NVMe: Zero the command before we send it
[linux-2.6-block.git] / drivers / block / nvme.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17  */
18
19 #include <linux/nvme.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/errno.h>
23 #include <linux/fs.h>
24 #include <linux/genhd.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/kdev_t.h>
29 #include <linux/kernel.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/moduleparam.h>
33 #include <linux/pci.h>
34 #include <linux/sched.h>
35 #include <linux/slab.h>
36 #include <linux/types.h>
37 #include <linux/version.h>
38
39 #define NVME_Q_DEPTH 1024
40 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
41 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
42 #define NVME_MINORS 64
43
44 static int nvme_major;
45 module_param(nvme_major, int, 0);
46
47 /*
48  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
49  */
50 struct nvme_dev {
51         struct list_head node;
52         struct nvme_queue **queues;
53         u32 __iomem *dbs;
54         struct pci_dev *pci_dev;
55         int instance;
56         int queue_count;
57         u32 ctrl_config;
58         struct msix_entry *entry;
59         struct nvme_bar __iomem *bar;
60         struct list_head namespaces;
61 };
62
63 /*
64  * An NVM Express namespace is equivalent to a SCSI LUN
65  */
66 struct nvme_ns {
67         struct list_head list;
68
69         struct nvme_dev *dev;
70         struct request_queue *queue;
71         struct gendisk *disk;
72
73         int ns_id;
74         int lba_shift;
75 };
76
77 /*
78  * An NVM Express queue.  Each device has at least two (one for admin
79  * commands and one for I/O commands).
80  */
81 struct nvme_queue {
82         struct device *q_dmadev;
83         spinlock_t q_lock;
84         struct nvme_command *sq_cmds;
85         volatile struct nvme_completion *cqes;
86         dma_addr_t sq_dma_addr;
87         dma_addr_t cq_dma_addr;
88         wait_queue_head_t sq_full;
89         struct bio_list sq_cong;
90         u32 __iomem *q_db;
91         u16 q_depth;
92         u16 cq_vector;
93         u16 sq_head;
94         u16 sq_tail;
95         u16 cq_head;
96         u16 cq_phase;
97         unsigned long cmdid_data[];
98 };
99
100 /*
101  * Check we didin't inadvertently grow the command struct
102  */
103 static inline void _nvme_check_size(void)
104 {
105         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
106         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
107         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
108         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
109         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
110         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
111         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
112         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
113         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
114 }
115
116 /**
117  * alloc_cmdid - Allocate a Command ID
118  * @param nvmeq The queue that will be used for this command
119  * @param ctx A pointer that will be passed to the handler
120  * @param handler The ID of the handler to call
121  *
122  * Allocate a Command ID for a queue.  The data passed in will
123  * be passed to the completion handler.  This is implemented by using
124  * the bottom two bits of the ctx pointer to store the handler ID.
125  * Passing in a pointer that's not 4-byte aligned will cause a BUG.
126  * We can change this if it becomes a problem.
127  */
128 static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx, int handler)
129 {
130         int depth = nvmeq->q_depth;
131         unsigned long data = (unsigned long)ctx | handler;
132         int cmdid;
133
134         BUG_ON((unsigned long)ctx & 3);
135
136         do {
137                 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
138                 if (cmdid >= depth)
139                         return -EBUSY;
140         } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
141
142         nvmeq->cmdid_data[cmdid + BITS_TO_LONGS(depth)] = data;
143         return cmdid;
144 }
145
146 static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
147                                                                 int handler)
148 {
149         int cmdid;
150         wait_event_killable(nvmeq->sq_full,
151                         (cmdid = alloc_cmdid(nvmeq, ctx, handler)) >= 0);
152         return (cmdid < 0) ? -EINTR : cmdid;
153 }
154
155 /* If you need more than four handlers, you'll need to change how
156  * alloc_cmdid and nvme_process_cq work
157  */
158 enum {
159         sync_completion_id = 0,
