552         up_write(&rbd_dev->lock_rwsem);
6553 }
6554
6555 /*
6556  * If the wait is interrupted, an error is returned even if the lock
6557  * was successfully acquired.  rbd_dev_image_unlock() will release it
6558  * if needed.
6559  */
6560 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
6561 {
6562         long ret;
6563
6564         if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
6565                 if (!rbd_dev->opts->exclusive && !rbd_dev->opts->lock_on_read)
6566                         return 0;
6567
6568                 rbd_warn(rbd_dev, "exclusive-lock feature is not enabled");
6569                 return -EINVAL;
6570         }
6571
6572         if (rbd_is_ro(rbd_dev))
6573                 return 0;
6574
6575         rbd_assert(!rbd_is_lock_owner(rbd_dev));
6576         queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
6577         ret = wait_for_completion_killable_timeout(&rbd_dev->acquire_wait,
6578                             ceph_timeout_jiffies(rbd_dev->opts->lock_timeout));
6579         if (ret > 0) {
6580                 ret = rbd_dev->acquire_err;
6581         } else {
6582                 cancel_delayed_work_sync(&rbd_dev->lock_dwork);
6583                 if (!ret)
6584                         ret = -ETIMEDOUT;
6585
6586                 rbd_warn(rbd_dev, "failed to acquire lock: %ld", ret);
6587         }
6588         if (ret)
6589                 return ret;
6590
6591         /*
6592          * The lock may have been released by now, unless automatic lock
6593          * transitions are disabled.
6594          */
6595         rbd_assert(!rbd_dev->opts->exclusive || rbd_is_lock_owner(rbd_dev));
6596         return 0;
6597 }
6598
6599 /*
6600  * An rbd format 2 image has a unique identifier, distinct from the
6601  * name given to it by the user.  Internally, that identifier is
6602  * what's used to specify the names of objects related to the image.
6603  *
6604  * A special "rbd id" object is used to map an rbd image name to its
6605  * id.  If that object doesn't exist, then there is no v2 rbd image
6606  * with the supplied name.
6607  *
6608  * This function will record the given rbd_dev's image_id field if
6609  * it can be determined, and in that case will return 0.  If any
6610  * errors occur a negative errno will be returned and the rbd_dev's
6611  * image_id field will be unchanged (and should be NULL).
6612  */
6613 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
6614 {
6615         int ret;
6616         size_t size;
6617         CEPH_DEFINE_OID_ONSTACK(oid);
6618         void *response;
6619         char *image_id;
6620
6621         /*
6622          * When probing a parent image, the image id is already
6623          * known (and the image name likely is not).  There's no
6624          * need to fetch the image id again in this case.  We
6625          * do still need to set the image format though.
6626          */
6627         if (rbd_dev->spec->image_id) {
6628                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
6629
6630                 return 0;
6631         }
6632
6633         /*
6634          * First, see if the format 2 image id file exists, and if
6635          * so, get the image's persistent id from it.
6636          */
6637         ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
6638                                rbd_dev->spec->image_name);
6639         if (ret)
6640                 return ret;
6641
6642         dout("rbd id object name is %s\n", oid.name);
6643
6644         /* Response will be an encoded string, which includes a length */
6645         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
6646         response = kzalloc(size, GFP_NOIO);
6647         if (!response) {
6648                 ret = -ENOMEM;
6649                 goto out;
6650         }
6651
6652         /* If it doesn't exist we'll assume it's a format 1 image */
6653
6654         ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
6655                                   "get_id", NULL, 0,
6656                                   response, size);
6657         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6658         if (ret == -ENOENT) {
6659                 image_id = kstrdup("", GFP_KERNEL);
6660                 ret = image_id ? 0 : -ENOMEM;
6661                 if (!ret)
6662                         rbd_dev->image_format = 1;
6663         } else if (ret >= 0) {
6664                 void *p = response;
6665
6666                 image_id = ceph_extract_encoded_string(&p, p + ret,
6667                                                 NULL, GFP_NOIO);
6668                 ret = PTR_ERR_OR_ZERO(image_id);
6669                 if (!ret)
6670                         rbd_dev->image_format = 2;
6671         }
6672
6673         if (!ret) {
6674                 rbd_dev->spec->image_id = image_id;
6675                 dout("image_id is %s\n", image_id);
6676         }
6677 out:
6678         kfree(response);
6679         ceph_oid_destroy(&oid);
6680         return ret;
6681 }
6682
6683 /*
6684  * Undo whatever state changes are made by v1 or v2 header info
6685  * call.
