NVMe: Check for DMA mapping failure
[linux-2.6-block.git] / drivers / block / nvme.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17  */
18
19 #include <linux/nvme.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/errno.h>
23 #include <linux/fs.h>
24 #include <linux/genhd.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/kdev_t.h>
29 #include <linux/kernel.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/moduleparam.h>
33 #include <linux/pci.h>
34 #include <linux/poison.h>
35 #include <linux/sched.h>
36 #include <linux/slab.h>
37 #include <linux/types.h>
38 #include <linux/version.h>
39
40 #define NVME_Q_DEPTH 1024
41 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
42 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
43 #define NVME_MINORS 64
44 #define IO_TIMEOUT      (5 * HZ)
45 #define ADMIN_TIMEOUT   (60 * HZ)
46
47 static int nvme_major;
48 module_param(nvme_major, int, 0);
49
50 static int use_threaded_interrupts;
51 module_param(use_threaded_interrupts, int, 0);
52
53 /*
54  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
55  */
56 struct nvme_dev {
57         struct nvme_queue **queues;
58         u32 __iomem *dbs;
59         struct pci_dev *pci_dev;
60         struct dma_pool *prp_page_pool;
61         struct dma_pool *prp_small_pool;
62         int instance;
63         int queue_count;
64         u32 ctrl_config;
65         struct msix_entry *entry;
66         struct nvme_bar __iomem *bar;
67         struct list_head namespaces;
68         char serial[20];
69         char model[40];
70         char firmware_rev[8];
71 };
72
73 /*
74  * An NVM Express namespace is equivalent to a SCSI LUN
75  */
76 struct nvme_ns {
77         struct list_head list;
78
79         struct nvme_dev *dev;
80         struct request_queue *queue;
81         struct gendisk *disk;
82
83         int ns_id;
84         int lba_shift;
85 };
86
87 /*
88  * An NVM Express queue.  Each device has at least two (one for admin
89  * commands and one for I/O commands).
90  */
91 struct nvme_queue {
92         struct device *q_dmadev;
93         struct nvme_dev *dev;
94         spinlock_t q_lock;
95         struct nvme_command *sq_cmds;
96         volatile struct nvme_completion *cqes;
97         dma_addr_t sq_dma_addr;
98         dma_addr_t cq_dma_addr;
99         wait_queue_head_t sq_full;
100         struct bio_list sq_cong;
101         u32 __iomem *q_db;
102         u16 q_depth;
103         u16 cq_vector;
104         u16 sq_head;
105         u16 sq_tail;
106         u16 cq_head;
107         u16 cq_phase;
108         unsigned long cmdid_data[];
109 };
110
111 static void nvme_resubmit_bio(struct nvme_queue *nvmeq, struct bio *bio);
112
113 /*
114  * Check we didin't inadvertently grow the command struct
115  */
116 static inline void _nvme_check_size(void)
117 {
118         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
119         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
120         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
121         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
122         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
123         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
124         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
125         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
126         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
127 }
128
129 struct nvme_cmd_info {
130         unsigned long ctx;
131         unsigned long timeout;
132 };
133
134 static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
135 {
136         return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
137 }
138
139 /**
140  * alloc_cmdid - Allocate a Command ID
141  * @param nvmeq The queue that will be used for this command
142  * @param ctx A pointer that will be passed to the handler
143  * @param handler The ID of the handler to call
144  *
145  * Allocate a Command ID for a queue.  The data passed in will
146  * be passed to the completion handler.  This is implemented by using
147  * the bottom two bits of the ctx pointer to store the handler ID.
148  * Passing in a pointer that's not 4-byte aligned will cause a BUG.
149  * We can change this if it becomes a problem.
150  */
151 static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx, int handler,
152                                                         unsigned timeout)
153 {
154         int depth = nvmeq->q_depth;
155         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
156         int cmdid;
157
158         BUG_ON((unsigned long)ctx & 3);
159
160         do {
161                 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
162                 if (cmdid >= depth)
163                         return -EBUSY;
164         } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
165
166         info[cmdid].ctx = (unsigned long)ctx | handler;
167         info[cmdid].timeout = jiffies + timeout;
168         return cmdid;
169 }
170
171 static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
172                                                 int handler, unsigned timeout)
173 {
174         int cmdid;
175         wait_event_killable(nvmeq->sq_full,
176                 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
177         return (cmdid < 0) ? -EINTR : cmdid;
178 }
179
180 /* If you need more than four handlers, you'll need to change how
181  * alloc_cmdid and nvme_process_cq work.  Consider using a special
182  * CMD_CTX value instead, if that works for your situation.
