NVMe: removed unused nn var from nvme_dev_add
[linux-2.6-block.git] / drivers / block / nvme-core.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/nvme.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/errno.h>
22 #include <linux/fs.h>
23 #include <linux/genhd.h>
24 #include <linux/hdreg.h>
25 #include <linux/idr.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/kdev_t.h>
30 #include <linux/kthread.h>
31 #include <linux/kernel.h>
32 #include <linux/list_sort.h>
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/moduleparam.h>
36 #include <linux/pci.h>
37 #include <linux/poison.h>
38 #include <linux/ptrace.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/t10-pi.h>
42 #include <linux/types.h>
43 #include <scsi/sg.h>
44 #include <asm-generic/io-64-nonatomic-lo-hi.h>
45
46 #define NVME_MINORS             (1U << MINORBITS)
47 #define NVME_Q_DEPTH            1024
48 #define NVME_AQ_DEPTH           256
49 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
50 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
51 #define ADMIN_TIMEOUT           (admin_timeout * HZ)
52 #define SHUTDOWN_TIMEOUT        (shutdown_timeout * HZ)
53
54 static unsigned char admin_timeout = 60;
55 module_param(admin_timeout, byte, 0644);
56 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
57
58 unsigned char nvme_io_timeout = 30;
59 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
60 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
61
62 static unsigned char shutdown_timeout = 5;
63 module_param(shutdown_timeout, byte, 0644);
64 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
65
66 static int nvme_major;
67 module_param(nvme_major, int, 0);
68
69 static int nvme_char_major;
70 module_param(nvme_char_major, int, 0);
71
72 static int use_threaded_interrupts;
73 module_param(use_threaded_interrupts, int, 0);
74
75 static bool use_cmb_sqes = true;
76 module_param(use_cmb_sqes, bool, 0644);
77 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
78
79 static DEFINE_SPINLOCK(dev_list_lock);
80 static LIST_HEAD(dev_list);
81 static struct task_struct *nvme_thread;
82 static struct workqueue_struct *nvme_workq;
83 static wait_queue_head_t nvme_kthread_wait;
84
85 static struct class *nvme_class;
86
87 static void nvme_reset_failed_dev(struct work_struct *ws);
88 static int nvme_reset(struct nvme_dev *dev);
89 static int nvme_process_cq(struct nvme_queue *nvmeq);
90
91 struct async_cmd_info {
92         struct kthread_work work;
93         struct kthread_worker *worker;
94         struct request *req;
95         u32 result;
96         int status;
97         void *ctx;
98 };
99
100 /*
101  * An NVM Express queue.  Each device has at least two (one for admin
102  * commands and one for I/O commands).
103  */
104 struct nvme_queue {
105         struct device *q_dmadev;
106         struct nvme_dev *dev;
107         char irqname[24];       /* nvme4294967295-65535\0 */
108         spinlock_t q_lock;
109         struct nvme_command *sq_cmds;
110         struct nvme_command __iomem *sq_cmds_io;
111         volatile struct nvme_completion *cqes;
112         struct blk_mq_tags **tags;
113         dma_addr_t sq_dma_addr;
114         dma_addr_t cq_dma_addr;
115         u32 __iomem *q_db;
116         u16 q_depth;
117         s16 cq_vector;
118         u16 sq_head;
119         u16 sq_tail;
120         u16 cq_head;
121         u16 qid;
122         u8 cq_phase;
123         u8 cqe_seen;
124         struct async_cmd_info cmdinfo;
125 };
126
127 /*
128  * Check we didin't inadvertently grow the command struct
129  */
130 static inline void _nvme_check_size(void)
131 {
132         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
133         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
134         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
135         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
136         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
137         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
138         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
139         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
140         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
141         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
142         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
143         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
144 }
145
146 typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
147                                                 struct nvme_completion *);
148
149 struct nvme_cmd_info {
150         nvme_completion_fn fn;
151         void *ctx;
152         int aborted;
153         struct nvme_queue *nvmeq;
154         struct nvme_iod iod[0];
155 };
156
157 /*
158  * Max size of iod being embedded in the request payload
159  */
160 #define NVME_INT_PAGES          2
161 #define NVME_INT_BYTES(dev)     (NVME_INT_PAGES * (dev)->page_size)
162 #define NVME_INT_MASK           0x01
163
164 /*
165  * Will slightly overestimate the number of pages needed.  This is OK
166  * as it only leads to a small amount of wasted memory for the lifetime of
167  * the I/O.
168  */
169 static int nvme_npages(unsigned size, struct nvme_dev *dev)
170 {
171         unsigned nprps = DIV_ROUND_UP(size + dev->page_size, dev->page_size);
172         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
173 }
174
175 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
176 {
177         unsigned int ret = sizeof(struct nvme_cmd_info);
178
179         ret += sizeof(struct nvme_iod);
180         ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
181         ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
182
183         return ret;
184 }
185
186 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
187                                 unsigned int hctx_idx)
188 {
189         struct nvme_dev *dev = data;
190         struct nvme_queue *nvmeq = dev->queues[0];
191
192         WARN_ON(hctx_idx != 0);
193         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
194         WARN_ON(nvmeq->tags);
195
196         hctx->driver_data = nvmeq;
197         nvmeq->tags = &dev->admin_tagset.tags[0];
198         return 0;
199 }
200
201 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
202 {
203         struct nvme_queue *nvmeq = hctx->driver_data;
204
205         nvmeq->tags = NULL;
206 }
207
208 static int nvme_admin_init_request(void *data, struct request *req,
209                                 unsigned int hctx_idx, unsigned int rq_idx,
210                                 unsigned int numa_node)
211 {
212         struct nvme_dev *dev = data;
213         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
214         struct nvme_queue *nvmeq = dev->queues[0];
215
216         BUG_ON(!nvmeq);
217         cmd->nvmeq = nvmeq;
218         return 0;
219 }
220
221 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
222                           unsigned int hctx_idx)
223 {
224         struct nvme_dev *dev = data;
225         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
226
227         if (!nvmeq->tags)
228                 nvmeq->tags = &dev->tagset.tags[hctx_idx];
229
230         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
231         hctx->driver_data = nvmeq;
232         return 0;
233 }
234
235 static int nvme_init_request(void *data, struct request *req,
236                                 unsigned int hctx_idx, unsigned int rq_idx,
237                                 unsigned int numa_node)
238 {
239         struct nvme_dev *dev = data;
240         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
241         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
242
243         BUG_ON(!nvmeq);
244         cmd->nvmeq = nvmeq;
245         return 0;
246 }
247
248 static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
249                                 nvme_completion_fn handler)
250 {
251         cmd->fn = handler;
252         cmd->ctx = ctx;
253         cmd->aborted = 0;
254         blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
255 }
256
257 static void *iod_get_private(struct nvme_iod *iod)
258 {
259         return (void *) (iod->private & ~0x1UL);
260 }
261
262 /*
263  * If bit 0 is set, the iod is embedded in the request payload.
264  */
265 static bool iod_should_kfree(struct nvme_iod *iod)
266 {
267         return (iod->private & NVME_INT_MASK) == 0;
268 }
269
270 /* Special values must be less than 0x1000 */
271 #define CMD_CTX_BASE            ((void *)POISON_POINTER_DELTA)
272 #define CMD_CTX_CANCELLED       (0x30C + CMD_CTX_BASE)
273 #define CMD_CTX_COMPLETED       (0x310 + CMD_CTX_BASE)
274 #define CMD_CTX_INVALID         (0x314 + CMD_CTX_BASE)
275
276 static void special_completion(struct nvme_queue *nvmeq, void *ctx,
277                                                 struct nvme_completion *cqe)
278 {
279         if (ctx == CMD_CTX_CANCELLED)
280                 return;
281         if (ctx == CMD_CTX_COMPLETED) {
282                 dev_warn(nvmeq->q_dmadev,
283                                 "completed id %d twice on queue %d\n",
284                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
285                 return;
286         }
287         if (ctx == CMD_CTX_INVALID) {
288                 dev_warn(nvmeq->q_dmadev,
289                                 "invalid id %d completed on queue %d\n",
290                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
291                 return;
292         }
293         dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
294 }
295
296 static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
297 {
298         void *ctx;
299
300         if (fn)
301                 *fn = cmd->fn;
302         ctx = cmd->ctx;
303         cmd->fn = special_completion;
304         cmd->ctx = CMD_CTX_CANCELLED;
305         return ctx;
306 }
307
308 static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
309                                                 struct nvme_completion *cqe)
310 {
311         u32 result = le32_to_cpup(&cqe->result);
312         u16 status = le16_to_cpup(&cqe->status) >> 1;
313
314         if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
315                 ++nvmeq->dev->event_limit;
316         if (status != NVME_SC_SUCCESS)
317                 return;
318
319         switch (result & 0xff07) {
320         case NVME_AER_NOTICE_NS_CHANGED:
321                 dev_info(nvmeq->q_dmadev, "rescanning\n");
322                 schedule_work(&nvmeq->dev->scan_work);
323         default:
324                 dev_warn(nvmeq->q_dmadev, "async event result %08x\n", result);
325         }
326 }
327
328 static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
329                                                 struct nvme_completion *cqe)
330 {
331         struct request *req = ctx;
332
333         u16 status = le16_to_cpup(&cqe->status) >> 1;
334         u32 result = le32_to_cpup(&cqe->result);
335
336         blk_mq_free_request(req);
337
338         dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
339         ++nvmeq->dev->abort_limit;
340 }
341
342 static void async_completion(struct nvme_queue *nvmeq, void *ctx,
343                                                 struct nvme_completion *cqe)
344 {
345         struct async_cmd_info *cmdinfo = ctx;
346         cmdinfo->result = le32_to_cpup(&cqe->result);
347         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
348         queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
349         blk_mq_free_request(cmdinfo->req);
350 }
351
352 static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
353                                   unsigned int tag)
354 {
355         struct request *req = blk_mq_tag_to_rq(*nvmeq->tags, tag);
356
357         return blk_mq_rq_to_pdu(req);
358 }
359
360 /*
361  * Called with local interrupts disabled and the q_lock held.  May not sleep.
362  */
363 static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
364                                                 nvme_completion_fn *fn)
365 {
366         struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
367         void *ctx;
368         if (tag >= nvmeq->q_depth) {
369                 *fn = special_completion;
370                 return CMD_CTX_INVALID;
371         }
372         if (fn)
373                 *fn = cmd->fn;
374         ctx = cmd->ctx;
375         cmd->fn = special_completion;
376         cmd->ctx = CMD_CTX_COMPLETED;
377         return ctx;
378 }
379
380 /**
381  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
382  * @nvmeq: The queue to use
383  * @cmd: The command to send
384  *
385  * Safe to use from interrupt context
386  */
387 static int __nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
388 {
389         u16 tail = nvmeq->sq_tail;
390
391         if (nvmeq->sq_cmds_io)
392                 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
393         else
394                 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
395
396         if (++tail == nvmeq->q_depth)
397                 tail = 0;
398         writel(tail, nvmeq->q_db);
399         nvmeq->sq_tail = tail;
400
401         return 0;
402 }
403
404 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
405 {
406         unsigned long flags;
407         int ret;
408         spin_lock_irqsave(&nvmeq->q_lock, flags);
409         ret = __nvme_submit_cmd(nvmeq, cmd);
410         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
411         return ret;
412 }
413
414 static __le64 **iod_list(struct nvme_iod *iod)
415 {
416         return ((void *)iod) + iod->offset;
417 }
418
419 static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
420                             unsigned nseg, unsigned long private)
421 {
422         iod->private = private;
423         iod->offset = offsetof(struct nvme_iod, sg[nseg]);
424         iod->npages = -1;
425         iod->length = nbytes;
426         iod->nents = 0;
427 }
428
429 static struct nvme_iod *
430 __nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
431                  unsigned long priv, gfp_t gfp)
432 {
433         struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
434                                 sizeof(__le64 *) * nvme_npages(bytes, dev) +
435                                 sizeof(struct scatterlist) * nseg, gfp);
436
437         if (iod)
438                 iod_init(iod, bytes, nseg, priv);
439
440         return iod;
441 }
442
443 static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
444                                        gfp_t gfp)
445 {
446         unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
447                                                 sizeof(struct nvme_dsm_range);
448         struct nvme_iod *iod;
449
450         if (rq->nr_phys_segments <= NVME_INT_PAGES &&
451             size <= NVME_INT_BYTES(dev)) {
452                 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
453
454                 iod = cmd->iod;
455                 iod_init(iod, size, rq->nr_phys_segments,
456                                 (unsigned long) rq | NVME_INT_MASK);
457                 return iod;
458         }
459
460         return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
461                                 (unsigned long) rq, gfp);
462 }
463
464 static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
465 {
466         const int last_prp = dev->page_size / 8 - 1;
467         int i;
468         __le64 **list = iod_list(iod);
469         dma_addr_t prp_dma = iod->first_dma;
470
471         if (iod->npages == 0)
472                 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
473         for (i = 0; i < iod->npages; i++) {
474                 __le64 *prp_list = list[i];
475                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
476                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
477                 prp_dma = next_prp_dma;
478         }
479
480         if (iod_should_kfree(iod))
481                 kfree(iod);
482 }
483
484 static int nvme_error_status(u16 status)
485 {
486         switch (status & 0x7ff) {
487         case NVME_SC_SUCCESS:
488                 return 0;
489         case NVME_SC_CAP_EXCEEDED:
490                 return -ENOSPC;
491         default:
492                 return -EIO;
493         }
494 }
495
496 #ifdef CONFIG_BLK_DEV_INTEGRITY
497 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
498 {
499         if (be32_to_cpu(pi->ref_tag) == v)
500                 pi->ref_tag = cpu_to_be32(p);
501 }
502
503 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
504 {
505         if (be32_to_cpu(pi->ref_tag) == p)
506                 pi->ref_tag = cpu_to_be32(v);
507 }
508
509 /**
510  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
511  *
512  * The virtual start sector is the one that was originally submitted by the
513  * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
514  * start sector may be different. Remap protection information to match the
515  * physical LBA on writes, and back to the original seed on reads.
