NVMe: Disk IO statistics
[linux-2.6-block.git] / drivers / block / nvme-core.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17  */
18
19 #include <linux/nvme.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/delay.h>
24 #include <linux/errno.h>
25 #include <linux/fs.h>
26 #include <linux/genhd.h>
27 #include <linux/idr.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/kdev_t.h>
32 #include <linux/kthread.h>
33 #include <linux/kernel.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/pci.h>
38 #include <linux/poison.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/types.h>
42 #include <scsi/sg.h>
43 #include <asm-generic/io-64-nonatomic-lo-hi.h>
44
45 #define NVME_Q_DEPTH 1024
46 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
47 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
48 #define NVME_MINORS 64
49 #define ADMIN_TIMEOUT   (60 * HZ)
50
51 static int nvme_major;
52 module_param(nvme_major, int, 0);
53
54 static int use_threaded_interrupts;
55 module_param(use_threaded_interrupts, int, 0);
56
57 static DEFINE_SPINLOCK(dev_list_lock);
58 static LIST_HEAD(dev_list);
59 static struct task_struct *nvme_thread;
60
61 /*
62  * An NVM Express queue.  Each device has at least two (one for admin
63  * commands and one for I/O commands).
64  */
65 struct nvme_queue {
66         struct device *q_dmadev;
67         struct nvme_dev *dev;
68         spinlock_t q_lock;
69         struct nvme_command *sq_cmds;
70         volatile struct nvme_completion *cqes;
71         dma_addr_t sq_dma_addr;
72         dma_addr_t cq_dma_addr;
73         wait_queue_head_t sq_full;
74         wait_queue_t sq_cong_wait;
75         struct bio_list sq_cong;
76         u32 __iomem *q_db;
77         u16 q_depth;
78         u16 cq_vector;
79         u16 sq_head;
80         u16 sq_tail;
81         u16 cq_head;
82         u16 cq_phase;
83         unsigned long cmdid_data[];
84 };
85
86 /*
87  * Check we didin't inadvertently grow the command struct
88  */
89 static inline void _nvme_check_size(void)
90 {
91         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
92         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
93         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
94         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
95         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
96         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
97         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
98         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
99         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
100         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
101         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
102 }
103
104 typedef void (*nvme_completion_fn)(struct nvme_dev *, void *,
105                                                 struct nvme_completion *);
106
107 struct nvme_cmd_info {
108         nvme_completion_fn fn;
109         void *ctx;
110         unsigned long timeout;
111 };
112
113 static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
114 {
115         return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
116 }
117
118 /**
119  * alloc_cmdid() - Allocate a Command ID
120  * @nvmeq: The queue that will be used for this command
121  * @ctx: A pointer that will be passed to the handler
122  * @handler: The function to call on completion
123  *
124  * Allocate a Command ID for a queue.  The data passed in will
125  * be passed to the completion handler.  This is implemented by using
126  * the bottom two bits of the ctx pointer to store the handler ID.
127  * Passing in a pointer that's not 4-byte aligned will cause a BUG.
128  * We can change this if it becomes a problem.
129  *
130  * May be called with local interrupts disabled and the q_lock held,
131  * or with interrupts enabled and no locks held.
132  */
133 static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx,
134                                 nvme_completion_fn handler, unsigned timeout)
135 {
136         int depth = nvmeq->q_depth - 1;
137         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
138         int cmdid;
139
140         do {
141                 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
142                 if (cmdid >= depth)
143                         return -EBUSY;
144         } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
145
146         info[cmdid].fn = handler;
147         info[cmdid].ctx = ctx;
148         info[cmdid].timeout = jiffies + timeout;
149         return cmdid;
150 }
151
152 static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
153                                 nvme_completion_fn handler, unsigned timeout)
154 {
155         int cmdid;
156         wait_event_killable(nvmeq->sq_full,
157                 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
158         return (cmdid < 0) ? -EINTR : cmdid;
159 }
160
161 /* Special values must be less than 0x1000 */
162 #define CMD_CTX_BASE            ((void *)POISON_POINTER_DELTA)
163 #define CMD_CTX_CANCELLED       (0x30C + CMD_CTX_BASE)
164 #define CMD_CTX_COMPLETED       (0x310 + CMD_CTX_BASE)
165 #define CMD_CTX_INVALID         (0x314 + CMD_CTX_BASE)
166 #define CMD_CTX_FLUSH           (0x318 + CMD_CTX_BASE)
167
168 static void special_completion(struct nvme_dev *dev, void *ctx,
169                                                 struct nvme_completion *cqe)
170 {
171         if (ctx == CMD_CTX_CANCELLED)
172                 return;
173         if (ctx == CMD_CTX_FLUSH)
174                 return;
175         if (ctx == CMD_CTX_COMPLETED) {
176                 dev_warn(&dev->pci_dev->dev,
177                                 "completed id %d twice on queue %d\n",
178                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
179                 return;
180         }
181         if (ctx == CMD_CTX_INVALID) {
182                 dev_warn(&dev->pci_dev->dev,
183                                 "invalid id %d completed on queue %d\n",
184                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
185                 return;
186         }
187
188         dev_warn(&dev->pci_dev->dev, "Unknown special completion %p\n", ctx);
189 }
190
191 /*
192  * Called with local interrupts disabled and the q_lock held.  May not sleep.
193  */
194 static void *free_cmdid(struct nvme_queue *nvmeq, int cmdid,
195                                                 nvme_completion_fn *fn)
196 {
197         void *ctx;
198         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
199
200         if (cmdid >= nvmeq->q_depth) {
201                 *fn = special_completion;
202                 return CMD_CTX_INVALID;
203         }
204         if (fn)
205                 *fn = info[cmdid].fn;
206         ctx = info[cmdid].ctx;
207         info[cmdid].fn = special_completion;
208         info[cmdid].ctx = CMD_CTX_COMPLETED;
209         clear_bit(cmdid, nvmeq->cmdid_data);
210         wake_up(&nvmeq->sq_full);
211         return ctx;
212 }
213
214 static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid,
215                                                 nvme_completion_fn *fn)
216 {
217         void *ctx;
218         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
219         if (fn)
220                 *fn = info[cmdid].fn;
221         ctx = info[cmdid].ctx;
222         info[cmdid].fn = special_completion;
223         info[cmdid].ctx = CMD_CTX_CANCELLED;
224         return ctx;
225 }
226
227 struct nvme_queue *get_nvmeq(struct nvme_dev *dev)
228 {
229         return dev->queues[get_cpu() + 1];
230 }
231
232 void put_nvmeq(struct nvme_queue *nvmeq)
233 {
234         put_cpu();
235 }
236
237 /**
238  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
239  * @nvmeq: The queue to use
240  * @cmd: The command to send
241  *
242  * Safe to use from interrupt context
243  */
244 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
245 {
246         unsigned long flags;
247         u16 tail;
248         spin_lock_irqsave(&nvmeq->q_lock, flags);
249         tail = nvmeq->sq_tail;
250         memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
251         if (++tail == nvmeq->q_depth)
252                 tail = 0;
253         writel(tail, nvmeq->q_db);
254         nvmeq->sq_tail = tail;
255         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
256
257         return 0;
258 }
259
260 static __le64 **iod_list(struct nvme_iod *iod)
261 {
262         return ((void *)iod) + iod->offset;
263 }
264
265 /*
266  * Will slightly overestimate the number of pages needed.  This is OK
267  * as it only leads to a small amount of wasted memory for the lifetime of
268  * the I/O.
