NVMe: Advance the sg pointer when filling in an sg list
[linux-2.6-block.git] / drivers / block / nvme.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17  */
18
19 #include <linux/nvme.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/errno.h>
23 #include <linux/fs.h>
24 #include <linux/genhd.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/kdev_t.h>
29 #include <linux/kernel.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/moduleparam.h>
33 #include <linux/pci.h>
34 #include <linux/poison.h>
35 #include <linux/sched.h>
36 #include <linux/slab.h>
37 #include <linux/types.h>
38 #include <linux/version.h>
39
40 #define NVME_Q_DEPTH 1024
41 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
42 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
43 #define NVME_MINORS 64
44 #define IO_TIMEOUT      (5 * HZ)
45 #define ADMIN_TIMEOUT   (60 * HZ)
46
47 static int nvme_major;
48 module_param(nvme_major, int, 0);
49
50 static int use_threaded_interrupts;
51 module_param(use_threaded_interrupts, int, 0);
52
53 /*
54  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
55  */
56 struct nvme_dev {
57         struct nvme_queue **queues;
58         u32 __iomem *dbs;
59         struct pci_dev *pci_dev;
60         int instance;
61         int queue_count;
62         u32 ctrl_config;
63         struct msix_entry *entry;
64         struct nvme_bar __iomem *bar;
65         struct list_head namespaces;
66         char serial[20];
67         char model[40];
68         char firmware_rev[8];
69 };
70
71 /*
72  * An NVM Express namespace is equivalent to a SCSI LUN
73  */
74 struct nvme_ns {
75         struct list_head list;
76
77         struct nvme_dev *dev;
78         struct request_queue *queue;
79         struct gendisk *disk;
80
81         int ns_id;
82         int lba_shift;
83 };
84
85 /*
86  * An NVM Express queue.  Each device has at least two (one for admin
87  * commands and one for I/O commands).
88  */
89 struct nvme_queue {
90         struct device *q_dmadev;
91         spinlock_t q_lock;
92         struct nvme_command *sq_cmds;
93         volatile struct nvme_completion *cqes;
94         dma_addr_t sq_dma_addr;
95         dma_addr_t cq_dma_addr;
96         wait_queue_head_t sq_full;
97         struct bio_list sq_cong;
98         u32 __iomem *q_db;
99         u16 q_depth;
100         u16 cq_vector;
101         u16 sq_head;
102         u16 sq_tail;
103         u16 cq_head;
104         u16 cq_phase;
105         unsigned long cmdid_data[];
106 };
107
108 static void nvme_resubmit_bio(struct nvme_queue *nvmeq, struct bio *bio);
109
110 /*
111  * Check we didin't inadvertently grow the command struct
112  */
113 static inline void _nvme_check_size(void)
114 {
115         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
116         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
117         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
118         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
119         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
120         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
121         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
122         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
123         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
124 }
125
126 struct nvme_cmd_info {
127         unsigned long ctx;
128         unsigned long timeout;
129 };
130
131 static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
132 {
133         return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
134 }
135
136 /**
137  * alloc_cmdid - Allocate a Command ID
138  * @param nvmeq The queue that will be used for this command
139  * @param ctx A pointer that will be passed to the handler
140  * @param handler The ID of the handler to call
141  *
142  * Allocate a Command ID for a queue.  The data passed in will
143  * be passed to the completion handler.  This is implemented by using
144  * the bottom two bits of the ctx pointer to store the handler ID.
145  * Passing in a pointer that's not 4-byte aligned will cause a BUG.
146  * We can change this if it becomes a problem.
147  */
148 static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx, int handler,
149                                                         unsigned timeout)
150 {
151         int depth = nvmeq->q_depth;
152         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
153         int cmdid;
154
155         BUG_ON((unsigned long)ctx & 3);
156
157         do {
158                 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
159                 if (cmdid >= depth)
160                         return -EBUSY;
161         } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
162
163         info[cmdid].ctx = (unsigned long)ctx | handler;
164         info[cmdid].timeout = jiffies + timeout;
165         return cmdid;
166 }
167
168 static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
169                                                 int handler, unsigned timeout)
170 {
171         int cmdid;
172         wait_event_killable(nvmeq->sq_full,
173                 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
174         return (cmdid < 0) ? -EINTR : cmdid;
175 }
176
177 /* If you need more than four handlers, you'll need to change how
178  * alloc_cmdid and nvme_process_cq work.  Consider using a special
179  * CMD_CTX value instead, if that works for your situation.