516  *
517  * Type 0 and 3 do not have a ref tag, so no remapping required.
518  */
519 static void nvme_dif_remap(struct request *req,
520                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
521 {
522         struct nvme_ns *ns = req->rq_disk->private_data;
523         struct bio_integrity_payload *bip;
524         struct t10_pi_tuple *pi;
525         void *p, *pmap;
526         u32 i, nlb, ts, phys, virt;
527
528         if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
529                 return;
530
531         bip = bio_integrity(req->bio);
532         if (!bip)
533                 return;
534
535         pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
536
537         p = pmap;
538         virt = bip_get_seed(bip);
539         phys = nvme_block_nr(ns, blk_rq_pos(req));
540         nlb = (blk_rq_bytes(req) >> ns->lba_shift);
541         ts = ns->disk->integrity->tuple_size;
542
543         for (i = 0; i < nlb; i++, virt++, phys++) {
544                 pi = (struct t10_pi_tuple *)p;
545                 dif_swap(phys, virt, pi);
546                 p += ts;
547         }
548         kunmap_atomic(pmap);
549 }
550
551 static int nvme_noop_verify(struct blk_integrity_iter *iter)
552 {
553         return 0;
554 }
555
556 static int nvme_noop_generate(struct blk_integrity_iter *iter)
557 {
558         return 0;
559 }
560
561 struct blk_integrity nvme_meta_noop = {
562         .name                   = "NVME_META_NOOP",
563         .generate_fn            = nvme_noop_generate,
564         .verify_fn              = nvme_noop_verify,
565 };
566
567 static void nvme_init_integrity(struct nvme_ns *ns)
568 {
569         struct blk_integrity integrity;
570
571         switch (ns->pi_type) {
572         case NVME_NS_DPS_PI_TYPE3:
573                 integrity = t10_pi_type3_crc;
574                 break;
575         case NVME_NS_DPS_PI_TYPE1:
576         case NVME_NS_DPS_PI_TYPE2:
577                 integrity = t10_pi_type1_crc;
578                 break;
579         default:
580                 integrity = nvme_meta_noop;
581                 break;
582         }
583         integrity.tuple_size = ns->ms;
584         blk_integrity_register(ns->disk, &integrity);
585         blk_queue_max_integrity_segments(ns->queue, 1);
586 }
587 #else /* CONFIG_BLK_DEV_INTEGRITY */
588 static void nvme_dif_remap(struct request *req,
589                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
590 {
591 }
592 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
593 {
594 }
595 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
596 {
597 }
598 static void nvme_init_integrity(struct nvme_ns *ns)
599 {
600 }
601 #endif
602
603 static void req_completion(struct nvme_queue *nvmeq, void *ctx,
604                                                 struct nvme_completion *cqe)
605 {
606         struct nvme_iod *iod = ctx;
607         struct request *req = iod_get_private(iod);
608         struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
609
610         u16 status = le16_to_cpup(&cqe->status) >> 1;
611
612         if (unlikely(status)) {
613                 if (!(status & NVME_SC_DNR || blk_noretry_request(req))
614                     && (jiffies - req->start_time) < req->timeout) {
615                         unsigned long flags;
616
617                         blk_mq_requeue_request(req);
618                         spin_lock_irqsave(req->q->queue_lock, flags);
619                         if (!blk_queue_stopped(req->q))
620                                 blk_mq_kick_requeue_list(req->q);
621                         spin_unlock_irqrestore(req->q->queue_lock, flags);
622                         return;
623                 }
624                 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
625                         if (cmd_rq->ctx == CMD_CTX_CANCELLED)
626                                 req->errors = -EINTR;
627                         else
628                                 req->errors = status;
629                 } else {
630                         req->errors = nvme_error_status(status);
631                 }
632         } else
633                 req->errors = 0;
634         if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
635                 u32 result = le32_to_cpup(&cqe->result);
636                 req->special = (void *)(uintptr_t)result;
637         }
638
639         if (cmd_rq->aborted)
640                 dev_warn(nvmeq->dev->dev,
641                         "completing aborted command with status:%04x\n",
642                         status);
643
644         if (iod->nents) {
645                 dma_unmap_sg(nvmeq->dev->dev, iod->sg, iod->nents,
646                         rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
647                 if (blk_integrity_rq(req)) {
648                         if (!rq_data_dir(req))
649                                 nvme_dif_remap(req, nvme_dif_complete);
650                         dma_unmap_sg(nvmeq->dev->dev, iod->meta_sg, 1,
651                                 rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
652                 }
653         }
654         nvme_free_iod(nvmeq->dev, iod);
655
656         blk_mq_complete_request(req);
657 }
658
659 /* length is in bytes.  gfp flags indicates whether we may sleep. */
660 static int nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod,
661                 int total_len, gfp_t gfp)
662 {
663         struct dma_pool *pool;
664         int length = total_len;
665         struct scatterlist *sg = iod->sg;
666         int dma_len = sg_dma_len(sg);
667         u64 dma_addr = sg_dma_address(sg);
668         u32 page_size = dev->page_size;
669         int offset = dma_addr & (page_size - 1);
670         __le64 *prp_list;
671         __le64 **list = iod_list(iod);
672         dma_addr_t prp_dma;
673         int nprps, i;
674
675         length -= (page_size - offset);
676         if (length <= 0)
677                 return total_len;
678
679         dma_len -= (page_size - offset);
680         if (dma_len) {
681                 dma_addr += (page_size - offset);
682         } else {
683                 sg = sg_next(sg);
684                 dma_addr = sg_dma_address(sg);
685                 dma_len = sg_dma_len(sg);
686         }
687
688         if (length <= page_size) {
689                 iod->first_dma = dma_addr;
690                 return total_len;
691         }
692
693         nprps = DIV_ROUND_UP(length, page_size);
694         if (nprps <= (256 / 8)) {
695                 pool = dev->prp_small_pool;
696                 iod->npages = 0;
697         } else {
698                 pool = dev->prp_page_pool;
699                 iod->npages = 1;
700         }
701
702         prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
703         if (!prp_list) {
704                 iod->first_dma = dma_addr;
705                 iod->npages = -1;
706                 return (total_len - length) + page_size;
707         }
708         list[0] = prp_list;
709         iod->first_dma = prp_dma;
710         i = 0;
711         for (;;) {
712                 if (i == page_size >> 3) {
713                         __le64 *old_prp_list = prp_list;
714                         prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
715                         if (!prp_list)
716                                 return total_len - length;
717                         list[iod->npages++] = prp_list;
718                         prp_list[0] = old_prp_list[i - 1];
719                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
720                         i = 1;
721                 }
722                 prp_list[i++] = cpu_to_le64(dma_addr);
723                 dma_len -= page_size;
724                 dma_addr += page_size;
725                 length -= page_size;
726                 if (length <= 0)
727                         break;
728                 if (dma_len > 0)
729                         continue;
730                 BUG_ON(dma_len < 0);
731                 sg = sg_next(sg);
732                 dma_addr = sg_dma_address(sg);
733                 dma_len = sg_dma_len(sg);
734         }
735
736         return total_len;
737 }
738
739 static void nvme_submit_priv(struct nvme_queue *nvmeq, struct request *req,
740                 struct nvme_iod *iod)
741 {
742         struct nvme_command cmnd;
743
744         memcpy(&cmnd, req->cmd, sizeof(cmnd));
745         cmnd.rw.command_id = req->tag;
746         if (req->nr_phys_segments) {
747                 cmnd.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
748                 cmnd.rw.prp2 = cpu_to_le64(iod->first_dma);
749         }
750
751         __nvme_submit_cmd(nvmeq, &cmnd);
752 }
753
754 /*
755  * We reuse the small pool to allocate the 16-byte range here as it is not
756  * worth having a special pool for these or additional cases to handle freeing
757  * the iod.
758  */
759 static void nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
760                 struct request *req, struct nvme_iod *iod)
761 {
762         struct nvme_dsm_range *range =
763                                 (struct nvme_dsm_range *)iod_list(iod)[0];
764         struct nvme_command cmnd;
765
766         range->cattr = cpu_to_le32(0);
767         range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
768         range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
769
770         memset(&cmnd, 0, sizeof(cmnd));
771         cmnd.dsm.opcode = nvme_cmd_dsm;
772         cmnd.dsm.command_id = req->tag;
773         cmnd.dsm.nsid = cpu_to_le32(ns->ns_id);
774         cmnd.dsm.prp1 = cpu_to_le64(iod->first_dma);
775         cmnd.dsm.nr = 0;
776         cmnd.dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
777
778         __nvme_submit_cmd(nvmeq, &cmnd);
779 }
780
781 static void nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
782                                                                 int cmdid)
783 {
784         struct nvme_command cmnd;
785
786         memset(&cmnd, 0, sizeof(cmnd));
787         cmnd.common.opcode = nvme_cmd_flush;
788         cmnd.common.command_id = cmdid;
789         cmnd.common.nsid = cpu_to_le32(ns->ns_id);
790
791         __nvme_submit_cmd(nvmeq, &cmnd);
792 }
793
794 static int nvme_submit_iod(struct nvme_queue *nvmeq, struct nvme_iod *iod,
795                                                         struct nvme_ns *ns)
796 {
797         struct request *req = iod_get_private(iod);
798         struct nvme_command cmnd;
799         u16 control = 0;
800         u32 dsmgmt = 0;
801
802         if (req->cmd_flags & REQ_FUA)
803                 control |= NVME_RW_FUA;
804         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
805                 control |= NVME_RW_LR;
806
807         if (req->cmd_flags & REQ_RAHEAD)
808                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
809
810         memset(&cmnd, 0, sizeof(cmnd));
811         cmnd.rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
812         cmnd.rw.command_id = req->tag;
813         cmnd.rw.nsid = cpu_to_le32(ns->ns_id);
814         cmnd.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
815         cmnd.rw.prp2 = cpu_to_le64(iod->first_dma);
816         cmnd.rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
817         cmnd.rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
818
819         if (blk_integrity_rq(req)) {
820                 cmnd.rw.metadata = cpu_to_le64(sg_dma_address(iod->meta_sg));
821                 switch (ns->pi_type) {
822                 case NVME_NS_DPS_PI_TYPE3:
823                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
824                         break;
825                 case NVME_NS_DPS_PI_TYPE1:
826                 case NVME_NS_DPS_PI_TYPE2:
827                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
828                                         NVME_RW_PRINFO_PRCHK_REF;
829                         cmnd.rw.reftag = cpu_to_le32(
830                                         nvme_block_nr(ns, blk_rq_pos(req)));
831                         break;
832                 }
833         } else if (ns->ms)
834                 control |= NVME_RW_PRINFO_PRACT;
835
836         cmnd.rw.control = cpu_to_le16(control);
837         cmnd.rw.dsmgmt = cpu_to_le32(dsmgmt);
838
839         __nvme_submit_cmd(nvmeq, &cmnd);
840
841         return 0;
842 }
843
844 /*
845  * NOTE: ns is NULL when called on the admin queue.
846  */
847 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
848                          const struct blk_mq_queue_data *bd)
849 {
850         struct nvme_ns *ns = hctx->queue->queuedata;
851         struct nvme_queue *nvmeq = hctx->driver_data;
852         struct nvme_dev *dev = nvmeq->dev;
853         struct request *req = bd->rq;
854         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
855         struct nvme_iod *iod;
856         enum dma_data_direction dma_dir;
857
858         /*
859          * If formated with metadata, require the block layer provide a buffer
860          * unless this namespace is formated such that the metadata can be
861          * stripped/generated by the controller with PRACT=1.
862          */
863         if (ns && ns->ms && !blk_integrity_rq(req)) {
864                 if (!(ns->pi_type && ns->ms == 8) &&
865                                         req->cmd_type != REQ_TYPE_DRV_PRIV) {
866                         req->errors = -EFAULT;
867                         blk_mq_complete_request(req);
868                         return BLK_MQ_RQ_QUEUE_OK;
869                 }
870         }
871
872         iod = nvme_alloc_iod(req, dev, GFP_ATOMIC);
873         if (!iod)
874                 return BLK_MQ_RQ_QUEUE_BUSY;
875
876         if (req->cmd_flags & REQ_DISCARD) {
877                 void *range;
878                 /*
879                  * We reuse the small pool to allocate the 16-byte range here
880                  * as it is not worth having a special pool for these or
881                  * additional cases to handle freeing the iod.