269  */
270 static int nvme_npages(unsigned size)
271 {
272         unsigned nprps = DIV_ROUND_UP(size + PAGE_SIZE, PAGE_SIZE);
273         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
274 }
275
276 static struct nvme_iod *
277 nvme_alloc_iod(unsigned nseg, unsigned nbytes, gfp_t gfp)
278 {
279         struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
280                                 sizeof(__le64 *) * nvme_npages(nbytes) +
281                                 sizeof(struct scatterlist) * nseg, gfp);
282
283         if (iod) {
284                 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
285                 iod->npages = -1;
286                 iod->length = nbytes;
287                 iod->nents = 0;
288                 iod->start_time = jiffies;
289         }
290
291         return iod;
292 }
293
294 void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
295 {
296         const int last_prp = PAGE_SIZE / 8 - 1;
297         int i;
298         __le64 **list = iod_list(iod);
299         dma_addr_t prp_dma = iod->first_dma;
300
301         if (iod->npages == 0)
302                 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
303         for (i = 0; i < iod->npages; i++) {
304                 __le64 *prp_list = list[i];
305                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
306                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
307                 prp_dma = next_prp_dma;
308         }
309         kfree(iod);
310 }
311
312 static void nvme_start_io_acct(struct bio *bio)
313 {
314         struct gendisk *disk = bio->bi_bdev->bd_disk;
315         const int rw = bio_data_dir(bio);
316         int cpu = part_stat_lock();
317         part_round_stats(cpu, &disk->part0);
318         part_stat_inc(cpu, &disk->part0, ios[rw]);
319         part_stat_add(cpu, &disk->part0, sectors[rw], bio_sectors(bio));
320         part_inc_in_flight(&disk->part0, rw);
321         part_stat_unlock();
322 }
323
324 static void nvme_end_io_acct(struct bio *bio, unsigned long start_time)
325 {
326         struct gendisk *disk = bio->bi_bdev->bd_disk;
327         const int rw = bio_data_dir(bio);
328         unsigned long duration = jiffies - start_time;
329         int cpu = part_stat_lock();
330         part_stat_add(cpu, &disk->part0, ticks[rw], duration);
331         part_round_stats(cpu, &disk->part0);
332         part_dec_in_flight(&disk->part0, rw);
333         part_stat_unlock();
334 }
335
336 static void bio_completion(struct nvme_dev *dev, void *ctx,
337                                                 struct nvme_completion *cqe)
338 {
339         struct nvme_iod *iod = ctx;
340         struct bio *bio = iod->private;
341         u16 status = le16_to_cpup(&cqe->status) >> 1;
342
343         if (iod->nents)
344                 dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
345                         bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
346
347         nvme_end_io_acct(bio, iod->start_time);
348         nvme_free_iod(dev, iod);
349         if (status)
350                 bio_endio(bio, -EIO);
351         else
352                 bio_endio(bio, 0);
353 }
354
355 /* length is in bytes.  gfp flags indicates whether we may sleep. */
356 int nvme_setup_prps(struct nvme_dev *dev, struct nvme_common_command *cmd,
357                         struct nvme_iod *iod, int total_len, gfp_t gfp)
358 {
359         struct dma_pool *pool;
360         int length = total_len;
361         struct scatterlist *sg = iod->sg;
362         int dma_len = sg_dma_len(sg);
363         u64 dma_addr = sg_dma_address(sg);
364         int offset = offset_in_page(dma_addr);
365         __le64 *prp_list;
366         __le64 **list = iod_list(iod);
367         dma_addr_t prp_dma;
368         int nprps, i;
369
370         cmd->prp1 = cpu_to_le64(dma_addr);
371         length -= (PAGE_SIZE - offset);
372         if (length <= 0)
373                 return total_len;
374
375         dma_len -= (PAGE_SIZE - offset);
376         if (dma_len) {
377                 dma_addr += (PAGE_SIZE - offset);
378         } else {
379                 sg = sg_next(sg);
380                 dma_addr = sg_dma_address(sg);
381                 dma_len = sg_dma_len(sg);
382         }
383
384         if (length <= PAGE_SIZE) {
385                 cmd->prp2 = cpu_to_le64(dma_addr);
386                 return total_len;
387         }
388
389         nprps = DIV_ROUND_UP(length, PAGE_SIZE);
390         if (nprps <= (256 / 8)) {
391                 pool = dev->prp_small_pool;
392                 iod->npages = 0;
393         } else {
394                 pool = dev->prp_page_pool;
395                 iod->npages = 1;
396         }
397
398         prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
399         if (!prp_list) {
400                 cmd->prp2 = cpu_to_le64(dma_addr);
401                 iod->npages = -1;
402                 return (total_len - length) + PAGE_SIZE;
403         }
404         list[0] = prp_list;
405         iod->first_dma = prp_dma;
406         cmd->prp2 = cpu_to_le64(prp_dma);
407         i = 0;
408         for (;;) {
409                 if (i == PAGE_SIZE / 8) {
410                         __le64 *old_prp_list = prp_list;
411                         prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
412                         if (!prp_list)
413                                 return total_len - length;
414                         list[iod->npages++] = prp_list;
415                         prp_list[0] = old_prp_list[i - 1];
416                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
417                         i = 1;
418                 }
419                 prp_list[i++] = cpu_to_le64(dma_addr);
420                 dma_len -= PAGE_SIZE;
421                 dma_addr += PAGE_SIZE;
422                 length -= PAGE_SIZE;
423                 if (length <= 0)
424                         break;
425                 if (dma_len > 0)
426                         continue;
427                 BUG_ON(dma_len < 0);
428                 sg = sg_next(sg);
429                 dma_addr = sg_dma_address(sg);
430                 dma_len = sg_dma_len(sg);
431         }
432
433         return total_len;
434 }
435
436 struct nvme_bio_pair {
437         struct bio b1, b2, *parent;
438         struct bio_vec *bv1, *bv2;
439         int err;
440         atomic_t cnt;
441 };
442
443 static void nvme_bio_pair_endio(struct bio *bio, int err)
444 {
445         struct nvme_bio_pair *bp = bio->bi_private;
446
447         if (err)
448                 bp->err = err;
449
450         if (atomic_dec_and_test(&bp->cnt)) {
451                 bio_endio(bp->parent, bp->err);
452                 if (bp->bv1)
453                         kfree(bp->bv1);
454                 if (bp->bv2)
455                         kfree(bp->bv2);
456                 kfree(bp);
457         }
458 }
459
460 static struct nvme_bio_pair *nvme_bio_split(struct bio *bio, int idx,
461                                                         int len, int offset)
462 {
463         struct nvme_bio_pair *bp;
464
465         BUG_ON(len > bio->bi_size);
466         BUG_ON(idx > bio->bi_vcnt);
467
468         bp = kmalloc(sizeof(*bp), GFP_ATOMIC);
469         if (!bp)
470                 return NULL;
471         bp->err = 0;
472
473         bp->b1 = *bio;
474         bp->b2 = *bio;
475
476         bp->b1.bi_size = len;
477         bp->b2.bi_size -= len;
478         bp->b1.bi_vcnt = idx;
479         bp->b2.bi_idx = idx;
480         bp->b2.bi_sector += len >> 9;
481
482         if (offset) {
483                 bp->bv1 = kmalloc(bio->bi_max_vecs * sizeof(struct bio_vec),
484                                                                 GFP_ATOMIC);
485                 if (!bp->bv1)
486                         goto split_fail_1;
487
488                 bp->bv2 = kmalloc(bio->bi_max_vecs * sizeof(struct bio_vec),
489                                                                 GFP_ATOMIC);
490                 if (!bp->bv2)
491                         goto split_fail_2;
492
493                 memcpy(bp->bv1, bio->bi_io_vec,
494                         bio->bi_max_vecs * sizeof(struct bio_vec));
495                 memcpy(bp->bv2, bio->bi_io_vec,
496                         bio->bi_max_vecs * sizeof(struct bio_vec));
497
498                 bp->b1.bi_io_vec = bp->bv1;
499                 bp->b2.bi_io_vec = bp->bv2;
500                 bp->b2.bi_io_vec[idx].bv_offset += offset;
501                 bp->b2.bi_io_vec[idx].bv_len -= offset;
502                 bp->b1.bi_io_vec[idx].bv_len = offset;
503                 bp->b1.bi_vcnt++;
504         } else
505                 bp->bv1 = bp->bv2 = NULL;
506
507         bp->b1.bi_private = bp;
508         bp->b2.bi_private = bp;
509
510         bp->b1.bi_end_io = nvme_bio_pair_endio;
511         bp->b2.bi_end_io = nvme_bio_pair_endio;
512
513         bp->parent = bio;
514         atomic_set(&bp->cnt, 2);
515
516         return bp;
517
518  split_fail_2:
519         kfree(bp->bv1);
520  split_fail_1:
521         kfree(bp);
522         return NULL;
523 }
524
525 static int nvme_split_and_submit(struct bio *bio, struct nvme_queue *nvmeq,
526                                                 int idx, int len, int offset)
527 {
528         struct nvme_bio_pair *bp = nvme_bio_split(bio, idx, len, offset);
529         if (!bp)
530                 return -ENOMEM;
531
532         if (bio_list_empty(&nvmeq->sq_cong))
533                 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
534         bio_list_add(&nvmeq->sq_cong, &bp->b1);
535         bio_list_add(&nvmeq->sq_cong, &bp->b2);
536
537         return 0;
538 }
539
540 /* NVMe scatterlists require no holes in the virtual address */
541 #define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2)   ((vec2)->bv_offset || \
542                         (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
543
544 static int nvme_map_bio(struct nvme_queue *nvmeq, struct nvme_iod *iod,
545                 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
546 {
547         struct bio_vec *bvec, *bvprv = NULL;
548         struct scatterlist *sg = NULL;
549         int i, length = 0, nsegs = 0, split_len = bio->bi_size;
550
551         if (nvmeq->dev->stripe_size)
552                 split_len = nvmeq->dev->stripe_size -
553                         ((bio->bi_sector << 9) & (nvmeq->dev->stripe_size - 1));
554
555         sg_init_table(iod->sg, psegs);
556         bio_for_each_segment(bvec, bio, i) {
557                 if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
558                         sg->length += bvec->bv_len;
559                 } else {
560                         if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec))
561                                 return nvme_split_and_submit(bio, nvmeq, i,
562                                                                 length, 0);
563
564                         sg = sg ? sg + 1 : iod->sg;
565                         sg_set_page(sg, bvec->bv_page, bvec->bv_len,
566                                                         bvec->bv_offset);
567                         nsegs++;
568                 }
569
570                 if (split_len - length < bvec->bv_len)
571                         return nvme_split_and_submit(bio, nvmeq, i, split_len,
572                                                         split_len - length);
573                 length += bvec->bv_len;
574                 bvprv = bvec;
575         }
576         iod->nents = nsegs;
577         sg_mark_end(sg);
578         if (dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir) == 0)
579                 return -ENOMEM;
580
581         BUG_ON(length != bio->bi_size);
582         return length;
583 }
584
585 /*
586  * We reuse the small pool to allocate the 16-byte range here as it is not
587  * worth having a special pool for these or additional cases to handle freeing
588  * the iod.