183  */
184 enum {
185         sync_completion_id = 0,
186         bio_completion_id,
187 };
188
189 #define CMD_CTX_BASE            (POISON_POINTER_DELTA + sync_completion_id)
190 #define CMD_CTX_CANCELLED       (0x30C + CMD_CTX_BASE)
191 #define CMD_CTX_COMPLETED       (0x310 + CMD_CTX_BASE)
192 #define CMD_CTX_INVALID         (0x314 + CMD_CTX_BASE)
193
194 static unsigned long free_cmdid(struct nvme_queue *nvmeq, int cmdid)
195 {
196         unsigned long data;
197         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
198
199         if (cmdid >= nvmeq->q_depth)
200                 return CMD_CTX_INVALID;
201         data = info[cmdid].ctx;
202         info[cmdid].ctx = CMD_CTX_COMPLETED;
203         clear_bit(cmdid, nvmeq->cmdid_data);
204         wake_up(&nvmeq->sq_full);
205         return data;
206 }
207
208 static void cancel_cmdid_data(struct nvme_queue *nvmeq, int cmdid)
209 {
210         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
211         info[cmdid].ctx = CMD_CTX_CANCELLED;
212 }
213
214 static struct nvme_queue *get_nvmeq(struct nvme_ns *ns)
215 {
216         int qid, cpu = get_cpu();
217         if (cpu < ns->dev->queue_count)
218                 qid = cpu + 1;
219         else
220                 qid = (cpu % rounddown_pow_of_two(ns->dev->queue_count)) + 1;
221         return ns->dev->queues[qid];
222 }
223
224 static void put_nvmeq(struct nvme_queue *nvmeq)
225 {
226         put_cpu();
227 }
228
229 /**
230  * nvme_submit_cmd: Copy a command into a queue and ring the doorbell
231  * @nvmeq: The queue to use
232  * @cmd: The command to send
233  *
234  * Safe to use from interrupt context
235  */
236 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
237 {
238         unsigned long flags;
239         u16 tail;
240         /* XXX: Need to check tail isn't going to overrun head */
241         spin_lock_irqsave(&nvmeq->q_lock, flags);
242         tail = nvmeq->sq_tail;
243         memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
244         writel(tail, nvmeq->q_db);
245         if (++tail == nvmeq->q_depth)
246                 tail = 0;
247         nvmeq->sq_tail = tail;
248         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
249
250         return 0;
251 }
252
253 struct nvme_prps {
254         int npages;
255         dma_addr_t first_dma;
256         __le64 *list[0];
257 };
258
259 static void nvme_free_prps(struct nvme_dev *dev, struct nvme_prps *prps)
260 {
261         const int last_prp = PAGE_SIZE / 8 - 1;
262         int i;
263         dma_addr_t prp_dma;
264
265         if (!prps)
266                 return;
267
268         prp_dma = prps->first_dma;
269
270         if (prps->npages == 0)
271                 dma_pool_free(dev->prp_small_pool, prps->list[0], prp_dma);
272         for (i = 0; i < prps->npages; i++) {
273                 __le64 *prp_list = prps->list[i];
274                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
275                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
276                 prp_dma = next_prp_dma;
277         }
278         kfree(prps);
279 }
280
281 struct nvme_bio {
282         struct bio *bio;
283         int nents;
284         struct nvme_prps *prps;
285         struct scatterlist sg[0];
286 };
287
288 /* XXX: use a mempool */
289 static struct nvme_bio *alloc_nbio(unsigned nseg, gfp_t gfp)
290 {
291         return kzalloc(sizeof(struct nvme_bio) +
292                         sizeof(struct scatterlist) * nseg, gfp);
293 }
294
295 static void free_nbio(struct nvme_queue *nvmeq, struct nvme_bio *nbio)
296 {
297         nvme_free_prps(nvmeq->dev, nbio->prps);
298         kfree(nbio);
299 }
300
301 static void bio_completion(struct nvme_queue *nvmeq, void *ctx,
302                                                 struct nvme_completion *cqe)
303 {
304         struct nvme_bio *nbio = ctx;
305         struct bio *bio = nbio->bio;
306         u16 status = le16_to_cpup(&cqe->status) >> 1;
307
308         dma_unmap_sg(nvmeq->q_dmadev, nbio->sg, nbio->nents,
309                         bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
310         free_nbio(nvmeq, nbio);
311         bio_endio(bio, status ? -EIO : 0);
312         bio = bio_list_pop(&nvmeq->sq_cong);
313         if (bio)
314                 nvme_resubmit_bio(nvmeq, bio);
315 }
316
317 /* length is in bytes */
318 static struct nvme_prps *nvme_setup_prps(struct nvme_dev *dev,
319                                         struct nvme_common_command *cmd,
320                                         struct scatterlist *sg, int length)
321 {
322         struct dma_pool *pool;
323         int dma_len = sg_dma_len(sg);
324         u64 dma_addr = sg_dma_address(sg);
325         int offset = offset_in_page(dma_addr);
326         __le64 *prp_list;
327         dma_addr_t prp_dma;
328         int nprps, npages, i, prp_page;
329         struct nvme_prps *prps = NULL;
330
331         cmd->prp1 = cpu_to_le64(dma_addr);
332         length -= (PAGE_SIZE - offset);
333         if (length <= 0)
334                 return prps;
335
336         dma_len -= (PAGE_SIZE - offset);
337         if (dma_len) {
338                 dma_addr += (PAGE_SIZE - offset);
339         } else {
340                 sg = sg_next(sg);
341                 dma_addr = sg_dma_address(sg);
342                 dma_len = sg_dma_len(sg);
343         }
344
345         if (length <= PAGE_SIZE) {
346                 cmd->prp2 = cpu_to_le64(dma_addr);
347                 return prps;
348         }
349
350         nprps = DIV_ROUND_UP(length, PAGE_SIZE);
351         npages = DIV_ROUND_UP(8 * nprps, PAGE_SIZE);
352         prps = kmalloc(sizeof(*prps) + sizeof(__le64 *) * npages, GFP_ATOMIC);
353         prp_page = 0;
354         if (nprps <= (256 / 8)) {
355                 pool = dev->prp_small_pool;
356                 prps->npages = 0;
357         } else {
358                 pool = dev->prp_page_pool;
359                 prps->npages = npages;
360         }
361
362         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
363         prps->list[prp_page++] = prp_list;
364         prps->first_dma = prp_dma;
365         cmd->prp2 = cpu_to_le64(prp_dma);
366         i = 0;
367         for (;;) {
368                 if (i == PAGE_SIZE / 8 - 1) {
369                         __le64 *old_prp_list = prp_list;
370                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
371                         prps->list[prp_page++] = prp_list;
372                         old_prp_list[i] = cpu_to_le64(prp_dma);
373                         i = 0;
374                 }
375                 prp_list[i++] = cpu_to_le64(dma_addr);
376                 dma_len -= PAGE_SIZE;
377                 dma_addr += PAGE_SIZE;
378                 length -= PAGE_SIZE;
379                 if (length <= 0)
380                         break;
381                 if (dma_len > 0)
382                         continue;
383                 BUG_ON(dma_len < 0);
384                 sg = sg_next(sg);
385                 dma_addr = sg_dma_address(sg);
386                 dma_len = sg_dma_len(sg);
387         }
388
389         return prps;
390 }
391
392 static int nvme_map_bio(struct device *dev, struct nvme_bio *nbio,
393                 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
