NVMe:Remove unreachable code in nvme_abort_req
[linux-2.6-block.git] / drivers / block / nvme-core.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/nvme.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/errno.h>
22 #include <linux/fs.h>
23 #include <linux/genhd.h>
24 #include <linux/hdreg.h>
25 #include <linux/idr.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/kdev_t.h>
30 #include <linux/kthread.h>
31 #include <linux/kernel.h>
32 #include <linux/list_sort.h>
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/moduleparam.h>
36 #include <linux/pci.h>
37 #include <linux/poison.h>
38 #include <linux/ptrace.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/t10-pi.h>
42 #include <linux/types.h>
43 #include <scsi/sg.h>
44 #include <asm-generic/io-64-nonatomic-lo-hi.h>
45
46 #define NVME_MINORS             (1U << MINORBITS)
47 #define NVME_Q_DEPTH            1024
48 #define NVME_AQ_DEPTH           256
49 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
50 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
51 #define ADMIN_TIMEOUT           (admin_timeout * HZ)
52 #define SHUTDOWN_TIMEOUT        (shutdown_timeout * HZ)
53
54 static unsigned char admin_timeout = 60;
55 module_param(admin_timeout, byte, 0644);
56 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
57
58 unsigned char nvme_io_timeout = 30;
59 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
60 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
61
62 static unsigned char shutdown_timeout = 5;
63 module_param(shutdown_timeout, byte, 0644);
64 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
65
66 static int nvme_major;
67 module_param(nvme_major, int, 0);
68
69 static int nvme_char_major;
70 module_param(nvme_char_major, int, 0);
71
72 static int use_threaded_interrupts;
73 module_param(use_threaded_interrupts, int, 0);
74
75 static bool use_cmb_sqes = true;
76 module_param(use_cmb_sqes, bool, 0644);
77 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
78
79 static DEFINE_SPINLOCK(dev_list_lock);
80 static LIST_HEAD(dev_list);
81 static struct task_struct *nvme_thread;
82 static struct workqueue_struct *nvme_workq;
83 static wait_queue_head_t nvme_kthread_wait;
84
85 static struct class *nvme_class;
86
87 static void nvme_reset_failed_dev(struct work_struct *ws);
88 static int nvme_reset(struct nvme_dev *dev);
89 static int nvme_process_cq(struct nvme_queue *nvmeq);
90
91 struct async_cmd_info {
92         struct kthread_work work;
93         struct kthread_worker *worker;
94         struct request *req;
95         u32 result;
96         int status;
97         void *ctx;
98 };
99
100 /*
101  * An NVM Express queue.  Each device has at least two (one for admin
102  * commands and one for I/O commands).
103  */
104 struct nvme_queue {
105         struct device *q_dmadev;
106         struct nvme_dev *dev;
107         char irqname[24];       /* nvme4294967295-65535\0 */
108         spinlock_t q_lock;
109         struct nvme_command *sq_cmds;
110         struct nvme_command __iomem *sq_cmds_io;
111         volatile struct nvme_completion *cqes;
112         struct blk_mq_tags **tags;
113         dma_addr_t sq_dma_addr;
114         dma_addr_t cq_dma_addr;
115         u32 __iomem *q_db;
116         u16 q_depth;
117         s16 cq_vector;
118         u16 sq_head;
119         u16 sq_tail;
120         u16 cq_head;
121         u16 qid;
122         u8 cq_phase;
123         u8 cqe_seen;
124         struct async_cmd_info cmdinfo;
125 };
126
127 /*
128  * Check we didin't inadvertently grow the command struct
129  */
130 static inline void _nvme_check_size(void)
131 {
132         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
133         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
134         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
135         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
136         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
137         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
138         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
139         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
140         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
141         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
142         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
143         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
144 }
145
146 typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
147                                                 struct nvme_completion *);
148
149 struct nvme_cmd_info {
150         nvme_completion_fn fn;
151         void *ctx;
152         int aborted;
153         struct nvme_queue *nvmeq;
154         struct nvme_iod iod[0];
155 };
156
157 /*
158  * Max size of iod being embedded in the request payload
159  */
160 #define NVME_INT_PAGES          2
161 #define NVME_INT_BYTES(dev)     (NVME_INT_PAGES * (dev)->page_size)
162 #define NVME_INT_MASK           0x01
163
164 /*
165  * Will slightly overestimate the number of pages needed.  This is OK
166  * as it only leads to a small amount of wasted memory for the lifetime of
167  * the I/O.
168  */
169 static int nvme_npages(unsigned size, struct nvme_dev *dev)
170 {
171         unsigned nprps = DIV_ROUND_UP(size + dev->page_size, dev->page_size);
172         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
173 }
174
175 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
176 {
177         unsigned int ret = sizeof(struct nvme_cmd_info);
178
179         ret += sizeof(struct nvme_iod);
180         ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
181         ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
182
183         return ret;
184 }
185
186 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
187                                 unsigned int hctx_idx)
188 {
189         struct nvme_dev *dev = data;
190         struct nvme_queue *nvmeq = dev->queues[0];
191
192         WARN_ON(hctx_idx != 0);
193         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
194         WARN_ON(nvmeq->tags);
195
196         hctx->driver_data = nvmeq;
197         nvmeq->tags = &dev->admin_tagset.tags[0];
198         return 0;
199 }
200
201 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
202 {
203         struct nvme_queue *nvmeq = hctx->driver_data;
204
205         nvmeq->tags = NULL;
206 }
207
208 static int nvme_admin_init_request(void *data, struct request *req,
209                                 unsigned int hctx_idx, unsigned int rq_idx,
210                                 unsigned int numa_node)
211 {
212         struct nvme_dev *dev = data;
213         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
214         struct nvme_queue *nvmeq = dev->queues[0];
215
216         BUG_ON(!nvmeq);
217         cmd->nvmeq = nvmeq;
218         return 0;
219 }
220
221 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
222                           unsigned int hctx_idx)
223 {
224         struct nvme_dev *dev = data;
225         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
226
227         if (!nvmeq->tags)
228                 nvmeq->tags = &dev->tagset.tags[hctx_idx];
229
230         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
231         hctx->driver_data = nvmeq;
232         return 0;
233 }
234
235 static int nvme_init_request(void *data, struct request *req,
236                                 unsigned int hctx_idx, unsigned int rq_idx,
237                                 unsigned int numa_node)
238 {
239         struct nvme_dev *dev = data;
240         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
241         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
242
243         BUG_ON(!nvmeq);
244         cmd->nvmeq = nvmeq;
245         return 0;
246 }
247
248 static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
249                                 nvme_completion_fn handler)
250 {
251         cmd->fn = handler;
252         cmd->ctx = ctx;
253         cmd->aborted = 0;
254         blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
255 }
256
257 static void *iod_get_private(struct nvme_iod *iod)
258 {
259         return (void *) (iod->private & ~0x1UL);
260 }
261
262 /*
263  * If bit 0 is set, the iod is embedded in the request payload.
264  */
265 static bool iod_should_kfree(struct nvme_iod *iod)
266 {
267         return (iod->private & NVME_INT_MASK) == 0;
268 }
269
270 /* Special values must be less than 0x1000 */
271 #define CMD_CTX_BASE            ((void *)POISON_POINTER_DELTA)
272 #define CMD_CTX_CANCELLED       (0x30C + CMD_CTX_BASE)
273 #define CMD_CTX_COMPLETED       (0x310 + CMD_CTX_BASE)
274 #define CMD_CTX_INVALID         (0x314 + CMD_CTX_BASE)
275
276 static void special_completion(struct nvme_queue *nvmeq, void *ctx,
277                                                 struct nvme_completion *cqe)
278 {
279         if (ctx == CMD_CTX_CANCELLED)
280                 return;
281         if (ctx == CMD_CTX_COMPLETED) {
282                 dev_warn(nvmeq->q_dmadev,
283                                 "completed id %d twice on queue %d\n",
284                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
285                 return;
286         }
287         if (ctx == CMD_CTX_INVALID) {
288                 dev_warn(nvmeq->q_dmadev,
289                                 "invalid id %d completed on queue %d\n",
290                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
291                 return;
292         }
293         dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
294 }
295
296 static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
297 {
298         void *ctx;
299
300         if (fn)
301                 *fn = cmd->fn;
302         ctx = cmd->ctx;
303         cmd->fn = special_completion;
304         cmd->ctx = CMD_CTX_CANCELLED;
305         return ctx;
306 }
307
308 static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
309                                                 struct nvme_completion *cqe)
310 {
311         u32 result = le32_to_cpup(&cqe->result);
312         u16 status = le16_to_cpup(&cqe->status) >> 1;
313
314         if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
315                 ++nvmeq->dev->event_limit;
316         if (status != NVME_SC_SUCCESS)
317                 return;
318
319         switch (result & 0xff07) {
320         case NVME_AER_NOTICE_NS_CHANGED:
321                 dev_info(nvmeq->q_dmadev, "rescanning\n");
322                 schedule_work(&nvmeq->dev->scan_work);
323         default:
324                 dev_warn(nvmeq->q_dmadev, "async event result %08x\n", result);
325         }
326 }
327
328 static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
329                                                 struct nvme_completion *cqe)
330 {
331         struct request *req = ctx;
332
333         u16 status = le16_to_cpup(&cqe->status) >> 1;
334         u32 result = le32_to_cpup(&cqe->result);
335
336         blk_mq_free_request(req);
337
338         dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
339         ++nvmeq->dev->abort_limit;
340 }
341
342 static void async_completion(struct nvme_queue *nvmeq, void *ctx,
343                                                 struct nvme_completion *cqe)
344 {
345         struct async_cmd_info *cmdinfo = ctx;
346         cmdinfo->result = le32_to_cpup(&cqe->result);
347         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
348         queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
349         blk_mq_free_request(cmdinfo->req);
350 }
351
352 static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
353                                   unsigned int tag)
354 {
355         struct request *req = blk_mq_tag_to_rq(*nvmeq->tags, tag);
356
357         return blk_mq_rq_to_pdu(req);
358 }
359
360 /*
361  * Called with local interrupts disabled and the q_lock held.  May not sleep.