6686  */
6687 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
6688 {
6689         rbd_dev_parent_put(rbd_dev);
6690         rbd_object_map_free(rbd_dev);
6691         rbd_dev_mapping_clear(rbd_dev);
6692
6693         /* Free dynamic fields from the header, then zero it out */
6694
6695         rbd_image_header_cleanup(&rbd_dev->header);
6696 }
6697
6698 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev,
6699                                      struct rbd_image_header *header)
6700 {
6701         int ret;
6702
6703         ret = rbd_dev_v2_object_prefix(rbd_dev, &header->object_prefix);
6704         if (ret)
6705                 return ret;
6706
6707         /*
6708          * Get the and check features for the image.  Currently the
6709          * features are assumed to never change.
6710          */
6711         ret = _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
6712                                         rbd_is_ro(rbd_dev), &header->features);
6713         if (ret)
6714                 return ret;
6715
6716         /* If the image supports fancy striping, get its parameters */
6717
6718         if (header->features & RBD_FEATURE_STRIPINGV2) {
6719                 ret = rbd_dev_v2_striping_info(rbd_dev, &header->stripe_unit,
6720                                                &header->stripe_count);
6721                 if (ret)
6722                         return ret;
6723         }
6724
6725         if (header->features & RBD_FEATURE_DATA_POOL) {
6726                 ret = rbd_dev_v2_data_pool(rbd_dev, &header->data_pool_id);
6727                 if (ret)
6728                         return ret;
6729         }
6730
6731         return 0;
6732 }
6733
6734 /*
6735  * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
6736  * rbd_dev_image_probe() recursion depth, which means it's also the
6737  * length of the already discovered part of the parent chain.
6738  */
6739 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
6740 {
6741         struct rbd_device *parent = NULL;
6742         int ret;
6743
6744         if (!rbd_dev->parent_spec)
6745                 return 0;
6746
6747         if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
6748                 pr_info("parent chain is too long (%d)\n", depth);
6749                 ret = -EINVAL;
6750                 goto out_err;
6751         }
6752
6753         parent = __rbd_dev_create(rbd_dev->parent_spec);
6754         if (!parent) {
6755                 ret = -ENOMEM;
6756                 goto out_err;
6757         }
6758
6759         /*
6760          * Images related by parent/child relationships always share
6761          * rbd_client and spec/parent_spec, so bump their refcounts.
6762          */
6763         parent->rbd_client = __rbd_get_client(rbd_dev->rbd_client);
6764         parent->spec = rbd_spec_get(rbd_dev->parent_spec);
6765
6766         __set_bit(RBD_DEV_FLAG_READONLY, &parent->flags);
6767
6768         ret = rbd_dev_image_probe(parent, depth);
6769         if (ret < 0)
6770                 goto out_err;
6771
6772         rbd_dev->parent = parent;
6773         atomic_set(&rbd_dev->parent_ref, 1);
6774         return 0;
6775
6776 out_err:
6777         rbd_dev_unparent(rbd_dev);
6778         rbd_dev_destroy(parent);
6779         return ret;
6780 }
6781
6782 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
6783 {
6784         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6785         rbd_free_disk(rbd_dev);
6786         if (!single_major)
6787                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
6788 }
6789
6790 /*
6791  * rbd_dev->header_rwsem must be locked for write and will be unlocked
6792  * upon return.