589  */
590 static int nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
591                 struct bio *bio, struct nvme_iod *iod, int cmdid)
592 {
593         struct nvme_dsm_range *range;
594         struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
595
596         range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
597                                                         &iod->first_dma);
598         if (!range)
599                 return -ENOMEM;
600
601         iod_list(iod)[0] = (__le64 *)range;
602         iod->npages = 0;
603
604         range->cattr = cpu_to_le32(0);
605         range->nlb = cpu_to_le32(bio->bi_size >> ns->lba_shift);
606         range->slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_sector));
607
608         memset(cmnd, 0, sizeof(*cmnd));
609         cmnd->dsm.opcode = nvme_cmd_dsm;
610         cmnd->dsm.command_id = cmdid;
611         cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
612         cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
613         cmnd->dsm.nr = 0;
614         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
615
616         if (++nvmeq->sq_tail == nvmeq->q_depth)
617                 nvmeq->sq_tail = 0;
618         writel(nvmeq->sq_tail, nvmeq->q_db);
619
620         return 0;
621 }
622
623 static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
624                                                                 int cmdid)
625 {
626         struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
627
628         memset(cmnd, 0, sizeof(*cmnd));
629         cmnd->common.opcode = nvme_cmd_flush;
630         cmnd->common.command_id = cmdid;
631         cmnd->common.nsid = cpu_to_le32(ns->ns_id);
632
633         if (++nvmeq->sq_tail == nvmeq->q_depth)
634                 nvmeq->sq_tail = 0;
635         writel(nvmeq->sq_tail, nvmeq->q_db);
636
637         return 0;
638 }
639
640 int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
641 {
642         int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
643                                         special_completion, NVME_IO_TIMEOUT);
644         if (unlikely(cmdid < 0))
645                 return cmdid;
646
647         return nvme_submit_flush(nvmeq, ns, cmdid);
648 }
649
650 /*
651  * Called with local interrupts disabled and the q_lock held.  May not sleep.
652  */
653 static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
654                                                                 struct bio *bio)
655 {
656         struct nvme_command *cmnd;
657         struct nvme_iod *iod;
658         enum dma_data_direction dma_dir;
659         int cmdid, length, result;
660         u16 control;
661         u32 dsmgmt;
662         int psegs = bio_phys_segments(ns->queue, bio);
663
664         if ((bio->bi_rw & REQ_FLUSH) && psegs) {
665                 result = nvme_submit_flush_data(nvmeq, ns);
666                 if (result)
667                         return result;
668         }
669
670         result = -ENOMEM;
671         iod = nvme_alloc_iod(psegs, bio->bi_size, GFP_ATOMIC);
672         if (!iod)
673                 goto nomem;
674         iod->private = bio;
675
676         result = -EBUSY;
677         cmdid = alloc_cmdid(nvmeq, iod, bio_completion, NVME_IO_TIMEOUT);
678         if (unlikely(cmdid < 0))
679                 goto free_iod;
680
681         if (bio->bi_rw & REQ_DISCARD) {
682                 result = nvme_submit_discard(nvmeq, ns, bio, iod, cmdid);
683                 if (result)
684                         goto free_cmdid;
685                 return result;
686         }
687         if ((bio->bi_rw & REQ_FLUSH) && !psegs)
688                 return nvme_submit_flush(nvmeq, ns, cmdid);
689
690         control = 0;
691         if (bio->bi_rw & REQ_FUA)
692                 control |= NVME_RW_FUA;
693         if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
694                 control |= NVME_RW_LR;
695
696         dsmgmt = 0;
697         if (bio->bi_rw & REQ_RAHEAD)
698                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
699
700         cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
701
702         memset(cmnd, 0, sizeof(*cmnd));
703         if (bio_data_dir(bio)) {
704                 cmnd->rw.opcode = nvme_cmd_write;
705                 dma_dir = DMA_TO_DEVICE;
706         } else {
707                 cmnd->rw.opcode = nvme_cmd_read;
708                 dma_dir = DMA_FROM_DEVICE;
709         }
710
711         result = nvme_map_bio(nvmeq, iod, bio, dma_dir, psegs);
712         if (result <= 0)
713                 goto free_cmdid;
714         length = result;
715
716         cmnd->rw.command_id = cmdid;
717         cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
718         length = nvme_setup_prps(nvmeq->dev, &cmnd->common, iod, length,
719                                                                 GFP_ATOMIC);
720         cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_sector));
721         cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1);
722         cmnd->rw.control = cpu_to_le16(control);
723         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
724
725         nvme_start_io_acct(bio);
726         if (++nvmeq->sq_tail == nvmeq->q_depth)
727                 nvmeq->sq_tail = 0;
728         writel(nvmeq->sq_tail, nvmeq->q_db);
729
730         return 0;
731
732  free_cmdid:
733         free_cmdid(nvmeq, cmdid, NULL);
734  free_iod:
735         nvme_free_iod(nvmeq->dev, iod);
736  nomem:
737         return result;
738 }
739
740 static void nvme_make_request(struct request_queue *q, struct bio *bio)
741 {
742         struct nvme_ns *ns = q->queuedata;
743         struct nvme_queue *nvmeq = get_nvmeq(ns->dev);
744         int result = -EBUSY;
745
746         spin_lock_irq(&nvmeq->q_lock);
747         if (bio_list_empty(&nvmeq->sq_cong))
748                 result = nvme_submit_bio_queue(nvmeq, ns, bio);
749         if (unlikely(result)) {
750                 if (bio_list_empty(&nvmeq->sq_cong))
751                         add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
752                 bio_list_add(&nvmeq->sq_cong, bio);
753         }
754
755         spin_unlock_irq(&nvmeq->q_lock);
756         put_nvmeq(nvmeq);
757 }
758
759 static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
760 {
761         u16 head, phase;
762
763         head = nvmeq->cq_head;
764         phase = nvmeq->cq_phase;
765
766         for (;;) {
767                 void *ctx;
768                 nvme_completion_fn fn;
769                 struct nvme_completion cqe = nvmeq->cqes[head];
770                 if ((le16_to_cpu(cqe.status) & 1) != phase)
771                         break;
772                 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
773                 if (++head == nvmeq->q_depth) {
774                         head = 0;
775                         phase = !phase;
776                 }
777
778                 ctx = free_cmdid(nvmeq, cqe.command_id, &fn);
779                 fn(nvmeq->dev, ctx, &cqe);
780         }
781
782         /* If the controller ignores the cq head doorbell and continuously
783          * writes to the queue, it is theoretically possible to wrap around
784          * the queue twice and mistakenly return IRQ_NONE.  Linux only
785          * requires that 0.1% of your interrupts are handled, so this isn't
786          * a big problem.