160         bio_completion_id,
161 };
162
163 static unsigned long free_cmdid(struct nvme_queue *nvmeq, int cmdid)
164 {
165         unsigned long data;
166
167         data = nvmeq->cmdid_data[cmdid + BITS_TO_LONGS(nvmeq->q_depth)];
168         clear_bit(cmdid, nvmeq->cmdid_data);
169         wake_up(&nvmeq->sq_full);
170         return data;
171 }
172
173 static struct nvme_queue *get_nvmeq(struct nvme_ns *ns)
174 {
175         int qid, cpu = get_cpu();
176         if (cpu < ns->dev->queue_count)
177                 qid = cpu + 1;
178         else
179                 qid = (cpu % rounddown_pow_of_two(ns->dev->queue_count)) + 1;
180         return ns->dev->queues[qid];
181 }
182
183 static void put_nvmeq(struct nvme_queue *nvmeq)
184 {
185         put_cpu();
186 }
187
188 /**
189  * nvme_submit_cmd: Copy a command into a queue and ring the doorbell
190  * @nvmeq: The queue to use
191  * @cmd: The command to send
192  *
193  * Safe to use from interrupt context
194  */
195 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
196 {
197         unsigned long flags;
198         u16 tail;
199         /* XXX: Need to check tail isn't going to overrun head */
200         spin_lock_irqsave(&nvmeq->q_lock, flags);
201         tail = nvmeq->sq_tail;
202         memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
203         writel(tail, nvmeq->q_db);
204         if (++tail == nvmeq->q_depth)
205                 tail = 0;
206         nvmeq->sq_tail = tail;
207         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
208
209         return 0;
210 }
211
212 struct nvme_req_info {
213         struct bio *bio;
214         int nents;
215         struct scatterlist sg[0];
216 };
217
218 /* XXX: use a mempool */
219 static struct nvme_req_info *alloc_info(unsigned nseg, gfp_t gfp)
220 {
221         return kmalloc(sizeof(struct nvme_req_info) +
222                         sizeof(struct scatterlist) * nseg, gfp);
223 }
224
225 static void free_info(struct nvme_req_info *info)
226 {
227         kfree(info);
228 }
229
230 static void bio_completion(struct nvme_queue *nvmeq, void *ctx,
231                                                 struct nvme_completion *cqe)
232 {
233         struct nvme_req_info *info = ctx;
234         struct bio *bio = info->bio;
235         u16 status = le16_to_cpup(&cqe->status) >> 1;
236
237         dma_unmap_sg(nvmeq->q_dmadev, info->sg, info->nents,
238                         bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
239         free_info(info);
240         bio_endio(bio, status ? -EIO : 0);
241 }
242
243 /* length is in bytes */
244 static void nvme_setup_prps(struct nvme_common_command *cmd,
245                                         struct scatterlist *sg, int length)
246 {
247         int dma_len = sg_dma_len(sg);
248         u64 dma_addr = sg_dma_address(sg);
249         int offset = offset_in_page(dma_addr);
250
251         cmd->prp1 = cpu_to_le64(dma_addr);
252         length -= (PAGE_SIZE - offset);
253         if (length <= 0)
254                 return;
255
256         dma_len -= (PAGE_SIZE - offset);
257         if (dma_len) {
258                 dma_addr += (PAGE_SIZE - offset);
259         } else {
260                 sg = sg_next(sg);
261                 dma_addr = sg_dma_address(sg);
262                 dma_len = sg_dma_len(sg);
263         }
264
265         if (length <= PAGE_SIZE) {
266                 cmd->prp2 = cpu_to_le64(dma_addr);
267                 return;
268         }
269
270         /* XXX: support PRP lists */
271 }
272
273 static int nvme_map_bio(struct device *dev, struct nvme_req_info *info,
274                 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
275 {
276         struct bio_vec *bvec;
277         struct scatterlist *sg = info->sg;
278         int i, nsegs;
279
280         sg_init_table(sg, psegs);
281         bio_for_each_segment(bvec, bio, i) {
282                 sg_set_page(sg, bvec->bv_page, bvec->bv_len, bvec->bv_offset);
283                 /* XXX: handle non-mergable here */
284                 nsegs++;
285         }
286         info->nents = nsegs;
287
288         return dma_map_sg(dev, info->sg, info->nents, dma_dir);
289 }
290
291 static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
292                                                                 struct bio *bio)
293 {
294         struct nvme_command *cmnd;
295         struct nvme_req_info *info;
296         enum dma_data_direction dma_dir;
297         int cmdid;
298         u16 control;
299         u32 dsmgmt;
300         unsigned long flags;
301         int psegs = bio_phys_segments(ns->queue, bio);
302
303         info = alloc_info(psegs, GFP_NOIO);