6793  */
6794 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
6795 {
6796         int ret;
6797
6798         /* Record our major and minor device numbers. */
6799
6800         if (!single_major) {
6801                 ret = register_blkdev(0, rbd_dev->name);
6802                 if (ret < 0)
6803                         goto err_out_unlock;
6804
6805                 rbd_dev->major = ret;
6806                 rbd_dev->minor = 0;
6807         } else {
6808                 rbd_dev->major = rbd_major;
6809                 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
6810         }
6811
6812         /* Set up the blkdev mapping. */
6813
6814         ret = rbd_init_disk(rbd_dev);
6815         if (ret)
6816                 goto err_out_blkdev;
6817
6818         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
6819         set_disk_ro(rbd_dev->disk, rbd_is_ro(rbd_dev));
6820
6821         ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
6822         if (ret)
6823                 goto err_out_disk;
6824
6825         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6826         up_write(&rbd_dev->header_rwsem);
6827         return 0;
6828
6829 err_out_disk:
6830         rbd_free_disk(rbd_dev);
6831 err_out_blkdev:
6832         if (!single_major)
6833                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
6834 err_out_unlock:
6835         up_write(&rbd_dev->header_rwsem);
6836         return ret;
6837 }
6838
6839 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
6840 {
6841         struct rbd_spec *spec = rbd_dev->spec;
6842         int ret;
6843
6844         /* Record the header object name for this rbd image. */
6845
6846         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6847         if (rbd_dev->image_format == 1)
6848                 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6849                                        spec->image_name, RBD_SUFFIX);
6850         else
6851                 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6852                                        RBD_HEADER_PREFIX, spec->image_id);
6853
6854         return ret;
6855 }
6856
6857 static void rbd_print_dne(struct rbd_device *rbd_dev, bool is_snap)
6858 {
6859         if (!is_snap) {
6860                 pr_info("image %s/%s%s%s does not exist\n",
6861                         rbd_dev->spec->pool_name,
6862                         rbd_dev->spec->pool_ns ?: "",
6863                         rbd_dev->spec->pool_ns ? "/" : "",
6864                         rbd_dev->spec->image_name);
6865         } else {
6866                 pr_info("snap %s/%s%s%s@%s does not exist\n",
6867                         rbd_dev->spec->pool_name,
6868                         rbd_dev->spec->pool_ns ?: "",
6869                         rbd_dev->spec->pool_ns ? "/" : "",
6870                         rbd_dev->spec->image_name,
6871                         rbd_dev->spec->snap_name);
6872         }
6873 }
6874
6875 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
6876 {
6877         if (!rbd_is_ro(rbd_dev))
6878                 rbd_unregister_watch(rbd_dev);
6879
6880         rbd_dev_unprobe(rbd_dev);
6881         rbd_dev->image_format = 0;
6882         kfree(rbd_dev->spec->image_id);
6883         rbd_dev->spec->image_id = NULL;
6884 }
6885
6886 /*
6887  * Probe for the existence of the header object for the given rbd
6888  * device.  If this image is the one being mapped (i.e., not a
6889  * parent), initiate a watch on its header object before using that
6890  * object to get detailed information about the rbd image.
6891  *
6892  * On success, returns with header_rwsem held for write if called
6893  * with @depth == 0.
6894  */
6895 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
6896 {
6897         bool need_watch = !rbd_is_ro(rbd_dev);
6898         int ret;
6899
6900         /*
6901          * Get the id from the image id object.  Unless there's an
6902          * error, rbd_dev->spec->image_id will be filled in with
6903          * a dynamically-allocated string, and rbd_dev->image_format
6904          * will be set to either 1 or 2.
6905          */
6906         ret = rbd_dev_image_id(rbd_dev);
6907         if (ret)
6908                 return ret;
6909
6910         ret = rbd_dev_header_name(rbd_dev);
6911         if (ret)
6912                 goto err_out_format;
6913
6914         if (need_watch) {
6915                 ret = rbd_register_watch(rbd_dev);
6916                 if (ret) {
6917                         if (ret == -ENOENT)
6918                                 rbd_print_dne(rbd_dev, false);
6919                         goto err_out_format;
6920                 }
6921         }
6922
6923         if (!depth)
6924                 down_write(&rbd_dev->header_rwsem);
6925
6926         ret = rbd_dev_header_info(rbd_dev, &rbd_dev->header, true);
6927         if (ret) {
6928                 if (ret == -ENOENT && !need_watch)
6929                         rbd_print_dne(rbd_dev, false);
6930                 goto err_out_probe;
6931         }
6932
6933         rbd_init_layout(rbd_dev);
6934
6935         /*
6936          * If this image is the one being mapped, we have pool name and
6937          * id, image name and id, and snap name - need to fill snap id.
6938          * Otherwise this is a parent image, identified by pool, image
6939          * and snap ids - need to fill in names for those ids.