787          */
788         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
789                 return IRQ_NONE;
790
791         writel(head, nvmeq->q_db + (1 << nvmeq->dev->db_stride));
792         nvmeq->cq_head = head;
793         nvmeq->cq_phase = phase;
794
795         return IRQ_HANDLED;
796 }
797
798 static irqreturn_t nvme_irq(int irq, void *data)
799 {
800         irqreturn_t result;
801         struct nvme_queue *nvmeq = data;
802         spin_lock(&nvmeq->q_lock);
803         result = nvme_process_cq(nvmeq);
804         spin_unlock(&nvmeq->q_lock);
805         return result;
806 }
807
808 static irqreturn_t nvme_irq_check(int irq, void *data)
809 {
810         struct nvme_queue *nvmeq = data;
811         struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
812         if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
813                 return IRQ_NONE;
814         return IRQ_WAKE_THREAD;
815 }
816
817 static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
818 {
819         spin_lock_irq(&nvmeq->q_lock);
820         cancel_cmdid(nvmeq, cmdid, NULL);
821         spin_unlock_irq(&nvmeq->q_lock);
822 }
823
824 struct sync_cmd_info {
825         struct task_struct *task;
826         u32 result;
827         int status;
828 };
829
830 static void sync_completion(struct nvme_dev *dev, void *ctx,
831                                                 struct nvme_completion *cqe)
832 {
833         struct sync_cmd_info *cmdinfo = ctx;
834         cmdinfo->result = le32_to_cpup(&cqe->result);
835         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
836         wake_up_process(cmdinfo->task);
837 }
838
839 /*
840  * Returns 0 on success.  If the result is negative, it's a Linux error code;
841  * if the result is positive, it's an NVM Express status code
842  */
843 int nvme_submit_sync_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
844                                                 u32 *result, unsigned timeout)
845 {
846         int cmdid;
847         struct sync_cmd_info cmdinfo;
848
849         cmdinfo.task = current;
850         cmdinfo.status = -EINTR;
851
852         cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion,
853                                                                 timeout);
854         if (cmdid < 0)
855                 return cmdid;
856         cmd->common.command_id = cmdid;
857
858         set_current_state(TASK_KILLABLE);
859         nvme_submit_cmd(nvmeq, cmd);
860         schedule_timeout(timeout);
861
862         if (cmdinfo.status == -EINTR) {
863                 nvme_abort_command(nvmeq, cmdid);
864                 return -EINTR;
865         }
866
867         if (result)
868                 *result = cmdinfo.result;
869
870         return cmdinfo.status;
871 }
872
873 int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
874                                                                 u32 *result)
875 {
876         return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
877 }
878
879 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
880 {
881         int status;
882         struct nvme_command c;
883
884         memset(&c, 0, sizeof(c));
885         c.delete_queue.opcode = opcode;
886         c.delete_queue.qid = cpu_to_le16(id);
887
888         status = nvme_submit_admin_cmd(dev, &c, NULL);
889         if (status)
890                 return -EIO;
891         return 0;
892 }
893
894 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
895                                                 struct nvme_queue *nvmeq)
896 {
897         int status;
898         struct nvme_command c;
899         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
900
901         memset(&c, 0, sizeof(c));
902         c.create_cq.opcode = nvme_admin_create_cq;
903         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
904         c.create_cq.cqid = cpu_to_le16(qid);
905         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
906         c.create_cq.cq_flags = cpu_to_le16(flags);
907         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
908
909         status = nvme_submit_admin_cmd(dev, &c, NULL);
910         if (status)
911                 return -EIO;
912         return 0;
913 }
914
915 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
916                                                 struct nvme_queue *nvmeq)
917 {
918         int status;
919         struct nvme_command c;
920         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
921
922         memset(&c, 0, sizeof(c));
923         c.create_sq.opcode = nvme_admin_create_sq;
924         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
925         c.create_sq.sqid = cpu_to_le16(qid);
926         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
927         c.create_sq.sq_flags = cpu_to_le16(flags);
928         c.create_sq.cqid = cpu_to_le16(qid);
929
930         status = nvme_submit_admin_cmd(dev, &c, NULL);
931         if (status)
932                 return -EIO;
933         return 0;
934 }
935
936 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
937 {
938         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
939 }
940
941 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
942 {
943         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
944 }
945
946 int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
947                                                         dma_addr_t dma_addr)
948 {
949         struct nvme_command c;
950
951         memset(&c, 0, sizeof(c));
952         c.identify.opcode = nvme_admin_identify;
953         c.identify.nsid = cpu_to_le32(nsid);
954         c.identify.prp1 = cpu_to_le64(dma_addr);
955         c.identify.cns = cpu_to_le32(cns);
956
957         return nvme_submit_admin_cmd(dev, &c, NULL);
958 }
959
960 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
961                                         dma_addr_t dma_addr, u32 *result)
962 {
963         struct nvme_command c;
964
965         memset(&c, 0, sizeof(c));
966         c.features.opcode = nvme_admin_get_features;
967         c.features.nsid = cpu_to_le32(nsid);
968         c.features.prp1 = cpu_to_le64(dma_addr);
969         c.features.fid = cpu_to_le32(fid);
970
971         return nvme_submit_admin_cmd(dev, &c, result);
972 }
973
974 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
975                                         dma_addr_t dma_addr, u32 *result)
976 {
977         struct nvme_command c;
978
979         memset(&c, 0, sizeof(c));
980         c.features.opcode = nvme_admin_set_features;
981         c.features.prp1 = cpu_to_le64(dma_addr);
982         c.features.fid = cpu_to_le32(fid);
983         c.features.dword11 = cpu_to_le32(dword11);
984
985         return nvme_submit_admin_cmd(dev, &c, result);
986 }
987
988 /**
989  * nvme_cancel_ios - Cancel outstanding I/Os
990  * @queue: The queue to cancel I/Os on
991  * @timeout: True to only cancel I/Os which have timed out
992  */
993 static void nvme_cancel_ios(struct nvme_queue *nvmeq, bool timeout)
994 {
995         int depth = nvmeq->q_depth - 1;
996         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
997         unsigned long now = jiffies;
998         int cmdid;
999
1000         for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) {
1001                 void *ctx;
1002                 nvme_completion_fn fn;
1003                 static struct nvme_completion cqe = {
1004                         .status = cpu_to_le16(NVME_SC_ABORT_REQ << 1),
1005                 };
1006
1007                 if (timeout && !time_after(now, info[cmdid].timeout))
1008                         continue;
1009                 if (info[cmdid].ctx == CMD_CTX_CANCELLED)
1010                         continue;
1011                 dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d\n", cmdid);
1012                 ctx = cancel_cmdid(nvmeq, cmdid, &fn);
1013                 fn(nvmeq->dev, ctx, &cqe);
1014         }
1015 }
1016
1017 static void nvme_free_queue_mem(struct nvme_queue *nvmeq)
1018 {
1019         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1020                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1021         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1022                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1023         kfree(nvmeq);
1024 }
1025
1026 static void nvme_free_queue(struct nvme_dev *dev, int qid)
1027 {
1028         struct nvme_queue *nvmeq = dev->queues[qid];
1029         int vector = dev->entry[nvmeq->cq_vector].vector;
1030
1031         spin_lock_irq(&nvmeq->q_lock);
1032         nvme_cancel_ios(nvmeq, false);
1033         while (bio_list_peek(&nvmeq->sq_cong)) {
1034                 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1035                 bio_endio(bio, -EIO);
1036         }
1037         spin_unlock_irq(&nvmeq->q_lock);
1038
1039         irq_set_affinity_hint(vector, NULL);
1040         free_irq(vector, nvmeq);
1041
1042         /* Don't tell the adapter to delete the admin queue */
1043         if (qid) {
1044                 adapter_delete_sq(dev, qid);
1045                 adapter_delete_cq(dev, qid);
1046         }
1047
1048         nvme_free_queue_mem(nvmeq);
1049 }
1050
1051 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1052                                                         int depth, int vector)
1053 {
1054         struct device *dmadev = &dev->pci_dev->dev;
1055         unsigned extra = DIV_ROUND_UP(depth, 8) + (depth *
1056                                                 sizeof(struct nvme_cmd_info));
1057         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
1058         if (!nvmeq)
1059                 return NULL;
1060
1061         nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
1062                                         &nvmeq->cq_dma_addr, GFP_KERNEL);
1063         if (!nvmeq->cqes)
1064                 goto free_nvmeq;
1065         memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
1066
1067         nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
1068                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
1069         if (!nvmeq->sq_cmds)
1070                 goto free_cqdma;
1071
1072         nvmeq->q_dmadev = dmadev;
1073         nvmeq->dev = dev;
1074         spin_lock_init(&nvmeq->q_lock);
1075         nvmeq->cq_head = 0;
1076         nvmeq->cq_phase = 1;
1077         init_waitqueue_head(&nvmeq->sq_full);
1078         init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
1079         bio_list_init(&nvmeq->sq_cong);
1080         nvmeq->q_db = &dev->dbs[qid << (dev->db_stride + 1)];
1081         nvmeq->q_depth = depth;
1082         nvmeq->cq_vector = vector;
1083
1084         return nvmeq;
1085
1086  free_cqdma:
1087         dma_free_coherent(dmadev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1088                                                         nvmeq->cq_dma_addr);
1089  free_nvmeq:
1090         kfree(nvmeq);
1091         return NULL;
1092 }
1093
1094 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1095                                                         const char *name)
1096 {
1097         if (use_threaded_interrupts)
1098                 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1099                                         nvme_irq_check, nvme_irq,
1100                                         IRQF_DISABLED | IRQF_SHARED,
1101                                         name, nvmeq);
1102         return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1103                                 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
1104 }
1105
1106 static struct nvme_queue *nvme_create_queue(struct nvme_dev *dev, int qid,
1107                                             int cq_size, int vector)
1108 {
1109         int result;
1110         struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
1111
1112         if (!nvmeq)
1113                 return ERR_PTR(-ENOMEM);
1114
1115         result = adapter_alloc_cq(dev, qid, nvmeq);
1116         if (result < 0)
1117                 goto free_nvmeq;
1118
1119         result = adapter_alloc_sq(dev, qid, nvmeq);
1120         if (result < 0)
1121                 goto release_cq;
1122
1123         result = queue_request_irq(dev, nvmeq, "nvme");
1124         if (result < 0)
1125                 goto release_sq;
1126
1127         return nvmeq;
1128
1129  release_sq:
1130         adapter_delete_sq(dev, qid);
1131  release_cq:
1132         adapter_delete_cq(dev, qid);
1133  free_nvmeq:
1134         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1135                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1136         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1137                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1138         kfree(nvmeq);
1139         return ERR_PTR(result);
1140 }
1141
1142 static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1143 {
1144         unsigned long timeout;
1145         u32 bit = enabled ? NVME_CSTS_RDY : 0;
1146
1147         timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1148
1149         while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1150                 msleep(100);
1151                 if (fatal_signal_pending(current))
1152                         return -EINTR;
1153                 if (time_after(jiffies, timeout)) {
1154                         dev_err(&dev->pci_dev->dev,
1155                                 "Device not ready; aborting initialisation\n");
1156                         return -ENODEV;
1157                 }
1158         }
1159
1160         return 0;
1161 }
1162
1163 /*
1164  * If the device has been passed off to us in an enabled state, just clear
1165  * the enabled bit.  The spec says we should set the 'shutdown notification
1166  * bits', but doing so may cause the device to complete commands to the
1167  * admin queue ... and we don't know what memory that might be pointing at!