394 {
395         struct bio_vec *bvec;
396         struct scatterlist *sg = nbio->sg;
397         int i, nsegs;
398
399         sg_init_table(sg, psegs);
400         bio_for_each_segment(bvec, bio, i) {
401                 sg_set_page(sg, bvec->bv_page, bvec->bv_len, bvec->bv_offset);
402                 sg++;
403                 /* XXX: handle non-mergable here */
404                 nsegs++;
405         }
406         nbio->nents = nsegs;
407
408         return dma_map_sg(dev, nbio->sg, nbio->nents, dma_dir);
409 }
410
411 static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
412                                                                 struct bio *bio)
413 {
414         struct nvme_command *cmnd;
415         struct nvme_bio *nbio;
416         enum dma_data_direction dma_dir;
417         int cmdid;
418         u16 control;
419         u32 dsmgmt;
420         unsigned long flags;
421         int psegs = bio_phys_segments(ns->queue, bio);
422
423         nbio = alloc_nbio(psegs, GFP_NOIO);
424         if (!nbio)
425                 goto congestion;
426         nbio->bio = bio;
427
428         cmdid = alloc_cmdid(nvmeq, nbio, bio_completion_id, IO_TIMEOUT);
429         if (unlikely(cmdid < 0))
430                 goto free_nbio;
431
432         control = 0;
433         if (bio->bi_rw & REQ_FUA)
434                 control |= NVME_RW_FUA;
435         if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
436                 control |= NVME_RW_LR;
437
438         dsmgmt = 0;
439         if (bio->bi_rw & REQ_RAHEAD)
440                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
441
442         spin_lock_irqsave(&nvmeq->q_lock, flags);
443         cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
444
445         memset(cmnd, 0, sizeof(*cmnd));
446         if (bio_data_dir(bio)) {
447                 cmnd->rw.opcode = nvme_cmd_write;
448                 dma_dir = DMA_TO_DEVICE;
449         } else {
450                 cmnd->rw.opcode = nvme_cmd_read;
451                 dma_dir = DMA_FROM_DEVICE;
452         }
453
454         if (nvme_map_bio(nvmeq->q_dmadev, nbio, bio, dma_dir, psegs) == 0)
455                 goto mapping_failed;
456
457         cmnd->rw.flags = 1;
458         cmnd->rw.command_id = cmdid;
459         cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
460         nbio->prps = nvme_setup_prps(nvmeq->dev, &cmnd->common, nbio->sg,
461                                                                 bio->bi_size);
462         cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
463         cmnd->rw.length = cpu_to_le16((bio->bi_size >> ns->lba_shift) - 1);
464         cmnd->rw.control = cpu_to_le16(control);
465         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
466
467         writel(nvmeq->sq_tail, nvmeq->q_db);
468         if (++nvmeq->sq_tail == nvmeq->q_depth)
469                 nvmeq->sq_tail = 0;
470
471         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
472
473         return 0;
474
475  mapping_failed:
476         free_nbio(nvmeq, nbio);
477         bio_endio(bio, -ENOMEM);
478         return 0;
479
480  free_nbio:
481         free_nbio(nvmeq, nbio);
482  congestion:
483         return -EBUSY;
484 }
485
486 static void nvme_resubmit_bio(struct nvme_queue *nvmeq, struct bio *bio)
487 {
488         struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
489         if (nvme_submit_bio_queue(nvmeq, ns, bio))
490                 bio_list_add_head(&nvmeq->sq_cong, bio);
491         else if (bio_list_empty(&nvmeq->sq_cong))
492                 blk_clear_queue_congested(ns->queue, rw_is_sync(bio->bi_rw));
493         /* XXX: Need to duplicate the logic from __freed_request here */
494 }
495
496 /*
497  * NB: return value of non-zero would mean that we were a stacking driver.
498  * make_request must always succeed.
499  */
500 static int nvme_make_request(struct request_queue *q, struct bio *bio)
501 {
502         struct nvme_ns *ns = q->queuedata;
503         struct nvme_queue *nvmeq = get_nvmeq(ns);
504
505         if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
506                 blk_set_queue_congested(q, rw_is_sync(bio->bi_rw));
507                 spin_lock_irq(&nvmeq->q_lock);
508                 bio_list_add(&nvmeq->sq_cong, bio);
509                 spin_unlock_irq(&nvmeq->q_lock);
510         }
511         put_nvmeq(nvmeq);
512
513         return 0;
514 }
515
516 struct sync_cmd_info {
517         struct task_struct *task;
518         u32 result;
519         int status;
520 };
521
522 static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
523                                                 struct nvme_completion *cqe)
524 {
525         struct sync_cmd_info *cmdinfo = ctx;
526         if ((unsigned long)cmdinfo == CMD_CTX_CANCELLED)
527                 return;
528         if (unlikely((unsigned long)cmdinfo == CMD_CTX_COMPLETED)) {
529                 dev_warn(nvmeq->q_dmadev,
530                                 "completed id %d twice on queue %d\n",
531                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
532                 return;
533         }
534         if (unlikely((unsigned long)cmdinfo == CMD_CTX_INVALID)) {
535                 dev_warn(nvmeq->q_dmadev,
536                                 "invalid id %d completed on queue %d\n",
537                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
538                 return;
539         }
540         cmdinfo->result = le32_to_cpup(&cqe->result);
541         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
542         wake_up_process(cmdinfo->task);
543 }
544
545 typedef void (*completion_fn)(struct nvme_queue *, void *,
546                                                 struct nvme_completion *);
547
548 static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
549 {
550         u16 head, phase;
551
552         static const completion_fn completions[4] = {
553                 [sync_completion_id] = sync_completion,
554                 [bio_completion_id]  = bio_completion,
555         };
556
557         head = nvmeq->cq_head;
558         phase = nvmeq->cq_phase;
559
560         for (;;) {
561                 unsigned long data;
562                 void *ptr;
563                 unsigned char handler;
564                 struct nvme_completion cqe = nvmeq->cqes[head];
565                 if ((le16_to_cpu(cqe.status) & 1) != phase)
566                         break;
567                 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
568                 if (++head == nvmeq->q_depth) {
569                         head = 0;
570                         phase = !phase;
571                 }
572
573                 data = free_cmdid(nvmeq, cqe.command_id);
574                 handler = data & 3;
575                 ptr = (void *)(data & ~3UL);
576                 completions[handler](nvmeq, ptr, &cqe);
577         }
578
579         /* If the controller ignores the cq head doorbell and continuously
580          * writes to the queue, it is theoretically possible to wrap around
581          * the queue twice and mistakenly return IRQ_NONE.  Linux only
582          * requires that 0.1% of your interrupts are handled, so this isn't
583          * a big problem.