304         if (!info)
305                 goto congestion;
306         info->bio = bio;
307
308         cmdid = alloc_cmdid(nvmeq, info, bio_completion_id);
309         if (unlikely(cmdid < 0))
310                 goto free_info;
311
312         control = 0;
313         if (bio->bi_rw & REQ_FUA)
314                 control |= NVME_RW_FUA;
315         if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
316                 control |= NVME_RW_LR;
317
318         dsmgmt = 0;
319         if (bio->bi_rw & REQ_RAHEAD)
320                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
321
322         spin_lock_irqsave(&nvmeq->q_lock, flags);
323         cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
324
325         memset(cmnd, 0, sizeof(*cmnd));
326         if (bio_data_dir(bio)) {
327                 cmnd->rw.opcode = nvme_cmd_write;
328                 dma_dir = DMA_TO_DEVICE;
329         } else {
330                 cmnd->rw.opcode = nvme_cmd_read;
331                 dma_dir = DMA_FROM_DEVICE;
332         }
333
334         nvme_map_bio(nvmeq->q_dmadev, info, bio, dma_dir, psegs);
335
336         cmnd->rw.flags = 1;
337         cmnd->rw.command_id = cmdid;
338         cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
339         nvme_setup_prps(&cmnd->common, info->sg, bio->bi_size);
340         cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
341         cmnd->rw.length = cpu_to_le16((bio->bi_size >> ns->lba_shift) - 1);
342         cmnd->rw.control = cpu_to_le16(control);
343         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
344
345         writel(nvmeq->sq_tail, nvmeq->q_db);
346         if (++nvmeq->sq_tail == nvmeq->q_depth)
347                 nvmeq->sq_tail = 0;
348
349         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
350
351         return 0;
352
353  free_info:
354         free_info(info);
355  congestion:
356         return -EBUSY;
357 }
358
359 /*
360  * NB: return value of non-zero would mean that we were a stacking driver.
361  * make_request must always succeed.
362  */
363 static int nvme_make_request(struct request_queue *q, struct bio *bio)
364 {
365         struct nvme_ns *ns = q->queuedata;
366         struct nvme_queue *nvmeq = get_nvmeq(ns);
367
368         if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
369                 blk_set_queue_congested(q, rw_is_sync(bio->bi_rw));
370                 bio_list_add(&nvmeq->sq_cong, bio);
371         }
372         put_nvmeq(nvmeq);
373
374         return 0;
375 }
376
377 struct sync_cmd_info {
378         struct task_struct *task;
379         u32 result;
380         int status;
381 };
382
383 static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
384                                                 struct nvme_completion *cqe)
385 {
386         struct sync_cmd_info *cmdinfo = ctx;
387         cmdinfo->result = le32_to_cpup(&cqe->result);
388         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
389         wake_up_process(cmdinfo->task);
390 }
391
392 typedef void (*completion_fn)(struct nvme_queue *, void *,
393                                                 struct nvme_completion *);
394
395 static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
396 {
397         u16 head, phase;
398
399         static const completion_fn completions[4] = {
400                 [sync_completion_id] = sync_completion,
401                 [bio_completion_id]  = bio_completion,
402         };
403
404         head = nvmeq->cq_head;
405         phase = nvmeq->cq_phase;
406
407         for (;;) {
408                 unsigned long data;
409                 void *ptr;
410                 unsigned char handler;
411                 struct nvme_completion cqe = nvmeq->cqes[head];
412                 if ((le16_to_cpu(cqe.status) & 1) != phase)
413                         break;
414                 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
415                 if (++head == nvmeq->q_depth) {
416                         head = 0;
417                         phase = !phase;
418                 }
419
420                 data = free_cmdid(nvmeq, cqe.command_id);
421                 handler = data & 3;
422                 ptr = (void *)(data & ~3UL);
423                 completions[handler](nvmeq, ptr, &cqe);
424         }
425
426         /* If the controller ignores the cq head doorbell and continuously
427          * writes to the queue, it is theoretically possible to wrap around
428          * the queue twice and mistakenly return IRQ_NONE.  Linux only
429          * requires that 0.1% of your interrupts are handled, so this isn't
430          * a big problem.