180  */
181 enum {
182         sync_completion_id = 0,
183         bio_completion_id,
184 };
185
186 #define CMD_CTX_BASE            (POISON_POINTER_DELTA + sync_completion_id)
187 #define CMD_CTX_CANCELLED       (0x30C + CMD_CTX_BASE)
188 #define CMD_CTX_COMPLETED       (0x310 + CMD_CTX_BASE)
189 #define CMD_CTX_INVALID         (0x314 + CMD_CTX_BASE)
190
191 static unsigned long free_cmdid(struct nvme_queue *nvmeq, int cmdid)
192 {
193         unsigned long data;
194         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
195
196         if (cmdid >= nvmeq->q_depth)
197                 return CMD_CTX_INVALID;
198         data = info[cmdid].ctx;
199         info[cmdid].ctx = CMD_CTX_COMPLETED;
200         clear_bit(cmdid, nvmeq->cmdid_data);
201         wake_up(&nvmeq->sq_full);
202         return data;
203 }
204
205 static void cancel_cmdid_data(struct nvme_queue *nvmeq, int cmdid)
206 {
207         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
208         info[cmdid].ctx = CMD_CTX_CANCELLED;
209 }
210
211 static struct nvme_queue *get_nvmeq(struct nvme_ns *ns)
212 {
213         int qid, cpu = get_cpu();
214         if (cpu < ns->dev->queue_count)
215                 qid = cpu + 1;
216         else
217                 qid = (cpu % rounddown_pow_of_two(ns->dev->queue_count)) + 1;
218         return ns->dev->queues[qid];
219 }
220
221 static void put_nvmeq(struct nvme_queue *nvmeq)
222 {
223         put_cpu();
224 }
225
226 /**
227  * nvme_submit_cmd: Copy a command into a queue and ring the doorbell
228  * @nvmeq: The queue to use
229  * @cmd: The command to send
230  *
231  * Safe to use from interrupt context
232  */
233 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
234 {
235         unsigned long flags;
236         u16 tail;
237         /* XXX: Need to check tail isn't going to overrun head */
238         spin_lock_irqsave(&nvmeq->q_lock, flags);
239         tail = nvmeq->sq_tail;
240         memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
241         writel(tail, nvmeq->q_db);
242         if (++tail == nvmeq->q_depth)
243                 tail = 0;
244         nvmeq->sq_tail = tail;
245         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
246
247         return 0;
248 }
249
250 struct nvme_req_info {
251         struct bio *bio;
252         int nents;
253         struct scatterlist sg[0];
254 };
255
256 /* XXX: use a mempool */
257 static struct nvme_req_info *alloc_info(unsigned nseg, gfp_t gfp)
258 {
259         return kmalloc(sizeof(struct nvme_req_info) +
260                         sizeof(struct scatterlist) * nseg, gfp);
261 }
262
263 static void free_info(struct nvme_req_info *info)
264 {
265         kfree(info);
266 }
267
268 static void bio_completion(struct nvme_queue *nvmeq, void *ctx,
269                                                 struct nvme_completion *cqe)
270 {
271         struct nvme_req_info *info = ctx;
272         struct bio *bio = info->bio;
273         u16 status = le16_to_cpup(&cqe->status) >> 1;
274
275         dma_unmap_sg(nvmeq->q_dmadev, info->sg, info->nents,
276                         bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
277         free_info(info);
278         bio_endio(bio, status ? -EIO : 0);
279         bio = bio_list_pop(&nvmeq->sq_cong);
280         if (bio)
281                 nvme_resubmit_bio(nvmeq, bio);
282 }
283
284 /* length is in bytes */
285 static void nvme_setup_prps(struct nvme_common_command *cmd,
286                                         struct scatterlist *sg, int length)
287 {
288         int dma_len = sg_dma_len(sg);
289         u64 dma_addr = sg_dma_address(sg);
290         int offset = offset_in_page(dma_addr);
291
292         cmd->prp1 = cpu_to_le64(dma_addr);
293         length -= (PAGE_SIZE - offset);
294         if (length <= 0)
295                 return;
296
297         dma_len -= (PAGE_SIZE - offset);
298         if (dma_len) {
299                 dma_addr += (PAGE_SIZE - offset);
300         } else {
301                 sg = sg_next(sg);
302                 dma_addr = sg_dma_address(sg);
303                 dma_len = sg_dma_len(sg);
304         }
305
306         if (length <= PAGE_SIZE) {
307                 cmd->prp2 = cpu_to_le64(dma_addr);
308                 return;
309         }
310
311         /* XXX: support PRP lists */
312 }
313
314 static int nvme_map_bio(struct device *dev, struct nvme_req_info *info,
315                 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
316 {
317         struct bio_vec *bvec;
318         struct scatterlist *sg = info->sg;
319         int i, nsegs;
320
321         sg_init_table(sg, psegs);
322         bio_for_each_segment(bvec, bio, i) {
323                 sg_set_page(sg, bvec->bv_page, bvec->bv_len, bvec->bv_offset);
324                 sg++;
325                 /* XXX: handle non-mergable here */
326                 nsegs++;
327         }
328         info->nents = nsegs;
329
330         return dma_map_sg(dev, info->sg, info->nents, dma_dir);
331 }
332
333 static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
334                                                                 struct bio *bio)
335 {
336         struct nvme_command *cmnd;
337         struct nvme_req_info *info;
338         enum dma_data_direction dma_dir;
339         int cmdid;
340         u16 control;
341         u32 dsmgmt;
342         unsigned long flags;
343         int psegs = bio_phys_segments(ns->queue, bio);
344
345         info = alloc_info(psegs, GFP_NOIO);
346         if (!info)
347                 goto congestion;
348         info->bio = bio;
349
350         cmdid = alloc_cmdid(nvmeq, info, bio_completion_id, IO_TIMEOUT);
351         if (unlikely(cmdid < 0))
352                 goto free_info;