6940          */
6941         if (!depth)
6942                 ret = rbd_spec_fill_snap_id(rbd_dev);
6943         else
6944                 ret = rbd_spec_fill_names(rbd_dev);
6945         if (ret) {
6946                 if (ret == -ENOENT)
6947                         rbd_print_dne(rbd_dev, true);
6948                 goto err_out_probe;
6949         }
6950
6951         ret = rbd_dev_mapping_set(rbd_dev);
6952         if (ret)
6953                 goto err_out_probe;
6954
6955         if (rbd_is_snap(rbd_dev) &&
6956             (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) {
6957                 ret = rbd_object_map_load(rbd_dev);
6958                 if (ret)
6959                         goto err_out_probe;
6960         }
6961
6962         if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
6963                 ret = rbd_dev_setup_parent(rbd_dev);
6964                 if (ret)
6965                         goto err_out_probe;
6966         }
6967
6968         ret = rbd_dev_probe_parent(rbd_dev, depth);
6969         if (ret)
6970                 goto err_out_probe;
6971
6972         dout("discovered format %u image, header name is %s\n",
6973                 rbd_dev->image_format, rbd_dev->header_oid.name);
6974         return 0;
6975
6976 err_out_probe:
6977         if (!depth)
6978                 up_write(&rbd_dev->header_rwsem);
6979         if (need_watch)
6980                 rbd_unregister_watch(rbd_dev);
6981         rbd_dev_unprobe(rbd_dev);
6982 err_out_format:
6983         rbd_dev->image_format = 0;
6984         kfree(rbd_dev->spec->image_id);
6985         rbd_dev->spec->image_id = NULL;
6986         return ret;
6987 }
6988
6989 static void rbd_dev_update_header(struct rbd_device *rbd_dev,
6990                                   struct rbd_image_header *header)
6991 {
6992         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6993         rbd_assert(rbd_dev->header.object_prefix); /* !first_time */
6994
6995         if (rbd_dev->header.image_size != header->image_size) {
6996                 rbd_dev->header.image_size = header->image_size;
6997
6998                 if (!rbd_is_snap(rbd_dev)) {
6999                         rbd_dev->mapping.size = header->image_size;
7000                         rbd_dev_update_size(rbd_dev);
7001                 }
7002         }
7003
7004         ceph_put_snap_context(rbd_dev->header.snapc);
7005         rbd_dev->header.snapc = header->snapc;
7006         header->snapc = NULL;
7007
7008         if (rbd_dev->image_format == 1) {
7009                 kfree(rbd_dev->header.snap_names);
7010                 rbd_dev->header.snap_names = header->snap_names;
7011                 header->snap_names = NULL;
7012
7013                 kfree(rbd_dev->header.snap_sizes);
7014                 rbd_dev->header.snap_sizes = header->snap_sizes;
7015                 header->snap_sizes = NULL;
7016         }
7017 }
7018
7019 static void rbd_dev_update_parent(struct rbd_device *rbd_dev,
7020                                   struct parent_image_info *pii)
7021 {
7022         if (pii->pool_id == CEPH_NOPOOL || !pii->has_overlap) {
7023                 /*
7024                  * Either the parent never existed, or we have
7025                  * record of it but the image got flattened so it no
7026                  * longer has a parent.  When the parent of a
7027                  * layered image disappears we immediately set the
7028                  * overlap to 0.  The effect of this is that all new
7029                  * requests will be treated as if the image had no
7030                  * parent.
7031                  *
7032                  * If !pii.has_overlap, the parent image spec is not
7033                  * applicable.  It's there to avoid duplication in each
7034                  * snapshot record.
7035                  */
7036                 if (rbd_dev->parent_overlap) {
7037                         rbd_dev->parent_overlap = 0;
7038                         rbd_dev_parent_put(rbd_dev);
7039                         pr_info("%s: clone has been flattened\n",
7040                                 rbd_dev->disk->disk_name);
7041                 }
7042         } else {
7043                 rbd_assert(rbd_dev->parent_spec);
7044
7045                 /*
7046                  * Update the parent overlap.  If it became zero, issue
7047                  * a warning as we will proceed as if there is no parent.
7048                  */
7049                 if (!pii->overlap && rbd_dev->parent_overlap)
7050                         rbd_warn(rbd_dev,
7051                                  "clone has become standalone (overlap 0)");
7052                 rbd_dev->parent_overlap = pii->overlap;
7053         }
7054 }
7055
7056 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
7057 {
7058         struct rbd_image_header header = { 0 };
7059         struct parent_image_info pii = { 0 };
7060         int ret;
7061
7062         dout("%s rbd_dev %p\n", __func__, rbd_dev);
7063
7064         ret = rbd_dev_header_info(rbd_dev, &header, false);
7065         if (ret)
7066                 goto out;
7067
7068         /*
7069          * If there is a parent, see if it has disappeared due to the
7070          * mapped image getting flattened.