431          */
432         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
433                 return IRQ_NONE;
434
435         writel(head, nvmeq->q_db + 1);
436         nvmeq->cq_head = head;
437         nvmeq->cq_phase = phase;
438
439         return IRQ_HANDLED;
440 }
441
442 static irqreturn_t nvme_irq(int irq, void *data)
443 {
444         return nvme_process_cq(data);
445 }
446
447 /*
448  * Returns 0 on success.  If the result is negative, it's a Linux error code;
449  * if the result is positive, it's an NVM Express status code
450  */
451 static int nvme_submit_sync_cmd(struct nvme_queue *q, struct nvme_command *cmd,
452                                                                 u32 *result)
453 {
454         int cmdid;
455         struct sync_cmd_info cmdinfo;
456
457         cmdinfo.task = current;
458         cmdinfo.status = -EINTR;
459
460         cmdid = alloc_cmdid_killable(q, &cmdinfo, sync_completion_id);
461         if (cmdid < 0)
462                 return cmdid;
463         cmd->common.command_id = cmdid;
464
465         set_current_state(TASK_UNINTERRUPTIBLE);
466         nvme_submit_cmd(q, cmd);
467         schedule();
468
469         if (result)
470                 *result = cmdinfo.result;
471
472         return cmdinfo.status;
473 }
474
475 static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
476                                                                 u32 *result)
477 {
478         return nvme_submit_sync_cmd(dev->queues[0], cmd, result);
479 }
480
481 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
482 {
483         int status;
484         struct nvme_command c;
485
486         memset(&c, 0, sizeof(c));
487         c.delete_queue.opcode = opcode;
488         c.delete_queue.qid = cpu_to_le16(id);
489
490         status = nvme_submit_admin_cmd(dev, &c, NULL);
491         if (status)
492                 return -EIO;
493         return 0;
494 }
495
496 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
497                                                 struct nvme_queue *nvmeq)
498 {
499         int status;
500         struct nvme_command c;
501         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
502
503         memset(&c, 0, sizeof(c));
504         c.create_cq.opcode = nvme_admin_create_cq;
505         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
506         c.create_cq.cqid = cpu_to_le16(qid);
507         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
508         c.create_cq.cq_flags = cpu_to_le16(flags);
509         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
510
511         status = nvme_submit_admin_cmd(dev, &c, NULL);
512         if (status)
513                 return -EIO;
514         return 0;
515 }
516
517 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
518                                                 struct nvme_queue *nvmeq)
519 {
520         int status;
521         struct nvme_command c;
522         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
523
524         memset(&c, 0, sizeof(c));
525         c.create_sq.opcode = nvme_admin_create_sq;
526         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
527         c.create_sq.sqid = cpu_to_le16(qid);
528         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
529         c.create_sq.sq_flags = cpu_to_le16(flags);
530         c.create_sq.cqid = cpu_to_le16(qid);
531
532         status = nvme_submit_admin_cmd(dev, &c, NULL);
533         if (status)
534                 return -EIO;
535         return 0;
536 }
537
538 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
539 {
540         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
541 }
542
543 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
544 {
545         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
546 }
547
548 static void nvme_free_queue(struct nvme_dev *dev, int qid)
549 {
550         struct nvme_queue *nvmeq = dev->queues[qid];
551
552         free_irq(dev->entry[nvmeq->cq_vector].vector, nvmeq);
553
554         /* Don't tell the adapter to delete the admin queue */
555         if (qid) {
556                 adapter_delete_sq(dev, qid);
557                 adapter_delete_cq(dev, qid);
558         }
559
560         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
561                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
562         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
563                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
564         kfree(nvmeq);
565 }
566
567 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
568                                                         int depth, int vector)
569 {
570         struct device *dmadev = &dev->pci_dev->dev;
571         unsigned extra = (depth + BITS_TO_LONGS(depth)) * sizeof(long);