362  */
363 static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
364                                                 nvme_completion_fn *fn)
365 {
366         struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
367         void *ctx;
368         if (tag >= nvmeq->q_depth) {
369                 *fn = special_completion;
370                 return CMD_CTX_INVALID;
371         }
372         if (fn)
373                 *fn = cmd->fn;
374         ctx = cmd->ctx;
375         cmd->fn = special_completion;
376         cmd->ctx = CMD_CTX_COMPLETED;
377         return ctx;
378 }
379
380 /**
381  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
382  * @nvmeq: The queue to use
383  * @cmd: The command to send
384  *
385  * Safe to use from interrupt context
386  */
387 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
388                                                 struct nvme_command *cmd)
389 {
390         u16 tail = nvmeq->sq_tail;
391
392         if (nvmeq->sq_cmds_io)
393                 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
394         else
395                 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
396
397         if (++tail == nvmeq->q_depth)
398                 tail = 0;
399         writel(tail, nvmeq->q_db);
400         nvmeq->sq_tail = tail;
401 }
402
403 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
404 {
405         unsigned long flags;
406         spin_lock_irqsave(&nvmeq->q_lock, flags);
407         __nvme_submit_cmd(nvmeq, cmd);
408         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
409 }
410
411 static __le64 **iod_list(struct nvme_iod *iod)
412 {
413         return ((void *)iod) + iod->offset;
414 }
415
416 static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
417                             unsigned nseg, unsigned long private)
418 {
419         iod->private = private;
420         iod->offset = offsetof(struct nvme_iod, sg[nseg]);
421         iod->npages = -1;
422         iod->length = nbytes;
423         iod->nents = 0;
424 }
425
426 static struct nvme_iod *
427 __nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
428                  unsigned long priv, gfp_t gfp)
429 {
430         struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
431                                 sizeof(__le64 *) * nvme_npages(bytes, dev) +
432                                 sizeof(struct scatterlist) * nseg, gfp);
433
434         if (iod)
435                 iod_init(iod, bytes, nseg, priv);
436
437         return iod;
438 }
439
440 static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
441                                        gfp_t gfp)
442 {
443         unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
444                                                 sizeof(struct nvme_dsm_range);
445         struct nvme_iod *iod;
446
447         if (rq->nr_phys_segments <= NVME_INT_PAGES &&
448             size <= NVME_INT_BYTES(dev)) {
449                 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
450
451                 iod = cmd->iod;
452                 iod_init(iod, size, rq->nr_phys_segments,
453                                 (unsigned long) rq | NVME_INT_MASK);
454                 return iod;
455         }
456
457         return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
458                                 (unsigned long) rq, gfp);
459 }
460
461 static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
462 {
463         const int last_prp = dev->page_size / 8 - 1;
464         int i;
465         __le64 **list = iod_list(iod);
466         dma_addr_t prp_dma = iod->first_dma;
467
468         if (iod->npages == 0)
469                 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
470         for (i = 0; i < iod->npages; i++) {
471                 __le64 *prp_list = list[i];
472                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
473                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
474                 prp_dma = next_prp_dma;
475         }
476
477         if (iod_should_kfree(iod))
478                 kfree(iod);
479 }
480
481 static int nvme_error_status(u16 status)
482 {
483         switch (status & 0x7ff) {
484         case NVME_SC_SUCCESS:
485                 return 0;
486         case NVME_SC_CAP_EXCEEDED:
487                 return -ENOSPC;
488         default:
489                 return -EIO;
490         }
491 }
492
493 #ifdef CONFIG_BLK_DEV_INTEGRITY
494 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
495 {
496         if (be32_to_cpu(pi->ref_tag) == v)
497                 pi->ref_tag = cpu_to_be32(p);
498 }
499
500 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
501 {
502         if (be32_to_cpu(pi->ref_tag) == p)
503                 pi->ref_tag = cpu_to_be32(v);
504 }
505
506 /**
507  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
508  *
509  * The virtual start sector is the one that was originally submitted by the
510  * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
511  * start sector may be different. Remap protection information to match the
512  * physical LBA on writes, and back to the original seed on reads.
513  *
514  * Type 0 and 3 do not have a ref tag, so no remapping required.
515  */
516 static void nvme_dif_remap(struct request *req,
517                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
518 {
519         struct nvme_ns *ns = req->rq_disk->private_data;
520         struct bio_integrity_payload *bip;
521         struct t10_pi_tuple *pi;
522         void *p, *pmap;
523         u32 i, nlb, ts, phys, virt;
524
525         if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
526                 return;
527
528         bip = bio_integrity(req->bio);
529         if (!bip)
530                 return;
531
532         pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
533
534         p = pmap;
535         virt = bip_get_seed(bip);
536         phys = nvme_block_nr(ns, blk_rq_pos(req));
537         nlb = (blk_rq_bytes(req) >> ns->lba_shift);
538         ts = ns->disk->integrity->tuple_size;
539
540         for (i = 0; i < nlb; i++, virt++, phys++) {
541                 pi = (struct t10_pi_tuple *)p;
542                 dif_swap(phys, virt, pi);
543                 p += ts;
544         }
545         kunmap_atomic(pmap);
546 }
547
548 static int nvme_noop_verify(struct blk_integrity_iter *iter)
549 {
550         return 0;
551 }
552
553 static int nvme_noop_generate(struct blk_integrity_iter *iter)
554 {
555         return 0;
556 }
557
558 struct blk_integrity nvme_meta_noop = {
559         .name                   = "NVME_META_NOOP",
560         .generate_fn            = nvme_noop_generate,
561         .verify_fn              = nvme_noop_verify,
562 };
563
564 static void nvme_init_integrity(struct nvme_ns *ns)
565 {
566         struct blk_integrity integrity;
567
568         switch (ns->pi_type) {
569         case NVME_NS_DPS_PI_TYPE3:
570                 integrity = t10_pi_type3_crc;
571                 break;
572         case NVME_NS_DPS_PI_TYPE1:
573         case NVME_NS_DPS_PI_TYPE2:
574                 integrity = t10_pi_type1_crc;
575                 break;
576         default:
577                 integrity = nvme_meta_noop;
578                 break;
579         }
580         integrity.tuple_size = ns->ms;
581         blk_integrity_register(ns->disk, &integrity);
582         blk_queue_max_integrity_segments(ns->queue, 1);
583 }
584 #else /* CONFIG_BLK_DEV_INTEGRITY */
585 static void nvme_dif_remap(struct request *req,
586                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
587 {
588 }
589 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
590 {
591 }
592 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
593 {
594 }
595 static void nvme_init_integrity(struct nvme_ns *ns)
596 {
597 }
598 #endif
599
600 static void req_completion(struct nvme_queue *nvmeq, void *ctx,
601                                                 struct nvme_completion *cqe)
602 {
603         struct nvme_iod *iod = ctx;
604         struct request *req = iod_get_private(iod);
605         struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
606
607         u16 status = le16_to_cpup(&cqe->status) >> 1;
608
609         if (unlikely(status)) {
610                 if (!(status & NVME_SC_DNR || blk_noretry_request(req))
611                     && (jiffies - req->start_time) < req->timeout) {
612                         unsigned long flags;
613
614                         blk_mq_requeue_request(req);
615                         spin_lock_irqsave(req->q->queue_lock, flags);
616                         if (!blk_queue_stopped(req->q))
617                                 blk_mq_kick_requeue_list(req->q);
618                         spin_unlock_irqrestore(req->q->queue_lock, flags);
619                         return;
620                 }
621                 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
622                         if (cmd_rq->ctx == CMD_CTX_CANCELLED)
623                                 req->errors = -EINTR;
624                         else
625                                 req->errors = status;
626                 } else {
627                         req->errors = nvme_error_status(status);
628                 }
629         } else
630                 req->errors = 0;
631         if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
632                 u32 result = le32_to_cpup(&cqe->result);
633                 req->special = (void *)(uintptr_t)result;
634         }
635
636         if (cmd_rq->aborted)
637                 dev_warn(nvmeq->dev->dev,
638                         "completing aborted command with status:%04x\n",
639                         status);
640
641         if (iod->nents) {
642                 dma_unmap_sg(nvmeq->dev->dev, iod->sg, iod->nents,
643                         rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
644                 if (blk_integrity_rq(req)) {
645                         if (!rq_data_dir(req))
646                                 nvme_dif_remap(req, nvme_dif_complete);
647                         dma_unmap_sg(nvmeq->dev->dev, iod->meta_sg, 1,
648                                 rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
649                 }
650         }
651         nvme_free_iod(nvmeq->dev, iod);
652
653         blk_mq_complete_request(req);
654 }
655
656 /* length is in bytes.  gfp flags indicates whether we may sleep. */
657 static int nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod,
658                 int total_len, gfp_t gfp)
659 {
660         struct dma_pool *pool;
661         int length = total_len;
662         struct scatterlist *sg = iod->sg;
663         int dma_len = sg_dma_len(sg);
664         u64 dma_addr = sg_dma_address(sg);
665         u32 page_size = dev->page_size;
666         int offset = dma_addr & (page_size - 1);
667         __le64 *prp_list;
668         __le64 **list = iod_list(iod);
669         dma_addr_t prp_dma;
670         int nprps, i;
671
672         length -= (page_size - offset);
673         if (length <= 0)
674                 return total_len;
675
676         dma_len -= (page_size - offset);
677         if (dma_len) {
678                 dma_addr += (page_size - offset);
679         } else {
680                 sg = sg_next(sg);
681                 dma_addr = sg_dma_address(sg);
682                 dma_len = sg_dma_len(sg);
683         }
684
685         if (length <= page_size) {
686                 iod->first_dma = dma_addr;
687                 return total_len;
688         }
689
690         nprps = DIV_ROUND_UP(length, page_size);
691         if (nprps <= (256 / 8)) {
692                 pool = dev->prp_small_pool;
693                 iod->npages = 0;
694         } else {
695                 pool = dev->prp_page_pool;
696                 iod->npages = 1;
697         }
698
699         prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
700         if (!prp_list) {
701                 iod->first_dma = dma_addr;
702                 iod->npages = -1;
703                 return (total_len - length) + page_size;
704         }
705         list[0] = prp_list;
706         iod->first_dma = prp_dma;
707         i = 0;
708         for (;;) {
709                 if (i == page_size >> 3) {
710                         __le64 *old_prp_list = prp_list;
711                         prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
712                         if (!prp_list)
713                                 return total_len - length;
714                         list[iod->npages++] = prp_list;
715                         prp_list[0] = old_prp_list[i - 1];
716                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
717                         i = 1;
718                 }
719                 prp_list[i++] = cpu_to_le64(dma_addr);
720                 dma_len -= page_size;
721                 dma_addr += page_size;
722                 length -= page_size;
723                 if (length <= 0)
724                         break;
725                 if (dma_len > 0)
726                         continue;
727                 BUG_ON(dma_len < 0);
728                 sg = sg_next(sg);
729                 dma_addr = sg_dma_address(sg);
730                 dma_len = sg_dma_len(sg);
731         }
732
733         return total_len;
734 }
735
736 static void nvme_submit_priv(struct nvme_queue *nvmeq, struct request *req,
737                 struct nvme_iod *iod)
738 {
739         struct nvme_command cmnd;
740
741         memcpy(&cmnd, req->cmd, sizeof(cmnd));
742         cmnd.rw.command_id = req->tag;
743         if (req->nr_phys_segments) {
744                 cmnd.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
745                 cmnd.rw.prp2 = cpu_to_le64(iod->first_dma);
746         }
747
748         __nvme_submit_cmd(nvmeq, &cmnd);
749 }
750
751 /*
752  * We reuse the small pool to allocate the 16-byte range here as it is not
753  * worth having a special pool for these or additional cases to handle freeing
754  * the iod.
755  */
756 static void nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
757                 struct request *req, struct nvme_iod *iod)
758 {
759         struct nvme_dsm_range *range =
760                                 (struct nvme_dsm_range *)iod_list(iod)[0];
761         struct nvme_command cmnd;
762
763         range->cattr = cpu_to_le32(0);
764         range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
765         range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
766
767         memset(&cmnd, 0, sizeof(cmnd));
768         cmnd.dsm.opcode = nvme_cmd_dsm;
769         cmnd.dsm.command_id = req->tag;
770         cmnd.dsm.nsid = cpu_to_le32(ns->ns_id);
771         cmnd.dsm.prp1 = cpu_to_le64(iod->first_dma);
772         cmnd.dsm.nr = 0;
773         cmnd.dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
774
775         __nvme_submit_cmd(nvmeq, &cmnd);
776 }
777
778 static void nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
779                                                                 int cmdid)
780 {
781         struct nvme_command cmnd;
782
783         memset(&cmnd, 0, sizeof(cmnd));
784         cmnd.common.opcode = nvme_cmd_flush;
785         cmnd.common.command_id = cmdid;
786         cmnd.common.nsid = cpu_to_le32(ns->ns_id);
787
788         __nvme_submit_cmd(nvmeq, &cmnd);
789 }
790
791 static int nvme_submit_iod(struct nvme_queue *nvmeq, struct nvme_iod *iod,
792                                                         struct nvme_ns *ns)
793 {
794         struct request *req = iod_get_private(iod);
795         struct nvme_command cmnd;
796         u16 control = 0;
797         u32 dsmgmt = 0;
798
799         if (req->cmd_flags & REQ_FUA)
800                 control |= NVME_RW_FUA;
801         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
802                 control |= NVME_RW_LR;
803
804         if (req->cmd_flags & REQ_RAHEAD)
805                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
806
807         memset(&cmnd, 0, sizeof(cmnd));
808         cmnd.rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
809         cmnd.rw.command_id = req->tag;
810         cmnd.rw.nsid = cpu_to_le32(ns->ns_id);
811         cmnd.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
812         cmnd.rw.prp2 = cpu_to_le64(iod->first_dma);
813         cmnd.rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
814         cmnd.rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
815
816         if (blk_integrity_rq(req)) {
817                 cmnd.rw.metadata = cpu_to_le64(sg_dma_address(iod->meta_sg));
818                 switch (ns->pi_type) {
819                 case NVME_NS_DPS_PI_TYPE3:
820                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
821                         break;
822                 case NVME_NS_DPS_PI_TYPE1:
823                 case NVME_NS_DPS_PI_TYPE2:
824                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
825                                         NVME_RW_PRINFO_PRCHK_REF;
826                         cmnd.rw.reftag = cpu_to_le32(
827                                         nvme_block_nr(ns, blk_rq_pos(req)));
828                         break;
829                 }
830         } else if (ns->ms)
831                 control |= NVME_RW_PRINFO_PRACT;
832
833         cmnd.rw.control = cpu_to_le16(control);
834         cmnd.rw.dsmgmt = cpu_to_le32(dsmgmt);
835
836         __nvme_submit_cmd(nvmeq, &cmnd);
837
838         return 0;
839 }
840
841 /*
842  * NOTE: ns is NULL when called on the admin queue.