353
354         control = 0;
355         if (bio->bi_rw & REQ_FUA)
356                 control |= NVME_RW_FUA;
357         if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
358                 control |= NVME_RW_LR;
359
360         dsmgmt = 0;
361         if (bio->bi_rw & REQ_RAHEAD)
362                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
363
364         spin_lock_irqsave(&nvmeq->q_lock, flags);
365         cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
366
367         memset(cmnd, 0, sizeof(*cmnd));
368         if (bio_data_dir(bio)) {
369                 cmnd->rw.opcode = nvme_cmd_write;
370                 dma_dir = DMA_TO_DEVICE;
371         } else {
372                 cmnd->rw.opcode = nvme_cmd_read;
373                 dma_dir = DMA_FROM_DEVICE;
374         }
375
376         nvme_map_bio(nvmeq->q_dmadev, info, bio, dma_dir, psegs);
377
378         cmnd->rw.flags = 1;
379         cmnd->rw.command_id = cmdid;
380         cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
381         nvme_setup_prps(&cmnd->common, info->sg, bio->bi_size);
382         cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
383         cmnd->rw.length = cpu_to_le16((bio->bi_size >> ns->lba_shift) - 1);
384         cmnd->rw.control = cpu_to_le16(control);
385         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
386
387         writel(nvmeq->sq_tail, nvmeq->q_db);
388         if (++nvmeq->sq_tail == nvmeq->q_depth)
389                 nvmeq->sq_tail = 0;
390
391         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
392
393         return 0;
394
395  free_info:
396         free_info(info);
397  congestion:
398         return -EBUSY;
399 }
400
401 static void nvme_resubmit_bio(struct nvme_queue *nvmeq, struct bio *bio)
402 {
403         struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
404         if (nvme_submit_bio_queue(nvmeq, ns, bio))
405                 bio_list_add_head(&nvmeq->sq_cong, bio);
406         else if (bio_list_empty(&nvmeq->sq_cong))
407                 blk_clear_queue_congested(ns->queue, rw_is_sync(bio->bi_rw));
408         /* XXX: Need to duplicate the logic from __freed_request here */
409 }
410
411 /*
412  * NB: return value of non-zero would mean that we were a stacking driver.
413  * make_request must always succeed.
414  */
415 static int nvme_make_request(struct request_queue *q, struct bio *bio)
416 {
417         struct nvme_ns *ns = q->queuedata;
418         struct nvme_queue *nvmeq = get_nvmeq(ns);
419
420         if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
421                 blk_set_queue_congested(q, rw_is_sync(bio->bi_rw));
422                 spin_lock_irq(&nvmeq->q_lock);
423                 bio_list_add(&nvmeq->sq_cong, bio);
424                 spin_unlock_irq(&nvmeq->q_lock);
425         }
426         put_nvmeq(nvmeq);
427
428         return 0;
429 }
430
431 struct sync_cmd_info {
432         struct task_struct *task;
433         u32 result;
434         int status;
435 };
436
437 static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
438                                                 struct nvme_completion *cqe)
439 {
440         struct sync_cmd_info *cmdinfo = ctx;
441         if ((unsigned long)cmdinfo == CMD_CTX_CANCELLED)
442                 return;
443         if (unlikely((unsigned long)cmdinfo == CMD_CTX_COMPLETED)) {
444                 dev_warn(nvmeq->q_dmadev,
445                                 "completed id %d twice on queue %d\n",
446                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
447                 return;
448         }
449         if (unlikely((unsigned long)cmdinfo == CMD_CTX_INVALID)) {
450                 dev_warn(nvmeq->q_dmadev,
451                                 "invalid id %d completed on queue %d\n",
452                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
453                 return;
454         }
455         cmdinfo->result = le32_to_cpup(&cqe->result);
456         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
457         wake_up_process(cmdinfo->task);
458 }
459
460 typedef void (*completion_fn)(struct nvme_queue *, void *,
461                                                 struct nvme_completion *);
462
463 static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
464 {
465         u16 head, phase;
466
467         static const completion_fn completions[4] = {
468                 [sync_completion_id] = sync_completion,
469                 [bio_completion_id]  = bio_completion,
470         };
471
472         head = nvmeq->cq_head;
473         phase = nvmeq->cq_phase;
474
475         for (;;) {
476                 unsigned long data;
477                 void *ptr;
478                 unsigned char handler;
479                 struct nvme_completion cqe = nvmeq->cqes[head];
480                 if ((le16_to_cpu(cqe.status) & 1) != phase)
481                         break;
482                 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
483                 if (++head == nvmeq->q_depth) {
484                         head = 0;
485                         phase = !phase;
486                 }
487
488                 data = free_cmdid(nvmeq, cqe.command_id);
489                 handler = data & 3;
490                 ptr = (void *)(data & ~3UL);
491                 completions[handler](nvmeq, ptr, &cqe);
492         }
493
494         /* If the controller ignores the cq head doorbell and continuously
495          * writes to the queue, it is theoretically possible to wrap around
496          * the queue twice and mistakenly return IRQ_NONE.  Linux only
497          * requires that 0.1% of your interrupts are handled, so this isn't
498          * a big problem.