882                  */
883                 range = dma_pool_alloc(dev->prp_small_pool, GFP_ATOMIC,
884                                                 &iod->first_dma);
885                 if (!range)
886                         goto retry_cmd;
887                 iod_list(iod)[0] = (__le64 *)range;
888                 iod->npages = 0;
889         } else if (req->nr_phys_segments) {
890                 dma_dir = rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
891
892                 sg_init_table(iod->sg, req->nr_phys_segments);
893                 iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
894                 if (!iod->nents)
895                         goto error_cmd;
896
897                 if (!dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir))
898                         goto retry_cmd;
899
900                 if (blk_rq_bytes(req) !=
901                     nvme_setup_prps(dev, iod, blk_rq_bytes(req), GFP_ATOMIC)) {
902                         dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
903                         goto retry_cmd;
904                 }
905                 if (blk_integrity_rq(req)) {
906                         if (blk_rq_count_integrity_sg(req->q, req->bio) != 1)
907                                 goto error_cmd;
908
909                         sg_init_table(iod->meta_sg, 1);
910                         if (blk_rq_map_integrity_sg(
911                                         req->q, req->bio, iod->meta_sg) != 1)
912                                 goto error_cmd;
913
914                         if (rq_data_dir(req))
915                                 nvme_dif_remap(req, nvme_dif_prep);
916
917                         if (!dma_map_sg(nvmeq->q_dmadev, iod->meta_sg, 1, dma_dir))
918                                 goto error_cmd;
919                 }
920         }
921
922         nvme_set_info(cmd, iod, req_completion);
923         spin_lock_irq(&nvmeq->q_lock);
924         if (req->cmd_type == REQ_TYPE_DRV_PRIV)
925                 nvme_submit_priv(nvmeq, req, iod);
926         else if (req->cmd_flags & REQ_DISCARD)
927                 nvme_submit_discard(nvmeq, ns, req, iod);
928         else if (req->cmd_flags & REQ_FLUSH)
929                 nvme_submit_flush(nvmeq, ns, req->tag);
930         else
931                 nvme_submit_iod(nvmeq, iod, ns);
932
933         nvme_process_cq(nvmeq);
934         spin_unlock_irq(&nvmeq->q_lock);
935         return BLK_MQ_RQ_QUEUE_OK;
936
937  error_cmd:
938         nvme_free_iod(dev, iod);
939         return BLK_MQ_RQ_QUEUE_ERROR;
940  retry_cmd:
941         nvme_free_iod(dev, iod);
942         return BLK_MQ_RQ_QUEUE_BUSY;
943 }
944
945 static int nvme_process_cq(struct nvme_queue *nvmeq)
946 {
947         u16 head, phase;
948
949         head = nvmeq->cq_head;
950         phase = nvmeq->cq_phase;
951
952         for (;;) {
953                 void *ctx;
954                 nvme_completion_fn fn;
955                 struct nvme_completion cqe = nvmeq->cqes[head];
956                 if ((le16_to_cpu(cqe.status) & 1) != phase)
957                         break;
958                 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
959                 if (++head == nvmeq->q_depth) {
960                         head = 0;
961                         phase = !phase;
962                 }
963                 ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
964                 fn(nvmeq, ctx, &cqe);
965         }
966
967         /* If the controller ignores the cq head doorbell and continuously
968          * writes to the queue, it is theoretically possible to wrap around
969          * the queue twice and mistakenly return IRQ_NONE.  Linux only
970          * requires that 0.1% of your interrupts are handled, so this isn't
971          * a big problem.
972          */
973         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
974                 return 0;
975
976         writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
977         nvmeq->cq_head = head;
978         nvmeq->cq_phase = phase;
979
980         nvmeq->cqe_seen = 1;
981         return 1;
982 }
983
984 static irqreturn_t nvme_irq(int irq, void *data)
985 {
986         irqreturn_t result;
987         struct nvme_queue *nvmeq = data;
988         spin_lock(&nvmeq->q_lock);
989         nvme_process_cq(nvmeq);
990         result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
991         nvmeq->cqe_seen = 0;
992         spin_unlock(&nvmeq->q_lock);
993         return result;
994 }
995
996 static irqreturn_t nvme_irq_check(int irq, void *data)
997 {
998         struct nvme_queue *nvmeq = data;
999         struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
1000         if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
1001                 return IRQ_NONE;
1002         return IRQ_WAKE_THREAD;
1003 }
1004
1005 /*
1006  * Returns 0 on success.  If the result is negative, it's a Linux error code;
1007  * if the result is positive, it's an NVM Express status code
1008  */
1009 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1010                 void *buffer, void __user *ubuffer, unsigned bufflen,
1011                 u32 *result, unsigned timeout)
1012 {
1013         bool write = cmd->common.opcode & 1;
1014         struct bio *bio = NULL;
1015         struct request *req;
1016         int ret;
1017
1018         req = blk_mq_alloc_request(q, write, GFP_KERNEL, false);
1019         if (IS_ERR(req))
1020                 return PTR_ERR(req);
1021
1022         req->cmd_type = REQ_TYPE_DRV_PRIV;
1023         req->cmd_flags |= REQ_FAILFAST_DRIVER;
1024         req->__data_len = 0;
1025         req->__sector = (sector_t) -1;
1026         req->bio = req->biotail = NULL;
1027
1028         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
1029
1030         req->cmd = (unsigned char *)cmd;
1031         req->cmd_len = sizeof(struct nvme_command);
1032         req->special = (void *)0;
1033
1034         if (buffer && bufflen) {
1035                 ret = blk_rq_map_kern(q, req, buffer, bufflen, __GFP_WAIT);
1036                 if (ret)
1037                         goto out;
1038         } else if (ubuffer && bufflen) {
1039                 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen, __GFP_WAIT);
1040                 if (ret)
1041                         goto out;
1042                 bio = req->bio;
1043         }
1044
1045         blk_execute_rq(req->q, NULL, req, 0);
1046         if (bio)
1047                 blk_rq_unmap_user(bio);
1048         if (result)
1049                 *result = (u32)(uintptr_t)req->special;
1050         ret = req->errors;
1051  out:
1052         blk_mq_free_request(req);
1053         return ret;
1054 }
1055
1056 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1057                 void *buffer, unsigned bufflen)
1058 {
1059         return __nvme_submit_sync_cmd(q, cmd, buffer, NULL, bufflen, NULL, 0);
1060 }
1061
1062 static int nvme_submit_async_admin_req(struct nvme_dev *dev)
1063 {
1064         struct nvme_queue *nvmeq = dev->queues[0];
1065         struct nvme_command c;
1066         struct nvme_cmd_info *cmd_info;
1067         struct request *req;
1068
1069         req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC, true);
1070         if (IS_ERR(req))
1071                 return PTR_ERR(req);
1072
1073         req->cmd_flags |= REQ_NO_TIMEOUT;
1074         cmd_info = blk_mq_rq_to_pdu(req);
1075         nvme_set_info(cmd_info, NULL, async_req_completion);
1076
1077         memset(&c, 0, sizeof(c));
1078         c.common.opcode = nvme_admin_async_event;
1079         c.common.command_id = req->tag;
1080
1081         blk_mq_free_request(req);
1082         return __nvme_submit_cmd(nvmeq, &c);
1083 }
1084
1085 static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
1086                         struct nvme_command *cmd,
1087                         struct async_cmd_info *cmdinfo, unsigned timeout)
1088 {
1089         struct nvme_queue *nvmeq = dev->queues[0];
1090         struct request *req;
1091         struct nvme_cmd_info *cmd_rq;
1092
1093         req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
1094         if (IS_ERR(req))
1095                 return PTR_ERR(req);
1096
1097         req->timeout = timeout;
1098         cmd_rq = blk_mq_rq_to_pdu(req);
1099         cmdinfo->req = req;
1100         nvme_set_info(cmd_rq, cmdinfo, async_completion);
1101         cmdinfo->status = -EINTR;
1102
1103         cmd->common.command_id = req->tag;
1104
1105         return nvme_submit_cmd(nvmeq, cmd);
1106 }
1107
1108 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1109 {
1110         struct nvme_command c;
1111
1112         memset(&c, 0, sizeof(c));
1113         c.delete_queue.opcode = opcode;
1114         c.delete_queue.qid = cpu_to_le16(id);
1115
1116         return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
1117 }
1118
1119 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1120                                                 struct nvme_queue *nvmeq)
1121 {
1122         struct nvme_command c;
1123         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1124
1125         /*
1126          * Note: we (ab)use the fact the the prp fields survive if no data
1127          * is attached to the request.
1128          */
1129         memset(&c, 0, sizeof(c));
1130         c.create_cq.opcode = nvme_admin_create_cq;
1131         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1132         c.create_cq.cqid = cpu_to_le16(qid);
1133         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1134         c.create_cq.cq_flags = cpu_to_le16(flags);
1135         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1136
1137         return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
1138 }
1139
1140 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1141                                                 struct nvme_queue *nvmeq)
1142 {
1143         struct nvme_command c;
1144         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
1145
1146         /*
1147          * Note: we (ab)use the fact the the prp fields survive if no data
1148          * is attached to the request.
1149          */
1150         memset(&c, 0, sizeof(c));
1151         c.create_sq.opcode = nvme_admin_create_sq;
1152         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1153         c.create_sq.sqid = cpu_to_le16(qid);
1154         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1155         c.create_sq.sq_flags = cpu_to_le16(flags);
1156         c.create_sq.cqid = cpu_to_le16(qid);
1157
1158         return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
1159 }
1160
1161 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1162 {
1163         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1164 }
1165
1166 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1167 {
1168         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1169 }
1170
1171 int nvme_identify_ctrl(struct nvme_dev *dev, struct nvme_id_ctrl **id)
1172 {
1173         struct nvme_command c = { };
1174         int error;
1175
1176         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1177         c.identify.opcode = nvme_admin_identify;
1178         c.identify.cns = cpu_to_le32(1);
1179
1180         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1181         if (!*id)
1182                 return -ENOMEM;
1183
1184         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1185                         sizeof(struct nvme_id_ctrl));
1186         if (error)
1187                 kfree(*id);
1188         return error;
1189 }
1190
1191 int nvme_identify_ns(struct nvme_dev *dev, unsigned nsid,
1192                 struct nvme_id_ns **id)
1193 {
1194         struct nvme_command c = { };
1195         int error;
1196
1197         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1198         c.identify.opcode = nvme_admin_identify,
1199         c.identify.nsid = cpu_to_le32(nsid),
1200
1201         *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
1202         if (!*id)
1203                 return -ENOMEM;
1204
1205         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1206                         sizeof(struct nvme_id_ns));
1207         if (error)
1208                 kfree(*id);
1209         return error;
1210 }
1211
1212 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
1213                                         dma_addr_t dma_addr, u32 *result)
1214 {
1215         struct nvme_command c;
1216
1217         memset(&c, 0, sizeof(c));
1218         c.features.opcode = nvme_admin_get_features;
1219         c.features.nsid = cpu_to_le32(nsid);
1220         c.features.prp1 = cpu_to_le64(dma_addr);
1221         c.features.fid = cpu_to_le32(fid);
1222
1223         return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, NULL, 0,
1224                         result, 0);
1225 }
1226
1227 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
1228                                         dma_addr_t dma_addr, u32 *result)
1229 {
1230         struct nvme_command c;
1231
1232         memset(&c, 0, sizeof(c));
1233         c.features.opcode = nvme_admin_set_features;
1234         c.features.prp1 = cpu_to_le64(dma_addr);
1235         c.features.fid = cpu_to_le32(fid);
1236         c.features.dword11 = cpu_to_le32(dword11);
1237
1238         return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, NULL, 0,
1239                         result, 0);
1240 }
1241
1242 int nvme_get_log_page(struct nvme_dev *dev, struct nvme_smart_log **log)
1243 {
1244         struct nvme_command c = { };
1245         int error;
1246
1247         c.common.opcode = nvme_admin_get_log_page,
1248         c.common.nsid = cpu_to_le32(0xFFFFFFFF),
1249         c.common.cdw10[0] = cpu_to_le32(
1250                         (((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
1251                          NVME_LOG_SMART),
1252
1253         *log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
1254         if (!*log)
1255                 return -ENOMEM;
1256
1257         error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
1258                         sizeof(struct nvme_smart_log));
1259         if (error)
1260                 kfree(*log);
1261         return error;
1262 }
1263
1264 /**
1265  * nvme_abort_req - Attempt aborting a request
1266  *
1267  * Schedule controller reset if the command was already aborted once before and
1268  * still hasn't been returned to the driver, or if this is the admin queue.
1269  */
1270 static void nvme_abort_req(struct request *req)
1271 {
1272         struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1273         struct nvme_queue *nvmeq = cmd_rq->nvmeq;
1274         struct nvme_dev *dev = nvmeq->dev;
1275         struct request *abort_req;
1276         struct nvme_cmd_info *abort_cmd;
1277         struct nvme_command cmd;
1278
1279         if (!nvmeq->qid || cmd_rq->aborted) {
1280                 unsigned long flags;
1281
1282                 spin_lock_irqsave(&dev_list_lock, flags);
1283                 if (work_busy(&dev->reset_work))
1284                         goto out;
1285                 list_del_init(&dev->node);
1286                 dev_warn(dev->dev, "I/O %d QID %d timeout, reset controller\n",
1287                                                         req->tag, nvmeq->qid);
1288                 dev->reset_workfn = nvme_reset_failed_dev;
1289                 queue_work(nvme_workq, &dev->reset_work);
1290  out:
1291                 spin_unlock_irqrestore(&dev_list_lock, flags);
1292                 return;
1293         }
1294
1295         if (!dev->abort_limit)
1296                 return;
1297
1298         abort_req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC,
1299                                                                         false);
1300         if (IS_ERR(abort_req))
1301                 return;
1302
1303         abort_cmd = blk_mq_rq_to_pdu(abort_req);
1304         nvme_set_info(abort_cmd, abort_req, abort_completion);
1305
1306         memset(&cmd, 0, sizeof(cmd));
1307         cmd.abort.opcode = nvme_admin_abort_cmd;
1308         cmd.abort.cid = req->tag;
1309         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1310         cmd.abort.command_id = abort_req->tag;
1311
1312         --dev->abort_limit;
1313         cmd_rq->aborted = 1;
1314
1315         dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", req->tag,
1316                                                         nvmeq->qid);
1317         if (nvme_submit_cmd(dev->queues[0], &cmd) < 0) {
1318                 dev_warn(nvmeq->q_dmadev,
1319                                 "Could not abort I/O %d QID %d",
1320                                 req->tag, nvmeq->qid);
1321                 blk_mq_free_request(abort_req);
1322         }
1323 }
1324
1325 static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
1326 {
1327         struct nvme_queue *nvmeq = data;
1328         void *ctx;
1329         nvme_completion_fn fn;
1330         struct nvme_cmd_info *cmd;
1331         struct nvme_completion cqe;
1332
1333         if (!blk_mq_request_started(req))
1334                 return;
1335
1336         cmd = blk_mq_rq_to_pdu(req);
1337
1338         if (cmd->ctx == CMD_CTX_CANCELLED)
1339                 return;
1340
1341         if (blk_queue_dying(req->q))
1342                 cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1343         else
1344                 cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1345
1346
1347         dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
1348                                                 req->tag, nvmeq->qid);
1349         ctx = cancel_cmd_info(cmd, &fn);
1350         fn(nvmeq, ctx, &cqe);
1351 }
1352
1353 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1354 {
1355         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
1356         struct nvme_queue *nvmeq = cmd->nvmeq;
1357
1358         dev_warn(nvmeq->q_dmadev, "Timeout I/O %d QID %d\n", req->tag,
1359                                                         nvmeq->qid);
1360         spin_lock_irq(&nvmeq->q_lock);
1361         nvme_abort_req(req);
1362         spin_unlock_irq(&nvmeq->q_lock);
1363
1364         /*
1365          * The aborted req will be completed on receiving the abort req.