843  */
844 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
845                          const struct blk_mq_queue_data *bd)
846 {
847         struct nvme_ns *ns = hctx->queue->queuedata;
848         struct nvme_queue *nvmeq = hctx->driver_data;
849         struct nvme_dev *dev = nvmeq->dev;
850         struct request *req = bd->rq;
851         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
852         struct nvme_iod *iod;
853         enum dma_data_direction dma_dir;
854
855         /*
856          * If formated with metadata, require the block layer provide a buffer
857          * unless this namespace is formated such that the metadata can be
858          * stripped/generated by the controller with PRACT=1.
859          */
860         if (ns && ns->ms && !blk_integrity_rq(req)) {
861                 if (!(ns->pi_type && ns->ms == 8) &&
862                                         req->cmd_type != REQ_TYPE_DRV_PRIV) {
863                         req->errors = -EFAULT;
864                         blk_mq_complete_request(req);
865                         return BLK_MQ_RQ_QUEUE_OK;
866                 }
867         }
868
869         iod = nvme_alloc_iod(req, dev, GFP_ATOMIC);
870         if (!iod)
871                 return BLK_MQ_RQ_QUEUE_BUSY;
872
873         if (req->cmd_flags & REQ_DISCARD) {
874                 void *range;
875                 /*
876                  * We reuse the small pool to allocate the 16-byte range here
877                  * as it is not worth having a special pool for these or
878                  * additional cases to handle freeing the iod.
879                  */
880                 range = dma_pool_alloc(dev->prp_small_pool, GFP_ATOMIC,
881                                                 &iod->first_dma);
882                 if (!range)
883                         goto retry_cmd;
884                 iod_list(iod)[0] = (__le64 *)range;
885                 iod->npages = 0;
886         } else if (req->nr_phys_segments) {
887                 dma_dir = rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
888
889                 sg_init_table(iod->sg, req->nr_phys_segments);
890                 iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
891                 if (!iod->nents)
892                         goto error_cmd;
893
894                 if (!dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir))
895                         goto retry_cmd;
896
897                 if (blk_rq_bytes(req) !=
898                     nvme_setup_prps(dev, iod, blk_rq_bytes(req), GFP_ATOMIC)) {
899                         dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
900                         goto retry_cmd;
901                 }
902                 if (blk_integrity_rq(req)) {
903                         if (blk_rq_count_integrity_sg(req->q, req->bio) != 1)
904                                 goto error_cmd;
905
906                         sg_init_table(iod->meta_sg, 1);
907                         if (blk_rq_map_integrity_sg(
908                                         req->q, req->bio, iod->meta_sg) != 1)
909                                 goto error_cmd;
910
911                         if (rq_data_dir(req))
912                                 nvme_dif_remap(req, nvme_dif_prep);
913
914                         if (!dma_map_sg(nvmeq->q_dmadev, iod->meta_sg, 1, dma_dir))
915                                 goto error_cmd;
916                 }
917         }
918
919         nvme_set_info(cmd, iod, req_completion);
920         spin_lock_irq(&nvmeq->q_lock);
921         if (req->cmd_type == REQ_TYPE_DRV_PRIV)
922                 nvme_submit_priv(nvmeq, req, iod);
923         else if (req->cmd_flags & REQ_DISCARD)
924                 nvme_submit_discard(nvmeq, ns, req, iod);
925         else if (req->cmd_flags & REQ_FLUSH)
926                 nvme_submit_flush(nvmeq, ns, req->tag);
927         else
928                 nvme_submit_iod(nvmeq, iod, ns);
929
930         nvme_process_cq(nvmeq);
931         spin_unlock_irq(&nvmeq->q_lock);
932         return BLK_MQ_RQ_QUEUE_OK;
933
934  error_cmd:
935         nvme_free_iod(dev, iod);
936         return BLK_MQ_RQ_QUEUE_ERROR;
937  retry_cmd:
938         nvme_free_iod(dev, iod);
939         return BLK_MQ_RQ_QUEUE_BUSY;
940 }
941
942 static int nvme_process_cq(struct nvme_queue *nvmeq)
943 {
944         u16 head, phase;
945
946         head = nvmeq->cq_head;
947         phase = nvmeq->cq_phase;
948
949         for (;;) {
950                 void *ctx;
951                 nvme_completion_fn fn;
952                 struct nvme_completion cqe = nvmeq->cqes[head];
953                 if ((le16_to_cpu(cqe.status) & 1) != phase)
954                         break;
955                 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
956                 if (++head == nvmeq->q_depth) {
957                         head = 0;
958                         phase = !phase;
959                 }
960                 ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
961                 fn(nvmeq, ctx, &cqe);
962         }
963
964         /* If the controller ignores the cq head doorbell and continuously
965          * writes to the queue, it is theoretically possible to wrap around
966          * the queue twice and mistakenly return IRQ_NONE.  Linux only
967          * requires that 0.1% of your interrupts are handled, so this isn't
968          * a big problem.
969          */
970         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
971                 return 0;
972
973         writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
974         nvmeq->cq_head = head;
975         nvmeq->cq_phase = phase;
976
977         nvmeq->cqe_seen = 1;
978         return 1;
979 }
980
981 static irqreturn_t nvme_irq(int irq, void *data)
982 {
983         irqreturn_t result;
984         struct nvme_queue *nvmeq = data;
985         spin_lock(&nvmeq->q_lock);
986         nvme_process_cq(nvmeq);
987         result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
988         nvmeq->cqe_seen = 0;
989         spin_unlock(&nvmeq->q_lock);
990         return result;
991 }
992
993 static irqreturn_t nvme_irq_check(int irq, void *data)
994 {
995         struct nvme_queue *nvmeq = data;
996         struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
997         if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
998                 return IRQ_NONE;
999         return IRQ_WAKE_THREAD;
1000 }
1001
1002 /*
1003  * Returns 0 on success.  If the result is negative, it's a Linux error code;
1004  * if the result is positive, it's an NVM Express status code
1005  */
1006 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1007                 void *buffer, void __user *ubuffer, unsigned bufflen,
1008                 u32 *result, unsigned timeout)
1009 {
1010         bool write = cmd->common.opcode & 1;
1011         struct bio *bio = NULL;
1012         struct request *req;
1013         int ret;
1014
1015         req = blk_mq_alloc_request(q, write, GFP_KERNEL, false);
1016         if (IS_ERR(req))
1017                 return PTR_ERR(req);
1018
1019         req->cmd_type = REQ_TYPE_DRV_PRIV;
1020         req->cmd_flags |= REQ_FAILFAST_DRIVER;
1021         req->__data_len = 0;
1022         req->__sector = (sector_t) -1;
1023         req->bio = req->biotail = NULL;
1024
1025         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
1026
1027         req->cmd = (unsigned char *)cmd;
1028         req->cmd_len = sizeof(struct nvme_command);
1029         req->special = (void *)0;
1030
1031         if (buffer && bufflen) {
1032                 ret = blk_rq_map_kern(q, req, buffer, bufflen, __GFP_WAIT);
1033                 if (ret)
1034                         goto out;
1035         } else if (ubuffer && bufflen) {
1036                 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen, __GFP_WAIT);
1037                 if (ret)
1038                         goto out;
1039                 bio = req->bio;
1040         }
1041
1042         blk_execute_rq(req->q, NULL, req, 0);
1043         if (bio)
1044                 blk_rq_unmap_user(bio);
1045         if (result)
1046                 *result = (u32)(uintptr_t)req->special;
1047         ret = req->errors;
1048  out:
1049         blk_mq_free_request(req);
1050         return ret;
1051 }
1052
1053 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1054                 void *buffer, unsigned bufflen)
1055 {
1056         return __nvme_submit_sync_cmd(q, cmd, buffer, NULL, bufflen, NULL, 0);
1057 }
1058
1059 static int nvme_submit_async_admin_req(struct nvme_dev *dev)
1060 {
1061         struct nvme_queue *nvmeq = dev->queues[0];
1062         struct nvme_command c;
1063         struct nvme_cmd_info *cmd_info;
1064         struct request *req;
1065
1066         req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC, true);
1067         if (IS_ERR(req))
1068                 return PTR_ERR(req);
1069
1070         req->cmd_flags |= REQ_NO_TIMEOUT;
1071         cmd_info = blk_mq_rq_to_pdu(req);
1072         nvme_set_info(cmd_info, NULL, async_req_completion);
1073
1074         memset(&c, 0, sizeof(c));
1075         c.common.opcode = nvme_admin_async_event;
1076         c.common.command_id = req->tag;
1077
1078         blk_mq_free_request(req);
1079         __nvme_submit_cmd(nvmeq, &c);
1080         return 0;
1081 }
1082
1083 static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
1084                         struct nvme_command *cmd,
1085                         struct async_cmd_info *cmdinfo, unsigned timeout)
1086 {
1087         struct nvme_queue *nvmeq = dev->queues[0];
1088         struct request *req;
1089         struct nvme_cmd_info *cmd_rq;
1090
1091         req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
1092         if (IS_ERR(req))
1093                 return PTR_ERR(req);
1094
1095         req->timeout = timeout;
1096         cmd_rq = blk_mq_rq_to_pdu(req);
1097         cmdinfo->req = req;
1098         nvme_set_info(cmd_rq, cmdinfo, async_completion);
1099         cmdinfo->status = -EINTR;
1100
1101         cmd->common.command_id = req->tag;
1102
1103         nvme_submit_cmd(nvmeq, cmd);
1104         return 0;
1105 }
1106
1107 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1108 {
1109         struct nvme_command c;
1110
1111         memset(&c, 0, sizeof(c));
1112         c.delete_queue.opcode = opcode;
1113         c.delete_queue.qid = cpu_to_le16(id);
1114
1115         return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
1116 }
1117
1118 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1119                                                 struct nvme_queue *nvmeq)
1120 {
1121         struct nvme_command c;
1122         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1123
1124         /*
1125          * Note: we (ab)use the fact the the prp fields survive if no data
1126          * is attached to the request.
1127          */
1128         memset(&c, 0, sizeof(c));
1129         c.create_cq.opcode = nvme_admin_create_cq;
1130         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1131         c.create_cq.cqid = cpu_to_le16(qid);
1132         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1133         c.create_cq.cq_flags = cpu_to_le16(flags);
1134         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1135
1136         return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
1137 }
1138
1139 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1140                                                 struct nvme_queue *nvmeq)
1141 {
1142         struct nvme_command c;
1143         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
1144
1145         /*
1146          * Note: we (ab)use the fact the the prp fields survive if no data
1147          * is attached to the request.