499          */
500         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
501                 return IRQ_NONE;
502
503         writel(head, nvmeq->q_db + 1);
504         nvmeq->cq_head = head;
505         nvmeq->cq_phase = phase;
506
507         return IRQ_HANDLED;
508 }
509
510 static irqreturn_t nvme_irq(int irq, void *data)
511 {
512         irqreturn_t result;
513         struct nvme_queue *nvmeq = data;
514         spin_lock(&nvmeq->q_lock);
515         result = nvme_process_cq(nvmeq);
516         spin_unlock(&nvmeq->q_lock);
517         return result;
518 }
519
520 static irqreturn_t nvme_irq_check(int irq, void *data)
521 {
522         struct nvme_queue *nvmeq = data;
523         struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
524         if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
525                 return IRQ_NONE;
526         return IRQ_WAKE_THREAD;
527 }
528
529 static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
530 {
531         spin_lock_irq(&nvmeq->q_lock);
532         cancel_cmdid_data(nvmeq, cmdid);
533         spin_unlock_irq(&nvmeq->q_lock);
534 }
535
536 /*
537  * Returns 0 on success.  If the result is negative, it's a Linux error code;
538  * if the result is positive, it's an NVM Express status code
539  */
540 static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
541                         struct nvme_command *cmd, u32 *result, unsigned timeout)
542 {
543         int cmdid;
544         struct sync_cmd_info cmdinfo;
545
546         cmdinfo.task = current;
547         cmdinfo.status = -EINTR;
548
549         cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion_id,
550                                                                 timeout);
551         if (cmdid < 0)
552                 return cmdid;
553         cmd->common.command_id = cmdid;
554
555         set_current_state(TASK_KILLABLE);
556         nvme_submit_cmd(nvmeq, cmd);
557         schedule();
558
559         if (cmdinfo.status == -EINTR) {
560                 nvme_abort_command(nvmeq, cmdid);
561                 return -EINTR;
562         }
563
564         if (result)
565                 *result = cmdinfo.result;
566
567         return cmdinfo.status;
568 }
569
570 static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
571                                                                 u32 *result)
572 {
573         return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
574 }
575
576 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
577 {
578         int status;
579         struct nvme_command c;
580
581         memset(&c, 0, sizeof(c));
582         c.delete_queue.opcode = opcode;
583         c.delete_queue.qid = cpu_to_le16(id);
584
585         status = nvme_submit_admin_cmd(dev, &c, NULL);
586         if (status)
587                 return -EIO;
588         return 0;
589 }
590
591 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
592                                                 struct nvme_queue *nvmeq)
593 {
594         int status;
595         struct nvme_command c;
596         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
597
598         memset(&c, 0, sizeof(c));
599         c.create_cq.opcode = nvme_admin_create_cq;
600         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
601         c.create_cq.cqid = cpu_to_le16(qid);
602         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
603         c.create_cq.cq_flags = cpu_to_le16(flags);
604         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
605
606         status = nvme_submit_admin_cmd(dev, &c, NULL);
607         if (status)
608                 return -EIO;
609         return 0;
610 }
611
612 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
613                                                 struct nvme_queue *nvmeq)
614 {
615         int status;
616         struct nvme_command c;
617         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
618
619         memset(&c, 0, sizeof(c));
620         c.create_sq.opcode = nvme_admin_create_sq;
621         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
622         c.create_sq.sqid = cpu_to_le16(qid);
623         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
624         c.create_sq.sq_flags = cpu_to_le16(flags);
625         c.create_sq.cqid = cpu_to_le16(qid);
626
627         status = nvme_submit_admin_cmd(dev, &c, NULL);
628         if (status)
629                 return -EIO;
630         return 0;
631 }
632
633 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
634 {
635         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
636 }
637
638 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
639 {
640         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
641 }
642
643 static void nvme_free_queue(struct nvme_dev *dev, int qid)
644 {
645         struct nvme_queue *nvmeq = dev->queues[qid];
646
647         free_irq(dev->entry[nvmeq->cq_vector].vector, nvmeq);
648
649         /* Don't tell the adapter to delete the admin queue */
650         if (qid) {
651                 adapter_delete_sq(dev, qid);
652                 adapter_delete_cq(dev, qid);
653         }
654
655         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
656                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
657         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
658                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
659         kfree(nvmeq);
660 }
661
662 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
663                                                         int depth, int vector)
664 {
665         struct device *dmadev = &dev->pci_dev->dev;
666         unsigned extra = (depth / 8) + (depth * sizeof(struct nvme_cmd_info));
667         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
668         if (!nvmeq)
669                 return NULL;
670
671         nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
672                                         &nvmeq->cq_dma_addr, GFP_KERNEL);
673         if (!nvmeq->cqes)
674                 goto free_nvmeq;
675         memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
676
677         nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
678                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
679         if (!nvmeq->sq_cmds)
680                 goto free_cqdma;
681
682         nvmeq->q_dmadev = dmadev;
683         spin_lock_init(&nvmeq->q_lock);
684         nvmeq->cq_head = 0;
685         nvmeq->cq_phase = 1;
686         init_waitqueue_head(&nvmeq->sq_full);
687         bio_list_init(&nvmeq->sq_cong);
688         nvmeq->q_db = &dev->dbs[qid * 2];
689         nvmeq->q_depth = depth;
690         nvmeq->cq_vector = vector;
691
692         return nvmeq;
693
694  free_cqdma:
695         dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
696                                                         nvmeq->cq_dma_addr);
697  free_nvmeq:
698         kfree(nvmeq);
699         return NULL;
700 }
701
702 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
703                                                         const char *name)
704 {
705         if (use_threaded_interrupts)
706                 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
707                                         nvme_irq_check, nvme_irq,
708                                         IRQF_DISABLED | IRQF_SHARED,
709                                         name, nvmeq);
710         return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
711                                 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
712 }
713
714 static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