1168  */
1169 static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1170 {
1171         u32 cc = readl(&dev->bar->cc);
1172
1173         if (cc & NVME_CC_ENABLE)
1174                 writel(cc & ~NVME_CC_ENABLE, &dev->bar->cc);
1175         return nvme_wait_ready(dev, cap, false);
1176 }
1177
1178 static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1179 {
1180         return nvme_wait_ready(dev, cap, true);
1181 }
1182
1183 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1184 {
1185         int result;
1186         u32 aqa;
1187         u64 cap = readq(&dev->bar->cap);
1188         struct nvme_queue *nvmeq;
1189
1190         dev->dbs = ((void __iomem *)dev->bar) + 4096;
1191         dev->db_stride = NVME_CAP_STRIDE(cap);
1192
1193         result = nvme_disable_ctrl(dev, cap);
1194         if (result < 0)
1195                 return result;
1196
1197         nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
1198         if (!nvmeq)
1199                 return -ENOMEM;
1200
1201         aqa = nvmeq->q_depth - 1;
1202         aqa |= aqa << 16;
1203
1204         dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
1205         dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
1206         dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1207         dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1208
1209         writel(aqa, &dev->bar->aqa);
1210         writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1211         writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1212         writel(dev->ctrl_config, &dev->bar->cc);
1213
1214         result = nvme_enable_ctrl(dev, cap);
1215         if (result)
1216                 goto free_q;
1217
1218         result = queue_request_irq(dev, nvmeq, "nvme admin");
1219         if (result)
1220                 goto free_q;
1221
1222         dev->queues[0] = nvmeq;
1223         return result;
1224
1225  free_q:
1226         nvme_free_queue_mem(nvmeq);
1227         return result;
1228 }
1229
1230 struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
1231                                 unsigned long addr, unsigned length)
1232 {
1233         int i, err, count, nents, offset;
1234         struct scatterlist *sg;
1235         struct page **pages;
1236         struct nvme_iod *iod;
1237
1238         if (addr & 3)
1239                 return ERR_PTR(-EINVAL);
1240         if (!length || length > INT_MAX - PAGE_SIZE)
1241                 return ERR_PTR(-EINVAL);
1242
1243         offset = offset_in_page(addr);
1244         count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1245         pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
1246         if (!pages)
1247                 return ERR_PTR(-ENOMEM);
1248
1249         err = get_user_pages_fast(addr, count, 1, pages);
1250         if (err < count) {
1251                 count = err;
1252                 err = -EFAULT;
1253                 goto put_pages;
1254         }
1255
1256         iod = nvme_alloc_iod(count, length, GFP_KERNEL);
1257         sg = iod->sg;
1258         sg_init_table(sg, count);
1259         for (i = 0; i < count; i++) {
1260                 sg_set_page(&sg[i], pages[i],
1261                             min_t(unsigned, length, PAGE_SIZE - offset),
1262                             offset);
1263                 length -= (PAGE_SIZE - offset);
1264                 offset = 0;
1265         }
1266         sg_mark_end(&sg[i - 1]);
1267         iod->nents = count;
1268
1269         err = -ENOMEM;
1270         nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1271                                 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1272         if (!nents)
1273                 goto free_iod;
1274
1275         kfree(pages);
1276         return iod;
1277
1278  free_iod:
1279         kfree(iod);
1280  put_pages:
1281         for (i = 0; i < count; i++)
1282                 put_page(pages[i]);
1283         kfree(pages);
1284         return ERR_PTR(err);
1285 }
1286
1287 void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1288                         struct nvme_iod *iod)
1289 {
1290         int i;
1291
1292         dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
1293                                 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1294
1295         for (i = 0; i < iod->nents; i++)
1296                 put_page(sg_page(&iod->sg[i]));
1297 }
1298
1299 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1300 {
1301         struct nvme_dev *dev = ns->dev;
1302         struct nvme_queue *nvmeq;
1303         struct nvme_user_io io;
1304         struct nvme_command c;
1305         unsigned length, meta_len;
1306         int status, i;
1307         struct nvme_iod *iod, *meta_iod = NULL;
1308         dma_addr_t meta_dma_addr;
1309         void *meta, *uninitialized_var(meta_mem);
1310
1311         if (copy_from_user(&io, uio, sizeof(io)))
1312                 return -EFAULT;
1313         length = (io.nblocks + 1) << ns->lba_shift;
1314         meta_len = (io.nblocks + 1) * ns->ms;
1315
1316         if (meta_len && ((io.metadata & 3) || !io.metadata))
1317                 return -EINVAL;
1318
1319         switch (io.opcode) {
1320         case nvme_cmd_write:
1321         case nvme_cmd_read:
1322         case nvme_cmd_compare:
1323                 iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
1324                 break;
1325         default:
1326                 return -EINVAL;
1327         }
1328
1329         if (IS_ERR(iod))
1330                 return PTR_ERR(iod);
1331
1332         memset(&c, 0, sizeof(c));
1333         c.rw.opcode = io.opcode;
1334         c.rw.flags = io.flags;
1335         c.rw.nsid = cpu_to_le32(ns->ns_id);
1336         c.rw.slba = cpu_to_le64(io.slba);
1337         c.rw.length = cpu_to_le16(io.nblocks);
1338         c.rw.control = cpu_to_le16(io.control);
1339         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1340         c.rw.reftag = cpu_to_le32(io.reftag);
1341         c.rw.apptag = cpu_to_le16(io.apptag);
1342         c.rw.appmask = cpu_to_le16(io.appmask);
1343
1344         if (meta_len) {
1345                 meta_iod = nvme_map_user_pages(dev, io.opcode & 1, io.metadata, meta_len);
1346                 if (IS_ERR(meta_iod)) {
1347                         status = PTR_ERR(meta_iod);
1348                         meta_iod = NULL;
1349                         goto unmap;
1350                 }
1351
1352                 meta_mem = dma_alloc_coherent(&dev->pci_dev->dev, meta_len,
1353                                                 &meta_dma_addr, GFP_KERNEL);
1354                 if (!meta_mem) {
1355                         status = -ENOMEM;
1356                         goto unmap;
1357                 }
1358
1359                 if (io.opcode & 1) {
1360                         int meta_offset = 0;
1361
1362                         for (i = 0; i < meta_iod->nents; i++) {
1363                                 meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1364                                                 meta_iod->sg[i].offset;
1365                                 memcpy(meta_mem + meta_offset, meta,
1366                                                 meta_iod->sg[i].length);
1367                                 kunmap_atomic(meta);
1368                                 meta_offset += meta_iod->sg[i].length;
1369                         }
1370                 }
1371
1372                 c.rw.metadata = cpu_to_le64(meta_dma_addr);
1373         }
1374
1375         length = nvme_setup_prps(dev, &c.common, iod, length, GFP_KERNEL);
1376
1377         nvmeq = get_nvmeq(dev);
1378         /*
1379          * Since nvme_submit_sync_cmd sleeps, we can't keep preemption
1380          * disabled.  We may be preempted at any point, and be rescheduled
1381          * to a different CPU.  That will cause cacheline bouncing, but no
1382          * additional races since q_lock already protects against other CPUs.