1366          * We enable the timer again. If hit twice, it'll cause a device reset,
1367          * as the device then is in a faulty state.
1368          */
1369         return BLK_EH_RESET_TIMER;
1370 }
1371
1372 static void nvme_free_queue(struct nvme_queue *nvmeq)
1373 {
1374         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1375                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1376         if (nvmeq->sq_cmds)
1377                 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1378                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1379         kfree(nvmeq);
1380 }
1381
1382 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1383 {
1384         int i;
1385
1386         for (i = dev->queue_count - 1; i >= lowest; i--) {
1387                 struct nvme_queue *nvmeq = dev->queues[i];
1388                 dev->queue_count--;
1389                 dev->queues[i] = NULL;
1390                 nvme_free_queue(nvmeq);
1391         }
1392 }
1393
1394 /**
1395  * nvme_suspend_queue - put queue into suspended state
1396  * @nvmeq - queue to suspend
1397  */
1398 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1399 {
1400         int vector;
1401
1402         spin_lock_irq(&nvmeq->q_lock);
1403         if (nvmeq->cq_vector == -1) {
1404                 spin_unlock_irq(&nvmeq->q_lock);
1405                 return 1;
1406         }
1407         vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1408         nvmeq->dev->online_queues--;
1409         nvmeq->cq_vector = -1;
1410         spin_unlock_irq(&nvmeq->q_lock);
1411
1412         if (!nvmeq->qid && nvmeq->dev->admin_q)
1413                 blk_mq_freeze_queue_start(nvmeq->dev->admin_q);
1414
1415         irq_set_affinity_hint(vector, NULL);
1416         free_irq(vector, nvmeq);
1417
1418         return 0;
1419 }
1420
1421 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1422 {
1423         spin_lock_irq(&nvmeq->q_lock);
1424         if (nvmeq->tags && *nvmeq->tags)
1425                 blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
1426         spin_unlock_irq(&nvmeq->q_lock);
1427 }
1428
1429 static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1430 {
1431         struct nvme_queue *nvmeq = dev->queues[qid];
1432
1433         if (!nvmeq)
1434                 return;
1435         if (nvme_suspend_queue(nvmeq))
1436                 return;
1437
1438         /* Don't tell the adapter to delete the admin queue.
1439          * Don't tell a removed adapter to delete IO queues. */
1440         if (qid && readl(&dev->bar->csts) != -1) {
1441                 adapter_delete_sq(dev, qid);
1442                 adapter_delete_cq(dev, qid);
1443         }
1444
1445         spin_lock_irq(&nvmeq->q_lock);
1446         nvme_process_cq(nvmeq);
1447         spin_unlock_irq(&nvmeq->q_lock);
1448 }
1449
1450 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1451                                 int entry_size)
1452 {
1453         int q_depth = dev->q_depth;
1454         unsigned q_size_aligned = roundup(q_depth * entry_size, dev->page_size);
1455
1456         if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1457                 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1458                 mem_per_q = round_down(mem_per_q, dev->page_size);
1459                 q_depth = div_u64(mem_per_q, entry_size);
1460
1461                 /*
1462                  * Ensure the reduced q_depth is above some threshold where it
1463                  * would be better to map queues in system memory with the
1464                  * original depth
1465                  */
1466                 if (q_depth < 64)
1467                         return -ENOMEM;
1468         }
1469
1470         return q_depth;
1471 }
1472
1473 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1474                                 int qid, int depth)
1475 {
1476         if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1477                 unsigned offset = (qid - 1) *
1478                                         roundup(SQ_SIZE(depth), dev->page_size);
1479                 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1480                 nvmeq->sq_cmds_io = dev->cmb + offset;
1481         } else {
1482                 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1483                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
1484                 if (!nvmeq->sq_cmds)
1485                         return -ENOMEM;
1486         }
1487
1488         return 0;
1489 }
1490
1491 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1492                                                         int depth)
1493 {
1494         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1495         if (!nvmeq)
1496                 return NULL;
1497
1498         nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1499                                           &nvmeq->cq_dma_addr, GFP_KERNEL);
1500         if (!nvmeq->cqes)
1501                 goto free_nvmeq;
1502
1503         if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1504                 goto free_cqdma;
1505
1506         nvmeq->q_dmadev = dev->dev;
1507         nvmeq->dev = dev;
1508         snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1509                         dev->instance, qid);
1510         spin_lock_init(&nvmeq->q_lock);
1511         nvmeq->cq_head = 0;
1512         nvmeq->cq_phase = 1;
1513         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1514         nvmeq->q_depth = depth;
1515         nvmeq->qid = qid;
1516         nvmeq->cq_vector = -1;
1517         dev->queues[qid] = nvmeq;
1518
1519         /* make sure queue descriptor is set before queue count, for kthread */
1520         mb();
1521         dev->queue_count++;
1522
1523         return nvmeq;
1524
1525  free_cqdma:
1526         dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1527                                                         nvmeq->cq_dma_addr);
1528  free_nvmeq:
1529         kfree(nvmeq);
1530         return NULL;
1531 }
1532
1533 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1534                                                         const char *name)
1535 {
1536         if (use_threaded_interrupts)
1537                 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1538                                         nvme_irq_check, nvme_irq, IRQF_SHARED,
1539                                         name, nvmeq);
1540         return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1541                                 IRQF_SHARED, name, nvmeq);
1542 }
1543
1544 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1545 {
1546         struct nvme_dev *dev = nvmeq->dev;
1547
1548         spin_lock_irq(&nvmeq->q_lock);
1549         nvmeq->sq_tail = 0;
1550         nvmeq->cq_head = 0;
1551         nvmeq->cq_phase = 1;
1552         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1553         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1554         dev->online_queues++;
1555         spin_unlock_irq(&nvmeq->q_lock);
1556 }
1557
1558 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1559 {
1560         struct nvme_dev *dev = nvmeq->dev;
1561         int result;
1562
1563         nvmeq->cq_vector = qid - 1;
1564         result = adapter_alloc_cq(dev, qid, nvmeq);
1565         if (result < 0)
1566                 return result;
1567
1568         result = adapter_alloc_sq(dev, qid, nvmeq);
1569         if (result < 0)
1570                 goto release_cq;
1571
1572         result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1573         if (result < 0)
1574                 goto release_sq;
1575
1576         nvme_init_queue(nvmeq, qid);
1577         return result;
1578
1579  release_sq:
1580         adapter_delete_sq(dev, qid);
1581  release_cq:
1582         adapter_delete_cq(dev, qid);
1583         return result;
1584 }
1585
1586 static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1587 {
1588         unsigned long timeout;
1589         u32 bit = enabled ? NVME_CSTS_RDY : 0;
1590
1591         timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1592
1593         while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1594                 msleep(100);
1595                 if (fatal_signal_pending(current))
1596                         return -EINTR;
1597                 if (time_after(jiffies, timeout)) {
1598                         dev_err(dev->dev,
1599                                 "Device not ready; aborting %s\n", enabled ?
1600                                                 "initialisation" : "reset");
1601                         return -ENODEV;
1602                 }
1603         }
1604
1605         return 0;
1606 }
1607
1608 /*
1609  * If the device has been passed off to us in an enabled state, just clear
1610  * the enabled bit.  The spec says we should set the 'shutdown notification
1611  * bits', but doing so may cause the device to complete commands to the
1612  * admin queue ... and we don't know what memory that might be pointing at!
1613  */
1614 static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1615 {
1616         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1617         dev->ctrl_config &= ~NVME_CC_ENABLE;
1618         writel(dev->ctrl_config, &dev->bar->cc);
1619
1620         return nvme_wait_ready(dev, cap, false);
1621 }
1622
1623 static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1624 {
1625         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1626         dev->ctrl_config |= NVME_CC_ENABLE;
1627         writel(dev->ctrl_config, &dev->bar->cc);
1628
1629         return nvme_wait_ready(dev, cap, true);
1630 }
1631
1632 static int nvme_shutdown_ctrl(struct nvme_dev *dev)
1633 {
1634         unsigned long timeout;
1635
1636         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1637         dev->ctrl_config |= NVME_CC_SHN_NORMAL;
1638
1639         writel(dev->ctrl_config, &dev->bar->cc);
1640
1641         timeout = SHUTDOWN_TIMEOUT + jiffies;
1642         while ((readl(&dev->bar->csts) & NVME_CSTS_SHST_MASK) !=
1643                                                         NVME_CSTS_SHST_CMPLT) {
1644                 msleep(100);
1645                 if (fatal_signal_pending(current))
1646                         return -EINTR;
1647                 if (time_after(jiffies, timeout)) {
1648                         dev_err(dev->dev,
1649                                 "Device shutdown incomplete; abort shutdown\n");
1650                         return -ENODEV;
1651                 }
1652         }
1653
1654         return 0;
1655 }
1656
1657 static struct blk_mq_ops nvme_mq_admin_ops = {
1658         .queue_rq       = nvme_queue_rq,
1659         .map_queue      = blk_mq_map_queue,
1660         .init_hctx      = nvme_admin_init_hctx,
1661         .exit_hctx      = nvme_admin_exit_hctx,
1662         .init_request   = nvme_admin_init_request,
1663         .timeout        = nvme_timeout,
1664 };
1665
1666 static struct blk_mq_ops nvme_mq_ops = {
1667         .queue_rq       = nvme_queue_rq,
1668         .map_queue      = blk_mq_map_queue,
1669         .init_hctx      = nvme_init_hctx,
1670         .init_request   = nvme_init_request,
1671         .timeout        = nvme_timeout,
1672 };
1673
1674 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1675 {
1676         if (dev->admin_q && !blk_queue_dying(dev->admin_q)) {
1677                 blk_cleanup_queue(dev->admin_q);
1678                 blk_mq_free_tag_set(&dev->admin_tagset);
1679         }
1680 }
1681
1682 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1683 {
1684         if (!dev->admin_q) {
1685                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1686                 dev->admin_tagset.nr_hw_queues = 1;
1687                 dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
1688                 dev->admin_tagset.reserved_tags = 1;
1689                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1690                 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1691                 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1692                 dev->admin_tagset.driver_data = dev;
1693
1694                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1695                         return -ENOMEM;
1696
1697                 dev->admin_q = blk_mq_init_queue(&dev->admin_tagset);
1698                 if (IS_ERR(dev->admin_q)) {
1699                         blk_mq_free_tag_set(&dev->admin_tagset);
1700                         return -ENOMEM;
1701                 }
1702                 if (!blk_get_queue(dev->admin_q)) {
1703                         nvme_dev_remove_admin(dev);
1704                         dev->admin_q = NULL;
1705                         return -ENODEV;
1706                 }
1707         } else
1708                 blk_mq_unfreeze_queue(dev->admin_q);
1709
1710         return 0;
1711 }
1712
1713 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1714 {
1715         int result;
1716         u32 aqa;
1717         u64 cap = readq(&dev->bar->cap);
1718         struct nvme_queue *nvmeq;
1719         unsigned page_shift = PAGE_SHIFT;
1720         unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
1721         unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
1722
1723         if (page_shift < dev_page_min) {
1724                 dev_err(dev->dev,
1725                                 "Minimum device page size (%u) too large for "
1726                                 "host (%u)\n", 1 << dev_page_min,
1727                                 1 << page_shift);
1728                 return -ENODEV;
1729         }
1730         if (page_shift > dev_page_max) {
1731                 dev_info(dev->dev,
1732                                 "Device maximum page size (%u) smaller than "
1733                                 "host (%u); enabling work-around\n",
1734                                 1 << dev_page_max, 1 << page_shift);
1735                 page_shift = dev_page_max;
1736         }
1737
1738         result = nvme_disable_ctrl(dev, cap);
1739         if (result < 0)
1740                 return result;
1741
1742         nvmeq = dev->queues[0];
1743         if (!nvmeq) {
1744                 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1745                 if (!nvmeq)
1746                         return -ENOMEM;
1747         }
1748
1749         aqa = nvmeq->q_depth - 1;
1750         aqa |= aqa << 16;
1751
1752         dev->page_size = 1 << page_shift;
1753
1754         dev->ctrl_config = NVME_CC_CSS_NVM;
1755         dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1756         dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1757         dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1758
1759         writel(aqa, &dev->bar->aqa);
1760         writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1761         writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1762
1763         result = nvme_enable_ctrl(dev, cap);
1764         if (result)
1765                 goto free_nvmeq;
1766