715                                         int qid, int cq_size, int vector)
716 {
717         int result;
718         struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
719
720         if (!nvmeq)
721                 return NULL;
722
723         result = adapter_alloc_cq(dev, qid, nvmeq);
724         if (result < 0)
725                 goto free_nvmeq;
726
727         result = adapter_alloc_sq(dev, qid, nvmeq);
728         if (result < 0)
729                 goto release_cq;
730
731         result = queue_request_irq(dev, nvmeq, "nvme");
732         if (result < 0)
733                 goto release_sq;
734
735         return nvmeq;
736
737  release_sq:
738         adapter_delete_sq(dev, qid);
739  release_cq:
740         adapter_delete_cq(dev, qid);
741  free_nvmeq:
742         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
743                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
744         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
745                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
746         kfree(nvmeq);
747         return NULL;
748 }
749
750 static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
751 {
752         int result;
753         u32 aqa;
754         struct nvme_queue *nvmeq;
755
756         dev->dbs = ((void __iomem *)dev->bar) + 4096;
757
758         nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
759         if (!nvmeq)
760                 return -ENOMEM;
761
762         aqa = nvmeq->q_depth - 1;
763         aqa |= aqa << 16;
764
765         dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
766         dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
767         dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
768
769         writel(0, &dev->bar->cc);
770         writel(aqa, &dev->bar->aqa);
771         writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
772         writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
773         writel(dev->ctrl_config, &dev->bar->cc);
774
775         while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
776                 msleep(100);
777                 if (fatal_signal_pending(current))
778                         return -EINTR;
779         }
780
781         result = queue_request_irq(dev, nvmeq, "nvme admin");
782         dev->queues[0] = nvmeq;
783         return result;
784 }
785
786 static int nvme_map_user_pages(struct nvme_dev *dev, int write,
787                                 unsigned long addr, unsigned length,
788                                 struct scatterlist **sgp)
789 {
790         int i, err, count, nents, offset;
791         struct scatterlist *sg;
792         struct page **pages;
793
794         if (addr & 3)
795                 return -EINVAL;
796         if (!length)
797                 return -EINVAL;
798
799         offset = offset_in_page(addr);
800         count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
801         pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
802
803         err = get_user_pages_fast(addr, count, 1, pages);
804         if (err < count) {
805                 count = err;
806                 err = -EFAULT;
807                 goto put_pages;
808         }
809
810         sg = kcalloc(count, sizeof(*sg), GFP_KERNEL);
811         sg_init_table(sg, count);
812         sg_set_page(&sg[0], pages[0], PAGE_SIZE - offset, offset);
813         length -= (PAGE_SIZE - offset);
814         for (i = 1; i < count; i++) {
815                 sg_set_page(&sg[i], pages[i], min_t(int, length, PAGE_SIZE), 0);
816                 length -= PAGE_SIZE;
817         }
818
819         err = -ENOMEM;
820         nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
821                                 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
822         if (!nents)
823                 goto put_pages;
824
825         kfree(pages);
826         *sgp = sg;
827         return nents;
828
829  put_pages:
830         for (i = 0; i < count; i++)
831                 put_page(pages[i]);
832         kfree(pages);
833         return err;
834 }
835
836 static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
837                                 unsigned long addr, int length,
838                                 struct scatterlist *sg, int nents)
839 {
840         int i, count;
841
842         count = DIV_ROUND_UP(offset_in_page(addr) + length, PAGE_SIZE);
843         dma_unmap_sg(&dev->pci_dev->dev, sg, nents, DMA_FROM_DEVICE);
844
845         for (i = 0; i < count; i++)
846                 put_page(sg_page(&sg[i]));
847 }
848
849 static int nvme_submit_user_admin_command(struct nvme_dev *dev,
850                                         unsigned long addr, unsigned length,
851                                         struct nvme_command *cmd)
852 {
853         int err, nents;
854         struct scatterlist *sg;
855
856         nents = nvme_map_user_pages(dev, 0, addr, length, &sg);
857         if (nents < 0)
858                 return nents;
859         nvme_setup_prps(&cmd->common, sg, length);
860         err = nvme_submit_admin_cmd(dev, cmd, NULL);
861         nvme_unmap_user_pages(dev, 0, addr, length, sg, nents);
862         return err ? -EIO : 0;
863 }
864
865 static int nvme_identify(struct nvme_ns *ns, unsigned long addr, int cns)
866 {
867         struct nvme_command c;
868
869         memset(&c, 0, sizeof(c));
870         c.identify.opcode = nvme_admin_identify;
871         c.identify.nsid = cns ? 0 : cpu_to_le32(ns->ns_id);
872         c.identify.cns = cpu_to_le32(cns);
873
874         return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
875 }
876
877 static int nvme_get_range_type(struct nvme_ns *ns, unsigned long addr)
878 {
879         struct nvme_command c;
880
881         memset(&c, 0, sizeof(c));
882         c.features.opcode = nvme_admin_get_features;
883         c.features.nsid = cpu_to_le32(ns->ns_id);
884         c.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
885
886         return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
887 }
888
889 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
890 {
891         struct nvme_dev *dev = ns->dev;
892         struct nvme_queue *nvmeq;
893         struct nvme_user_io io;
894         struct nvme_command c;
895         unsigned length;
896         u32 result;
897         int nents, status;
898         struct scatterlist *sg;
899
900         if (copy_from_user(&io, uio, sizeof(io)))
901                 return -EFAULT;
902         length = io.nblocks << io.block_shift;
903         nents = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length, &sg);
904         if (nents < 0)
905                 return nents;
906
907         memset(&c, 0, sizeof(c));
908         c.rw.opcode = io.opcode;
909         c.rw.flags = io.flags;
910         c.rw.nsid = cpu_to_le32(io.nsid);
911         c.rw.slba = cpu_to_le64(io.slba);
912         c.rw.length = cpu_to_le16(io.nblocks - 1);
913         c.rw.control = cpu_to_le16(io.control);
914         c.rw.dsmgmt = cpu_to_le16(io.dsmgmt);
915         c.rw.reftag = cpu_to_le32(io.reftag);   /* XXX: endian? */
916         c.rw.apptag = cpu_to_le16(io.apptag);
917         c.rw.appmask = cpu_to_le16(io.appmask);
918         /* XXX: metadata */
919         nvme_setup_prps(&c.common, sg, length);
920
921         nvmeq = get_nvmeq(ns);
922         /* Since nvme_submit_sync_cmd sleeps, we can't keep preemption
923          * disabled.  We may be preempted at any point, and be rescheduled
924          * to a different CPU.  That will cause cacheline bouncing, but no
925          * additional races since q_lock already protects against other CPUs.