584          */
585         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
586                 return IRQ_NONE;
587
588         writel(head, nvmeq->q_db + 1);
589         nvmeq->cq_head = head;
590         nvmeq->cq_phase = phase;
591
592         return IRQ_HANDLED;
593 }
594
595 static irqreturn_t nvme_irq(int irq, void *data)
596 {
597         irqreturn_t result;
598         struct nvme_queue *nvmeq = data;
599         spin_lock(&nvmeq->q_lock);
600         result = nvme_process_cq(nvmeq);
601         spin_unlock(&nvmeq->q_lock);
602         return result;
603 }
604
605 static irqreturn_t nvme_irq_check(int irq, void *data)
606 {
607         struct nvme_queue *nvmeq = data;
608         struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
609         if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
610                 return IRQ_NONE;
611         return IRQ_WAKE_THREAD;
612 }
613
614 static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
615 {
616         spin_lock_irq(&nvmeq->q_lock);
617         cancel_cmdid_data(nvmeq, cmdid);
618         spin_unlock_irq(&nvmeq->q_lock);
619 }
620
621 /*
622  * Returns 0 on success.  If the result is negative, it's a Linux error code;
623  * if the result is positive, it's an NVM Express status code
624  */
625 static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
626                         struct nvme_command *cmd, u32 *result, unsigned timeout)
627 {
628         int cmdid;
629         struct sync_cmd_info cmdinfo;
630
631         cmdinfo.task = current;
632         cmdinfo.status = -EINTR;
633
634         cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion_id,
635                                                                 timeout);
636         if (cmdid < 0)
637                 return cmdid;
638         cmd->common.command_id = cmdid;
639
640         set_current_state(TASK_KILLABLE);
641         nvme_submit_cmd(nvmeq, cmd);
642         schedule();
643
644         if (cmdinfo.status == -EINTR) {
645                 nvme_abort_command(nvmeq, cmdid);
646                 return -EINTR;
647         }
648
649         if (result)
650                 *result = cmdinfo.result;
651
652         return cmdinfo.status;
653 }
654
655 static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
656                                                                 u32 *result)
657 {
658         return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
659 }
660
661 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
662 {
663         int status;
664         struct nvme_command c;
665
666         memset(&c, 0, sizeof(c));
667         c.delete_queue.opcode = opcode;
668         c.delete_queue.qid = cpu_to_le16(id);
669
670         status = nvme_submit_admin_cmd(dev, &c, NULL);
671         if (status)
672                 return -EIO;
673         return 0;
674 }
675
676 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
677                                                 struct nvme_queue *nvmeq)
678 {
679         int status;
680         struct nvme_command c;
681         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
682
683         memset(&c, 0, sizeof(c));
684         c.create_cq.opcode = nvme_admin_create_cq;
685         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
686         c.create_cq.cqid = cpu_to_le16(qid);
687         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
688         c.create_cq.cq_flags = cpu_to_le16(flags);
689         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
690
691         status = nvme_submit_admin_cmd(dev, &c, NULL);
692         if (status)
693                 return -EIO;
694         return 0;
695 }
696
697 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
698                                                 struct nvme_queue *nvmeq)
699 {
700         int status;
701         struct nvme_command c;
702         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
703
704         memset(&c, 0, sizeof(c));
705         c.create_sq.opcode = nvme_admin_create_sq;
706         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
707         c.create_sq.sqid = cpu_to_le16(qid);
708         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
709         c.create_sq.sq_flags = cpu_to_le16(flags);
710         c.create_sq.cqid = cpu_to_le16(qid);
711
712         status = nvme_submit_admin_cmd(dev, &c, NULL);
713         if (status)
714                 return -EIO;
715         return 0;
716 }
717
718 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
719 {
720         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
721 }
722
723 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
724 {
725         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
726 }
727
728 static void nvme_free_queue(struct nvme_dev *dev, int qid)
729 {
730         struct nvme_queue *nvmeq = dev->queues[qid];
731
732         free_irq(dev->entry[nvmeq->cq_vector].vector, nvmeq);
733
734         /* Don't tell the adapter to delete the admin queue */
735         if (qid) {
736                 adapter_delete_sq(dev, qid);
737                 adapter_delete_cq(dev, qid);
738         }
739
740         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
741                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
742         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
743                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
744         kfree(nvmeq);
745 }
746
747 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
748                                                         int depth, int vector)
749 {
750         struct device *dmadev = &dev->pci_dev->dev;
751         unsigned extra = (depth / 8) + (depth * sizeof(struct nvme_cmd_info));
752         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
753         if (!nvmeq)
754                 return NULL;
755
756         nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
757                                         &nvmeq->cq_dma_addr, GFP_KERNEL);
758         if (!nvmeq->cqes)
759                 goto free_nvmeq;
760         memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
761
762         nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
763                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
764         if (!nvmeq->sq_cmds)
765                 goto free_cqdma;
766
767         nvmeq->q_dmadev = dmadev;
768         nvmeq->dev = dev;
769         spin_lock_init(&nvmeq->q_lock);
770         nvmeq->cq_head = 0;
771         nvmeq->cq_phase = 1;
772         init_waitqueue_head(&nvmeq->sq_full);
773         bio_list_init(&nvmeq->sq_cong);
774         nvmeq->q_db = &dev->dbs[qid * 2];
775         nvmeq->q_depth = depth;
776         nvmeq->cq_vector = vector;
777
778         return nvmeq;
779
780  free_cqdma:
781         dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
782                                                         nvmeq->cq_dma_addr);
783  free_nvmeq:
784         kfree(nvmeq);
785         return NULL;
786 }
787
788 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
789                                                         const char *name)
790 {
791         if (use_threaded_interrupts)
792                 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
793                                         nvme_irq_check, nvme_irq,
794                                         IRQF_DISABLED | IRQF_SHARED,
795                                         name, nvmeq);
796         return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
797                                 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
798 }
799
800 static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