7071          */
7072         if (rbd_dev->parent) {
7073                 ret = rbd_dev_v2_parent_info(rbd_dev, &pii);
7074                 if (ret)
7075                         goto out;
7076         }
7077
7078         down_write(&rbd_dev->header_rwsem);
7079         rbd_dev_update_header(rbd_dev, &header);
7080         if (rbd_dev->parent)
7081                 rbd_dev_update_parent(rbd_dev, &pii);
7082         up_write(&rbd_dev->header_rwsem);
7083
7084 out:
7085         rbd_parent_info_cleanup(&pii);
7086         rbd_image_header_cleanup(&header);
7087         return ret;
7088 }
7089
7090 static ssize_t do_rbd_add(const char *buf, size_t count)
7091 {
7092         struct rbd_device *rbd_dev = NULL;
7093         struct ceph_options *ceph_opts = NULL;
7094         struct rbd_options *rbd_opts = NULL;
7095         struct rbd_spec *spec = NULL;
7096         struct rbd_client *rbdc;
7097         int rc;
7098
7099         if (!capable(CAP_SYS_ADMIN))
7100                 return -EPERM;
7101
7102         if (!try_module_get(THIS_MODULE))
7103                 return -ENODEV;
7104
7105         /* parse add command */
7106         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
7107         if (rc < 0)
7108                 goto out;
7109
7110         rbdc = rbd_get_client(ceph_opts);
7111         if (IS_ERR(rbdc)) {
7112                 rc = PTR_ERR(rbdc);
7113                 goto err_out_args;
7114         }
7115
7116         /* pick the pool */
7117         rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name);
7118         if (rc < 0) {
7119                 if (rc == -ENOENT)
7120                         pr_info("pool %s does not exist\n", spec->pool_name);
7121                 goto err_out_client;
7122         }
7123         spec->pool_id = (u64)rc;
7124
7125         rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
7126         if (!rbd_dev) {
7127                 rc = -ENOMEM;
7128                 goto err_out_client;
7129         }
7130         rbdc = NULL;            /* rbd_dev now owns this */
7131         spec = NULL;            /* rbd_dev now owns this */
7132         rbd_opts = NULL;        /* rbd_dev now owns this */
7133
7134         /* if we are mapping a snapshot it will be a read-only mapping */
7135         if (rbd_dev->opts->read_only ||
7136             strcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME))
7137                 __set_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
7138
7139         rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
7140         if (!rbd_dev->config_info) {
7141                 rc = -ENOMEM;
7142                 goto err_out_rbd_dev;
7143         }
7144
7145         rc = rbd_dev_image_probe(rbd_dev, 0);
7146         if (rc < 0)
7147                 goto err_out_rbd_dev;
7148
7149         if (rbd_dev->opts->alloc_size > rbd_dev->layout.object_size) {
7150                 rbd_warn(rbd_dev, "alloc_size adjusted to %u",
7151                          rbd_dev->layout.object_size);
7152                 rbd_dev->opts->alloc_size = rbd_dev->layout.object_size;
7153         }
7154
7155         rc = rbd_dev_device_setup(rbd_dev);
7156         if (rc)
7157                 goto err_out_image_probe;
7158
7159         rc = rbd_add_acquire_lock(rbd_dev);
7160         if (rc)
7161                 goto err_out_image_lock;
7162
7163         /* Everything's ready.  Announce the disk to the world. */
7164
7165         rc = device_add(&rbd_dev->dev);
7166         if (rc)
7167                 goto err_out_image_lock;
7168
7169         rc = device_add_disk(&rbd_dev->dev, rbd_dev->disk, NULL);
7170         if (rc)
7171                 goto err_out_cleanup_disk;
7172
7173         spin_lock(&rbd_dev_list_lock);
7174         list_add_tail(&rbd_dev->node, &rbd_dev_list);
7175         spin_unlock(&rbd_dev_list_lock);
7176
7177         pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
7178                 (unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