926          */
927         put_nvmeq(nvmeq);
928         status = nvme_submit_sync_cmd(nvmeq, &c, &result, IO_TIMEOUT);
929
930         nvme_unmap_user_pages(dev, io.opcode & 1, io.addr, length, sg, nents);
931         put_user(result, &uio->result);
932         return status;
933 }
934
935 static int nvme_download_firmware(struct nvme_ns *ns,
936                                                 struct nvme_dlfw __user *udlfw)
937 {
938         struct nvme_dev *dev = ns->dev;
939         struct nvme_dlfw dlfw;
940         struct nvme_command c;
941         int nents, status;
942         struct scatterlist *sg;
943
944         if (copy_from_user(&dlfw, udlfw, sizeof(dlfw)))
945                 return -EFAULT;
946         if (dlfw.length >= (1 << 30))
947                 return -EINVAL;
948
949         nents = nvme_map_user_pages(dev, 1, dlfw.addr, dlfw.length * 4, &sg);
950         if (nents < 0)
951                 return nents;
952
953         memset(&c, 0, sizeof(c));
954         c.dlfw.opcode = nvme_admin_download_fw;
955         c.dlfw.numd = cpu_to_le32(dlfw.length);
956         c.dlfw.offset = cpu_to_le32(dlfw.offset);
957         nvme_setup_prps(&c.common, sg, dlfw.length * 4);
958
959         status = nvme_submit_admin_cmd(dev, &c, NULL);
960         nvme_unmap_user_pages(dev, 0, dlfw.addr, dlfw.length * 4, sg, nents);
961         return status;
962 }
963
964 static int nvme_activate_firmware(struct nvme_ns *ns, unsigned long arg)
965 {
966         struct nvme_dev *dev = ns->dev;
967         struct nvme_command c;
968
969         memset(&c, 0, sizeof(c));
970         c.common.opcode = nvme_admin_activate_fw;
971         c.common.rsvd10[0] = cpu_to_le32(arg);
972
973         return nvme_submit_admin_cmd(dev, &c, NULL);
974 }
975
976 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
977                                                         unsigned long arg)
978 {
979         struct nvme_ns *ns = bdev->bd_disk->private_data;
980
981         switch (cmd) {
982         case NVME_IOCTL_IDENTIFY_NS:
983                 return nvme_identify(ns, arg, 0);
984         case NVME_IOCTL_IDENTIFY_CTRL:
985                 return nvme_identify(ns, arg, 1);
986         case NVME_IOCTL_GET_RANGE_TYPE:
987                 return nvme_get_range_type(ns, arg);
988         case NVME_IOCTL_SUBMIT_IO:
989                 return nvme_submit_io(ns, (void __user *)arg);
990         case NVME_IOCTL_DOWNLOAD_FW:
991                 return nvme_download_firmware(ns, (void __user *)arg);
992         case NVME_IOCTL_ACTIVATE_FW:
993                 return nvme_activate_firmware(ns, arg);
994         default:
995                 return -ENOTTY;
996         }
997 }
998
999 static const struct block_device_operations nvme_fops = {
1000         .owner          = THIS_MODULE,
1001         .ioctl          = nvme_ioctl,
1002 };
1003
1004 static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int index,
1005                         struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1006 {
1007         struct nvme_ns *ns;
1008         struct gendisk *disk;
1009         int lbaf;
1010
1011         if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1012                 return NULL;
1013
1014         ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1015         if (!ns)
1016                 return NULL;
1017         ns->queue = blk_alloc_queue(GFP_KERNEL);
1018         if (!ns->queue)
1019                 goto out_free_ns;
1020         ns->queue->queue_flags = QUEUE_FLAG_DEFAULT | QUEUE_FLAG_NOMERGES |
1021                                 QUEUE_FLAG_NONROT | QUEUE_FLAG_DISCARD;
1022         blk_queue_make_request(ns->queue, nvme_make_request);
1023         ns->dev = dev;
1024         ns->queue->queuedata = ns;
1025
1026         disk = alloc_disk(NVME_MINORS);
1027         if (!disk)
1028                 goto out_free_queue;
1029         ns->ns_id = index;
1030         ns->disk = disk;
1031         lbaf = id->flbas & 0xf;
1032         ns->lba_shift = id->lbaf[lbaf].ds;
1033
1034         disk->major = nvme_major;
1035         disk->minors = NVME_MINORS;
1036         disk->first_minor = NVME_MINORS * index;
1037         disk->fops = &nvme_fops;
1038         disk->private_data = ns;
1039         disk->queue = ns->queue;
1040         disk->driverfs_dev = &dev->pci_dev->dev;
1041         sprintf(disk->disk_name, "nvme%dn%d", dev->instance, index);
1042         set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1043
1044         return ns;
1045
1046  out_free_queue:
1047         blk_cleanup_queue(ns->queue);
1048  out_free_ns:
1049         kfree(ns);
1050         return NULL;
1051 }
1052
1053 static void nvme_ns_free(struct nvme_ns *ns)
1054 {
1055         put_disk(ns->disk);
1056         blk_cleanup_queue(ns->queue);
1057         kfree(ns);
1058 }
1059
1060 static int set_queue_count(struct nvme_dev *dev, int count)
1061 {
1062         int status;
1063         u32 result;
1064         struct nvme_command c;
1065         u32 q_count = (count - 1) | ((count - 1) << 16);
1066
1067         memset(&c, 0, sizeof(c));
1068         c.features.opcode = nvme_admin_get_features;
1069         c.features.fid = cpu_to_le32(NVME_FEAT_NUM_QUEUES);
1070         c.features.dword11 = cpu_to_le32(q_count);
1071