572         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
573         if (!nvmeq)
574                 return NULL;
575
576         nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
577                                         &nvmeq->cq_dma_addr, GFP_KERNEL);
578         if (!nvmeq->cqes)
579                 goto free_nvmeq;
580         memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
581
582         nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
583                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
584         if (!nvmeq->sq_cmds)
585                 goto free_cqdma;
586
587         nvmeq->q_dmadev = dmadev;
588         spin_lock_init(&nvmeq->q_lock);
589         nvmeq->cq_head = 0;
590         nvmeq->cq_phase = 1;
591         init_waitqueue_head(&nvmeq->sq_full);
592         bio_list_init(&nvmeq->sq_cong);
593         nvmeq->q_db = &dev->dbs[qid * 2];
594         nvmeq->q_depth = depth;
595         nvmeq->cq_vector = vector;
596
597         return nvmeq;
598
599  free_cqdma:
600         dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
601                                                         nvmeq->cq_dma_addr);
602  free_nvmeq:
603         kfree(nvmeq);
604         return NULL;
605 }
606
607 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
608                                                         const char *name)
609 {
610         return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
611                                 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
612 }
613
614 static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
615                                         int qid, int cq_size, int vector)
616 {
617         int result;
618         struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
619
620         result = adapter_alloc_cq(dev, qid, nvmeq);
621         if (result < 0)
622                 goto free_nvmeq;
623
624         result = adapter_alloc_sq(dev, qid, nvmeq);
625         if (result < 0)
626                 goto release_cq;
627
628         result = queue_request_irq(dev, nvmeq, "nvme");
629         if (result < 0)
630                 goto release_sq;
631
632         return nvmeq;
633
634  release_sq:
635         adapter_delete_sq(dev, qid);
636  release_cq:
637         adapter_delete_cq(dev, qid);
638  free_nvmeq:
639         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
640                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
641         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
642                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
643         kfree(nvmeq);
644         return NULL;
645 }
646
647 static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
648 {
649         int result;
650         u32 aqa;
651         struct nvme_queue *nvmeq;
652
653         dev->dbs = ((void __iomem *)dev->bar) + 4096;
654
655         nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
656
657         aqa = nvmeq->q_depth - 1;
658         aqa |= aqa << 16;
659
660         dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
661         dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
662         dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
663
664         writel(aqa, &dev->bar->aqa);
665         writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
666         writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
667         writel(dev->ctrl_config, &dev->bar->cc);
668
669         while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
670                 msleep(100);
671                 if (fatal_signal_pending(current))
672                         return -EINTR;
673         }
674
675         result = queue_request_irq(dev, nvmeq, "nvme admin");
676         dev->queues[0] = nvmeq;
677         return result;
678 }
679
680 static int nvme_identify(struct nvme_ns *ns, unsigned long addr, int cns)
681 {
682         struct nvme_dev *dev = ns->dev;
683         int i, err, count, nents, offset;
684         struct nvme_command c;
685         struct scatterlist sg[2];
686         struct page *pages[2];
687
688         if (addr & 3)
689                 return -EINVAL;
690         offset = offset_in_page(addr);
691         count = offset ? 2 : 1;
692
693         err = get_user_pages_fast(addr, count, 1, pages);
694         if (err < count) {
695                 count = err;
696                 err = -EFAULT;
697                 goto put_pages;
698         }
699         sg_init_table(sg, count);
700         sg_set_page(&sg[0], pages[0], PAGE_SIZE - offset, offset);
701         if (count > 1)
702                 sg_set_page(&sg[1], pages[1], offset, 0);
703         nents = dma_map_sg(&dev->pci_dev->dev, sg, count, DMA_FROM_DEVICE);