801                                         int qid, int cq_size, int vector)
802 {
803         int result;
804         struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
805
806         if (!nvmeq)
807                 return NULL;
808
809         result = adapter_alloc_cq(dev, qid, nvmeq);
810         if (result < 0)
811                 goto free_nvmeq;
812
813         result = adapter_alloc_sq(dev, qid, nvmeq);
814         if (result < 0)
815                 goto release_cq;
816
817         result = queue_request_irq(dev, nvmeq, "nvme");
818         if (result < 0)
819                 goto release_sq;
820
821         return nvmeq;
822
823  release_sq:
824         adapter_delete_sq(dev, qid);
825  release_cq:
826         adapter_delete_cq(dev, qid);
827  free_nvmeq:
828         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
829                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
830         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
831                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
832         kfree(nvmeq);
833         return NULL;
834 }
835
836 static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
837 {
838         int result;
839         u32 aqa;
840         struct nvme_queue *nvmeq;
841
842         dev->dbs = ((void __iomem *)dev->bar) + 4096;
843
844         nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
845         if (!nvmeq)
846                 return -ENOMEM;
847
848         aqa = nvmeq->q_depth - 1;
849         aqa |= aqa << 16;
850
851         dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
852         dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
853         dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
854
855         writel(0, &dev->bar->cc);
856         writel(aqa, &dev->bar->aqa);
857         writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
858         writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
859         writel(dev->ctrl_config, &dev->bar->cc);
860
861         while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
862                 msleep(100);
863                 if (fatal_signal_pending(current))
864                         return -EINTR;
865         }
866
867         result = queue_request_irq(dev, nvmeq, "nvme admin");
868         dev->queues[0] = nvmeq;
869         return result;
870 }
871
872 static int nvme_map_user_pages(struct nvme_dev *dev, int write,
873                                 unsigned long addr, unsigned length,
874                                 struct scatterlist **sgp)
875 {
876         int i, err, count, nents, offset;
877         struct scatterlist *sg;
878         struct page **pages;
879
880         if (addr & 3)
881                 return -EINVAL;
882         if (!length)
883                 return -EINVAL;
884
885         offset = offset_in_page(addr);
886         count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
887         pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
888
889         err = get_user_pages_fast(addr, count, 1, pages);
890         if (err < count) {
891                 count = err;
892                 err = -EFAULT;
893                 goto put_pages;
894         }
895
896         sg = kcalloc(count, sizeof(*sg), GFP_KERNEL);
897         sg_init_table(sg, count);
898         sg_set_page(&sg[0], pages[0], PAGE_SIZE - offset, offset);
899         length -= (PAGE_SIZE - offset);
900         for (i = 1; i < count; i++) {
901                 sg_set_page(&sg[i], pages[i], min_t(int, length, PAGE_SIZE), 0);
902                 length -= PAGE_SIZE;
903         }
904
905         err = -ENOMEM;
906         nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
907                                 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
908         if (!nents)
909                 goto put_pages;
910
911         kfree(pages);
912         *sgp = sg;
913         return nents;
914
915  put_pages:
916         for (i = 0; i < count; i++)
917                 put_page(pages[i]);
918         kfree(pages);
919         return err;
920 }
921
922 static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
923                                 unsigned long addr, int length,
924                                 struct scatterlist *sg, int nents)
925 {
926         int i, count;
927
928         count = DIV_ROUND_UP(offset_in_page(addr) + length, PAGE_SIZE);
929         dma_unmap_sg(&dev->pci_dev->dev, sg, nents, DMA_FROM_DEVICE);
930
931         for (i = 0; i < count; i++)
932                 put_page(sg_page(&sg[i]));
933 }
934
935 static int nvme_submit_user_admin_command(struct nvme_dev *dev,
936                                         unsigned long addr, unsigned length,
937                                         struct nvme_command *cmd)
938 {
939         int err, nents;
940         struct scatterlist *sg;
941         struct nvme_prps *prps;
942
943         nents = nvme_map_user_pages(dev, 0, addr, length, &sg);
944         if (nents < 0)
945                 return nents;
946         prps = nvme_setup_prps(dev, &cmd->common, sg, length);
947         err = nvme_submit_admin_cmd(dev, cmd, NULL);
948         nvme_unmap_user_pages(dev, 0, addr, length, sg, nents);
949         nvme_free_prps(dev, prps);
950         return err ? -EIO : 0;
951 }
952
953 static int nvme_identify(struct nvme_ns *ns, unsigned long addr, int cns)
954 {
955         struct nvme_command c;
956
957         memset(&c, 0, sizeof(c));
958         c.identify.opcode = nvme_admin_identify;
959         c.identify.nsid = cns ? 0 : cpu_to_le32(ns->ns_id);
960         c.identify.cns = cpu_to_le32(cns);
961
962         return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
963 }
964
965 static int nvme_get_range_type(struct nvme_ns *ns, unsigned long addr)
966 {
967         struct nvme_command c;
968
969         memset(&c, 0, sizeof(c));
970         c.features.opcode = nvme_admin_get_features;
971         c.features.nsid = cpu_to_le32(ns->ns_id);
972         c.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
973
974         return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
975 }
976
977 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
978 {
979         struct nvme_dev *dev = ns->dev;
980         struct nvme_queue *nvmeq;
981         struct nvme_user_io io;
982         struct nvme_command c;
983         unsigned length;
984         u32 result;
985         int nents, status;
986         struct scatterlist *sg;
987         struct nvme_prps *prps;
988
989         if (copy_from_user(&io, uio, sizeof(io)))
990                 return -EFAULT;
991         length = io.nblocks << io.block_shift;
992         nents = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length, &sg);
993         if (nents < 0)
994                 return nents;
995
996         memset(&c, 0, sizeof(c));
997         c.rw.opcode = io.opcode;
998         c.rw.flags = io.flags;
999         c.rw.nsid = cpu_to_le32(io.nsid);
1000         c.rw.slba = cpu_to_le64(io.slba);
1001         c.rw.length = cpu_to_le16(io.nblocks - 1);
1002         c.rw.control = cpu_to_le16(io.control);
1003         c.rw.dsmgmt = cpu_to_le16(io.dsmgmt);
1004         c.rw.reftag = cpu_to_le32(io.reftag);   /* XXX: endian? */
1005         c.rw.apptag = cpu_to_le16(io.apptag);
1006         c.rw.appmask = cpu_to_le16(io.appmask);
1007         /* XXX: metadata */
1008         prps = nvme_setup_prps(dev, &c.common, sg, length);
1009
1010         nvmeq = get_nvmeq(ns);
1011         /* Since nvme_submit_sync_cmd sleeps, we can't keep preemption
1012          * disabled.  We may be preempted at any point, and be rescheduled
1013          * to a different CPU.  That will cause cacheline bouncing, but no
1014          * additional races since q_lock already protects against other CPUs.