1072         status = nvme_submit_admin_cmd(dev, &c, &result);
1073         if (status)
1074                 return -EIO;
1075         return min(result & 0xffff, result >> 16) + 1;
1076 }
1077
1078 static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
1079 {
1080         int result, cpu, i, nr_queues;
1081
1082         nr_queues = num_online_cpus();
1083         result = set_queue_count(dev, nr_queues);
1084         if (result < 0)
1085                 return result;
1086         if (result < nr_queues)
1087                 nr_queues = result;
1088
1089         /* Deregister the admin queue's interrupt */
1090         free_irq(dev->entry[0].vector, dev->queues[0]);
1091
1092         for (i = 0; i < nr_queues; i++)
1093                 dev->entry[i].entry = i;
1094         for (;;) {
1095                 result = pci_enable_msix(dev->pci_dev, dev->entry, nr_queues);
1096                 if (result == 0) {
1097                         break;
1098                 } else if (result > 0) {
1099                         nr_queues = result;
1100                         continue;
1101                 } else {
1102                         nr_queues = 1;
1103                         break;
1104                 }
1105         }
1106
1107         result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1108         /* XXX: handle failure here */
1109
1110         cpu = cpumask_first(cpu_online_mask);
1111         for (i = 0; i < nr_queues; i++) {
1112                 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1113                 cpu = cpumask_next(cpu, cpu_online_mask);
1114         }
1115
1116         for (i = 0; i < nr_queues; i++) {
1117                 dev->queues[i + 1] = nvme_create_queue(dev, i + 1,
1118                                                         NVME_Q_DEPTH, i);
1119                 if (!dev->queues[i + 1])
1120                         return -ENOMEM;
1121                 dev->queue_count++;
1122         }
1123
1124         return 0;
1125 }
1126
1127 static void nvme_free_queues(struct nvme_dev *dev)
1128 {
1129         int i;
1130
1131         for (i = dev->queue_count - 1; i >= 0; i--)
1132                 nvme_free_queue(dev, i);
1133 }
1134
1135 static int __devinit nvme_dev_add(struct nvme_dev *dev)
1136 {
1137         int res, nn, i;
1138         struct nvme_ns *ns, *next;
1139         struct nvme_id_ctrl *ctrl;
1140         void *id;
1141         dma_addr_t dma_addr;
1142         struct nvme_command cid, crt;
1143
1144         res = nvme_setup_io_queues(dev);
1145         if (res)
1146                 return res;
1147
1148         /* XXX: Switch to a SG list once prp2 works */
1149         id = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1150                                                                 GFP_KERNEL);
1151
1152         memset(&cid, 0, sizeof(cid));
1153         cid.identify.opcode = nvme_admin_identify;
1154         cid.identify.nsid = 0;
1155         cid.identify.prp1 = cpu_to_le64(dma_addr);
1156         cid.identify.cns = cpu_to_le32(1);
1157
1158         res = nvme_submit_admin_cmd(dev, &cid, NULL);
1159         if (res) {
1160                 res = -EIO;
1161                 goto out_free;
1162         }
1163
1164         ctrl = id;
1165         nn = le32_to_cpup(&ctrl->nn);
1166         memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1167         memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1168         memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
1169
1170         cid.identify.cns = 0;
1171         memset(&crt, 0, sizeof(crt));
1172         crt.features.opcode = nvme_admin_get_features;
1173         crt.features.prp1 = cpu_to_le64(dma_addr + 4096);
1174         crt.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
1175
1176         for (i = 0; i < nn; i++) {
1177                 cid.identify.nsid = cpu_to_le32(i);
1178                 res = nvme_submit_admin_cmd(dev, &cid, NULL);
1179                 if (res)
1180                         continue;
1181
1182                 if (((struct nvme_id_ns *)id)->ncap == 0)
1183                         continue;
1184
1185                 crt.features.nsid = cpu_to_le32(i);
1186                 res = nvme_submit_admin_cmd(dev, &crt, NULL);
1187                 if (res)
1188                         continue;
1189
1190                 ns = nvme_alloc_ns(dev, i, id, id + 4096);
1191                 if (ns)
1192                         list_add_tail(&ns->list, &dev->namespaces);
1193         }
1194         list_for_each_entry(ns, &dev->namespaces, list)
1195                 add_disk(ns->disk);
1196
1197         dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1198         return 0;
1199
1200  out_free:
1201         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1202                 list_del(&ns->list);
1203                 nvme_ns_free(ns);
1204         }
1205
1206         dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1207         return res;
1208 }
1209
1210 static int nvme_dev_remove(struct nvme_dev *dev)
1211 {
1212         struct nvme_ns *ns, *next;
1213
1214         /* TODO: wait all I/O finished or cancel them */
1215
1216         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1217                 list_del(&ns->list);
1218                 del_gendisk(ns->disk);