704         if (!nents)
705                 goto put_pages;
706
707         memset(&c, 0, sizeof(c));
708         c.identify.opcode = nvme_admin_identify;
709         c.identify.nsid = cns ? 0 : cpu_to_le32(ns->ns_id);
710         nvme_setup_prps(&c.common, sg, 4096);
711         c.identify.cns = cpu_to_le32(cns);
712
713         err = nvme_submit_admin_cmd(dev, &c, NULL);
714
715         if (err)
716                 err = -EIO;
717
718         dma_unmap_sg(&dev->pci_dev->dev, sg, nents, DMA_FROM_DEVICE);
719  put_pages:
720         for (i = 0; i < count; i++)
721                 put_page(pages[i]);
722
723         return err;
724 }
725
726 static int nvme_get_range_type(struct nvme_ns *ns, void __user *addr)
727 {
728         struct nvme_dev *dev = ns->dev;
729         int status;
730         struct nvme_command c;
731         void *page;
732         dma_addr_t dma_addr;
733
734         page = dma_alloc_coherent(&dev->pci_dev->dev, 4096, &dma_addr,
735                                                                 GFP_KERNEL);
736
737         memset(&c, 0, sizeof(c));
738         c.features.opcode = nvme_admin_get_features;
739         c.features.nsid = cpu_to_le32(ns->ns_id);
740         c.features.prp1 = cpu_to_le64(dma_addr);
741         c.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
742
743         status = nvme_submit_admin_cmd(dev, &c, NULL);
744
745         /* XXX: Assuming first range for now */
746         if (status)
747                 status = -EIO;
748         else if (copy_to_user(addr, page, 64))
749                 status = -EFAULT;
750
751         dma_free_coherent(&dev->pci_dev->dev, 4096, page, dma_addr);
752
753         return status;
754 }
755
756 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
757                                                         unsigned long arg)
758 {
759         struct nvme_ns *ns = bdev->bd_disk->private_data;
760
761         switch (cmd) {
762         case NVME_IOCTL_IDENTIFY_NS:
763                 return nvme_identify(ns, arg, 0);
764         case NVME_IOCTL_IDENTIFY_CTRL:
765                 return nvme_identify(ns, arg, 1);
766         case NVME_IOCTL_GET_RANGE_TYPE:
767                 return nvme_get_range_type(ns, (void __user *)arg);
768         default:
769                 return -ENOTTY;
770         }
771 }
772
773 static const struct block_device_operations nvme_fops = {
774         .owner          = THIS_MODULE,
775         .ioctl          = nvme_ioctl,
776 };
777
778 static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int index,
779                         struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
780 {
781         struct nvme_ns *ns;
782         struct gendisk *disk;
783         int lbaf;
784
785         if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
786                 return NULL;
787
788         ns = kzalloc(sizeof(*ns), GFP_KERNEL);
789         if (!ns)
790                 return NULL;
791         ns->queue = blk_alloc_queue(GFP_KERNEL);
792         if (!ns->queue)
793                 goto out_free_ns;
794         ns->queue->queue_flags = QUEUE_FLAG_DEFAULT | QUEUE_FLAG_NOMERGES |
795                                 QUEUE_FLAG_NONROT | QUEUE_FLAG_DISCARD;
796         blk_queue_make_request(ns->queue, nvme_make_request);
797         ns->dev = dev;
798         ns->queue->queuedata = ns;
799
800         disk = alloc_disk(NVME_MINORS);
801         if (!disk)
802                 goto out_free_queue;
803         ns->ns_id = index;
804         ns->disk = disk;
805         lbaf = id->flbas & 0xf;
806         ns->lba_shift = id->lbaf[lbaf].ds;
807
808         disk->major = nvme_major;
809         disk->minors = NVME_MINORS;
810         disk->first_minor = NVME_MINORS * index;
811         disk->fops = &nvme_fops;
812         disk->private_data = ns;
813         disk->queue = ns->queue;
814         sprintf(disk->disk_name, "nvme%dn%d", dev->instance, index);
815         set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
816
817         return ns;
818
819  out_free_queue:
820         blk_cleanup_queue(ns->queue);
821  out_free_ns:
822         kfree(ns);
823         return NULL;
824 }
825
826 static void nvme_ns_free(struct nvme_ns *ns)
827 {
828         put_disk(ns->disk);
829         blk_cleanup_queue(ns->queue);
830         kfree(ns);
831 }
832
833 static int set_queue_count(struct nvme_dev *dev, int count)
834 {
835         int status;
836         u32 result;
837         struct nvme_command c;
838         u32 q_count = (count - 1) | ((count - 1) << 16);
839
840         memset(&c, 0, sizeof(c));
841         c.features.opcode = nvme_admin_get_features;
842         c.features.fid = cpu_to_le32(NVME_FEAT_NUM_QUEUES);
843         c.features.dword11 = cpu_to_le32(q_count);
844
845         status = nvme_submit_admin_cmd(dev, &c, &result);