1015          */
1016         put_nvmeq(nvmeq);
1017         status = nvme_submit_sync_cmd(nvmeq, &c, &result, IO_TIMEOUT);
1018
1019         nvme_unmap_user_pages(dev, io.opcode & 1, io.addr, length, sg, nents);
1020         nvme_free_prps(dev, prps);
1021         put_user(result, &uio->result);
1022         return status;
1023 }
1024
1025 static int nvme_download_firmware(struct nvme_ns *ns,
1026                                                 struct nvme_dlfw __user *udlfw)
1027 {
1028         struct nvme_dev *dev = ns->dev;
1029         struct nvme_dlfw dlfw;
1030         struct nvme_command c;
1031         int nents, status;
1032         struct scatterlist *sg;
1033         struct nvme_prps *prps;
1034
1035         if (copy_from_user(&dlfw, udlfw, sizeof(dlfw)))
1036                 return -EFAULT;
1037         if (dlfw.length >= (1 << 30))
1038                 return -EINVAL;
1039
1040         nents = nvme_map_user_pages(dev, 1, dlfw.addr, dlfw.length * 4, &sg);
1041         if (nents < 0)
1042                 return nents;
1043
1044         memset(&c, 0, sizeof(c));
1045         c.dlfw.opcode = nvme_admin_download_fw;
1046         c.dlfw.numd = cpu_to_le32(dlfw.length);
1047         c.dlfw.offset = cpu_to_le32(dlfw.offset);
1048         prps = nvme_setup_prps(dev, &c.common, sg, dlfw.length * 4);
1049
1050         status = nvme_submit_admin_cmd(dev, &c, NULL);
1051         nvme_unmap_user_pages(dev, 0, dlfw.addr, dlfw.length * 4, sg, nents);
1052         nvme_free_prps(dev, prps);
1053         return status;
1054 }
1055
1056 static int nvme_activate_firmware(struct nvme_ns *ns, unsigned long arg)
1057 {
1058         struct nvme_dev *dev = ns->dev;
1059         struct nvme_command c;
1060
1061         memset(&c, 0, sizeof(c));
1062         c.common.opcode = nvme_admin_activate_fw;
1063         c.common.rsvd10[0] = cpu_to_le32(arg);
1064
1065         return nvme_submit_admin_cmd(dev, &c, NULL);
1066 }
1067
1068 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1069                                                         unsigned long arg)
1070 {
1071         struct nvme_ns *ns = bdev->bd_disk->private_data;
1072
1073         switch (cmd) {
1074         case NVME_IOCTL_IDENTIFY_NS:
1075                 return nvme_identify(ns, arg, 0);
1076         case NVME_IOCTL_IDENTIFY_CTRL:
1077                 return nvme_identify(ns, arg, 1);
1078         case NVME_IOCTL_GET_RANGE_TYPE:
1079                 return nvme_get_range_type(ns, arg);
1080         case NVME_IOCTL_SUBMIT_IO:
1081                 return nvme_submit_io(ns, (void __user *)arg);
1082         case NVME_IOCTL_DOWNLOAD_FW:
1083                 return nvme_download_firmware(ns, (void __user *)arg);
1084         case NVME_IOCTL_ACTIVATE_FW:
1085                 return nvme_activate_firmware(ns, arg);
1086         default:
1087                 return -ENOTTY;
1088         }
1089 }
1090
1091 static const struct block_device_operations nvme_fops = {
1092         .owner          = THIS_MODULE,
1093         .ioctl          = nvme_ioctl,
1094 };
1095
1096 static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int index,
1097                         struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1098 {
1099         struct nvme_ns *ns;
1100         struct gendisk *disk;
1101         int lbaf;
1102
1103         if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1104                 return NULL;
1105
1106         ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1107         if (!ns)
1108                 return NULL;
1109         ns->queue = blk_alloc_queue(GFP_KERNEL);
1110         if (!ns->queue)
1111                 goto out_free_ns;
1112         ns->queue->queue_flags = QUEUE_FLAG_DEFAULT | QUEUE_FLAG_NOMERGES |
1113                                 QUEUE_FLAG_NONROT | QUEUE_FLAG_DISCARD;
1114         blk_queue_make_request(ns->queue, nvme_make_request);
1115         ns->dev = dev;
1116         ns->queue->queuedata = ns;
1117
1118         disk = alloc_disk(NVME_MINORS);
1119         if (!disk)
1120                 goto out_free_queue;
1121         ns->ns_id = index;
1122         ns->disk = disk;
1123         lbaf = id->flbas & 0xf;
1124         ns->lba_shift = id->lbaf[lbaf].ds;
1125
1126         disk->major = nvme_major;
1127         disk->minors = NVME_MINORS;
1128         disk->first_minor = NVME_MINORS * index;
1129         disk->fops = &nvme_fops;
1130         disk->private_data = ns;
1131         disk->queue = ns->queue;
1132         disk->driverfs_dev = &dev->pci_dev->dev;
1133         sprintf(disk->disk_name, "nvme%dn%d", dev->instance, index);
1134         set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1135
1136         return ns;
1137
1138  out_free_queue:
1139         blk_cleanup_queue(ns->queue);
1140  out_free_ns:
1141         kfree(ns);
1142         return NULL;
1143 }
1144
1145 static void nvme_ns_free(struct nvme_ns *ns)
1146 {
1147         put_disk(ns->disk);
1148         blk_cleanup_queue(ns->queue);
1149         kfree(ns);
1150 }
1151
1152 static int set_queue_count(struct nvme_dev *dev, int count)
1153 {
1154         int status;
1155         u32 result;
1156         struct nvme_command c;
1157         u32 q_count = (count - 1) | ((count - 1) << 16);
1158
1159         memset(&c, 0, sizeof(c));
1160         c.features.opcode = nvme_admin_get_features;
1161         c.features.fid = cpu_to_le32(NVME_FEAT_NUM_QUEUES);
1162         c.features.dword11 = cpu_to_le32(q_count);
1163
1164         status = nvme_submit_admin_cmd(dev, &c, &result);
1165         if (status)
1166                 return -EIO;
1167         return min(result & 0xffff, result >> 16) + 1;
1168 }
1169
1170 static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