1219                 nvme_ns_free(ns);
1220         }
1221
1222         nvme_free_queues(dev);
1223
1224         return 0;
1225 }
1226
1227 /* XXX: Use an ida or something to let remove / add work correctly */
1228 static void nvme_set_instance(struct nvme_dev *dev)
1229 {
1230         static int instance;
1231         dev->instance = instance++;
1232 }
1233
1234 static void nvme_release_instance(struct nvme_dev *dev)
1235 {
1236 }
1237
1238 static int __devinit nvme_probe(struct pci_dev *pdev,
1239                                                 const struct pci_device_id *id)
1240 {
1241         int bars, result = -ENOMEM;
1242         struct nvme_dev *dev;
1243
1244         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1245         if (!dev)
1246                 return -ENOMEM;
1247         dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1248                                                                 GFP_KERNEL);
1249         if (!dev->entry)
1250                 goto free;
1251         dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1252                                                                 GFP_KERNEL);
1253         if (!dev->queues)
1254                 goto free;
1255
1256         if (pci_enable_device_mem(pdev))
1257                 goto free;
1258         pci_set_master(pdev);
1259         bars = pci_select_bars(pdev, IORESOURCE_MEM);
1260         if (pci_request_selected_regions(pdev, bars, "nvme"))
1261                 goto disable;
1262
1263         INIT_LIST_HEAD(&dev->namespaces);
1264         dev->pci_dev = pdev;
1265         pci_set_drvdata(pdev, dev);
1266         dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1267         dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1268         nvme_set_instance(dev);
1269         dev->entry[0].vector = pdev->irq;
1270
1271         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1272         if (!dev->bar) {
1273                 result = -ENOMEM;
1274                 goto disable_msix;
1275         }
1276
1277         result = nvme_configure_admin_queue(dev);
1278         if (result)
1279                 goto unmap;
1280         dev->queue_count++;
1281
1282         result = nvme_dev_add(dev);
1283         if (result)
1284                 goto delete;
1285         return 0;
1286
1287  delete:
1288         nvme_free_queues(dev);
1289  unmap:
1290         iounmap(dev->bar);
1291  disable_msix:
1292         pci_disable_msix(pdev);
1293         nvme_release_instance(dev);
1294  disable:
1295         pci_disable_device(pdev);
1296         pci_release_regions(pdev);
1297  free:
1298         kfree(dev->queues);
1299         kfree(dev->entry);
1300         kfree(dev);
1301         return result;
1302 }
1303
1304 static void __devexit nvme_remove(struct pci_dev *pdev)
1305 {
1306         struct nvme_dev *dev = pci_get_drvdata(pdev);
1307         nvme_dev_remove(dev);
1308         pci_disable_msix(pdev);
1309         iounmap(dev->bar);
1310         nvme_release_instance(dev);
1311         pci_disable_device(pdev);
1312         pci_release_regions(pdev);
1313         kfree(dev->queues);
1314         kfree(dev->entry);
1315         kfree(dev);
1316 }
1317
1318 /* These functions are yet to be implemented */
1319 #define nvme_error_detected NULL
1320 #define nvme_dump_registers NULL
1321 #define nvme_link_reset NULL
1322 #define nvme_slot_reset NULL
1323 #define nvme_error_resume NULL
1324 #define nvme_suspend NULL
1325 #define nvme_resume NULL
1326
1327 static struct pci_error_handlers nvme_err_handler = {
1328         .error_detected = nvme_error_detected,
1329         .mmio_enabled   = nvme_dump_registers,
1330         .link_reset     = nvme_link_reset,
1331         .slot_reset     = nvme_slot_reset,
1332         .resume         = nvme_error_resume,
1333 };
1334
1335 /* Move to pci_ids.h later */
1336 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
1337
1338 static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1339         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1340         { 0, }
1341 };
1342 MODULE_DEVICE_TABLE(pci, nvme_id_table);
1343
1344 static struct pci_driver nvme_driver = {
1345         .name           = "nvme",
1346         .id_table       = nvme_id_table,
1347         .probe          = nvme_probe,
1348         .remove         = __devexit_p(nvme_remove),
1349         .suspend        = nvme_suspend,
1350         .resume         = nvme_resume,
1351         .err_handler    = &nvme_err_handler,
1352 };
1353
1354 static int __init nvme_init(void)
1355 {
1356         int result;
1357
1358         nvme_major = register_blkdev(nvme_major, "nvme");
1359         if (nvme_major <= 0)
1360                 return -EBUSY;
1361
1362         result = pci_register_driver(&nvme_driver);
1363         if (!result)
1364                 return 0;
1365
1366         unregister_blkdev(nvme_major, "nvme");
1367         return result;
1368 }
1369
1370 static void __exit nvme_exit(void)
1371 {
1372         pci_unregister_driver(&nvme_driver);
1373         unregister_blkdev(nvme_major, "nvme");
1374 }
1375
1376 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1377 MODULE_LICENSE("GPL");
1378 MODULE_VERSION("0.2");
1379 module_init(nvme_init);
1380 module_exit(nvme_exit);