1767         nvmeq->cq_vector = 0;
1768         result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1769         if (result) {
1770                 nvmeq->cq_vector = -1;
1771                 goto free_nvmeq;
1772         }
1773
1774         return result;
1775
1776  free_nvmeq:
1777         nvme_free_queues(dev, 0);
1778         return result;
1779 }
1780
1781 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1782 {
1783         struct nvme_dev *dev = ns->dev;
1784         struct nvme_user_io io;
1785         struct nvme_command c;
1786         unsigned length, meta_len;
1787         int status, write;
1788         dma_addr_t meta_dma = 0;
1789         void *meta = NULL;
1790         void __user *metadata;
1791
1792         if (copy_from_user(&io, uio, sizeof(io)))
1793                 return -EFAULT;
1794
1795         switch (io.opcode) {
1796         case nvme_cmd_write:
1797         case nvme_cmd_read:
1798         case nvme_cmd_compare:
1799                 break;
1800         default:
1801                 return -EINVAL;
1802         }
1803
1804         length = (io.nblocks + 1) << ns->lba_shift;
1805         meta_len = (io.nblocks + 1) * ns->ms;
1806         metadata = (void __user *)(unsigned long)io.metadata;
1807         write = io.opcode & 1;
1808
1809         if (ns->ext) {
1810                 length += meta_len;
1811                 meta_len = 0;
1812         }
1813         if (meta_len) {
1814                 if (((io.metadata & 3) || !io.metadata) && !ns->ext)
1815                         return -EINVAL;
1816
1817                 meta = dma_alloc_coherent(dev->dev, meta_len,
1818                                                 &meta_dma, GFP_KERNEL);
1819
1820                 if (!meta) {
1821                         status = -ENOMEM;
1822                         goto unmap;
1823                 }
1824                 if (write) {
1825                         if (copy_from_user(meta, metadata, meta_len)) {
1826                                 status = -EFAULT;
1827                                 goto unmap;
1828                         }
1829                 }
1830         }
1831
1832         memset(&c, 0, sizeof(c));
1833         c.rw.opcode = io.opcode;
1834         c.rw.flags = io.flags;
1835         c.rw.nsid = cpu_to_le32(ns->ns_id);
1836         c.rw.slba = cpu_to_le64(io.slba);
1837         c.rw.length = cpu_to_le16(io.nblocks);
1838         c.rw.control = cpu_to_le16(io.control);
1839         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1840         c.rw.reftag = cpu_to_le32(io.reftag);
1841         c.rw.apptag = cpu_to_le16(io.apptag);
1842         c.rw.appmask = cpu_to_le16(io.appmask);
1843         c.rw.metadata = cpu_to_le64(meta_dma);
1844
1845         status = __nvme_submit_sync_cmd(ns->queue, &c, NULL,
1846                         (void __user *)io.addr, length, NULL, 0);
1847  unmap:
1848         if (meta) {
1849                 if (status == NVME_SC_SUCCESS && !write) {
1850                         if (copy_to_user(metadata, meta, meta_len))
1851                                 status = -EFAULT;
1852                 }
1853                 dma_free_coherent(dev->dev, meta_len, meta, meta_dma);
1854         }
1855         return status;
1856 }
1857
1858 static int nvme_user_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
1859                         struct nvme_passthru_cmd __user *ucmd)
1860 {
1861         struct nvme_passthru_cmd cmd;
1862         struct nvme_command c;
1863         unsigned timeout = 0;
1864         int status;
1865
1866         if (!capable(CAP_SYS_ADMIN))
1867                 return -EACCES;
1868         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1869                 return -EFAULT;
1870
1871         memset(&c, 0, sizeof(c));
1872         c.common.opcode = cmd.opcode;
1873         c.common.flags = cmd.flags;
1874         c.common.nsid = cpu_to_le32(cmd.nsid);
1875         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1876         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1877         c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1878         c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1879         c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1880         c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1881         c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1882         c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1883
1884         if (cmd.timeout_ms)
1885                 timeout = msecs_to_jiffies(cmd.timeout_ms);
1886
1887         status = __nvme_submit_sync_cmd(ns ? ns->queue : dev->admin_q, &c,
1888                         NULL, (void __user *)cmd.addr, cmd.data_len,
1889                         &cmd.result, timeout);
1890         if (status >= 0) {
1891                 if (put_user(cmd.result, &ucmd->result))
1892                         return -EFAULT;
1893         }
1894
1895         return status;
1896 }
1897
1898 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1899                                                         unsigned long arg)
1900 {
1901         struct nvme_ns *ns = bdev->bd_disk->private_data;
1902
1903         switch (cmd) {
1904         case NVME_IOCTL_ID:
1905                 force_successful_syscall_return();
1906                 return ns->ns_id;
1907         case NVME_IOCTL_ADMIN_CMD:
1908                 return nvme_user_cmd(ns->dev, NULL, (void __user *)arg);
1909         case NVME_IOCTL_IO_CMD:
1910                 return nvme_user_cmd(ns->dev, ns, (void __user *)arg);
1911         case NVME_IOCTL_SUBMIT_IO:
1912                 return nvme_submit_io(ns, (void __user *)arg);
1913         case SG_GET_VERSION_NUM:
1914                 return nvme_sg_get_version_num((void __user *)arg);
1915         case SG_IO:
1916                 return nvme_sg_io(ns, (void __user *)arg);
1917         default:
1918                 return -ENOTTY;
1919         }
1920 }
1921
1922 #ifdef CONFIG_COMPAT
1923 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1924                                         unsigned int cmd, unsigned long arg)
1925 {
1926         switch (cmd) {
1927         case SG_IO:
1928                 return -ENOIOCTLCMD;
1929         }
1930         return nvme_ioctl(bdev, mode, cmd, arg);
1931 }
1932 #else
1933 #define nvme_compat_ioctl       NULL
1934 #endif
1935
1936 static int nvme_open(struct block_device *bdev, fmode_t mode)
1937 {
1938         int ret = 0;
1939         struct nvme_ns *ns;
1940
1941         spin_lock(&dev_list_lock);
1942         ns = bdev->bd_disk->private_data;
1943         if (!ns)
1944                 ret = -ENXIO;
1945         else if (!kref_get_unless_zero(&ns->dev->kref))
1946                 ret = -ENXIO;
1947         spin_unlock(&dev_list_lock);
1948
1949         return ret;
1950 }
1951
1952 static void nvme_free_dev(struct kref *kref);
1953
1954 static void nvme_release(struct gendisk *disk, fmode_t mode)
1955 {
1956         struct nvme_ns *ns = disk->private_data;
1957         struct nvme_dev *dev = ns->dev;
1958
1959         kref_put(&dev->kref, nvme_free_dev);
1960 }
1961
1962 static int nvme_getgeo(struct block_device *bd, struct hd_geometry *geo)
1963 {
1964         /* some standard values */
1965         geo->heads = 1 << 6;
1966         geo->sectors = 1 << 5;
1967         geo->cylinders = get_capacity(bd->bd_disk) >> 11;
1968         return 0;
1969 }
1970
1971 static void nvme_config_discard(struct nvme_ns *ns)
1972 {
1973         u32 logical_block_size = queue_logical_block_size(ns->queue);
1974         ns->queue->limits.discard_zeroes_data = 0;
1975         ns->queue->limits.discard_alignment = logical_block_size;
1976         ns->queue->limits.discard_granularity = logical_block_size;
1977         blk_queue_max_discard_sectors(ns->queue, 0xffffffff);
1978         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1979 }
1980
1981 static int nvme_revalidate_disk(struct gendisk *disk)
1982 {
1983         struct nvme_ns *ns = disk->private_data;
1984         struct nvme_dev *dev = ns->dev;
1985         struct nvme_id_ns *id;
1986         u8 lbaf, pi_type;
1987         u16 old_ms;
1988         unsigned short bs;
1989
1990         if (nvme_identify_ns(dev, ns->ns_id, &id)) {
1991                 dev_warn(dev->dev, "%s: Identify failure nvme%dn%d\n", __func__,
1992                                                 dev->instance, ns->ns_id);
1993                 return -ENODEV;
1994         }
1995         if (id->ncap == 0) {
1996                 kfree(id);
1997                 return -ENODEV;
1998         }
1999
2000         old_ms = ns->ms;
2001         lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
2002         ns->lba_shift = id->lbaf[lbaf].ds;
2003         ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
2004         ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
2005
2006         /*
2007          * If identify namespace failed, use default 512 byte block size so
2008          * block layer can use before failing read/write for 0 capacity.
2009          */
2010         if (ns->lba_shift == 0)
2011                 ns->lba_shift = 9;
2012         bs = 1 << ns->lba_shift;
2013
2014         /* XXX: PI implementation requires metadata equal t10 pi tuple size */
2015         pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
2016                                         id->dps & NVME_NS_DPS_PI_MASK : 0;
2017
2018         if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
2019                                 ns->ms != old_ms ||
2020                                 bs != queue_logical_block_size(disk->queue) ||
2021                                 (ns->ms && ns->ext)))
2022                 blk_integrity_unregister(disk);
2023
2024         ns->pi_type = pi_type;
2025         blk_queue_logical_block_size(ns->queue, bs);
2026
2027         if (ns->ms && !blk_get_integrity(disk) && (disk->flags & GENHD_FL_UP) &&
2028                                                                 !ns->ext)
2029                 nvme_init_integrity(ns);
2030
2031         if (ns->ms && !blk_get_integrity(disk))
2032                 set_capacity(disk, 0);
2033         else
2034                 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
2035
2036         if (dev->oncs & NVME_CTRL_ONCS_DSM)
2037                 nvme_config_discard(ns);
2038
2039         kfree(id);
2040         return 0;
2041 }
2042
2043 static const struct block_device_operations nvme_fops = {
2044         .owner          = THIS_MODULE,
2045         .ioctl          = nvme_ioctl,
2046         .compat_ioctl   = nvme_compat_ioctl,
2047         .open           = nvme_open,
2048         .release        = nvme_release,
2049         .getgeo         = nvme_getgeo,
2050         .revalidate_disk= nvme_revalidate_disk,
2051 };
2052
2053 static int nvme_kthread(void *data)
2054 {
2055         struct nvme_dev *dev, *next;
2056
2057         while (!kthread_should_stop()) {
2058                 set_current_state(TASK_INTERRUPTIBLE);
2059                 spin_lock(&dev_list_lock);
2060                 list_for_each_entry_safe(dev, next, &dev_list, node) {
2061                         int i;
2062                         if (readl(&dev->bar->csts) & NVME_CSTS_CFS) {
2063                                 if (work_busy(&dev->reset_work))
2064                                         continue;
2065                                 list_del_init(&dev->node);
2066                                 dev_warn(dev->dev,
2067                                         "Failed status: %x, reset controller\n",
2068                                         readl(&dev->bar->csts));
2069                                 dev->reset_workfn = nvme_reset_failed_dev;
2070                                 queue_work(nvme_workq, &dev->reset_work);
2071                                 continue;
2072                         }
2073                         for (i = 0; i < dev->queue_count; i++) {
2074                                 struct nvme_queue *nvmeq = dev->queues[i];
2075                                 if (!nvmeq)
2076                                         continue;
2077                                 spin_lock_irq(&nvmeq->q_lock);
2078                                 nvme_process_cq(nvmeq);
2079
2080                                 while ((i == 0) && (dev->event_limit > 0)) {
2081                                         if (nvme_submit_async_admin_req(dev))
2082                                                 break;
2083                                         dev->event_limit--;
2084                                 }
2085                                 spin_unlock_irq(&nvmeq->q_lock);
2086                         }
2087                 }
2088                 spin_unlock(&dev_list_lock);
2089                 schedule_timeout(round_jiffies_relative(HZ));
2090         }
2091         return 0;
2092 }
2093
2094 static void nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid)
2095 {
2096         struct nvme_ns *ns;
2097         struct gendisk *disk;
2098         int node = dev_to_node(dev->dev);
2099
2100         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
2101         if (!ns)
2102                 return;
2103
2104         ns->queue = blk_mq_init_queue(&dev->tagset);
2105         if (IS_ERR(ns->queue))
2106                 goto out_free_ns;
2107         queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
2108         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
2109         queue_flag_set_unlocked(QUEUE_FLAG_SG_GAPS, ns->queue);
2110         ns->dev = dev;
2111         ns->queue->queuedata = ns;
2112
2113         disk = alloc_disk_node(0, node);
2114         if (!disk)
2115                 goto out_free_queue;
2116
2117         ns->ns_id = nsid;
2118         ns->disk = disk;
2119         ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
2120         list_add_tail(&ns->list, &dev->namespaces);
2121
2122         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2123         if (dev->max_hw_sectors) {
2124                 blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
2125                 blk_queue_max_segments(ns->queue,
2126                         ((dev->max_hw_sectors << 9) / dev->page_size) + 1);
2127         }
2128         if (dev->stripe_size)
2129                 blk_queue_chunk_sectors(ns->queue, dev->stripe_size >> 9);
2130         if (dev->vwc & NVME_CTRL_VWC_PRESENT)
2131                 blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
2132
2133         disk->major = nvme_major;
2134         disk->first_minor = 0;
2135         disk->fops = &nvme_fops;
2136         disk->private_data = ns;
2137         disk->queue = ns->queue;
2138         disk->driverfs_dev = dev->device;
2139         disk->flags = GENHD_FL_EXT_DEVT;
2140         sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
2141
2142         /*
2143          * Initialize capacity to 0 until we establish the namespace format and
2144          * setup integrity extentions if necessary. The revalidate_disk after
2145          * add_disk allows the driver to register with integrity if the format
2146          * requires it.