1383          */
1384         put_nvmeq(nvmeq);
1385         if (length != (io.nblocks + 1) << ns->lba_shift)
1386                 status = -ENOMEM;
1387         else
1388                 status = nvme_submit_sync_cmd(nvmeq, &c, NULL, NVME_IO_TIMEOUT);
1389
1390         if (meta_len) {
1391                 if (status == NVME_SC_SUCCESS && !(io.opcode & 1)) {
1392                         int meta_offset = 0;
1393
1394                         for (i = 0; i < meta_iod->nents; i++) {
1395                                 meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1396                                                 meta_iod->sg[i].offset;
1397                                 memcpy(meta, meta_mem + meta_offset,
1398                                                 meta_iod->sg[i].length);
1399                                 kunmap_atomic(meta);
1400                                 meta_offset += meta_iod->sg[i].length;
1401                         }
1402                 }
1403
1404                 dma_free_coherent(&dev->pci_dev->dev, meta_len, meta_mem,
1405                                                                 meta_dma_addr);
1406         }
1407
1408  unmap:
1409         nvme_unmap_user_pages(dev, io.opcode & 1, iod);
1410         nvme_free_iod(dev, iod);
1411
1412         if (meta_iod) {
1413                 nvme_unmap_user_pages(dev, io.opcode & 1, meta_iod);
1414                 nvme_free_iod(dev, meta_iod);
1415         }
1416
1417         return status;
1418 }
1419
1420 static int nvme_user_admin_cmd(struct nvme_dev *dev,
1421                                         struct nvme_admin_cmd __user *ucmd)
1422 {
1423         struct nvme_admin_cmd cmd;
1424         struct nvme_command c;
1425         int status, length;
1426         struct nvme_iod *uninitialized_var(iod);
1427         unsigned timeout;
1428
1429         if (!capable(CAP_SYS_ADMIN))
1430                 return -EACCES;
1431         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1432                 return -EFAULT;
1433
1434         memset(&c, 0, sizeof(c));
1435         c.common.opcode = cmd.opcode;
1436         c.common.flags = cmd.flags;
1437         c.common.nsid = cpu_to_le32(cmd.nsid);
1438         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1439         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1440         c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1441         c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1442         c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1443         c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1444         c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1445         c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1446
1447         length = cmd.data_len;
1448         if (cmd.data_len) {
1449                 iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
1450                                                                 length);
1451                 if (IS_ERR(iod))
1452                         return PTR_ERR(iod);
1453                 length = nvme_setup_prps(dev, &c.common, iod, length,
1454                                                                 GFP_KERNEL);
1455         }
1456
1457         timeout = cmd.timeout_ms ? msecs_to_jiffies(cmd.timeout_ms) :
1458                                                                 ADMIN_TIMEOUT;
1459         if (length != cmd.data_len)
1460                 status = -ENOMEM;
1461         else
1462                 status = nvme_submit_sync_cmd(dev->queues[0], &c, &cmd.result,
1463                                                                 timeout);
1464
1465         if (cmd.data_len) {
1466                 nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
1467                 nvme_free_iod(dev, iod);
1468         }
1469
1470         if ((status >= 0) && copy_to_user(&ucmd->result, &cmd.result,
1471                                                         sizeof(cmd.result)))
1472                 status = -EFAULT;
1473
1474         return status;
1475 }
1476
1477 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1478                                                         unsigned long arg)
1479 {
1480         struct nvme_ns *ns = bdev->bd_disk->private_data;
1481
1482         switch (cmd) {
1483         case NVME_IOCTL_ID:
1484                 return ns->ns_id;
1485         case NVME_IOCTL_ADMIN_CMD:
1486                 return nvme_user_admin_cmd(ns->dev, (void __user *)arg);
1487         case NVME_IOCTL_SUBMIT_IO:
1488                 return nvme_submit_io(ns, (void __user *)arg);
1489         case SG_GET_VERSION_NUM:
1490                 return nvme_sg_get_version_num((void __user *)arg);
1491         case SG_IO:
1492                 return nvme_sg_io(ns, (void __user *)arg);
1493         default:
1494                 return -ENOTTY;
1495         }
1496 }
1497
1498 static const struct block_device_operations nvme_fops = {
1499         .owner          = THIS_MODULE,
1500         .ioctl          = nvme_ioctl,
1501         .compat_ioctl   = nvme_ioctl,
1502 };
1503
1504 static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1505 {
1506         while (bio_list_peek(&nvmeq->sq_cong)) {
1507                 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1508                 struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
1509
1510                 if (bio_list_empty(&nvmeq->sq_cong))
1511                         remove_wait_queue(&nvmeq->sq_full,
1512                                                         &nvmeq->sq_cong_wait);
1513                 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
1514                         if (bio_list_empty(&nvmeq->sq_cong))
1515                                 add_wait_queue(&nvmeq->sq_full,
1516                                                         &nvmeq->sq_cong_wait);
1517                         bio_list_add_head(&nvmeq->sq_cong, bio);
1518                         break;
1519                 }
1520         }
1521 }
1522
1523 static int nvme_kthread(void *data)
1524 {
1525         struct nvme_dev *dev;
1526
1527         while (!kthread_should_stop()) {
1528                 set_current_state(TASK_INTERRUPTIBLE);
1529                 spin_lock(&dev_list_lock);
1530                 list_for_each_entry(dev, &dev_list, node) {
1531                         int i;
1532                         for (i = 0; i < dev->queue_count; i++) {
1533                                 struct nvme_queue *nvmeq = dev->queues[i];
1534                                 if (!nvmeq)
1535                                         continue;
1536                                 spin_lock_irq(&nvmeq->q_lock);
1537                                 if (nvme_process_cq(nvmeq))
1538                                         printk("process_cq did something\n");
1539                                 nvme_cancel_ios(nvmeq, true);
1540                                 nvme_resubmit_bios(nvmeq);
1541                                 spin_unlock_irq(&nvmeq->q_lock);
1542                         }
1543                 }
1544                 spin_unlock(&dev_list_lock);
1545                 schedule_timeout(round_jiffies_relative(HZ));
1546         }
1547         return 0;
1548 }
1549
1550 static DEFINE_IDA(nvme_index_ida);
1551
1552 static int nvme_get_ns_idx(void)
1553 {
1554         int index, error;
1555
1556         do {
1557                 if (!ida_pre_get(&nvme_index_ida, GFP_KERNEL))
1558                         return -1;
1559
1560                 spin_lock(&dev_list_lock);
1561                 error = ida_get_new(&nvme_index_ida, &index);
1562                 spin_unlock(&dev_list_lock);
1563         } while (error == -EAGAIN);
1564
1565         if (error)
1566                 index = -1;
1567         return index;
1568 }
1569
1570 static void nvme_put_ns_idx(int index)
1571 {
1572         spin_lock(&dev_list_lock);
1573         ida_remove(&nvme_index_ida, index);
1574         spin_unlock(&dev_list_lock);
1575 }
1576
1577 static void nvme_config_discard(struct nvme_ns *ns)
1578 {
1579         u32 logical_block_size = queue_logical_block_size(ns->queue);
1580         ns->queue->limits.discard_zeroes_data = 0;
1581         ns->queue->limits.discard_alignment = logical_block_size;
1582         ns->queue->limits.discard_granularity = logical_block_size;
1583         ns->queue->limits.max_discard_sectors = 0xffffffff;
1584         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1585 }
1586
1587 static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int nsid,
1588                         struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1589 {
1590         struct nvme_ns *ns;
1591         struct gendisk *disk;
1592         int lbaf;
1593
1594         if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1595                 return NULL;
1596
1597         ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1598         if (!ns)
1599                 return NULL;
1600         ns->queue = blk_alloc_queue(GFP_KERNEL);
1601         if (!ns->queue)
1602                 goto out_free_ns;
1603         ns->queue->queue_flags = QUEUE_FLAG_DEFAULT;
1604         queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
1605         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1606         blk_queue_make_request(ns->queue, nvme_make_request);
1607         ns->dev = dev;
1608         ns->queue->queuedata = ns;