7179                 rbd_dev->header.features);
7180         rc = count;
7181 out:
7182         module_put(THIS_MODULE);
7183         return rc;
7184
7185 err_out_cleanup_disk:
7186         rbd_free_disk(rbd_dev);
7187 err_out_image_lock:
7188         rbd_dev_image_unlock(rbd_dev);
7189         rbd_dev_device_release(rbd_dev);
7190 err_out_image_probe:
7191         rbd_dev_image_release(rbd_dev);
7192 err_out_rbd_dev:
7193         rbd_dev_destroy(rbd_dev);
7194 err_out_client:
7195         rbd_put_client(rbdc);
7196 err_out_args:
7197         rbd_spec_put(spec);
7198         kfree(rbd_opts);
7199         goto out;
7200 }
7201
7202 static ssize_t add_store(const struct bus_type *bus, const char *buf, size_t count)
7203 {
7204         if (single_major)
7205                 return -EINVAL;
7206
7207         return do_rbd_add(buf, count);
7208 }
7209
7210 static ssize_t add_single_major_store(const struct bus_type *bus, const char *buf,
7211                                       size_t count)
7212 {
7213         return do_rbd_add(buf, count);
7214 }
7215
7216 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
7217 {
7218         while (rbd_dev->parent) {
7219                 struct rbd_device *first = rbd_dev;
7220                 struct rbd_device *second = first->parent;
7221                 struct rbd_device *third;
7222
7223                 /*
7224                  * Follow to the parent with no grandparent and
7225                  * remove it.
7226                  */
7227                 while (second && (third = second->parent)) {
7228                         first = second;
7229                         second = third;
7230                 }
7231                 rbd_assert(second);
7232                 rbd_dev_image_release(second);
7233                 rbd_dev_destroy(second);
7234                 first->parent = NULL;
7235                 first->parent_overlap = 0;
7236
7237                 rbd_assert(first->parent_spec);
7238                 rbd_spec_put(first->parent_spec);
7239                 first->parent_spec = NULL;
7240         }
7241 }
7242
7243 static ssize_t do_rbd_remove(const char *buf, size_t count)
7244 {
7245         struct rbd_device *rbd_dev = NULL;
7246         int dev_id;
7247         char opt_buf[6];
7248         bool force = false;
7249         int ret;
7250
7251         if (!capable(CAP_SYS_ADMIN))
7252                 return -EPERM;
7253
7254         dev_id = -1;
7255         opt_buf[0] = '\0';
7256         sscanf(buf, "%d %5s", &dev_id, opt_buf);
7257         if (dev_id < 0) {
7258                 pr_err("dev_id out of range\n");
7259                 return -EINVAL;
7260         }
7261         if (opt_buf[0] != '\0') {
7262                 if (!strcmp(opt_buf, "force")) {
7263                         force = true;
7264                 } else {
7265                         pr_err("bad remove option at '%s'\n", opt_buf);
7266                         return -EINVAL;
7267                 }
7268         }
7269
7270         ret = -ENOENT;
7271         spin_lock(&rbd_dev_list_lock);
7272         list_for_each_entry(rbd_dev, &rbd_dev_list, node) {
7273                 if (rbd_dev->dev_id == dev_id) {
7274                         ret = 0;
7275                         break;
7276                 }
7277         }
7278         if (!ret) {
7279                 spin_lock_irq(&rbd_dev->lock);
7280                 if (rbd_dev->open_count && !force)
7281                         ret = -EBUSY;
7282                 else if (test_and_set_bit(RBD_DEV_FLAG_REMOVING,
7283                                           &rbd_dev->flags))
7284                         ret = -EINPROGRESS;
7285                 spin_unlock_irq(&rbd_dev->lock);
7286         }
7287         spin_unlock(&rbd_dev_list_lock);
7288         if (ret)
7289                 return ret;
7290
7291         if (force) {
7292                 /*
7293                  * Prevent new IO from being queued and wait for existing
7294                  * IO to complete/fail.