2147          */
2148         set_capacity(disk, 0);
2149         if (nvme_revalidate_disk(ns->disk))
2150                 goto out_free_disk;
2151
2152         add_disk(ns->disk);
2153         if (ns->ms) {
2154                 struct block_device *bd = bdget_disk(ns->disk, 0);
2155                 if (!bd)
2156                         return;
2157                 if (blkdev_get(bd, FMODE_READ, NULL)) {
2158                         bdput(bd);
2159                         return;
2160                 }
2161                 blkdev_reread_part(bd);
2162                 blkdev_put(bd, FMODE_READ);
2163         }
2164         return;
2165  out_free_disk:
2166         kfree(disk);
2167         list_del(&ns->list);
2168  out_free_queue:
2169         blk_cleanup_queue(ns->queue);
2170  out_free_ns:
2171         kfree(ns);
2172 }
2173
2174 static void nvme_create_io_queues(struct nvme_dev *dev)
2175 {
2176         unsigned i;
2177
2178         for (i = dev->queue_count; i <= dev->max_qid; i++)
2179                 if (!nvme_alloc_queue(dev, i, dev->q_depth))
2180                         break;
2181
2182         for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
2183                 if (nvme_create_queue(dev->queues[i], i))
2184                         break;
2185 }
2186
2187 static int set_queue_count(struct nvme_dev *dev, int count)
2188 {
2189         int status;
2190         u32 result;
2191         u32 q_count = (count - 1) | ((count - 1) << 16);
2192
2193         status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
2194                                                                 &result);
2195         if (status < 0)
2196                 return status;
2197         if (status > 0) {
2198                 dev_err(dev->dev, "Could not set queue count (%d)\n", status);
2199                 return 0;
2200         }
2201         return min(result & 0xffff, result >> 16) + 1;
2202 }
2203
2204 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
2205 {
2206         u64 szu, size, offset;
2207         u32 cmbloc;
2208         resource_size_t bar_size;
2209         struct pci_dev *pdev = to_pci_dev(dev->dev);
2210         void __iomem *cmb;
2211         dma_addr_t dma_addr;
2212
2213         if (!use_cmb_sqes)
2214                 return NULL;
2215
2216         dev->cmbsz = readl(&dev->bar->cmbsz);
2217         if (!(NVME_CMB_SZ(dev->cmbsz)))
2218                 return NULL;
2219
2220         cmbloc = readl(&dev->bar->cmbloc);
2221
2222         szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
2223         size = szu * NVME_CMB_SZ(dev->cmbsz);
2224         offset = szu * NVME_CMB_OFST(cmbloc);
2225         bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
2226
2227         if (offset > bar_size)
2228                 return NULL;
2229
2230         /*
2231          * Controllers may support a CMB size larger than their BAR,
2232          * for example, due to being behind a bridge. Reduce the CMB to
2233          * the reported size of the BAR
2234          */
2235         if (size > bar_size - offset)
2236                 size = bar_size - offset;
2237
2238         dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
2239         cmb = ioremap_wc(dma_addr, size);
2240         if (!cmb)
2241                 return NULL;
2242
2243         dev->cmb_dma_addr = dma_addr;
2244         dev->cmb_size = size;
2245         return cmb;
2246 }
2247
2248 static inline void nvme_release_cmb(struct nvme_dev *dev)
2249 {
2250         if (dev->cmb) {
2251                 iounmap(dev->cmb);
2252                 dev->cmb = NULL;
2253         }
2254 }
2255
2256 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
2257 {
2258         return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
2259 }
2260
2261 static int nvme_setup_io_queues(struct nvme_dev *dev)
2262 {
2263         struct nvme_queue *adminq = dev->queues[0];
2264         struct pci_dev *pdev = to_pci_dev(dev->dev);
2265         int result, i, vecs, nr_io_queues, size;
2266
2267         nr_io_queues = num_possible_cpus();
2268         result = set_queue_count(dev, nr_io_queues);
2269         if (result <= 0)
2270                 return result;
2271         if (result < nr_io_queues)
2272                 nr_io_queues = result;
2273
2274         if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
2275                 result = nvme_cmb_qdepth(dev, nr_io_queues,
2276                                 sizeof(struct nvme_command));
2277                 if (result > 0)
2278                         dev->q_depth = result;
2279                 else
2280                         nvme_release_cmb(dev);
2281         }
2282
2283         size = db_bar_size(dev, nr_io_queues);
2284         if (size > 8192) {
2285                 iounmap(dev->bar);
2286                 do {
2287                         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
2288                         if (dev->bar)
2289                                 break;
2290                         if (!--nr_io_queues)
2291                                 return -ENOMEM;
2292                         size = db_bar_size(dev, nr_io_queues);
2293                 } while (1);
2294                 dev->dbs = ((void __iomem *)dev->bar) + 4096;
2295                 adminq->q_db = dev->dbs;
2296         }
2297
2298         /* Deregister the admin queue's interrupt */
2299         free_irq(dev->entry[0].vector, adminq);
2300
2301         /*
2302          * If we enable msix early due to not intx, disable it again before
2303          * setting up the full range we need.
2304          */
2305         if (!pdev->irq)
2306                 pci_disable_msix(pdev);
2307
2308         for (i = 0; i < nr_io_queues; i++)
2309                 dev->entry[i].entry = i;
2310         vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
2311         if (vecs < 0) {
2312                 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
2313                 if (vecs < 0) {
2314                         vecs = 1;
2315                 } else {
2316                         for (i = 0; i < vecs; i++)
2317                                 dev->entry[i].vector = i + pdev->irq;
2318                 }
2319         }
2320
2321         /*
2322          * Should investigate if there's a performance win from allocating
2323          * more queues than interrupt vectors; it might allow the submission
2324          * path to scale better, even if the receive path is limited by the
2325          * number of interrupts.
2326          */
2327         nr_io_queues = vecs;
2328         dev->max_qid = nr_io_queues;
2329
2330         result = queue_request_irq(dev, adminq, adminq->irqname);
2331         if (result) {
2332                 adminq->cq_vector = -1;
2333                 goto free_queues;
2334         }
2335
2336         /* Free previously allocated queues that are no longer usable */
2337         nvme_free_queues(dev, nr_io_queues + 1);
2338         nvme_create_io_queues(dev);
2339
2340         return 0;
2341
2342  free_queues:
2343         nvme_free_queues(dev, 1);
2344         return result;
2345 }
2346
2347 static void nvme_free_namespace(struct nvme_ns *ns)
2348 {
2349         list_del(&ns->list);
2350
2351         spin_lock(&dev_list_lock);
2352         ns->disk->private_data = NULL;
2353         spin_unlock(&dev_list_lock);
2354
2355         put_disk(ns->disk);
2356         kfree(ns);
2357 }
2358
2359 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
2360 {
2361         struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
2362         struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
2363
2364         return nsa->ns_id - nsb->ns_id;
2365 }
2366
2367 static struct nvme_ns *nvme_find_ns(struct nvme_dev *dev, unsigned nsid)
2368 {
2369         struct nvme_ns *ns;
2370
2371         list_for_each_entry(ns, &dev->namespaces, list) {
2372                 if (ns->ns_id == nsid)
2373                         return ns;
2374                 if (ns->ns_id > nsid)
2375                         break;
2376         }
2377         return NULL;
2378 }
2379
2380 static inline bool nvme_io_incapable(struct nvme_dev *dev)
2381 {
2382         return (!dev->bar || readl(&dev->bar->csts) & NVME_CSTS_CFS ||
2383                                                         dev->online_queues < 2);
2384 }
2385
2386 static void nvme_ns_remove(struct nvme_ns *ns)
2387 {
2388         bool kill = nvme_io_incapable(ns->dev) && !blk_queue_dying(ns->queue);
2389
2390         if (kill)
2391                 blk_set_queue_dying(ns->queue);
2392         if (ns->disk->flags & GENHD_FL_UP) {
2393                 if (blk_get_integrity(ns->disk))
2394                         blk_integrity_unregister(ns->disk);
2395                 del_gendisk(ns->disk);
2396         }
2397         if (kill || !blk_queue_dying(ns->queue)) {
2398                 blk_mq_abort_requeue_list(ns->queue);
2399                 blk_cleanup_queue(ns->queue);
2400         }
2401 }
2402
2403 static void nvme_scan_namespaces(struct nvme_dev *dev, unsigned nn)
2404 {
2405         struct nvme_ns *ns, *next;
2406         unsigned i;
2407
2408         for (i = 1; i <= nn; i++) {
2409                 ns = nvme_find_ns(dev, i);
2410                 if (ns) {
2411                         if (revalidate_disk(ns->disk)) {
2412                                 nvme_ns_remove(ns);
2413                                 nvme_free_namespace(ns);
2414                         }
2415                 } else
2416                         nvme_alloc_ns(dev, i);
2417         }
2418         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
2419                 if (ns->ns_id > nn) {
2420                         nvme_ns_remove(ns);
2421                         nvme_free_namespace(ns);
2422                 }
2423         }
2424         list_sort(NULL, &dev->namespaces, ns_cmp);
2425 }
2426
2427 static void nvme_dev_scan(struct work_struct *work)
2428 {
2429         struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
2430         struct nvme_id_ctrl *ctrl;
2431
2432         if (!dev->tagset.tags)
2433                 return;
2434         if (nvme_identify_ctrl(dev, &ctrl))
2435                 return;
2436         nvme_scan_namespaces(dev, le32_to_cpup(&ctrl->nn));
2437         kfree(ctrl);
2438 }
2439
2440 /*
2441  * Return: error value if an error occurred setting up the queues or calling
2442  * Identify Device.  0 if these succeeded, even if adding some of the
2443  * namespaces failed.  At the moment, these failures are silent.  TBD which
2444  * failures should be reported.
2445  */
2446 static int nvme_dev_add(struct nvme_dev *dev)
2447 {
2448         struct pci_dev *pdev = to_pci_dev(dev->dev);
2449         int res;
2450         struct nvme_id_ctrl *ctrl;
2451         int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
2452
2453         res = nvme_identify_ctrl(dev, &ctrl);
2454         if (res) {
2455                 dev_err(dev->dev, "Identify Controller failed (%d)\n", res);
2456                 return -EIO;
2457         }
2458
2459         dev->oncs = le16_to_cpup(&ctrl->oncs);
2460         dev->abort_limit = ctrl->acl + 1;
2461         dev->vwc = ctrl->vwc;
2462         memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
2463         memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
2464         memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
2465         if (ctrl->mdts)
2466                 dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
2467         if ((pdev->vendor == PCI_VENDOR_ID_INTEL) &&
2468                         (pdev->device == 0x0953) && ctrl->vs[3]) {
2469                 unsigned int max_hw_sectors;
2470
2471                 dev->stripe_size = 1 << (ctrl->vs[3] + shift);
2472                 max_hw_sectors = dev->stripe_size >> (shift - 9);
2473                 if (dev->max_hw_sectors) {
2474                         dev->max_hw_sectors = min(max_hw_sectors,
2475                                                         dev->max_hw_sectors);
2476                 } else
2477                         dev->max_hw_sectors = max_hw_sectors;
2478         }
2479         kfree(ctrl);
2480
2481         if (!dev->tagset.tags) {
2482                 dev->tagset.ops = &nvme_mq_ops;
2483                 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2484                 dev->tagset.timeout = NVME_IO_TIMEOUT;
2485                 dev->tagset.numa_node = dev_to_node(dev->dev);
2486                 dev->tagset.queue_depth =
2487                                 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2488                 dev->tagset.cmd_size = nvme_cmd_size(dev);
2489                 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2490                 dev->tagset.driver_data = dev;
2491
2492                 if (blk_mq_alloc_tag_set(&dev->tagset))
2493                         return 0;
2494         }
2495         schedule_work(&dev->scan_work);
2496         return 0;
2497 }
2498
2499 static int nvme_dev_map(struct nvme_dev *dev)
2500 {
2501         u64 cap;
2502         int bars, result = -ENOMEM;
2503         struct pci_dev *pdev = to_pci_dev(dev->dev);
2504
2505         if (pci_enable_device_mem(pdev))
2506                 return result;
2507
2508         dev->entry[0].vector = pdev->irq;
2509         pci_set_master(pdev);
2510         bars = pci_select_bars(pdev, IORESOURCE_MEM);
2511         if (!bars)
2512                 goto disable_pci;
2513
2514         if (pci_request_selected_regions(pdev, bars, "nvme"))
2515                 goto disable_pci;
2516
2517         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2518             dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
2519                 goto disable;
2520
2521         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2522         if (!dev->bar)
2523                 goto disable;
2524
2525         if (readl(&dev->bar->csts) == -1) {
2526                 result = -ENODEV;
2527                 goto unmap;
2528         }
2529
2530         /*
2531          * Some devices don't advertse INTx interrupts, pre-enable a single
2532          * MSIX vec for setup. We'll adjust this later.