1609
1610         disk = alloc_disk(NVME_MINORS);
1611         if (!disk)
1612                 goto out_free_queue;
1613         ns->ns_id = nsid;
1614         ns->disk = disk;
1615         lbaf = id->flbas & 0xf;
1616         ns->lba_shift = id->lbaf[lbaf].ds;
1617         ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
1618         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1619         if (dev->max_hw_sectors)
1620                 blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
1621
1622         disk->major = nvme_major;
1623         disk->minors = NVME_MINORS;
1624         disk->first_minor = NVME_MINORS * nvme_get_ns_idx();
1625         disk->fops = &nvme_fops;
1626         disk->private_data = ns;
1627         disk->queue = ns->queue;
1628         disk->driverfs_dev = &dev->pci_dev->dev;
1629         sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
1630         set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1631
1632         if (dev->oncs & NVME_CTRL_ONCS_DSM)
1633                 nvme_config_discard(ns);
1634
1635         return ns;
1636
1637  out_free_queue:
1638         blk_cleanup_queue(ns->queue);
1639  out_free_ns:
1640         kfree(ns);
1641         return NULL;
1642 }
1643
1644 static void nvme_ns_free(struct nvme_ns *ns)
1645 {
1646         int index = ns->disk->first_minor / NVME_MINORS;
1647         put_disk(ns->disk);
1648         nvme_put_ns_idx(index);
1649         blk_cleanup_queue(ns->queue);
1650         kfree(ns);
1651 }
1652
1653 static int set_queue_count(struct nvme_dev *dev, int count)
1654 {
1655         int status;
1656         u32 result;
1657         u32 q_count = (count - 1) | ((count - 1) << 16);
1658
1659         status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
1660                                                                 &result);
1661         if (status)
1662                 return -EIO;
1663         return min(result & 0xffff, result >> 16) + 1;
1664 }
1665
1666 static int nvme_setup_io_queues(struct nvme_dev *dev)
1667 {
1668         struct pci_dev *pdev = dev->pci_dev;
1669         int result, cpu, i, vecs, nr_io_queues, db_bar_size, q_depth;
1670
1671         nr_io_queues = num_online_cpus();
1672         result = set_queue_count(dev, nr_io_queues);
1673         if (result < 0)
1674                 return result;
1675         if (result < nr_io_queues)
1676                 nr_io_queues = result;
1677
1678         /* Deregister the admin queue's interrupt */
1679         free_irq(dev->entry[0].vector, dev->queues[0]);
1680
1681         db_bar_size = 4096 + ((nr_io_queues + 1) << (dev->db_stride + 3));
1682         if (db_bar_size > 8192) {
1683                 iounmap(dev->bar);
1684                 dev->bar = ioremap(pci_resource_start(pdev, 0), db_bar_size);
1685                 dev->dbs = ((void __iomem *)dev->bar) + 4096;
1686                 dev->queues[0]->q_db = dev->dbs;
1687         }
1688
1689         vecs = nr_io_queues;
1690         for (i = 0; i < vecs; i++)
1691                 dev->entry[i].entry = i;
1692         for (;;) {
1693                 result = pci_enable_msix(pdev, dev->entry, vecs);
1694                 if (result <= 0)
1695                         break;
1696                 vecs = result;
1697         }
1698
1699         if (result < 0) {
1700                 vecs = nr_io_queues;
1701                 if (vecs > 32)
1702                         vecs = 32;
1703                 for (;;) {
1704                         result = pci_enable_msi_block(pdev, vecs);
1705                         if (result == 0) {
1706                                 for (i = 0; i < vecs; i++)
1707                                         dev->entry[i].vector = i + pdev->irq;
1708                                 break;
1709                         } else if (result < 0) {
1710                                 vecs = 1;
1711                                 break;
1712                         }
1713                         vecs = result;
1714                 }
1715         }
1716
1717         /*
1718          * Should investigate if there's a performance win from allocating
1719          * more queues than interrupt vectors; it might allow the submission
1720          * path to scale better, even if the receive path is limited by the
1721          * number of interrupts.
1722          */
1723         nr_io_queues = vecs;
1724
1725         result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1726         /* XXX: handle failure here */
1727
1728         cpu = cpumask_first(cpu_online_mask);
1729         for (i = 0; i < nr_io_queues; i++) {
1730                 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1731                 cpu = cpumask_next(cpu, cpu_online_mask);
1732         }
1733
1734         q_depth = min_t(int, NVME_CAP_MQES(readq(&dev->bar->cap)) + 1,
1735                                                                 NVME_Q_DEPTH);
1736         for (i = 0; i < nr_io_queues; i++) {
1737                 dev->queues[i + 1] = nvme_create_queue(dev, i + 1, q_depth, i);
1738                 if (IS_ERR(dev->queues[i + 1]))
1739                         return PTR_ERR(dev->queues[i + 1]);
1740                 dev->queue_count++;
1741         }
1742
1743         for (; i < num_possible_cpus(); i++) {
1744                 int target = i % rounddown_pow_of_two(dev->queue_count - 1);
1745                 dev->queues[i + 1] = dev->queues[target + 1];
1746         }
1747
1748         return 0;
1749 }
1750
1751 static void nvme_free_queues(struct nvme_dev *dev)
1752 {
1753         int i;
1754
1755         for (i = dev->queue_count - 1; i >= 0; i--)
1756                 nvme_free_queue(dev, i);
1757 }
1758
1759 /*
1760  * Return: error value if an error occurred setting up the queues or calling
1761  * Identify Device.  0 if these succeeded, even if adding some of the
1762  * namespaces failed.  At the moment, these failures are silent.  TBD which
1763  * failures should be reported.
1764  */
1765 static int nvme_dev_add(struct nvme_dev *dev)
1766 {
1767         int res, nn, i;
1768         struct nvme_ns *ns;
1769         struct nvme_id_ctrl *ctrl;
1770         struct nvme_id_ns *id_ns;
1771         void *mem;
1772         dma_addr_t dma_addr;
1773         int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
1774
1775         res = nvme_setup_io_queues(dev);
1776         if (res)
1777                 return res;
1778
1779         mem = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1780                                                                 GFP_KERNEL);
1781         if (!mem)
1782                 return -ENOMEM;
1783
1784         res = nvme_identify(dev, 0, 1, dma_addr);
1785         if (res) {
1786                 res = -EIO;
1787                 goto out;
1788         }
1789
1790         ctrl = mem;
1791         nn = le32_to_cpup(&ctrl->nn);
1792         dev->oncs = le16_to_cpup(&ctrl->oncs);
1793         memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1794         memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1795         memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
1796         if (ctrl->mdts)
1797                 dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
1798         if ((dev->pci_dev->vendor == PCI_VENDOR_ID_INTEL) &&
1799                         (dev->pci_dev->device == 0x0953) && ctrl->vs[3])
1800                 dev->stripe_size = 1 << (ctrl->vs[3] + shift);
1801
1802         id_ns = mem;
1803         for (i = 1; i <= nn; i++) {
1804                 res = nvme_identify(dev, i, 0, dma_addr);
1805                 if (res)
1806                         continue;
1807
1808                 if (id_ns->ncap == 0)
1809                         continue;
1810
1811                 res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
1812                                                         dma_addr + 4096, NULL);
1813                 if (res)
1814                         memset(mem + 4096, 0, 4096);
1815
1816                 ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
1817                 if (ns)
1818                         list_add_tail(&ns->list, &dev->namespaces);
1819         }
1820         list_for_each_entry(ns, &dev->namespaces, list)
1821                 add_disk(ns->disk);
1822         res = 0;
1823
1824  out:
1825         dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
1826         return res;
1827 }
1828
1829 static int nvme_dev_remove(struct nvme_dev *dev)
1830 {
1831         struct nvme_ns *ns, *next;
1832
1833         spin_lock(&dev_list_lock);
1834         list_del(&dev->node);
1835         spin_unlock(&dev_list_lock);
1836
1837         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1838                 list_del(&ns->list);
1839                 del_gendisk(ns->disk);
1840                 nvme_ns_free(ns);
1841         }
1842
1843         nvme_free_queues(dev);
1844
1845         return 0;
1846 }
1847
1848 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1849 {
1850         struct device *dmadev = &dev->pci_dev->dev;
1851         dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
1852                                                 PAGE_SIZE, PAGE_SIZE, 0);
1853         if (!dev->prp_page_pool)
1854                 return -ENOMEM;
1855
1856         /* Optimisation for I/Os between 4k and 128k */
1857         dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