846         if (status)
847                 return -EIO;
848         return min(result & 0xffff, result >> 16) + 1;
849 }
850
851 static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
852 {
853         int result, cpu, i, nr_queues;
854
855         nr_queues = num_online_cpus();
856         result = set_queue_count(dev, nr_queues);
857         if (result < 0)
858                 return result;
859         if (result < nr_queues)
860                 nr_queues = result;
861
862         /* Deregister the admin queue's interrupt */
863         free_irq(dev->entry[0].vector, dev->queues[0]);
864
865         for (i = 0; i < nr_queues; i++)
866                 dev->entry[i].entry = i;
867         for (;;) {
868                 result = pci_enable_msix(dev->pci_dev, dev->entry, nr_queues);
869                 if (result == 0) {
870                         break;
871                 } else if (result > 0) {
872                         nr_queues = result;
873                         continue;
874                 } else {
875                         nr_queues = 1;
876                         break;
877                 }
878         }
879
880         result = queue_request_irq(dev, dev->queues[0], "nvme admin");
881         /* XXX: handle failure here */
882
883         cpu = cpumask_first(cpu_online_mask);
884         for (i = 0; i < nr_queues; i++) {
885                 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
886                 cpu = cpumask_next(cpu, cpu_online_mask);
887         }
888
889         for (i = 0; i < nr_queues; i++) {
890                 dev->queues[i + 1] = nvme_create_queue(dev, i + 1,
891                                                         NVME_Q_DEPTH, i);
892                 if (!dev->queues[i + 1])
893                         return -ENOMEM;
894                 dev->queue_count++;
895         }
896
897         return 0;
898 }
899
900 static void nvme_free_queues(struct nvme_dev *dev)
901 {
902         int i;
903
904         for (i = dev->queue_count - 1; i >= 0; i--)
905                 nvme_free_queue(dev, i);
906 }
907
908 static int __devinit nvme_dev_add(struct nvme_dev *dev)
909 {
910         int res, nn, i;
911         struct nvme_ns *ns, *next;
912         void *id;
913         dma_addr_t dma_addr;
914         struct nvme_command cid, crt;
915
916         res = nvme_setup_io_queues(dev);
917         if (res)
918                 return res;
919
920         /* XXX: Switch to a SG list once prp2 works */
921         id = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
922                                                                 GFP_KERNEL);
923
924         memset(&cid, 0, sizeof(cid));
925         cid.identify.opcode = nvme_admin_identify;
926         cid.identify.nsid = 0;
927         cid.identify.prp1 = cpu_to_le64(dma_addr);
928         cid.identify.cns = cpu_to_le32(1);
929
930         res = nvme_submit_admin_cmd(dev, &cid, NULL);
931         if (res) {
932                 res = -EIO;
933                 goto out_free;
934         }
935
936         nn = le32_to_cpup(&((struct nvme_id_ctrl *)id)->nn);
937
938         cid.identify.cns = 0;
939         memset(&crt, 0, sizeof(crt));
940         crt.features.opcode = nvme_admin_get_features;
941         crt.features.prp1 = cpu_to_le64(dma_addr + 4096);
942         crt.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
943
944         for (i = 0; i < nn; i++) {
945                 cid.identify.nsid = cpu_to_le32(i);
946                 res = nvme_submit_admin_cmd(dev, &cid, NULL);
947                 if (res)
948                         continue;
949
950                 if (((struct nvme_id_ns *)id)->ncap == 0)
951                         continue;
952
953                 crt.features.nsid = cpu_to_le32(i);
954                 res = nvme_submit_admin_cmd(dev, &crt, NULL);
955                 if (res)
956                         continue;
957
958                 ns = nvme_alloc_ns(dev, i, id, id + 4096);
959                 if (ns)
960                         list_add_tail(&ns->list, &dev->namespaces);
961         }
962         list_for_each_entry(ns, &dev->namespaces, list)
963                 add_disk(ns->disk);
964
965         dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
966         return 0;
967
968  out_free:
969         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
970                 list_del(&ns->list);
971                 nvme_ns_free(ns);
972         }
973
974         dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
975         return res;
976 }
977
978 static int nvme_dev_remove(struct nvme_dev *dev)
979 {
980         struct nvme_ns *ns, *next;
981
982         /* TODO: wait all I/O finished or cancel them */
983
984         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