2533          */
2534         if (!pdev->irq) {
2535                 result = pci_enable_msix(pdev, dev->entry, 1);
2536                 if (result < 0)
2537                         goto unmap;
2538         }
2539
2540         cap = readq(&dev->bar->cap);
2541         dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
2542         dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
2543         dev->dbs = ((void __iomem *)dev->bar) + 4096;
2544         if (readl(&dev->bar->vs) >= NVME_VS(1, 2))
2545                 dev->cmb = nvme_map_cmb(dev);
2546
2547         return 0;
2548
2549  unmap:
2550         iounmap(dev->bar);
2551         dev->bar = NULL;
2552  disable:
2553         pci_release_regions(pdev);
2554  disable_pci:
2555         pci_disable_device(pdev);
2556         return result;
2557 }
2558
2559 static void nvme_dev_unmap(struct nvme_dev *dev)
2560 {
2561         struct pci_dev *pdev = to_pci_dev(dev->dev);
2562
2563         if (pdev->msi_enabled)
2564                 pci_disable_msi(pdev);
2565         else if (pdev->msix_enabled)
2566                 pci_disable_msix(pdev);
2567
2568         if (dev->bar) {
2569                 iounmap(dev->bar);
2570                 dev->bar = NULL;
2571                 pci_release_regions(pdev);
2572         }
2573
2574         if (pci_is_enabled(pdev))
2575                 pci_disable_device(pdev);
2576 }
2577
2578 struct nvme_delq_ctx {
2579         struct task_struct *waiter;
2580         struct kthread_worker *worker;
2581         atomic_t refcount;
2582 };
2583
2584 static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
2585 {
2586         dq->waiter = current;
2587         mb();
2588
2589         for (;;) {
2590                 set_current_state(TASK_KILLABLE);
2591                 if (!atomic_read(&dq->refcount))
2592                         break;
2593                 if (!schedule_timeout(ADMIN_TIMEOUT) ||
2594                                         fatal_signal_pending(current)) {
2595                         /*
2596                          * Disable the controller first since we can't trust it
2597                          * at this point, but leave the admin queue enabled
2598                          * until all queue deletion requests are flushed.
2599                          * FIXME: This may take a while if there are more h/w
2600                          * queues than admin tags.
2601                          */
2602                         set_current_state(TASK_RUNNING);
2603                         nvme_disable_ctrl(dev, readq(&dev->bar->cap));
2604                         nvme_clear_queue(dev->queues[0]);
2605                         flush_kthread_worker(dq->worker);
2606                         nvme_disable_queue(dev, 0);
2607                         return;
2608                 }
2609         }
2610         set_current_state(TASK_RUNNING);
2611 }
2612
2613 static void nvme_put_dq(struct nvme_delq_ctx *dq)
2614 {
2615         atomic_dec(&dq->refcount);
2616         if (dq->waiter)
2617                 wake_up_process(dq->waiter);
2618 }
2619
2620 static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
2621 {
2622         atomic_inc(&dq->refcount);
2623         return dq;
2624 }
2625
2626 static void nvme_del_queue_end(struct nvme_queue *nvmeq)
2627 {
2628         struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
2629         nvme_put_dq(dq);
2630 }
2631
2632 static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
2633                                                 kthread_work_func_t fn)
2634 {
2635         struct nvme_command c;
2636
2637         memset(&c, 0, sizeof(c));
2638         c.delete_queue.opcode = opcode;
2639         c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2640
2641         init_kthread_work(&nvmeq->cmdinfo.work, fn);
2642         return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
2643                                                                 ADMIN_TIMEOUT);
2644 }
2645
2646 static void nvme_del_cq_work_handler(struct kthread_work *work)
2647 {
2648         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2649                                                         cmdinfo.work);
2650         nvme_del_queue_end(nvmeq);
2651 }
2652
2653 static int nvme_delete_cq(struct nvme_queue *nvmeq)
2654 {
2655         return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
2656                                                 nvme_del_cq_work_handler);
2657 }
2658
2659 static void nvme_del_sq_work_handler(struct kthread_work *work)
2660 {
2661         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2662                                                         cmdinfo.work);
2663         int status = nvmeq->cmdinfo.status;
2664
2665         if (!status)
2666                 status = nvme_delete_cq(nvmeq);
2667         if (status)
2668                 nvme_del_queue_end(nvmeq);
2669 }
2670
2671 static int nvme_delete_sq(struct nvme_queue *nvmeq)
2672 {
2673         return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
2674                                                 nvme_del_sq_work_handler);
2675 }
2676
2677 static void nvme_del_queue_start(struct kthread_work *work)
2678 {
2679         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2680                                                         cmdinfo.work);
2681         if (nvme_delete_sq(nvmeq))
2682                 nvme_del_queue_end(nvmeq);
2683 }
2684
2685 static void nvme_disable_io_queues(struct nvme_dev *dev)
2686 {
2687         int i;
2688         DEFINE_KTHREAD_WORKER_ONSTACK(worker);
2689         struct nvme_delq_ctx dq;
2690         struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
2691                                         &worker, "nvme%d", dev->instance);
2692
2693         if (IS_ERR(kworker_task)) {
2694                 dev_err(dev->dev,
2695                         "Failed to create queue del task\n");
2696                 for (i = dev->queue_count - 1; i > 0; i--)
2697                         nvme_disable_queue(dev, i);
2698                 return;
2699         }
2700
2701         dq.waiter = NULL;
2702         atomic_set(&dq.refcount, 0);
2703         dq.worker = &worker;
2704         for (i = dev->queue_count - 1; i > 0; i--) {
2705                 struct nvme_queue *nvmeq = dev->queues[i];
2706
2707                 if (nvme_suspend_queue(nvmeq))
2708                         continue;
2709                 nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
2710                 nvmeq->cmdinfo.worker = dq.worker;
2711                 init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
2712                 queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
2713         }
2714         nvme_wait_dq(&dq, dev);
2715         kthread_stop(kworker_task);
2716 }
2717
2718 /*
2719 * Remove the node from the device list and check
2720 * for whether or not we need to stop the nvme_thread.
2721 */
2722 static void nvme_dev_list_remove(struct nvme_dev *dev)
2723 {
2724         struct task_struct *tmp = NULL;
2725
2726         spin_lock(&dev_list_lock);
2727         list_del_init(&dev->node);
2728         if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2729                 tmp = nvme_thread;
2730                 nvme_thread = NULL;
2731         }
2732         spin_unlock(&dev_list_lock);
2733
2734         if (tmp)
2735                 kthread_stop(tmp);
2736 }
2737
2738 static void nvme_freeze_queues(struct nvme_dev *dev)
2739 {
2740         struct nvme_ns *ns;
2741
2742         list_for_each_entry(ns, &dev->namespaces, list) {
2743                 blk_mq_freeze_queue_start(ns->queue);
2744
2745                 spin_lock_irq(ns->queue->queue_lock);
2746                 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
2747                 spin_unlock_irq(ns->queue->queue_lock);
2748
2749                 blk_mq_cancel_requeue_work(ns->queue);
2750                 blk_mq_stop_hw_queues(ns->queue);
2751         }
2752 }
2753
2754 static void nvme_unfreeze_queues(struct nvme_dev *dev)
2755 {
2756         struct nvme_ns *ns;
2757
2758         list_for_each_entry(ns, &dev->namespaces, list) {
2759                 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
2760                 blk_mq_unfreeze_queue(ns->queue);
2761                 blk_mq_start_stopped_hw_queues(ns->queue, true);
2762                 blk_mq_kick_requeue_list(ns->queue);
2763         }
2764 }
2765
2766 static void nvme_dev_shutdown(struct nvme_dev *dev)
2767 {
2768         int i;
2769         u32 csts = -1;
2770
2771         nvme_dev_list_remove(dev);
2772
2773         if (dev->bar) {
2774                 nvme_freeze_queues(dev);
2775                 csts = readl(&dev->bar->csts);
2776         }
2777         if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
2778                 for (i = dev->queue_count - 1; i >= 0; i--) {
2779                         struct nvme_queue *nvmeq = dev->queues[i];
2780                         nvme_suspend_queue(nvmeq);
2781                 }
2782         } else {
2783                 nvme_disable_io_queues(dev);
2784                 nvme_shutdown_ctrl(dev);
2785                 nvme_disable_queue(dev, 0);
2786         }
2787         nvme_dev_unmap(dev);
2788
2789         for (i = dev->queue_count - 1; i >= 0; i--)
2790                 nvme_clear_queue(dev->queues[i]);
2791 }
2792
2793 static void nvme_dev_remove(struct nvme_dev *dev)
2794 {
2795         struct nvme_ns *ns;
2796
2797         list_for_each_entry(ns, &dev->namespaces, list)
2798                 nvme_ns_remove(ns);
2799 }
2800
2801 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2802 {
2803         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2804                                                 PAGE_SIZE, PAGE_SIZE, 0);
2805         if (!dev->prp_page_pool)
2806                 return -ENOMEM;
2807
2808         /* Optimisation for I/Os between 4k and 128k */
2809         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2810                                                 256, 256, 0);
2811         if (!dev->prp_small_pool) {
2812                 dma_pool_destroy(dev->prp_page_pool);
2813                 return -ENOMEM;
2814         }
2815         return 0;
2816 }
2817
2818 static void nvme_release_prp_pools(struct nvme_dev *dev)
2819 {
2820         dma_pool_destroy(dev->prp_page_pool);
2821         dma_pool_destroy(dev->prp_small_pool);
2822 }
2823
2824 static DEFINE_IDA(nvme_instance_ida);
2825
2826 static int nvme_set_instance(struct nvme_dev *dev)
2827 {
2828         int instance, error;
2829
2830         do {
2831                 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2832                         return -ENODEV;
2833
2834                 spin_lock(&dev_list_lock);
2835                 error = ida_get_new(&nvme_instance_ida, &instance);
2836                 spin_unlock(&dev_list_lock);
2837         } while (error == -EAGAIN);
2838
2839         if (error)
2840                 return -ENODEV;
2841
2842         dev->instance = instance;
2843         return 0;
2844 }
2845
2846 static void nvme_release_instance(struct nvme_dev *dev)
2847 {
2848         spin_lock(&dev_list_lock);
2849         ida_remove(&nvme_instance_ida, dev->instance);
2850         spin_unlock(&dev_list_lock);
2851 }
2852
2853 static void nvme_free_namespaces(struct nvme_dev *dev)
2854 {
2855         struct nvme_ns *ns, *next;
2856
2857         list_for_each_entry_safe(ns, next, &dev->namespaces, list)
2858                 nvme_free_namespace(ns);
2859 }
2860
2861 static void nvme_free_dev(struct kref *kref)
2862 {
2863         struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
2864
2865         put_device(dev->dev);
2866         put_device(dev->device);
2867         nvme_free_namespaces(dev);
2868         nvme_release_instance(dev);
2869         if (dev->tagset.tags)
2870                 blk_mq_free_tag_set(&dev->tagset);
2871         if (dev->admin_q)
2872                 blk_put_queue(dev->admin_q);
2873         kfree(dev->queues);
2874         kfree(dev->entry);
2875         kfree(dev);
2876 }
2877
2878 static int nvme_dev_open(struct inode *inode, struct file *f)
2879 {
2880         struct nvme_dev *dev;
2881         int instance = iminor(inode);
2882         int ret = -ENODEV;
2883
2884         spin_lock(&dev_list_lock);
2885         list_for_each_entry(dev, &dev_list, node) {
2886                 if (dev->instance == instance) {
2887                         if (!dev->admin_q) {
2888                                 ret = -EWOULDBLOCK;
2889                                 break;
2890                         }
2891                         if (!kref_get_unless_zero(&dev->kref))
2892                                 break;
2893                         f->private_data = dev;
2894                         ret = 0;
2895                         break;
2896                 }
2897         }
2898         spin_unlock(&dev_list_lock);
2899
2900         return ret;
2901 }
2902
2903 static int nvme_dev_release(struct inode *inode, struct file *f)
2904 {
2905         struct nvme_dev *dev = f->private_data;
2906         kref_put(&dev->kref, nvme_free_dev);
2907         return 0;
2908 }
2909
2910 static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
2911 {
2912         struct nvme_dev *dev = f->private_data;
2913         struct nvme_ns *ns;
2914
2915         switch (cmd) {
2916         case NVME_IOCTL_ADMIN_CMD:
2917                 return nvme_user_cmd(dev, NULL, (void __user *)arg);
2918         case NVME_IOCTL_IO_CMD:
2919                 if (list_empty(&dev->namespaces))
2920                         return -ENOTTY;
2921                 ns = list_first_entry(&dev->namespaces, struct nvme_ns, list);
2922                 return nvme_user_cmd(dev, ns, (void __user *)arg);
2923         case NVME_IOCTL_RESET:
2924                 dev_warn(dev->dev, "resetting controller\n");
2925                 return nvme_reset(dev);
2926         default:
2927                 return -ENOTTY;
2928         }
2929 }
2930
2931 static const struct file_operations nvme_dev_fops = {
2932         .owner          = THIS_MODULE,
2933         .open           = nvme_dev_open,
2934         .release        = nvme_dev_release,
2935         .unlocked_ioctl = nvme_dev_ioctl,
2936         .compat_ioctl   = nvme_dev_ioctl,
2937 };
2938
2939 static void nvme_set_irq_hints(struct nvme_dev *dev)
2940 {
2941         struct nvme_queue *nvmeq;
2942         int i;
2943
2944         for (i = 0; i < dev->online_queues; i++) {
2945                 nvmeq = dev->queues[i];
2946
2947                 if (!nvmeq->tags || !(*nvmeq->tags))
2948                         continue;