1858                                                 256, 256, 0);
1859         if (!dev->prp_small_pool) {
1860                 dma_pool_destroy(dev->prp_page_pool);
1861                 return -ENOMEM;
1862         }
1863         return 0;
1864 }
1865
1866 static void nvme_release_prp_pools(struct nvme_dev *dev)
1867 {
1868         dma_pool_destroy(dev->prp_page_pool);
1869         dma_pool_destroy(dev->prp_small_pool);
1870 }
1871
1872 static DEFINE_IDA(nvme_instance_ida);
1873
1874 static int nvme_set_instance(struct nvme_dev *dev)
1875 {
1876         int instance, error;
1877
1878         do {
1879                 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
1880                         return -ENODEV;
1881
1882                 spin_lock(&dev_list_lock);
1883                 error = ida_get_new(&nvme_instance_ida, &instance);
1884                 spin_unlock(&dev_list_lock);
1885         } while (error == -EAGAIN);
1886
1887         if (error)
1888                 return -ENODEV;
1889
1890         dev->instance = instance;
1891         return 0;
1892 }
1893
1894 static void nvme_release_instance(struct nvme_dev *dev)
1895 {
1896         spin_lock(&dev_list_lock);
1897         ida_remove(&nvme_instance_ida, dev->instance);
1898         spin_unlock(&dev_list_lock);
1899 }
1900
1901 static void nvme_free_dev(struct kref *kref)
1902 {
1903         struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
1904         nvme_dev_remove(dev);
1905         if (dev->pci_dev->msi_enabled)
1906                 pci_disable_msi(dev->pci_dev);
1907         else if (dev->pci_dev->msix_enabled)
1908                 pci_disable_msix(dev->pci_dev);
1909         iounmap(dev->bar);
1910         nvme_release_instance(dev);
1911         nvme_release_prp_pools(dev);
1912         pci_disable_device(dev->pci_dev);
1913         pci_release_regions(dev->pci_dev);
1914         kfree(dev->queues);
1915         kfree(dev->entry);
1916         kfree(dev);
1917 }
1918
1919 static int nvme_dev_open(struct inode *inode, struct file *f)
1920 {
1921         struct nvme_dev *dev = container_of(f->private_data, struct nvme_dev,
1922                                                                 miscdev);
1923         kref_get(&dev->kref);
1924         f->private_data = dev;
1925         return 0;
1926 }
1927
1928 static int nvme_dev_release(struct inode *inode, struct file *f)
1929 {
1930         struct nvme_dev *dev = f->private_data;
1931         kref_put(&dev->kref, nvme_free_dev);
1932         return 0;
1933 }
1934
1935 static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1936 {
1937         struct nvme_dev *dev = f->private_data;
1938         switch (cmd) {
1939         case NVME_IOCTL_ADMIN_CMD:
1940                 return nvme_user_admin_cmd(dev, (void __user *)arg);
1941         default:
1942                 return -ENOTTY;
1943         }
1944 }
1945
1946 static const struct file_operations nvme_dev_fops = {
1947         .owner          = THIS_MODULE,
1948         .open           = nvme_dev_open,
1949         .release        = nvme_dev_release,
1950         .unlocked_ioctl = nvme_dev_ioctl,
1951         .compat_ioctl   = nvme_dev_ioctl,
1952 };
1953
1954 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1955 {
1956         int bars, result = -ENOMEM;
1957         struct nvme_dev *dev;
1958
1959         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1960         if (!dev)
1961                 return -ENOMEM;
1962         dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1963                                                                 GFP_KERNEL);
1964         if (!dev->entry)
1965                 goto free;
1966         dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1967                                                                 GFP_KERNEL);
1968         if (!dev->queues)
1969                 goto free;
1970
1971         if (pci_enable_device_mem(pdev))
1972                 goto free;
1973         pci_set_master(pdev);
1974         bars = pci_select_bars(pdev, IORESOURCE_MEM);
1975         if (pci_request_selected_regions(pdev, bars, "nvme"))
1976                 goto disable;
1977
1978         INIT_LIST_HEAD(&dev->namespaces);
1979         dev->pci_dev = pdev;
1980         pci_set_drvdata(pdev, dev);
1981
1982         if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)))
1983                 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1984         else if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)))
1985                 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1986         else
1987                 goto disable;
1988
1989         result = nvme_set_instance(dev);
1990         if (result)
1991                 goto disable;
1992
1993         dev->entry[0].vector = pdev->irq;
1994
1995         result = nvme_setup_prp_pools(dev);
1996         if (result)
1997                 goto disable_msix;
1998
1999         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2000         if (!dev->bar) {
2001                 result = -ENOMEM;
2002                 goto disable_msix;
2003         }
2004
2005         result = nvme_configure_admin_queue(dev);
2006         if (result)
2007                 goto unmap;
2008         dev->queue_count++;
2009
2010         spin_lock(&dev_list_lock);
2011         list_add(&dev->node, &dev_list);
2012         spin_unlock(&dev_list_lock);
2013
2014         result = nvme_dev_add(dev);
2015         if (result)
2016                 goto delete;
2017
2018         scnprintf(dev->name, sizeof(dev->name), "nvme%d", dev->instance);
2019         dev->miscdev.minor = MISC_DYNAMIC_MINOR;
2020         dev->miscdev.parent = &pdev->dev;
2021         dev->miscdev.name = dev->name;
2022         dev->miscdev.fops = &nvme_dev_fops;
2023         result = misc_register(&dev->miscdev);
2024         if (result)
2025                 goto remove;
2026
2027         kref_init(&dev->kref);
2028         return 0;
2029
2030  remove:
2031         nvme_dev_remove(dev);
2032  delete:
2033         spin_lock(&dev_list_lock);
2034         list_del(&dev->node);
2035         spin_unlock(&dev_list_lock);
2036
2037         nvme_free_queues(dev);
2038  unmap:
2039         iounmap(dev->bar);
2040  disable_msix:
2041         if (dev->pci_dev->msi_enabled)
2042                 pci_disable_msi(dev->pci_dev);
2043         else if (dev->pci_dev->msix_enabled)
2044                 pci_disable_msix(dev->pci_dev);
2045         nvme_release_instance(dev);
2046         nvme_release_prp_pools(dev);
2047  disable:
2048         pci_disable_device(pdev);
2049         pci_release_regions(pdev);
2050  free:
2051         kfree(dev->queues);
2052         kfree(dev->entry);
2053         kfree(dev);
2054         return result;
2055 }
2056
2057 static void nvme_remove(struct pci_dev *pdev)
2058 {
2059         struct nvme_dev *dev = pci_get_drvdata(pdev);
2060         misc_deregister(&dev->miscdev);
2061         kref_put(&dev->kref, nvme_free_dev);
2062 }
2063
2064 /* These functions are yet to be implemented */
2065 #define nvme_error_detected NULL
2066 #define nvme_dump_registers NULL
2067 #define nvme_link_reset NULL
2068 #define nvme_slot_reset NULL
2069 #define nvme_error_resume NULL
2070 #define nvme_suspend NULL
2071 #define nvme_resume NULL
2072
2073 static const struct pci_error_handlers nvme_err_handler = {
2074         .error_detected = nvme_error_detected,
2075         .mmio_enabled   = nvme_dump_registers,
2076         .link_reset     = nvme_link_reset,
2077         .slot_reset     = nvme_slot_reset,
2078         .resume         = nvme_error_resume,
2079 };
2080
2081 /* Move to pci_ids.h later */
2082 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
2083
2084 static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
2085         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2086         { 0, }
2087 };
2088 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2089
2090 static struct pci_driver nvme_driver = {
2091         .name           = "nvme",
2092         .id_table       = nvme_id_table,
2093         .probe          = nvme_probe,
2094         .remove         = nvme_remove,
2095         .suspend        = nvme_suspend,
2096         .resume         = nvme_resume,
2097         .err_handler    = &nvme_err_handler,
2098 };
2099
2100 static int __init nvme_init(void)
2101 {
2102         int result;
2103
2104         nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2105         if (IS_ERR(nvme_thread))
2106                 return PTR_ERR(nvme_thread);
2107
2108         result = register_blkdev(nvme_major, "nvme");
2109         if (result < 0)
2110                 goto kill_kthread;
2111         else if (result > 0)
2112                 nvme_major = result;
2113
2114         result = pci_register_driver(&nvme_driver);
2115         if (result)
2116                 goto unregister_blkdev;
2117         return 0;
2118
2119  unregister_blkdev:
2120         unregister_blkdev(nvme_major, "nvme");
2121  kill_kthread:
2122         kthread_stop(nvme_thread);
2123         return result;
2124 }
2125
2126 static void __exit nvme_exit(void)
2127 {
2128         pci_unregister_driver(&nvme_driver);
2129         unregister_blkdev(nvme_major, "nvme");
2130         kthread_stop(nvme_thread);
2131 }
2132
2133 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2134 MODULE_LICENSE("GPL");
2135 MODULE_VERSION("0.8");
2136 module_init(nvme_init);
2137 module_exit(nvme_exit);