1171 {
1172         int result, cpu, i, nr_queues;
1173
1174         nr_queues = num_online_cpus();
1175         result = set_queue_count(dev, nr_queues);
1176         if (result < 0)
1177                 return result;
1178         if (result < nr_queues)
1179                 nr_queues = result;
1180
1181         /* Deregister the admin queue's interrupt */
1182         free_irq(dev->entry[0].vector, dev->queues[0]);
1183
1184         for (i = 0; i < nr_queues; i++)
1185                 dev->entry[i].entry = i;
1186         for (;;) {
1187                 result = pci_enable_msix(dev->pci_dev, dev->entry, nr_queues);
1188                 if (result == 0) {
1189                         break;
1190                 } else if (result > 0) {
1191                         nr_queues = result;
1192                         continue;
1193                 } else {
1194                         nr_queues = 1;
1195                         break;
1196                 }
1197         }
1198
1199         result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1200         /* XXX: handle failure here */
1201
1202         cpu = cpumask_first(cpu_online_mask);
1203         for (i = 0; i < nr_queues; i++) {
1204                 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1205                 cpu = cpumask_next(cpu, cpu_online_mask);
1206         }
1207
1208         for (i = 0; i < nr_queues; i++) {
1209                 dev->queues[i + 1] = nvme_create_queue(dev, i + 1,
1210                                                         NVME_Q_DEPTH, i);
1211                 if (!dev->queues[i + 1])
1212                         return -ENOMEM;
1213                 dev->queue_count++;
1214         }
1215
1216         return 0;
1217 }
1218
1219 static void nvme_free_queues(struct nvme_dev *dev)
1220 {
1221         int i;
1222
1223         for (i = dev->queue_count - 1; i >= 0; i--)
1224                 nvme_free_queue(dev, i);
1225 }
1226
1227 static int __devinit nvme_dev_add(struct nvme_dev *dev)
1228 {
1229         int res, nn, i;
1230         struct nvme_ns *ns, *next;
1231         struct nvme_id_ctrl *ctrl;
1232         void *id;
1233         dma_addr_t dma_addr;
1234         struct nvme_command cid, crt;
1235
1236         res = nvme_setup_io_queues(dev);
1237         if (res)
1238                 return res;
1239
1240         /* XXX: Switch to a SG list once prp2 works */
1241         id = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1242                                                                 GFP_KERNEL);
1243
1244         memset(&cid, 0, sizeof(cid));
1245         cid.identify.opcode = nvme_admin_identify;
1246         cid.identify.nsid = 0;
1247         cid.identify.prp1 = cpu_to_le64(dma_addr);
1248         cid.identify.cns = cpu_to_le32(1);
1249
1250         res = nvme_submit_admin_cmd(dev, &cid, NULL);
1251         if (res) {
1252                 res = -EIO;
1253                 goto out_free;
1254         }
1255
1256         ctrl = id;
1257         nn = le32_to_cpup(&ctrl->nn);
1258         memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1259         memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1260         memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
1261
1262         cid.identify.cns = 0;
1263         memset(&crt, 0, sizeof(crt));
1264         crt.features.opcode = nvme_admin_get_features;
1265         crt.features.prp1 = cpu_to_le64(dma_addr + 4096);
1266         crt.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
1267
1268         for (i = 0; i < nn; i++) {
1269                 cid.identify.nsid = cpu_to_le32(i);
1270                 res = nvme_submit_admin_cmd(dev, &cid, NULL);
1271                 if (res)
1272                         continue;
1273
1274                 if (((struct nvme_id_ns *)id)->ncap == 0)
1275                         continue;
1276
1277                 crt.features.nsid = cpu_to_le32(i);
1278                 res = nvme_submit_admin_cmd(dev, &crt, NULL);
1279                 if (res)
1280                         continue;
1281
1282                 ns = nvme_alloc_ns(dev, i, id, id + 4096);
1283                 if (ns)
1284                         list_add_tail(&ns->list, &dev->namespaces);
1285         }
1286         list_for_each_entry(ns, &dev->namespaces, list)
1287                 add_disk(ns->disk);
1288
1289         dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1290         return 0;
1291
1292  out_free:
1293         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1294                 list_del(&ns->list);
1295                 nvme_ns_free(ns);
1296         }
1297
1298         dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1299         return res;
1300 }
1301
1302 static int nvme_dev_remove(struct nvme_dev *dev)
1303 {
1304         struct nvme_ns *ns, *next;
1305
1306         /* TODO: wait all I/O finished or cancel them */
1307
1308         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1309                 list_del(&ns->list);
1310                 del_gendisk(ns->disk);
1311                 nvme_ns_free(ns);
1312         }
1313
1314         nvme_free_queues(dev);
1315
1316         return 0;
1317 }
1318
1319 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1320 {
1321         struct device *dmadev = &dev->pci_dev->dev;
1322         dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
1323                                                 PAGE_SIZE, PAGE_SIZE, 0);
1324         if (!dev->prp_page_pool)
1325                 return -ENOMEM;
1326
1327         /* Optimisation for I/Os between 4k and 128k */
1328         dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
1329                                                 256, 256, 0);