7295                  */
7296                 blk_mq_freeze_queue(rbd_dev->disk->queue);
7297                 blk_mark_disk_dead(rbd_dev->disk);
7298         }
7299
7300         del_gendisk(rbd_dev->disk);
7301         spin_lock(&rbd_dev_list_lock);
7302         list_del_init(&rbd_dev->node);
7303         spin_unlock(&rbd_dev_list_lock);
7304         device_del(&rbd_dev->dev);
7305
7306         rbd_dev_image_unlock(rbd_dev);
7307         rbd_dev_device_release(rbd_dev);
7308         rbd_dev_image_release(rbd_dev);
7309         rbd_dev_destroy(rbd_dev);
7310         return count;
7311 }
7312
7313 static ssize_t remove_store(const struct bus_type *bus, const char *buf, size_t count)
7314 {
7315         if (single_major)
7316                 return -EINVAL;
7317
7318         return do_rbd_remove(buf, count);
7319 }
7320
7321 static ssize_t remove_single_major_store(const struct bus_type *bus, const char *buf,
7322                                          size_t count)
7323 {
7324         return do_rbd_remove(buf, count);
7325 }
7326
7327 /*
7328  * create control files in sysfs
7329  * /sys/bus/rbd/...
7330  */
7331 static int __init rbd_sysfs_init(void)
7332 {
7333         int ret;
7334
7335         ret = device_register(&rbd_root_dev);
7336         if (ret < 0) {
7337                 put_device(&rbd_root_dev);
7338                 return ret;
7339         }
7340
7341         ret = bus_register(&rbd_bus_type);
7342         if (ret < 0)
7343                 device_unregister(&rbd_root_dev);
7344
7345         return ret;
7346 }
7347
7348 static void __exit rbd_sysfs_cleanup(void)
7349 {
7350         bus_unregister(&rbd_bus_type);
7351         device_unregister(&rbd_root_dev);
7352 }
7353
7354 static int __init rbd_slab_init(void)
7355 {
7356         rbd_assert(!rbd_img_request_cache);
7357         rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
7358         if (!rbd_img_request_cache)
7359                 return -ENOMEM;
7360
7361         rbd_assert(!rbd_obj_request_cache);
7362         rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
7363         if (!rbd_obj_request_cache)
7364                 goto out_err;
7365
7366         return 0;
7367
7368 out_err:
7369         kmem_cache_destroy(rbd_img_request_cache);
7370         rbd_img_request_cache = NULL;
7371         return -ENOMEM;
7372 }
7373
7374 static void rbd_slab_exit(void)
7375 {
7376         rbd_assert(rbd_obj_request_cache);
7377         kmem_cache_destroy(rbd_obj_request_cache);
7378         rbd_obj_request_cache = NULL;
7379
7380         rbd_assert(rbd_img_request_cache);
7381         kmem_cache_destroy(rbd_img_request_cache);
7382         rbd_img_request_cache = NULL;
7383 }
7384
7385 static int __init rbd_init(void)
7386 {
7387         int rc;
7388
7389         if (!libceph_compatible(NULL)) {
7390                 rbd_warn(NULL, "libceph incompatibility (quitting)");
7391                 return -EINVAL;
7392         }
7393
7394         rc = rbd_slab_init();
7395         if (rc)
7396                 return rc;
7397
7398         /*
7399          * The number of active work items is limited by the number of
7400          * rbd devices * queue depth, so leave @max_active at default.
7401          */
7402         rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
7403         if (!rbd_wq) {
7404                 rc = -ENOMEM;
7405                 goto err_out_slab;
7406         }
7407
7408         if (single_major) {
7409                 rbd_major = register_blkdev(0, RBD_DRV_NAME);
7410                 if (rbd_major < 0) {
7411                         rc = rbd_major;
7412                         goto err_out_wq;
7413                 }
7414         }
7415
7416         rc = rbd_sysfs_init();
7417         if (rc)
7418                 goto err_out_blkdev;
7419
7420         if (single_major)
7421                 pr_info("loaded (major %d)\n", rbd_major);
7422         else
7423                 pr_info("loaded\n");
7424
7425         return 0;
7426
7427 err_out_blkdev:
7428         if (single_major)
7429                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
7430 err_out_wq:
7431         destroy_workqueue(rbd_wq);
7432 err_out_slab:
7433         rbd_slab_exit();
7434         return rc;
7435 }
7436
7437 static void __exit rbd_exit(void)
7438 {
7439         ida_destroy(&rbd_dev_id_ida);
7440         rbd_sysfs_cleanup();
7441         if (single_major)
7442                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
7443         destroy_workqueue(rbd_wq);
7444         rbd_slab_exit();
7445 }
7446
7447 module_init(rbd_init);
7448 module_exit(rbd_exit);
7449
7450 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
7451 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
7452 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
7453 /* following authorship retained from original osdblk.c */
7454 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
7455
7456 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
7457 MODULE_LICENSE("GPL");