1148          */
1149         memset(&c, 0, sizeof(c));
1150         c.create_sq.opcode = nvme_admin_create_sq;
1151         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1152         c.create_sq.sqid = cpu_to_le16(qid);
1153         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1154         c.create_sq.sq_flags = cpu_to_le16(flags);
1155         c.create_sq.cqid = cpu_to_le16(qid);
1156
1157         return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
1158 }
1159
1160 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1161 {
1162         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1163 }
1164
1165 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1166 {
1167         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1168 }
1169
1170 int nvme_identify_ctrl(struct nvme_dev *dev, struct nvme_id_ctrl **id)
1171 {
1172         struct nvme_command c = { };
1173         int error;
1174
1175         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1176         c.identify.opcode = nvme_admin_identify;
1177         c.identify.cns = cpu_to_le32(1);
1178
1179         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1180         if (!*id)
1181                 return -ENOMEM;
1182
1183         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1184                         sizeof(struct nvme_id_ctrl));
1185         if (error)
1186                 kfree(*id);
1187         return error;
1188 }
1189
1190 int nvme_identify_ns(struct nvme_dev *dev, unsigned nsid,
1191                 struct nvme_id_ns **id)
1192 {
1193         struct nvme_command c = { };
1194         int error;
1195
1196         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1197         c.identify.opcode = nvme_admin_identify,
1198         c.identify.nsid = cpu_to_le32(nsid),
1199
1200         *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
1201         if (!*id)
1202                 return -ENOMEM;
1203
1204         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1205                         sizeof(struct nvme_id_ns));
1206         if (error)
1207                 kfree(*id);
1208         return error;
1209 }
1210
1211 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
1212                                         dma_addr_t dma_addr, u32 *result)
1213 {
1214         struct nvme_command c;
1215
1216         memset(&c, 0, sizeof(c));
1217         c.features.opcode = nvme_admin_get_features;
1218         c.features.nsid = cpu_to_le32(nsid);
1219         c.features.prp1 = cpu_to_le64(dma_addr);
1220         c.features.fid = cpu_to_le32(fid);
1221
1222         return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, NULL, 0,
1223                         result, 0);
1224 }
1225
1226 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
1227                                         dma_addr_t dma_addr, u32 *result)
1228 {
1229         struct nvme_command c;
1230
1231         memset(&c, 0, sizeof(c));
1232         c.features.opcode = nvme_admin_set_features;
1233         c.features.prp1 = cpu_to_le64(dma_addr);
1234         c.features.fid = cpu_to_le32(fid);
1235         c.features.dword11 = cpu_to_le32(dword11);
1236
1237         return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, NULL, 0,
1238                         result, 0);
1239 }
1240
1241 int nvme_get_log_page(struct nvme_dev *dev, struct nvme_smart_log **log)
1242 {
1243         struct nvme_command c = { };
1244         int error;
1245
1246         c.common.opcode = nvme_admin_get_log_page,
1247         c.common.nsid = cpu_to_le32(0xFFFFFFFF),
1248         c.common.cdw10[0] = cpu_to_le32(
1249                         (((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
1250                          NVME_LOG_SMART),
1251
1252         *log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
1253         if (!*log)
1254                 return -ENOMEM;
1255
1256         error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
1257                         sizeof(struct nvme_smart_log));
1258         if (error)
1259                 kfree(*log);
1260         return error;
1261 }
1262
1263 /**
1264  * nvme_abort_req - Attempt aborting a request
1265  *
1266  * Schedule controller reset if the command was already aborted once before and
1267  * still hasn't been returned to the driver, or if this is the admin queue.
1268  */
1269 static void nvme_abort_req(struct request *req)
1270 {
1271         struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1272         struct nvme_queue *nvmeq = cmd_rq->nvmeq;
1273         struct nvme_dev *dev = nvmeq->dev;
1274         struct request *abort_req;
1275         struct nvme_cmd_info *abort_cmd;
1276         struct nvme_command cmd;
1277
1278         if (!nvmeq->qid || cmd_rq->aborted) {
1279                 unsigned long flags;
1280
1281                 spin_lock_irqsave(&dev_list_lock, flags);
1282                 if (work_busy(&dev->reset_work))
1283                         goto out;
1284                 list_del_init(&dev->node);
1285                 dev_warn(dev->dev, "I/O %d QID %d timeout, reset controller\n",
1286                                                         req->tag, nvmeq->qid);
1287                 dev->reset_workfn = nvme_reset_failed_dev;
1288                 queue_work(nvme_workq, &dev->reset_work);
1289  out:
1290                 spin_unlock_irqrestore(&dev_list_lock, flags);
1291                 return;
1292         }
1293
1294         if (!dev->abort_limit)
1295                 return;
1296
1297         abort_req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC,
1298                                                                         false);
1299         if (IS_ERR(abort_req))
1300                 return;
1301
1302         abort_cmd = blk_mq_rq_to_pdu(abort_req);
1303         nvme_set_info(abort_cmd, abort_req, abort_completion);
1304
1305         memset(&cmd, 0, sizeof(cmd));
1306         cmd.abort.opcode = nvme_admin_abort_cmd;
1307         cmd.abort.cid = req->tag;
1308         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1309         cmd.abort.command_id = abort_req->tag;
1310
1311         --dev->abort_limit;
1312         cmd_rq->aborted = 1;
1313
1314         dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", req->tag,
1315                                                         nvmeq->qid);
1316         nvme_submit_cmd(dev->queues[0], &cmd);
1317 }
1318
1319 static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
1320 {
1321         struct nvme_queue *nvmeq = data;
1322         void *ctx;
1323         nvme_completion_fn fn;
1324         struct nvme_cmd_info *cmd;
1325         struct nvme_completion cqe;
1326
1327         if (!blk_mq_request_started(req))
1328                 return;
1329
1330         cmd = blk_mq_rq_to_pdu(req);
1331
1332         if (cmd->ctx == CMD_CTX_CANCELLED)
1333                 return;
1334
1335         if (blk_queue_dying(req->q))
1336                 cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1337         else
1338                 cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1339
1340
1341         dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
1342                                                 req->tag, nvmeq->qid);
1343         ctx = cancel_cmd_info(cmd, &fn);
1344         fn(nvmeq, ctx, &cqe);
1345 }
1346
1347 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1348 {
1349         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
1350         struct nvme_queue *nvmeq = cmd->nvmeq;
1351
1352         dev_warn(nvmeq->q_dmadev, "Timeout I/O %d QID %d\n", req->tag,
1353                                                         nvmeq->qid);
1354         spin_lock_irq(&nvmeq->q_lock);
1355         nvme_abort_req(req);
1356         spin_unlock_irq(&nvmeq->q_lock);
1357
1358         /*
1359          * The aborted req will be completed on receiving the abort req.
1360          * We enable the timer again. If hit twice, it'll cause a device reset,
1361          * as the device then is in a faulty state.
1362          */
1363         return BLK_EH_RESET_TIMER;
1364 }
1365
1366 static void nvme_free_queue(struct nvme_queue *nvmeq)
1367 {
1368         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1369                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1370         if (nvmeq->sq_cmds)
1371                 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1372                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1373         kfree(nvmeq);
1374 }
1375
1376 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1377 {
1378         int i;
1379
1380         for (i = dev->queue_count - 1; i >= lowest; i--) {
1381                 struct nvme_queue *nvmeq = dev->queues[i];
1382                 dev->queue_count--;
1383                 dev->queues[i] = NULL;
1384                 nvme_free_queue(nvmeq);
1385         }
1386 }
1387
1388 /**
1389  * nvme_suspend_queue - put queue into suspended state
1390  * @nvmeq - queue to suspend
1391  */
1392 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1393 {
1394         int vector;
1395
1396         spin_lock_irq(&nvmeq->q_lock);
1397         if (nvmeq->cq_vector == -1) {
1398                 spin_unlock_irq(&nvmeq->q_lock);
1399                 return 1;
1400         }
1401         vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1402         nvmeq->dev->online_queues--;
1403         nvmeq->cq_vector = -1;
1404         spin_unlock_irq(&nvmeq->q_lock);
1405
1406         if (!nvmeq->qid && nvmeq->dev->admin_q)
1407                 blk_mq_freeze_queue_start(nvmeq->dev->admin_q);
1408
1409         irq_set_affinity_hint(vector, NULL);
1410         free_irq(vector, nvmeq);
1411
1412         return 0;
1413 }
1414
1415 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1416 {
1417         spin_lock_irq(&nvmeq->q_lock);
1418         if (nvmeq->tags && *nvmeq->tags)
1419                 blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
1420         spin_unlock_irq(&nvmeq->q_lock);
1421 }
1422
1423 static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1424 {
1425         struct nvme_queue *nvmeq = dev->queues[qid];
1426
1427         if (!nvmeq)
1428                 return;
1429         if (nvme_suspend_queue(nvmeq))
1430                 return;
1431
1432         /* Don't tell the adapter to delete the admin queue.
1433          * Don't tell a removed adapter to delete IO queues. */
1434         if (qid && readl(&dev->bar->csts) != -1) {
1435                 adapter_delete_sq(dev, qid);
1436                 adapter_delete_cq(dev, qid);
1437         }
1438
1439         spin_lock_irq(&nvmeq->q_lock);
1440         nvme_process_cq(nvmeq);
1441         spin_unlock_irq(&nvmeq->q_lock);
1442 }
1443
1444 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1445                                 int entry_size)
1446 {
1447         int q_depth = dev->q_depth;
1448         unsigned q_size_aligned = roundup(q_depth * entry_size, dev->page_size);
1449
1450         if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1451                 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1452                 mem_per_q = round_down(mem_per_q, dev->page_size);
1453                 q_depth = div_u64(mem_per_q, entry_size);
1454
1455                 /*
1456                  * Ensure the reduced q_depth is above some threshold where it
1457                  * would be better to map queues in system memory with the
1458                  * original depth
1459                  */
1460                 if (q_depth < 64)
1461                         return -ENOMEM;
1462         }
1463
1464         return q_depth;
1465 }
1466
1467 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1468                                 int qid, int depth)
1469 {
1470         if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1471                 unsigned offset = (qid - 1) *
1472                                         roundup(SQ_SIZE(depth), dev->page_size);
1473                 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1474                 nvmeq->sq_cmds_io = dev->cmb + offset;
1475         } else {
1476                 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1477                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
1478                 if (!nvmeq->sq_cmds)
1479                         return -ENOMEM;
1480         }
1481
1482         return 0;
1483 }
1484
1485 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1486                                                         int depth)
1487 {
1488         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1489         if (!nvmeq)
1490                 return NULL;
1491
1492         nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1493                                           &nvmeq->cq_dma_addr, GFP_KERNEL);
1494         if (!nvmeq->cqes)
1495                 goto free_nvmeq;
1496
1497         if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1498                 goto free_cqdma;
1499
1500         nvmeq->q_dmadev = dev->dev;
1501         nvmeq->dev = dev;
1502         snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1503                         dev->instance, qid);
1504         spin_lock_init(&nvmeq->q_lock);
1505         nvmeq->cq_head = 0;
1506         nvmeq->cq_phase = 1;
1507         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1508         nvmeq->q_depth = depth;
1509         nvmeq->qid = qid;
1510         nvmeq->cq_vector = -1;
1511         dev->queues[qid] = nvmeq;
1512
1513         /* make sure queue descriptor is set before queue count, for kthread */
1514         mb();
1515         dev->queue_count++;
1516
1517         return nvmeq;
1518
1519  free_cqdma:
1520         dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1521                                                         nvmeq->cq_dma_addr);
1522  free_nvmeq:
1523         kfree(nvmeq);
1524         return NULL;
1525 }
1526
1527 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1528                                                         const char *name)
1529 {
1530         if (use_threaded_interrupts)
1531                 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1532                                         nvme_irq_check, nvme_irq, IRQF_SHARED,
1533                                         name, nvmeq);
1534         return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1535                                 IRQF_SHARED, name, nvmeq);
1536 }
1537
1538 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1539 {
1540         struct nvme_dev *dev = nvmeq->dev;
1541
1542         spin_lock_irq(&nvmeq->q_lock);
1543         nvmeq->sq_tail = 0;
1544         nvmeq->cq_head = 0;
1545         nvmeq->cq_phase = 1;
1546         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1547         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1548         dev->online_queues++;
1549         spin_unlock_irq(&nvmeq->q_lock);
1550 }
1551
1552 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1553 {
1554         struct nvme_dev *dev = nvmeq->dev;
1555         int result;
1556
1557         nvmeq->cq_vector = qid - 1;
1558         result = adapter_alloc_cq(dev, qid, nvmeq);
1559         if (result < 0)
1560                 return result;
1561
1562         result = adapter_alloc_sq(dev, qid, nvmeq);
1563         if (result < 0)
1564                 goto release_cq;
1565
1566         result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1567         if (result < 0)
1568                 goto release_sq;
1569
1570         nvme_init_queue(nvmeq, qid);
1571         return result;
1572
1573  release_sq:
1574         adapter_delete_sq(dev, qid);
1575  release_cq:
1576         adapter_delete_cq(dev, qid);
1577         return result;
1578 }
1579
1580 static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1581 {
1582         unsigned long timeout;
1583         u32 bit = enabled ? NVME_CSTS_RDY : 0;
1584
1585         timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1586
1587         while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1588                 msleep(100);
1589                 if (fatal_signal_pending(current))
1590                         return -EINTR;
1591                 if (time_after(jiffies, timeout)) {
1592                         dev_err(dev->dev,
1593                                 "Device not ready; aborting %s\n", enabled ?