1330         if (!dev->prp_small_pool) {
1331                 dma_pool_destroy(dev->prp_page_pool);
1332                 return -ENOMEM;
1333         }
1334         return 0;
1335 }
1336
1337 static void nvme_release_prp_pools(struct nvme_dev *dev)
1338 {
1339         dma_pool_destroy(dev->prp_page_pool);
1340         dma_pool_destroy(dev->prp_small_pool);
1341 }
1342
1343 /* XXX: Use an ida or something to let remove / add work correctly */
1344 static void nvme_set_instance(struct nvme_dev *dev)
1345 {
1346         static int instance;
1347         dev->instance = instance++;
1348 }
1349
1350 static void nvme_release_instance(struct nvme_dev *dev)
1351 {
1352 }
1353
1354 static int __devinit nvme_probe(struct pci_dev *pdev,
1355                                                 const struct pci_device_id *id)
1356 {
1357         int bars, result = -ENOMEM;
1358         struct nvme_dev *dev;
1359
1360         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1361         if (!dev)
1362                 return -ENOMEM;
1363         dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1364                                                                 GFP_KERNEL);
1365         if (!dev->entry)
1366                 goto free;
1367         dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1368                                                                 GFP_KERNEL);
1369         if (!dev->queues)
1370                 goto free;
1371
1372         if (pci_enable_device_mem(pdev))
1373                 goto free;
1374         pci_set_master(pdev);
1375         bars = pci_select_bars(pdev, IORESOURCE_MEM);
1376         if (pci_request_selected_regions(pdev, bars, "nvme"))
1377                 goto disable;
1378
1379         INIT_LIST_HEAD(&dev->namespaces);
1380         dev->pci_dev = pdev;
1381         pci_set_drvdata(pdev, dev);
1382         dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1383         dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1384         nvme_set_instance(dev);
1385         dev->entry[0].vector = pdev->irq;
1386
1387         result = nvme_setup_prp_pools(dev);
1388         if (result)
1389                 goto disable_msix;
1390
1391         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1392         if (!dev->bar) {
1393                 result = -ENOMEM;
1394                 goto disable_msix;
1395         }
1396
1397         result = nvme_configure_admin_queue(dev);
1398         if (result)
1399                 goto unmap;
1400         dev->queue_count++;
1401
1402         result = nvme_dev_add(dev);
1403         if (result)
1404                 goto delete;
1405         return 0;
1406
1407  delete:
1408         nvme_free_queues(dev);
1409  unmap:
1410         iounmap(dev->bar);
1411  disable_msix:
1412         pci_disable_msix(pdev);
1413         nvme_release_instance(dev);
1414         nvme_release_prp_pools(dev);
1415  disable:
1416         pci_disable_device(pdev);
1417         pci_release_regions(pdev);
1418  free:
1419         kfree(dev->queues);
1420         kfree(dev->entry);
1421         kfree(dev);
1422         return result;
1423 }
1424
1425 static void __devexit nvme_remove(struct pci_dev *pdev)
1426 {
1427         struct nvme_dev *dev = pci_get_drvdata(pdev);
1428         nvme_dev_remove(dev);
1429         pci_disable_msix(pdev);
1430         iounmap(dev->bar);
1431         nvme_release_instance(dev);
1432         nvme_release_prp_pools(dev);
1433         pci_disable_device(pdev);
1434         pci_release_regions(pdev);
1435         kfree(dev->queues);
1436         kfree(dev->entry);
1437         kfree(dev);
1438 }
1439
1440 /* These functions are yet to be implemented */
1441 #define nvme_error_detected NULL
1442 #define nvme_dump_registers NULL
1443 #define nvme_link_reset NULL
1444 #define nvme_slot_reset NULL
1445 #define nvme_error_resume NULL
1446 #define nvme_suspend NULL
1447 #define nvme_resume NULL
1448
1449 static struct pci_error_handlers nvme_err_handler = {
1450         .error_detected = nvme_error_detected,
1451         .mmio_enabled   = nvme_dump_registers,
1452         .link_reset     = nvme_link_reset,
1453         .slot_reset     = nvme_slot_reset,
1454         .resume         = nvme_error_resume,
1455 };
1456
1457 /* Move to pci_ids.h later */
1458 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
1459
1460 static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1461         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1462         { 0, }
1463 };
1464 MODULE_DEVICE_TABLE(pci, nvme_id_table);
1465
1466 static struct pci_driver nvme_driver = {
1467         .name           = "nvme",
1468         .id_table       = nvme_id_table,
1469         .probe          = nvme_probe,
1470         .remove         = __devexit_p(nvme_remove),
1471         .suspend        = nvme_suspend,
1472         .resume         = nvme_resume,
1473         .err_handler    = &nvme_err_handler,
1474 };
1475
1476 static int __init nvme_init(void)
1477 {
1478         int result;
1479
1480         nvme_major = register_blkdev(nvme_major, "nvme");
1481         if (nvme_major <= 0)
1482                 return -EBUSY;
1483
1484         result = pci_register_driver(&nvme_driver);
1485         if (!result)
1486                 return 0;
1487
1488         unregister_blkdev(nvme_major, "nvme");
1489         return result;
1490 }
1491
1492 static void __exit nvme_exit(void)
1493 {
1494         pci_unregister_driver(&nvme_driver);
1495         unregister_blkdev(nvme_major, "nvme");
1496 }
1497
1498 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1499 MODULE_LICENSE("GPL");
1500 MODULE_VERSION("0.2");
1501 module_init(nvme_init);
1502 module_exit(nvme_exit);