985                 list_del(&ns->list);
986                 del_gendisk(ns->disk);
987                 nvme_ns_free(ns);
988         }
989
990         nvme_free_queues(dev);
991
992         return 0;
993 }
994
995 /* XXX: Use an ida or something to let remove / add work correctly */
996 static void nvme_set_instance(struct nvme_dev *dev)
997 {
998         static int instance;
999         dev->instance = instance++;
1000 }
1001
1002 static void nvme_release_instance(struct nvme_dev *dev)
1003 {
1004 }
1005
1006 static int __devinit nvme_probe(struct pci_dev *pdev,
1007                                                 const struct pci_device_id *id)
1008 {
1009         int result = -ENOMEM;
1010         struct nvme_dev *dev;
1011
1012         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1013         if (!dev)
1014                 return -ENOMEM;
1015         dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1016                                                                 GFP_KERNEL);
1017         if (!dev->entry)
1018                 goto free;
1019         dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1020                                                                 GFP_KERNEL);
1021         if (!dev->queues)
1022                 goto free;
1023
1024         INIT_LIST_HEAD(&dev->namespaces);
1025         dev->pci_dev = pdev;
1026         pci_set_drvdata(pdev, dev);
1027         dma_set_mask(&dev->pci_dev->dev, DMA_BIT_MASK(64));
1028         nvme_set_instance(dev);
1029         dev->entry[0].vector = pdev->irq;
1030
1031         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1032         if (!dev->bar) {
1033                 result = -ENOMEM;
1034                 goto disable;
1035         }
1036
1037         result = nvme_configure_admin_queue(dev);
1038         if (result)
1039                 goto unmap;
1040         dev->queue_count++;
1041
1042         result = nvme_dev_add(dev);
1043         if (result)
1044                 goto delete;
1045         return 0;
1046
1047  delete:
1048         nvme_free_queues(dev);
1049  unmap:
1050         iounmap(dev->bar);
1051  disable:
1052         pci_disable_msix(pdev);
1053         nvme_release_instance(dev);
1054  free:
1055         kfree(dev->queues);
1056         kfree(dev->entry);
1057         kfree(dev);
1058         return result;
1059 }
1060
1061 static void __devexit nvme_remove(struct pci_dev *pdev)
1062 {
1063         struct nvme_dev *dev = pci_get_drvdata(pdev);
1064         nvme_dev_remove(dev);
1065         pci_disable_msix(pdev);
1066         iounmap(dev->bar);
1067         nvme_release_instance(dev);
1068         kfree(dev->queues);
1069         kfree(dev->entry);
1070         kfree(dev);
1071 }
1072
1073 /* These functions are yet to be implemented */
1074 #define nvme_error_detected NULL
1075 #define nvme_dump_registers NULL
1076 #define nvme_link_reset NULL
1077 #define nvme_slot_reset NULL
1078 #define nvme_error_resume NULL
1079 #define nvme_suspend NULL
1080 #define nvme_resume NULL
1081
1082 static struct pci_error_handlers nvme_err_handler = {
1083         .error_detected = nvme_error_detected,
1084         .mmio_enabled   = nvme_dump_registers,
1085         .link_reset     = nvme_link_reset,
1086         .slot_reset     = nvme_slot_reset,
1087         .resume         = nvme_error_resume,
1088 };
1089
1090 /* Move to pci_ids.h later */
1091 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
1092
1093 static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1094         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1095         { 0, }
1096 };
1097 MODULE_DEVICE_TABLE(pci, nvme_id_table);
1098
1099 static struct pci_driver nvme_driver = {
1100         .name           = "nvme",
1101         .id_table       = nvme_id_table,
1102         .probe          = nvme_probe,
1103         .remove         = __devexit_p(nvme_remove),
1104         .suspend        = nvme_suspend,
1105         .resume         = nvme_resume,
1106         .err_handler    = &nvme_err_handler,
1107 };
1108
1109 static int __init nvme_init(void)
1110 {
1111         int result;
1112
1113         nvme_major = register_blkdev(nvme_major, "nvme");
1114         if (nvme_major <= 0)
1115                 return -EBUSY;
1116
1117         result = pci_register_driver(&nvme_driver);
1118         if (!result)
1119                 return 0;
1120
1121         unregister_blkdev(nvme_major, "nvme");
1122         return result;
1123 }
1124
1125 static void __exit nvme_exit(void)
1126 {
1127         pci_unregister_driver(&nvme_driver);
1128         unregister_blkdev(nvme_major, "nvme");
1129 }
1130
1131 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1132 MODULE_LICENSE("GPL");
1133 MODULE_VERSION("0.1");
1134 module_init(nvme_init);
1135 module_exit(nvme_exit);