1594                                                 "initialisation" : "reset");
1595                         return -ENODEV;
1596                 }
1597         }
1598
1599         return 0;
1600 }
1601
1602 /*
1603  * If the device has been passed off to us in an enabled state, just clear
1604  * the enabled bit.  The spec says we should set the 'shutdown notification
1605  * bits', but doing so may cause the device to complete commands to the
1606  * admin queue ... and we don't know what memory that might be pointing at!
1607  */
1608 static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1609 {
1610         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1611         dev->ctrl_config &= ~NVME_CC_ENABLE;
1612         writel(dev->ctrl_config, &dev->bar->cc);
1613
1614         return nvme_wait_ready(dev, cap, false);
1615 }
1616
1617 static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1618 {
1619         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1620         dev->ctrl_config |= NVME_CC_ENABLE;
1621         writel(dev->ctrl_config, &dev->bar->cc);
1622
1623         return nvme_wait_ready(dev, cap, true);
1624 }
1625
1626 static int nvme_shutdown_ctrl(struct nvme_dev *dev)
1627 {
1628         unsigned long timeout;
1629
1630         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1631         dev->ctrl_config |= NVME_CC_SHN_NORMAL;
1632
1633         writel(dev->ctrl_config, &dev->bar->cc);
1634
1635         timeout = SHUTDOWN_TIMEOUT + jiffies;
1636         while ((readl(&dev->bar->csts) & NVME_CSTS_SHST_MASK) !=
1637                                                         NVME_CSTS_SHST_CMPLT) {
1638                 msleep(100);
1639                 if (fatal_signal_pending(current))
1640                         return -EINTR;
1641                 if (time_after(jiffies, timeout)) {
1642                         dev_err(dev->dev,
1643                                 "Device shutdown incomplete; abort shutdown\n");
1644                         return -ENODEV;
1645                 }
1646         }
1647
1648         return 0;
1649 }
1650
1651 static struct blk_mq_ops nvme_mq_admin_ops = {
1652         .queue_rq       = nvme_queue_rq,
1653         .map_queue      = blk_mq_map_queue,
1654         .init_hctx      = nvme_admin_init_hctx,
1655         .exit_hctx      = nvme_admin_exit_hctx,
1656         .init_request   = nvme_admin_init_request,
1657         .timeout        = nvme_timeout,
1658 };
1659
1660 static struct blk_mq_ops nvme_mq_ops = {
1661         .queue_rq       = nvme_queue_rq,
1662         .map_queue      = blk_mq_map_queue,
1663         .init_hctx      = nvme_init_hctx,
1664         .init_request   = nvme_init_request,
1665         .timeout        = nvme_timeout,
1666 };
1667
1668 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1669 {
1670         if (dev->admin_q && !blk_queue_dying(dev->admin_q)) {
1671                 blk_cleanup_queue(dev->admin_q);
1672                 blk_mq_free_tag_set(&dev->admin_tagset);
1673         }
1674 }
1675
1676 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1677 {
1678         if (!dev->admin_q) {
1679                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1680                 dev->admin_tagset.nr_hw_queues = 1;
1681                 dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
1682                 dev->admin_tagset.reserved_tags = 1;
1683                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1684                 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1685                 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1686                 dev->admin_tagset.driver_data = dev;
1687
1688                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1689                         return -ENOMEM;
1690
1691                 dev->admin_q = blk_mq_init_queue(&dev->admin_tagset);
1692                 if (IS_ERR(dev->admin_q)) {
1693                         blk_mq_free_tag_set(&dev->admin_tagset);
1694                         return -ENOMEM;
1695                 }
1696                 if (!blk_get_queue(dev->admin_q)) {
1697                         nvme_dev_remove_admin(dev);
1698                         dev->admin_q = NULL;
1699                         return -ENODEV;
1700                 }
1701         } else
1702                 blk_mq_unfreeze_queue(dev->admin_q);
1703
1704         return 0;
1705 }
1706
1707 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1708 {
1709         int result;
1710         u32 aqa;
1711         u64 cap = readq(&dev->bar->cap);
1712         struct nvme_queue *nvmeq;
1713         unsigned page_shift = PAGE_SHIFT;
1714         unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
1715         unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
1716
1717         if (page_shift < dev_page_min) {
1718                 dev_err(dev->dev,
1719                                 "Minimum device page size (%u) too large for "
1720                                 "host (%u)\n", 1 << dev_page_min,
1721                                 1 << page_shift);
1722                 return -ENODEV;
1723         }
1724         if (page_shift > dev_page_max) {
1725                 dev_info(dev->dev,
1726                                 "Device maximum page size (%u) smaller than "
1727                                 "host (%u); enabling work-around\n",
1728                                 1 << dev_page_max, 1 << page_shift);
1729                 page_shift = dev_page_max;
1730         }
1731
1732         dev->subsystem = readl(&dev->bar->vs) >= NVME_VS(1, 1) ?
1733                                                 NVME_CAP_NSSRC(cap) : 0;
1734
1735         if (dev->subsystem && (readl(&dev->bar->csts) & NVME_CSTS_NSSRO))
1736                 writel(NVME_CSTS_NSSRO, &dev->bar->csts);
1737
1738         result = nvme_disable_ctrl(dev, cap);
1739         if (result < 0)
1740                 return result;
1741
1742         nvmeq = dev->queues[0];
1743         if (!nvmeq) {
1744                 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1745                 if (!nvmeq)
1746                         return -ENOMEM;
1747         }
1748
1749         aqa = nvmeq->q_depth - 1;
1750         aqa |= aqa << 16;
1751
1752         dev->page_size = 1 << page_shift;
1753
1754         dev->ctrl_config = NVME_CC_CSS_NVM;
1755         dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1756         dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1757         dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1758
1759         writel(aqa, &dev->bar->aqa);
1760         writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1761         writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1762
1763         result = nvme_enable_ctrl(dev, cap);
1764         if (result)
1765                 goto free_nvmeq;
1766
1767         nvmeq->cq_vector = 0;
1768         result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1769         if (result) {
1770                 nvmeq->cq_vector = -1;
1771                 goto free_nvmeq;
1772         }
1773
1774         return result;
1775
1776  free_nvmeq:
1777         nvme_free_queues(dev, 0);
1778         return result;
1779 }
1780
1781 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1782 {
1783         struct nvme_dev *dev = ns->dev;
1784         struct nvme_user_io io;
1785         struct nvme_command c;
1786         unsigned length, meta_len;
1787         int status, write;
1788         dma_addr_t meta_dma = 0;
1789         void *meta = NULL;
1790         void __user *metadata;
1791
1792         if (copy_from_user(&io, uio, sizeof(io)))
1793                 return -EFAULT;
1794
1795         switch (io.opcode) {
1796         case nvme_cmd_write:
1797         case nvme_cmd_read:
1798         case nvme_cmd_compare:
1799                 break;
1800         default:
1801                 return -EINVAL;
1802         }
1803
1804         length = (io.nblocks + 1) << ns->lba_shift;
1805         meta_len = (io.nblocks + 1) * ns->ms;
1806         metadata = (void __user *)(unsigned long)io.metadata;
1807         write = io.opcode & 1;
1808
1809         if (ns->ext) {
1810                 length += meta_len;
1811                 meta_len = 0;
1812         }
1813         if (meta_len) {
1814                 if (((io.metadata & 3) || !io.metadata) && !ns->ext)
1815                         return -EINVAL;
1816
1817                 meta = dma_alloc_coherent(dev->dev, meta_len,
1818                                                 &meta_dma, GFP_KERNEL);
1819
1820                 if (!meta) {
1821                         status = -ENOMEM;
1822                         goto unmap;
1823                 }
1824                 if (write) {
1825                         if (copy_from_user(meta, metadata, meta_len)) {
1826                                 status = -EFAULT;
1827                                 goto unmap;
1828                         }
1829                 }
1830         }
1831
1832         memset(&c, 0, sizeof(c));
1833         c.rw.opcode = io.opcode;
1834         c.rw.flags = io.flags;
1835         c.rw.nsid = cpu_to_le32(ns->ns_id);
1836         c.rw.slba = cpu_to_le64(io.slba);
1837         c.rw.length = cpu_to_le16(io.nblocks);
1838         c.rw.control = cpu_to_le16(io.control);
1839         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1840         c.rw.reftag = cpu_to_le32(io.reftag);
1841         c.rw.apptag = cpu_to_le16(io.apptag);
1842         c.rw.appmask = cpu_to_le16(io.appmask);
1843         c.rw.metadata = cpu_to_le64(meta_dma);
1844
1845         status = __nvme_submit_sync_cmd(ns->queue, &c, NULL,
1846                         (void __user *)io.addr, length, NULL, 0);
1847  unmap:
1848         if (meta) {
1849                 if (status == NVME_SC_SUCCESS && !write) {
1850                         if (copy_to_user(metadata, meta, meta_len))
1851                                 status = -EFAULT;
1852                 }
1853                 dma_free_coherent(dev->dev, meta_len, meta, meta_dma);
1854         }
1855         return status;
1856 }
1857
1858 static int nvme_user_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
1859                         struct nvme_passthru_cmd __user *ucmd)
1860 {
1861         struct nvme_passthru_cmd cmd;
1862         struct nvme_command c;
1863         unsigned timeout = 0;
1864         int status;
1865
1866         if (!capable(CAP_SYS_ADMIN))
1867                 return -EACCES;
1868         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1869                 return -EFAULT;
1870
1871         memset(&c, 0, sizeof(c));
1872         c.common.opcode = cmd.opcode;
1873         c.common.flags = cmd.flags;
1874         c.common.nsid = cpu_to_le32(cmd.nsid);
1875         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1876         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1877         c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1878         c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1879         c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1880         c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1881         c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1882         c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1883
1884         if (cmd.timeout_ms)
1885                 timeout = msecs_to_jiffies(cmd.timeout_ms);
1886
1887         status = __nvme_submit_sync_cmd(ns ? ns->queue : dev->admin_q, &c,
1888                         NULL, (void __user *)cmd.addr, cmd.data_len,
1889                         &cmd.result, timeout);
1890         if (status >= 0) {
1891                 if (put_user(cmd.result, &ucmd->result))
1892                         return -EFAULT;
1893         }
1894
1895         return status;
1896 }
1897
1898 static int nvme_subsys_reset(struct nvme_dev *dev)
1899 {
1900         if (!dev->subsystem)
1901                 return -ENOTTY;
1902
1903         writel(0x4E564D65, &dev->bar->nssr); /* "NVMe" */
1904         return 0;
1905 }
1906
1907 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1908                                                         unsigned long arg)
1909 {
1910         struct nvme_ns *ns = bdev->bd_disk->private_data;
1911
1912         switch (cmd) {
1913         case NVME_IOCTL_ID:
1914                 force_successful_syscall_return();
1915                 return ns->ns_id;
1916         case NVME_IOCTL_ADMIN_CMD:
1917                 return nvme_user_cmd(ns->dev, NULL, (void __user *)arg);
1918         case NVME_IOCTL_IO_CMD:
1919                 return nvme_user_cmd(ns->dev, ns, (void __user *)arg);
1920         case NVME_IOCTL_SUBMIT_IO:
1921                 return nvme_submit_io(ns, (void __user *)arg);
1922         case SG_GET_VERSION_NUM:
1923                 return nvme_sg_get_version_num((void __user *)arg);
1924         case SG_IO:
1925                 return nvme_sg_io(ns, (void __user *)arg);
1926         default:
1927                 return -ENOTTY;
1928         }
1929 }
1930
1931 #ifdef CONFIG_COMPAT
1932 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1933                                         unsigned int cmd, unsigned long arg)
1934 {
1935         switch (cmd) {
1936         case SG_IO:
1937                 return -ENOIOCTLCMD;
1938         }
1939         return nvme_ioctl(bdev, mode, cmd, arg);
1940 }
1941 #else
1942 #define nvme_compat_ioctl       NULL
1943 #endif
1944
1945 static int nvme_open(struct block_device *bdev, fmode_t mode)
1946 {
1947         int ret = 0;
1948         struct nvme_ns *ns;
1949
1950         spin_lock(&dev_list_lock);
1951         ns = bdev->bd_disk->private_data;
1952         if (!ns)
1953                 ret = -ENXIO;
1954         else if (!kref_get_unless_zero(&ns->dev->kref))
1955                 ret = -ENXIO;
1956         spin_unlock(&dev_list_lock);
1957
1958         return ret;
1959 }
1960
1961 static void nvme_free_dev(struct kref *kref);
1962
1963 static void nvme_release(struct gendisk *disk, fmode_t mode)
1964 {
1965         struct nvme_ns *ns = disk->private_data;
1966         struct nvme_dev *dev = ns->dev;
1967
1968         kref_put(&dev->kref, nvme_free_dev);
1969 }
1970
1971 static int nvme_getgeo(struct block_device *bd, struct hd_geometry *geo)
1972 {
1973         /* some standard values */
1974         geo->heads = 1 << 6;
1975         geo->sectors = 1 << 5;
1976         geo->cylinders = get_capacity(bd->bd_disk) >> 11;
1977         return 0;
1978 }
1979
1980 static void nvme_config_discard(struct nvme_ns *ns)
1981 {
1982         u32 logical_block_size = queue_logical_block_size(ns->queue);
1983         ns->queue->limits.discard_zeroes_data = 0;
1984         ns->queue->limits.discard_alignment = logical_block_size;
1985         ns->queue->limits.discard_granularity = logical_block_size;
1986         blk_queue_max_discard_sectors(ns->queue, 0xffffffff);
1987         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1988 }
1989
1990 static int nvme_revalidate_disk(struct gendisk *disk)
1991 {
1992         struct nvme_ns *ns = disk->private_data;
1993         struct nvme_dev *dev = ns->dev;
1994         struct nvme_id_ns *id;
1995         u8 lbaf, pi_type;
1996         u16 old_ms;
1997         unsigned short bs;
1998
1999         if (nvme_identify_ns(dev, ns->ns_id, &id)) {
2000                 dev_warn(dev->dev, "%s: Identify failure nvme%dn%d\n", __func__,
2001                                                 dev->instance, ns->ns_id);
2002                 return -ENODEV;
2003         }
2004         if (id->ncap == 0) {
2005                 kfree(id);
2006                 return -ENODEV;
2007         }
2008
2009         old_ms = ns->ms;
2010         lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
2011         ns->lba_shift = id->lbaf[lbaf].ds;
2012         ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
2013         ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
2014
2015         /*
2016          * If identify namespace failed, use default 512 byte block size so
2017          * block layer can use before failing read/write for 0 capacity.