2949
2950                 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
2951                                         blk_mq_tags_cpumask(*nvmeq->tags));
2952         }
2953 }
2954
2955 static int nvme_dev_start(struct nvme_dev *dev)
2956 {
2957         int result;
2958         bool start_thread = false;
2959
2960         result = nvme_dev_map(dev);
2961         if (result)
2962                 return result;
2963
2964         result = nvme_configure_admin_queue(dev);
2965         if (result)
2966                 goto unmap;
2967
2968         spin_lock(&dev_list_lock);
2969         if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
2970                 start_thread = true;
2971                 nvme_thread = NULL;
2972         }
2973         list_add(&dev->node, &dev_list);
2974         spin_unlock(&dev_list_lock);
2975
2976         if (start_thread) {
2977                 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2978                 wake_up_all(&nvme_kthread_wait);
2979         } else
2980                 wait_event_killable(nvme_kthread_wait, nvme_thread);
2981
2982         if (IS_ERR_OR_NULL(nvme_thread)) {
2983                 result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
2984                 goto disable;
2985         }
2986
2987         nvme_init_queue(dev->queues[0], 0);
2988         result = nvme_alloc_admin_tags(dev);
2989         if (result)
2990                 goto disable;
2991
2992         result = nvme_setup_io_queues(dev);
2993         if (result)
2994                 goto free_tags;
2995
2996         nvme_set_irq_hints(dev);
2997
2998         dev->event_limit = 1;
2999         return result;
3000
3001  free_tags:
3002         nvme_dev_remove_admin(dev);
3003         blk_put_queue(dev->admin_q);
3004         dev->admin_q = NULL;
3005         dev->queues[0]->tags = NULL;
3006  disable:
3007         nvme_disable_queue(dev, 0);
3008         nvme_dev_list_remove(dev);
3009  unmap:
3010         nvme_dev_unmap(dev);
3011         return result;
3012 }
3013
3014 static int nvme_remove_dead_ctrl(void *arg)
3015 {
3016         struct nvme_dev *dev = (struct nvme_dev *)arg;
3017         struct pci_dev *pdev = to_pci_dev(dev->dev);
3018
3019         if (pci_get_drvdata(pdev))
3020                 pci_stop_and_remove_bus_device_locked(pdev);
3021         kref_put(&dev->kref, nvme_free_dev);
3022         return 0;
3023 }
3024
3025 static void nvme_remove_disks(struct work_struct *ws)
3026 {
3027         struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
3028
3029         nvme_free_queues(dev, 1);
3030         nvme_dev_remove(dev);
3031 }
3032
3033 static int nvme_dev_resume(struct nvme_dev *dev)
3034 {
3035         int ret;
3036
3037         ret = nvme_dev_start(dev);
3038         if (ret)
3039                 return ret;
3040         if (dev->online_queues < 2) {
3041                 spin_lock(&dev_list_lock);
3042                 dev->reset_workfn = nvme_remove_disks;
3043                 queue_work(nvme_workq, &dev->reset_work);
3044                 spin_unlock(&dev_list_lock);
3045         } else {
3046                 nvme_unfreeze_queues(dev);
3047                 nvme_dev_add(dev);
3048                 nvme_set_irq_hints(dev);
3049         }
3050         return 0;
3051 }
3052
3053 static void nvme_dead_ctrl(struct nvme_dev *dev)
3054 {
3055         dev_warn(dev->dev, "Device failed to resume\n");
3056         kref_get(&dev->kref);
3057         if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
3058                                                 dev->instance))) {
3059                 dev_err(dev->dev,
3060                         "Failed to start controller remove task\n");
3061                 kref_put(&dev->kref, nvme_free_dev);
3062         }
3063 }
3064
3065 static void nvme_dev_reset(struct nvme_dev *dev)
3066 {
3067         bool in_probe = work_busy(&dev->probe_work);
3068
3069         nvme_dev_shutdown(dev);
3070
3071         /* Synchronize with device probe so that work will see failure status
3072          * and exit gracefully without trying to schedule another reset */
3073         flush_work(&dev->probe_work);
3074
3075         /* Fail this device if reset occured during probe to avoid
3076          * infinite initialization loops. */
3077         if (in_probe) {
3078                 nvme_dead_ctrl(dev);
3079                 return;
3080         }
3081         /* Schedule device resume asynchronously so the reset work is available
3082          * to cleanup errors that may occur during reinitialization */
3083         schedule_work(&dev->probe_work);
3084 }
3085
3086 static void nvme_reset_failed_dev(struct work_struct *ws)
3087 {
3088         struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
3089         nvme_dev_reset(dev);
3090 }
3091
3092 static void nvme_reset_workfn(struct work_struct *work)
3093 {
3094         struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
3095         dev->reset_workfn(work);
3096 }
3097
3098 static int nvme_reset(struct nvme_dev *dev)
3099 {
3100         int ret = -EBUSY;
3101
3102         if (!dev->admin_q || blk_queue_dying(dev->admin_q))
3103                 return -ENODEV;
3104
3105         spin_lock(&dev_list_lock);
3106         if (!work_pending(&dev->reset_work)) {
3107                 dev->reset_workfn = nvme_reset_failed_dev;
3108                 queue_work(nvme_workq, &dev->reset_work);
3109                 ret = 0;
3110         }
3111         spin_unlock(&dev_list_lock);
3112
3113         if (!ret) {
3114                 flush_work(&dev->reset_work);
3115                 flush_work(&dev->probe_work);
3116                 return 0;
3117         }
3118
3119         return ret;
3120 }
3121
3122 static ssize_t nvme_sysfs_reset(struct device *dev,
3123                                 struct device_attribute *attr, const char *buf,
3124                                 size_t count)
3125 {
3126         struct nvme_dev *ndev = dev_get_drvdata(dev);
3127         int ret;
3128
3129         ret = nvme_reset(ndev);
3130         if (ret < 0)
3131                 return ret;
3132
3133         return count;
3134 }
3135 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3136
3137 static void nvme_async_probe(struct work_struct *work);
3138 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3139 {
3140         int node, result = -ENOMEM;
3141         struct nvme_dev *dev;
3142
3143         node = dev_to_node(&pdev->dev);
3144         if (node == NUMA_NO_NODE)
3145                 set_dev_node(&pdev->dev, 0);
3146
3147         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
3148         if (!dev)
3149                 return -ENOMEM;
3150         dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
3151                                                         GFP_KERNEL, node);
3152         if (!dev->entry)
3153                 goto free;
3154         dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
3155                                                         GFP_KERNEL, node);
3156         if (!dev->queues)
3157                 goto free;
3158
3159         INIT_LIST_HEAD(&dev->namespaces);
3160         dev->reset_workfn = nvme_reset_failed_dev;
3161         INIT_WORK(&dev->reset_work, nvme_reset_workfn);
3162         dev->dev = get_device(&pdev->dev);
3163         pci_set_drvdata(pdev, dev);
3164         result = nvme_set_instance(dev);
3165         if (result)
3166                 goto put_pci;
3167
3168         result = nvme_setup_prp_pools(dev);
3169         if (result)
3170                 goto release;
3171
3172         kref_init(&dev->kref);
3173         dev->device = device_create(nvme_class, &pdev->dev,
3174                                 MKDEV(nvme_char_major, dev->instance),
3175                                 dev, "nvme%d", dev->instance);
3176         if (IS_ERR(dev->device)) {
3177                 result = PTR_ERR(dev->device);
3178                 goto release_pools;
3179         }
3180         get_device(dev->device);
3181         dev_set_drvdata(dev->device, dev);
3182
3183         result = device_create_file(dev->device, &dev_attr_reset_controller);
3184         if (result)
3185                 goto put_dev;
3186
3187         INIT_LIST_HEAD(&dev->node);
3188         INIT_WORK(&dev->scan_work, nvme_dev_scan);
3189         INIT_WORK(&dev->probe_work, nvme_async_probe);
3190         schedule_work(&dev->probe_work);
3191         return 0;
3192
3193  put_dev:
3194         device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance));
3195         put_device(dev->device);
3196  release_pools:
3197         nvme_release_prp_pools(dev);
3198  release:
3199         nvme_release_instance(dev);
3200  put_pci:
3201         put_device(dev->dev);
3202  free:
3203         kfree(dev->queues);
3204         kfree(dev->entry);
3205         kfree(dev);
3206         return result;
3207 }
3208
3209 static void nvme_async_probe(struct work_struct *work)
3210 {
3211         struct nvme_dev *dev = container_of(work, struct nvme_dev, probe_work);
3212
3213         if (nvme_dev_resume(dev) && !work_busy(&dev->reset_work))
3214                 nvme_dead_ctrl(dev);
3215 }
3216
3217 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
3218 {
3219         struct nvme_dev *dev = pci_get_drvdata(pdev);
3220
3221         if (prepare)
3222                 nvme_dev_shutdown(dev);
3223         else
3224                 nvme_dev_resume(dev);
3225 }
3226
3227 static void nvme_shutdown(struct pci_dev *pdev)
3228 {
3229         struct nvme_dev *dev = pci_get_drvdata(pdev);
3230         nvme_dev_shutdown(dev);
3231 }
3232
3233 static void nvme_remove(struct pci_dev *pdev)
3234 {
3235         struct nvme_dev *dev = pci_get_drvdata(pdev);
3236
3237         spin_lock(&dev_list_lock);
3238         list_del_init(&dev->node);
3239         spin_unlock(&dev_list_lock);
3240
3241         pci_set_drvdata(pdev, NULL);
3242         flush_work(&dev->probe_work);
3243         flush_work(&dev->reset_work);
3244         flush_work(&dev->scan_work);
3245         device_remove_file(dev->device, &dev_attr_reset_controller);
3246         nvme_dev_remove(dev);
3247         nvme_dev_shutdown(dev);
3248         nvme_dev_remove_admin(dev);
3249         device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance));
3250         nvme_free_queues(dev, 0);
3251         nvme_release_cmb(dev);
3252         nvme_release_prp_pools(dev);
3253         kref_put(&dev->kref, nvme_free_dev);
3254 }
3255
3256 /* These functions are yet to be implemented */
3257 #define nvme_error_detected NULL
3258 #define nvme_dump_registers NULL
3259 #define nvme_link_reset NULL
3260 #define nvme_slot_reset NULL
3261 #define nvme_error_resume NULL
3262
3263 #ifdef CONFIG_PM_SLEEP
3264 static int nvme_suspend(struct device *dev)
3265 {
3266         struct pci_dev *pdev = to_pci_dev(dev);
3267         struct nvme_dev *ndev = pci_get_drvdata(pdev);
3268
3269         nvme_dev_shutdown(ndev);
3270         return 0;
3271 }
3272
3273 static int nvme_resume(struct device *dev)
3274 {
3275         struct pci_dev *pdev = to_pci_dev(dev);
3276         struct nvme_dev *ndev = pci_get_drvdata(pdev);
3277
3278         if (nvme_dev_resume(ndev) && !work_busy(&ndev->reset_work)) {
3279                 ndev->reset_workfn = nvme_reset_failed_dev;
3280                 queue_work(nvme_workq, &ndev->reset_work);
3281         }
3282         return 0;
3283 }
3284 #endif
3285
3286 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
3287
3288 static const struct pci_error_handlers nvme_err_handler = {
3289         .error_detected = nvme_error_detected,
3290         .mmio_enabled   = nvme_dump_registers,
3291         .link_reset     = nvme_link_reset,
3292         .slot_reset     = nvme_slot_reset,
3293         .resume         = nvme_error_resume,
3294         .reset_notify   = nvme_reset_notify,
3295 };
3296
3297 /* Move to pci_ids.h later */
3298 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
3299
3300 static const struct pci_device_id nvme_id_table[] = {
3301         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3302         { 0, }
3303 };
3304 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3305
3306 static struct pci_driver nvme_driver = {
3307         .name           = "nvme",
3308         .id_table       = nvme_id_table,
3309         .probe          = nvme_probe,
3310         .remove         = nvme_remove,
3311         .shutdown       = nvme_shutdown,
3312         .driver         = {
3313                 .pm     = &nvme_dev_pm_ops,
3314         },
3315         .err_handler    = &nvme_err_handler,
3316 };
3317
3318 static int __init nvme_init(void)
3319 {
3320         int result;
3321
3322         init_waitqueue_head(&nvme_kthread_wait);
3323
3324         nvme_workq = create_singlethread_workqueue("nvme");
3325         if (!nvme_workq)
3326                 return -ENOMEM;
3327
3328         result = register_blkdev(nvme_major, "nvme");
3329         if (result < 0)
3330                 goto kill_workq;
3331         else if (result > 0)
3332                 nvme_major = result;
3333
3334         result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
3335                                                         &nvme_dev_fops);
3336         if (result < 0)
3337                 goto unregister_blkdev;
3338         else if (result > 0)
3339                 nvme_char_major = result;
3340
3341         nvme_class = class_create(THIS_MODULE, "nvme");
3342         if (IS_ERR(nvme_class)) {
3343                 result = PTR_ERR(nvme_class);
3344                 goto unregister_chrdev;
3345         }
3346
3347         result = pci_register_driver(&nvme_driver);
3348         if (result)
3349                 goto destroy_class;
3350         return 0;
3351
3352  destroy_class:
3353         class_destroy(nvme_class);
3354  unregister_chrdev:
3355         __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
3356  unregister_blkdev:
3357         unregister_blkdev(nvme_major, "nvme");
3358  kill_workq:
3359         destroy_workqueue(nvme_workq);
3360         return result;
3361 }
3362
3363 static void __exit nvme_exit(void)
3364 {
3365         pci_unregister_driver(&nvme_driver);
3366         unregister_blkdev(nvme_major, "nvme");
3367         destroy_workqueue(nvme_workq);
3368         class_destroy(nvme_class);
3369         __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
3370         BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
3371         _nvme_check_size();
3372 }
3373
3374 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3375 MODULE_LICENSE("GPL");
3376 MODULE_VERSION("1.0");
3377 module_init(nvme_init);
3378 module_exit(nvme_exit);