2018          */
2019         if (ns->lba_shift == 0)
2020                 ns->lba_shift = 9;
2021         bs = 1 << ns->lba_shift;
2022
2023         /* XXX: PI implementation requires metadata equal t10 pi tuple size */
2024         pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
2025                                         id->dps & NVME_NS_DPS_PI_MASK : 0;
2026
2027         if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
2028                                 ns->ms != old_ms ||
2029                                 bs != queue_logical_block_size(disk->queue) ||
2030                                 (ns->ms && ns->ext)))
2031                 blk_integrity_unregister(disk);
2032
2033         ns->pi_type = pi_type;
2034         blk_queue_logical_block_size(ns->queue, bs);
2035
2036         if (ns->ms && !blk_get_integrity(disk) && (disk->flags & GENHD_FL_UP) &&
2037                                                                 !ns->ext)
2038                 nvme_init_integrity(ns);
2039
2040         if (ns->ms && !blk_get_integrity(disk))
2041                 set_capacity(disk, 0);
2042         else
2043                 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
2044
2045         if (dev->oncs & NVME_CTRL_ONCS_DSM)
2046                 nvme_config_discard(ns);
2047
2048         kfree(id);
2049         return 0;
2050 }
2051
2052 static const struct block_device_operations nvme_fops = {
2053         .owner          = THIS_MODULE,
2054         .ioctl          = nvme_ioctl,
2055         .compat_ioctl   = nvme_compat_ioctl,
2056         .open           = nvme_open,
2057         .release        = nvme_release,
2058         .getgeo         = nvme_getgeo,
2059         .revalidate_disk= nvme_revalidate_disk,
2060 };
2061
2062 static int nvme_kthread(void *data)
2063 {
2064         struct nvme_dev *dev, *next;
2065
2066         while (!kthread_should_stop()) {
2067                 set_current_state(TASK_INTERRUPTIBLE);
2068                 spin_lock(&dev_list_lock);
2069                 list_for_each_entry_safe(dev, next, &dev_list, node) {
2070                         int i;
2071                         u32 csts = readl(&dev->bar->csts);
2072
2073                         if ((dev->subsystem && (csts & NVME_CSTS_NSSRO)) ||
2074                                                         csts & NVME_CSTS_CFS) {
2075                                 if (work_busy(&dev->reset_work))
2076                                         continue;
2077                                 list_del_init(&dev->node);
2078                                 dev_warn(dev->dev,
2079                                         "Failed status: %x, reset controller\n",
2080                                         readl(&dev->bar->csts));
2081                                 dev->reset_workfn = nvme_reset_failed_dev;
2082                                 queue_work(nvme_workq, &dev->reset_work);
2083                                 continue;
2084                         }
2085                         for (i = 0; i < dev->queue_count; i++) {
2086                                 struct nvme_queue *nvmeq = dev->queues[i];
2087                                 if (!nvmeq)
2088                                         continue;
2089                                 spin_lock_irq(&nvmeq->q_lock);
2090                                 nvme_process_cq(nvmeq);
2091
2092                                 while ((i == 0) && (dev->event_limit > 0)) {
2093                                         if (nvme_submit_async_admin_req(dev))
2094                                                 break;
2095                                         dev->event_limit--;
2096                                 }
2097                                 spin_unlock_irq(&nvmeq->q_lock);
2098                         }
2099                 }
2100                 spin_unlock(&dev_list_lock);
2101                 schedule_timeout(round_jiffies_relative(HZ));
2102         }
2103         return 0;
2104 }
2105
2106 static void nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid)
2107 {
2108         struct nvme_ns *ns;
2109         struct gendisk *disk;
2110         int node = dev_to_node(dev->dev);
2111
2112         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
2113         if (!ns)
2114                 return;
2115
2116         ns->queue = blk_mq_init_queue(&dev->tagset);
2117         if (IS_ERR(ns->queue))
2118                 goto out_free_ns;
2119         queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
2120         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
2121         queue_flag_set_unlocked(QUEUE_FLAG_SG_GAPS, ns->queue);
2122         ns->dev = dev;
2123         ns->queue->queuedata = ns;
2124
2125         disk = alloc_disk_node(0, node);
2126         if (!disk)
2127                 goto out_free_queue;
2128
2129         ns->ns_id = nsid;
2130         ns->disk = disk;
2131         ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
2132         list_add_tail(&ns->list, &dev->namespaces);
2133
2134         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2135         if (dev->max_hw_sectors) {
2136                 blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
2137                 blk_queue_max_segments(ns->queue,
2138                         ((dev->max_hw_sectors << 9) / dev->page_size) + 1);
2139         }
2140         if (dev->stripe_size)
2141                 blk_queue_chunk_sectors(ns->queue, dev->stripe_size >> 9);
2142         if (dev->vwc & NVME_CTRL_VWC_PRESENT)
2143                 blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
2144
2145         disk->major = nvme_major;
2146         disk->first_minor = 0;
2147         disk->fops = &nvme_fops;
2148         disk->private_data = ns;
2149         disk->queue = ns->queue;
2150         disk->driverfs_dev = dev->device;
2151         disk->flags = GENHD_FL_EXT_DEVT;
2152         sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
2153
2154         /*
2155          * Initialize capacity to 0 until we establish the namespace format and
2156          * setup integrity extentions if necessary. The revalidate_disk after
2157          * add_disk allows the driver to register with integrity if the format
2158          * requires it.
2159          */
2160         set_capacity(disk, 0);
2161         if (nvme_revalidate_disk(ns->disk))
2162                 goto out_free_disk;
2163
2164         add_disk(ns->disk);
2165         if (ns->ms) {
2166                 struct block_device *bd = bdget_disk(ns->disk, 0);
2167                 if (!bd)
2168                         return;
2169                 if (blkdev_get(bd, FMODE_READ, NULL)) {
2170                         bdput(bd);
2171                         return;
2172                 }
2173                 blkdev_reread_part(bd);
2174                 blkdev_put(bd, FMODE_READ);
2175         }
2176         return;
2177  out_free_disk:
2178         kfree(disk);
2179         list_del(&ns->list);
2180  out_free_queue:
2181         blk_cleanup_queue(ns->queue);
2182  out_free_ns:
2183         kfree(ns);
2184 }
2185
2186 static void nvme_create_io_queues(struct nvme_dev *dev)
2187 {
2188         unsigned i;
2189
2190         for (i = dev->queue_count; i <= dev->max_qid; i++)
2191                 if (!nvme_alloc_queue(dev, i, dev->q_depth))
2192                         break;
2193
2194         for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
2195                 if (nvme_create_queue(dev->queues[i], i))
2196                         break;
2197 }
2198
2199 static int set_queue_count(struct nvme_dev *dev, int count)
2200 {
2201         int status;
2202         u32 result;
2203         u32 q_count = (count - 1) | ((count - 1) << 16);
2204
2205         status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
2206                                                                 &result);
2207         if (status < 0)
2208                 return status;
2209         if (status > 0) {
2210                 dev_err(dev->dev, "Could not set queue count (%d)\n", status);
2211                 return 0;
2212         }
2213         return min(result & 0xffff, result >> 16) + 1;
2214 }
2215
2216 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
2217 {
2218         u64 szu, size, offset;
2219         u32 cmbloc;
2220         resource_size_t bar_size;
2221         struct pci_dev *pdev = to_pci_dev(dev->dev);
2222         void __iomem *cmb;
2223         dma_addr_t dma_addr;
2224
2225         if (!use_cmb_sqes)
2226                 return NULL;
2227
2228         dev->cmbsz = readl(&dev->bar->cmbsz);
2229         if (!(NVME_CMB_SZ(dev->cmbsz)))
2230                 return NULL;
2231
2232         cmbloc = readl(&dev->bar->cmbloc);
2233
2234         szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
2235         size = szu * NVME_CMB_SZ(dev->cmbsz);
2236         offset = szu * NVME_CMB_OFST(cmbloc);
2237         bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
2238
2239         if (offset > bar_size)
2240                 return NULL;
2241
2242         /*
2243          * Controllers may support a CMB size larger than their BAR,
2244          * for example, due to being behind a bridge. Reduce the CMB to
2245          * the reported size of the BAR
2246          */
2247         if (size > bar_size - offset)
2248                 size = bar_size - offset;
2249
2250         dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
2251         cmb = ioremap_wc(dma_addr, size);
2252         if (!cmb)
2253                 return NULL;
2254
2255         dev->cmb_dma_addr = dma_addr;
2256         dev->cmb_size = size;
2257         return cmb;
2258 }
2259
2260 static inline void nvme_release_cmb(struct nvme_dev *dev)
2261 {
2262         if (dev->cmb) {
2263                 iounmap(dev->cmb);
2264                 dev->cmb = NULL;
2265         }
2266 }
2267
2268 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
2269 {
2270         return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
2271 }
2272
2273 static int nvme_setup_io_queues(struct nvme_dev *dev)
2274 {
2275         struct nvme_queue *adminq = dev->queues[0];
2276         struct pci_dev *pdev = to_pci_dev(dev->dev);
2277         int result, i, vecs, nr_io_queues, size;
2278
2279         nr_io_queues = num_possible_cpus();
2280         result = set_queue_count(dev, nr_io_queues);
2281         if (result <= 0)
2282                 return result;
2283         if (result < nr_io_queues)
2284                 nr_io_queues = result;
2285
2286         if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
2287                 result = nvme_cmb_qdepth(dev, nr_io_queues,
2288                                 sizeof(struct nvme_command));
2289                 if (result > 0)
2290                         dev->q_depth = result;
2291                 else
2292                         nvme_release_cmb(dev);
2293         }
2294
2295         size = db_bar_size(dev, nr_io_queues);
2296         if (size > 8192) {
2297                 iounmap(dev->bar);
2298                 do {
2299                         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
2300                         if (dev->bar)
2301                                 break;
2302                         if (!--nr_io_queues)
2303                                 return -ENOMEM;
2304                         size = db_bar_size(dev, nr_io_queues);
2305                 } while (1);
2306                 dev->dbs = ((void __iomem *)dev->bar) + 4096;
2307                 adminq->q_db = dev->dbs;
2308         }
2309
2310         /* Deregister the admin queue's interrupt */
2311         free_irq(dev->entry[0].vector, adminq);
2312
2313         /*
2314          * If we enable msix early due to not intx, disable it again before
2315          * setting up the full range we need.
2316          */
2317         if (!pdev->irq)
2318                 pci_disable_msix(pdev);
2319
2320         for (i = 0; i < nr_io_queues; i++)
2321                 dev->entry[i].entry = i;
2322         vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
2323         if (vecs < 0) {
2324                 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
2325                 if (vecs < 0) {
2326                         vecs = 1;
2327                 } else {
2328                         for (i = 0; i < vecs; i++)
2329                                 dev->entry[i].vector = i + pdev->irq;
2330                 }
2331         }
2332
2333         /*
2334          * Should investigate if there's a performance win from allocating
2335          * more queues than interrupt vectors; it might allow the submission
2336          * path to scale better, even if the receive path is limited by the
2337          * number of interrupts.
2338          */
2339         nr_io_queues = vecs;
2340         dev->max_qid = nr_io_queues;
2341
2342         result = queue_request_irq(dev, adminq, adminq->irqname);
2343         if (result) {
2344                 adminq->cq_vector = -1;
2345                 goto free_queues;
2346         }
2347
2348         /* Free previously allocated queues that are no longer usable */
2349         nvme_free_queues(dev, nr_io_queues + 1);
2350         nvme_create_io_queues(dev);
2351
2352         return 0;
2353
2354  free_queues:
2355         nvme_free_queues(dev, 1);
2356         return result;
2357 }
2358
2359 static void nvme_free_namespace(struct nvme_ns *ns)
2360 {
2361         list_del(&ns->list);
2362
2363         spin_lock(&dev_list_lock);
2364         ns->disk->private_data = NULL;
2365         spin_unlock(&dev_list_lock);
2366
2367         put_disk(ns->disk);
2368         kfree(ns);
2369 }
2370
2371 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
2372 {
2373         struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
2374         struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
2375
2376         return nsa->ns_id - nsb->ns_id;
2377 }
2378
2379 static struct nvme_ns *nvme_find_ns(struct nvme_dev *dev, unsigned nsid)
2380 {
2381         struct nvme_ns *ns;
2382
2383         list_for_each_entry(ns, &dev->namespaces, list) {
2384                 if (ns->ns_id == nsid)
2385                         return ns;
2386                 if (ns->ns_id > nsid)
2387                         break;
2388         }
2389         return NULL;
2390 }
2391
2392 static inline bool nvme_io_incapable(struct nvme_dev *dev)
2393 {
2394         return (!dev->bar || readl(&dev->bar->csts) & NVME_CSTS_CFS ||
2395                                                         dev->online_queues < 2);
2396 }
2397
2398 static void nvme_ns_remove(struct nvme_ns *ns)
2399 {
2400         bool kill = nvme_io_incapable(ns->dev) && !blk_queue_dying(ns->queue);
2401
2402         if (kill)
2403                 blk_set_queue_dying(ns->queue);
2404         if (ns->disk->flags & GENHD_FL_UP) {
2405                 if (blk_get_integrity(ns->disk))
2406                         blk_integrity_unregister(ns->disk);
2407                 del_gendisk(ns->disk);
2408         }
2409         if (kill || !blk_queue_dying(ns->queue)) {
2410                 blk_mq_abort_requeue_list(ns->queue);
2411                 blk_cleanup_queue(ns->queue);
2412         }
2413 }
2414
2415 static void nvme_scan_namespaces(struct nvme_dev *dev, unsigned nn)
2416 {
2417         struct nvme_ns *ns, *next;
2418         unsigned i;
2419
2420         for (i = 1; i <= nn; i++) {
2421                 ns = nvme_find_ns(dev, i);
2422                 if (ns) {
2423                         if (revalidate_disk(ns->disk)) {
2424                                 nvme_ns_remove(ns);
2425                                 nvme_free_namespace(ns);
2426                         }
2427                 } else
2428                         nvme_alloc_ns(dev, i);
2429         }
2430         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
2431                 if (ns->ns_id > nn) {
2432                         nvme_ns_remove(ns);
2433                         nvme_free_namespace(ns);
2434                 }
2435         }
2436         list_sort(NULL, &dev->namespaces, ns_cmp);
2437 }
2438
2439 static void nvme_dev_scan(struct work_struct *work)
2440 {
2441         struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
2442         struct nvme_id_ctrl *ctrl;
2443
2444         if (!dev->tagset.tags)
2445                 return;
2446         if (nvme_identify_ctrl(dev, &ctrl))
2447                 return;
2448         nvme_scan_namespaces(dev, le32_to_cpup(&ctrl->nn));
2449         kfree(ctrl);
2450 }
2451
2452 /*
2453  * Return: error value if an error occurred setting up the queues or calling
2454  * Identify Device.  0 if these succeeded, even if adding some of the
2455  * namespaces failed.  At the moment, these failures are silent.  TBD which
2456  * failures should be reported.
2457  */
2458 static int nvme_dev_add(struct nvme_dev *dev)
2459 {
2460         struct pci_dev *pdev = to_pci_dev(dev->dev);
2461         int res;
2462         struct nvme_id_ctrl *ctrl;
2463         int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
2464
2465         res = nvme_identify_ctrl(dev, &ctrl);
2466         if (res) {
2467                 dev_err(dev->dev, "Identify Controller failed (%d)\n", res);
2468                 return -EIO;
2469         }
2470
2471         dev->oncs = le16_to_cpup(&ctrl->oncs);
2472         dev->abort_limit = ctrl->acl + 1;
2473         dev->vwc = ctrl->vwc;
2474         memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
2475         memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
2476         memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
2477         if (ctrl->mdts)
2478                 dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
2479         if ((pdev->vendor == PCI_VENDOR_ID_INTEL) &&
2480                         (pdev->device == 0x0953) && ctrl->vs[3]) {
2481                 unsigned int max_hw_sectors;
2482
2483                 dev->stripe_size = 1 << (ctrl->vs[3] + shift);
2484                 max_hw_sectors = dev->stripe_size >> (shift - 9);
2485                 if (dev->max_hw_sectors) {
2486                         dev->max_hw_sectors = min(max_hw_sectors,
2487                                                         dev->max_hw_sectors);
2488                 } else
2489                         dev->max_hw_sectors = max_hw_sectors;
2490         }
2491         kfree(ctrl);
2492
2493         if (!dev->tagset.tags) {
2494                 dev->tagset.ops = &nvme_mq_ops;
2495                 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2496                 dev->tagset.timeout = NVME_IO_TIMEOUT;
2497                 dev->tagset.numa_node = dev_to_node(dev->dev);
2498                 dev->tagset.queue_depth =
2499                                 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2500                 dev->tagset.cmd_size = nvme_cmd_size(dev);
2501                 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2502                 dev->tagset.driver_data = dev;
2503
2504                 if (blk_mq_alloc_tag_set(&dev->tagset))
2505                         return 0;
2506         }
2507         schedule_work(&dev->scan_work);
2508         return 0;
2509 }
2510
2511 static int nvme_dev_map(struct nvme_dev *dev)
2512 {
2513         u64 cap;
2514         int bars, result = -ENOMEM;
2515         struct pci_dev *pdev = to_pci_dev(dev->dev);
2516
2517         if (pci_enable_device_mem(pdev))
2518                 return result;
2519
2520         dev->entry[0].vector = pdev->irq;
2521         pci_set_master(pdev);
2522         bars = pci_select_bars(pdev, IORESOURCE_MEM);
2523         if (!bars)
2524                 goto disable_pci;
2525
2526         if (pci_request_selected_regions(pdev, bars, "nvme"))
2527                 goto disable_pci;
2528
2529         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2530             dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
2531                 goto disable;
2532
2533         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2534         if (!dev->bar)
2535                 goto disable;
2536
2537         if (readl(&dev->bar->csts) == -1) {
2538                 result = -ENODEV;
2539                 goto unmap;
2540         }
2541
2542         /*
2543          * Some devices don't advertse INTx interrupts, pre-enable a single
2544          * MSIX vec for setup. We'll adjust this later.
2545          */
2546         if (!pdev->irq) {
2547                 result = pci_enable_msix(pdev, dev->entry, 1);
2548                 if (result < 0)
2549                         goto unmap;
2550         }
2551
2552         cap = readq(&dev->bar->cap);
2553         dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
2554         dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
2555         dev->dbs = ((void __iomem *)dev->bar) + 4096;
2556         if (readl(&dev->bar->vs) >= NVME_VS(1, 2))
2557                 dev->cmb = nvme_map_cmb(dev);
2558
2559         return 0;
2560
2561  unmap:
2562         iounmap(dev->bar);
2563         dev->bar = NULL;
2564  disable:
2565         pci_release_regions(pdev);
2566  disable_pci:
2567         pci_disable_device(pdev);
2568         return result;
2569 }
2570
2571 static void nvme_dev_unmap(struct nvme_dev *dev)
2572 {
2573         struct pci_dev *pdev = to_pci_dev(dev->dev);
2574
2575         if (pdev->msi_enabled)
2576                 pci_disable_msi(pdev);
2577         else if (pdev->msix_enabled)
2578                 pci_disable_msix(pdev);
2579
2580         if (dev->bar) {
2581                 iounmap(dev->bar);
2582                 dev->bar = NULL;
2583                 pci_release_regions(pdev);
2584         }
2585
2586         if (pci_is_enabled(pdev))
2587                 pci_disable_device(pdev);
2588 }
2589
2590 struct nvme_delq_ctx {
2591         struct task_struct *waiter;
2592         struct kthread_worker *worker;
2593         atomic_t refcount;
2594 };
2595
2596 static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
2597 {
2598         dq->waiter = current;
2599         mb();
2600
2601         for (;;) {
2602                 set_current_state(TASK_KILLABLE);
2603                 if (!atomic_read(&dq->refcount))
2604                         break;
2605                 if (!schedule_timeout(ADMIN_TIMEOUT) ||
2606                                         fatal_signal_pending(current)) {
2607                         /*
2608                          * Disable the controller first since we can't trust it
2609                          * at this point, but leave the admin queue enabled
2610                          * until all queue deletion requests are flushed.
2611                          * FIXME: This may take a while if there are more h/w
2612                          * queues than admin tags.
2613                          */
2614                         set_current_state(TASK_RUNNING);
2615                         nvme_disable_ctrl(dev, readq(&dev->bar->cap));
2616                         nvme_clear_queue(dev->queues[0]);
2617                         flush_kthread_worker(dq->worker);
2618                         nvme_disable_queue(dev, 0);
2619                         return;
2620                 }
2621         }
2622         set_current_state(TASK_RUNNING);
2623 }
2624
2625 static void nvme_put_dq(struct nvme_delq_ctx *dq)
2626 {
2627         atomic_dec(&dq->refcount);
2628         if (dq->waiter)
2629                 wake_up_process(dq->waiter);
2630 }
2631
2632 static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
2633 {
2634         atomic_inc(&dq->refcount);
2635         return dq;
2636 }
2637
2638 static void nvme_del_queue_end(struct nvme_queue *nvmeq)
2639 {
2640         struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
2641         nvme_put_dq(dq);
2642 }
2643
2644 static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
2645                                                 kthread_work_func_t fn)
2646 {
2647         struct nvme_command c;
2648
2649         memset(&c, 0, sizeof(c));
2650         c.delete_queue.opcode = opcode;
2651         c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2652
2653         init_kthread_work(&nvmeq->cmdinfo.work, fn);
2654         return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
2655                                                                 ADMIN_TIMEOUT);
2656 }
2657
2658 static void nvme_del_cq_work_handler(struct kthread_work *work)
2659 {
2660         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2661                                                         cmdinfo.work);
2662         nvme_del_queue_end(nvmeq);
2663 }
2664
2665 static int nvme_delete_cq(struct nvme_queue *nvmeq)
2666 {
2667         return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
2668                                                 nvme_del_cq_work_handler);
2669 }
2670
2671 static void nvme_del_sq_work_handler(struct kthread_work *work)
2672 {
2673         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2674                                                         cmdinfo.work);
2675         int status = nvmeq->cmdinfo.status;
2676
2677         if (!status)
2678                 status = nvme_delete_cq(nvmeq);
2679         if (status)
2680                 nvme_del_queue_end(nvmeq);
2681 }
2682
2683 static int nvme_delete_sq(struct nvme_queue *nvmeq)
2684 {
2685         return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
2686                                                 nvme_del_sq_work_handler);
2687 }
2688
2689 static void nvme_del_queue_start(struct kthread_work *work)
2690 {
2691         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2692                                                         cmdinfo.work);
2693         if (nvme_delete_sq(nvmeq))
2694                 nvme_del_queue_end(nvmeq);
2695 }
2696
2697 static void nvme_disable_io_queues(struct nvme_dev *dev)
2698 {
2699         int i;
2700         DEFINE_KTHREAD_WORKER_ONSTACK(worker);
2701         struct nvme_delq_ctx dq;
2702         struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
2703                                         &worker, "nvme%d", dev->instance);
2704
2705         if (IS_ERR(kworker_task)) {
2706                 dev_err(dev->dev,
2707                         "Failed to create queue del task\n");
2708                 for (i = dev->queue_count - 1; i > 0; i--)
2709                         nvme_disable_queue(dev, i);
2710                 return;
2711         }
2712
2713         dq.waiter = NULL;
2714         atomic_set(&dq.refcount, 0);
2715         dq.worker = &worker;
2716         for (i = dev->queue_count - 1; i > 0; i--) {
2717                 struct nvme_queue *nvmeq = dev->queues[i];
2718
2719                 if (nvme_suspend_queue(nvmeq))
2720                         continue;
2721                 nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
2722                 nvmeq->cmdinfo.worker = dq.worker;
2723                 init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
2724                 queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
2725         }
2726         nvme_wait_dq(&dq, dev);
2727         kthread_stop(kworker_task);
2728 }
2729
2730 /*
2731 * Remove the node from the device list and check
2732 * for whether or not we need to stop the nvme_thread.
2733 */
2734 static void nvme_dev_list_remove(struct nvme_dev *dev)
2735 {
2736         struct task_struct *tmp = NULL;
2737
2738         spin_lock(&dev_list_lock);
2739         list_del_init(&dev->node);
2740         if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2741                 tmp = nvme_thread;
2742                 nvme_thread = NULL;
2743         }
2744         spin_unlock(&dev_list_lock);
2745
2746         if (tmp)
2747                 kthread_stop(tmp);
2748 }
2749
2750 static void nvme_freeze_queues(struct nvme_dev *dev)
2751 {
2752         struct nvme_ns *ns;
2753
2754         list_for_each_entry(ns, &dev->namespaces, list) {
2755                 blk_mq_freeze_queue_start(ns->queue);
2756
2757                 spin_lock_irq(ns->queue->queue_lock);
2758                 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
2759                 spin_unlock_irq(ns->queue->queue_lock);
2760
2761                 blk_mq_cancel_requeue_work(ns->queue);
2762                 blk_mq_stop_hw_queues(ns->queue);
2763         }
2764 }
2765
2766 static void nvme_unfreeze_queues(struct nvme_dev *dev)
2767 {
2768         struct nvme_ns *ns;
2769
2770         list_for_each_entry(ns, &dev->namespaces, list) {
2771                 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
2772                 blk_mq_unfreeze_queue(ns->queue);
2773                 blk_mq_start_stopped_hw_queues(ns->queue, true);
2774                 blk_mq_kick_requeue_list(ns->queue);
2775         }
2776 }
2777
2778 static void nvme_dev_shutdown(struct nvme_dev *dev)
2779 {
2780         int i;
2781         u32 csts = -1;
2782
2783         nvme_dev_list_remove(dev);
2784
2785         if (dev->bar) {
2786                 nvme_freeze_queues(dev);
2787                 csts = readl(&dev->bar->csts);
2788         }
2789         if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
2790                 for (i = dev->queue_count - 1; i >= 0; i--) {
2791                         struct nvme_queue *nvmeq = dev->queues[i];
2792                         nvme_suspend_queue(nvmeq);
2793                 }
2794         } else {
2795                 nvme_disable_io_queues(dev);
2796                 nvme_shutdown_ctrl(dev);
2797                 nvme_disable_queue(dev, 0);
2798         }
2799         nvme_dev_unmap(dev);
2800
2801         for (i = dev->queue_count - 1; i >= 0; i--)
2802                 nvme_clear_queue(dev->queues[i]);
2803 }
2804
2805 static void nvme_dev_remove(struct nvme_dev *dev)
2806 {
2807         struct nvme_ns *ns;
2808
2809         list_for_each_entry(ns, &dev->namespaces, list)
2810                 nvme_ns_remove(ns);
2811 }
2812
2813 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2814 {
2815         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2816                                                 PAGE_SIZE, PAGE_SIZE, 0);
2817         if (!dev->prp_page_pool)
2818                 return -ENOMEM;
2819
2820         /* Optimisation for I/Os between 4k and 128k */
2821         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2822                                                 256, 256, 0);
2823         if (!dev->prp_small_pool) {
2824                 dma_pool_destroy(dev->prp_page_pool);
2825                 return -ENOMEM;
2826         }
2827         return 0;
2828 }
2829
2830 static void nvme_release_prp_pools(struct nvme_dev *dev)
2831 {
2832         dma_pool_destroy(dev->prp_page_pool);
2833         dma_pool_destroy(dev->prp_small_pool);
2834 }
2835
2836 static DEFINE_IDA(nvme_instance_ida);
2837
2838 static int nvme_set_instance(struct nvme_dev *dev)
2839 {
2840         int instance, error;
2841
2842         do {
2843                 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2844                         return -ENODEV;
2845
2846                 spin_lock(&dev_list_lock);
2847                 error = ida_get_new(&nvme_instance_ida, &instance);
2848                 spin_unlock(&dev_list_lock);
2849         } while (error == -EAGAIN);
2850
2851         if (error)
2852                 return -ENODEV;
2853
2854         dev->instance = instance;
2855         return 0;
2856 }
2857
2858 static void nvme_release_instance(struct nvme_dev *dev)
2859 {
2860         spin_lock(&dev_list_lock);
2861         ida_remove(&nvme_instance_ida, dev->instance);
2862         spin_unlock(&dev_list_lock);
2863 }
2864
2865 static void nvme_free_namespaces(struct nvme_dev *dev)
2866 {
2867         struct nvme_ns *ns, *next;
2868
2869         list_for_each_entry_safe(ns, next, &dev->namespaces, list)
2870                 nvme_free_namespace(ns);
2871 }
2872
2873 static void nvme_free_dev(struct kref *kref)
2874 {
2875         struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
2876
2877         put_device(dev->dev);
2878         put_device(dev->device);
2879         nvme_free_namespaces(dev);
2880         nvme_release_instance(dev);
2881         if (dev->tagset.tags)
2882                 blk_mq_free_tag_set(&dev->tagset);
2883         if (dev->admin_q)
2884                 blk_put_queue(dev->admin_q);
2885         kfree(dev->queues);
2886         kfree(dev->entry);
2887         kfree(dev);
2888 }
2889
2890 static int nvme_dev_open(struct inode *inode, struct file *f)
2891 {
2892         struct nvme_dev *dev;
2893         int instance = iminor(inode);
2894         int ret = -ENODEV;
2895
2896         spin_lock(&dev_list_lock);
2897         list_for_each_entry(dev, &dev_list, node) {
2898                 if (dev->instance == instance) {
2899                         if (!dev->admin_q) {
2900                                 ret = -EWOULDBLOCK;
2901                                 break;
2902                         }
2903                         if (!kref_get_unless_zero(&dev->kref))
2904                                 break;
2905                         f->private_data = dev;
2906                         ret = 0;
2907                         break;
2908                 }
2909         }
2910         spin_unlock(&dev_list_lock);
2911
2912         return ret;
2913 }
2914
2915 static int nvme_dev_release(struct inode *inode, struct file *f)
2916 {
2917         struct nvme_dev *dev = f->private_data;
2918         kref_put(&dev->kref, nvme_free_dev);
2919         return 0;
2920 }
2921
2922 static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
2923 {
2924         struct nvme_dev *dev = f->private_data;
2925         struct nvme_ns *ns;
2926
2927         switch (cmd) {
2928         case NVME_IOCTL_ADMIN_CMD:
2929                 return nvme_user_cmd(dev, NULL, (void __user *)arg);
2930         case NVME_IOCTL_IO_CMD:
2931                 if (list_empty(&dev->namespaces))
2932                         return -ENOTTY;
2933                 ns = list_first_entry(&dev->namespaces, struct nvme_ns, list);
2934                 return nvme_user_cmd(dev, ns, (void __user *)arg);
2935         case NVME_IOCTL_RESET:
2936                 dev_warn(dev->dev, "resetting controller\n");
2937                 return nvme_reset(dev);
2938         case NVME_IOCTL_SUBSYS_RESET:
2939                 return nvme_subsys_reset(dev);
2940         default:
2941                 return -ENOTTY;
2942         }
2943 }
2944
2945 static const struct file_operations nvme_dev_fops = {
2946         .owner          = THIS_MODULE,
2947         .open           = nvme_dev_open,
2948         .release        = nvme_dev_release,
2949         .unlocked_ioctl = nvme_dev_ioctl,
2950         .compat_ioctl   = nvme_dev_ioctl,
2951 };
2952
2953 static void nvme_set_irq_hints(struct nvme_dev *dev)
2954 {
2955         struct nvme_queue *nvmeq;
2956         int i;
2957
2958         for (i = 0; i < dev->online_queues; i++) {
2959                 nvmeq = dev->queues[i];
2960
2961                 if (!nvmeq->tags || !(*nvmeq->tags))
2962                         continue;
2963
2964                 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
2965                                         blk_mq_tags_cpumask(*nvmeq->tags));
2966         }
2967 }
2968
2969 static int nvme_dev_start(struct nvme_dev *dev)
2970 {
2971         int result;
2972         bool start_thread = false;
2973
2974         result = nvme_dev_map(dev);
2975         if (result)
2976                 return result;
2977
2978         result = nvme_configure_admin_queue(dev);
2979         if (result)
2980                 goto unmap;
2981
2982         spin_lock(&dev_list_lock);
2983         if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
2984                 start_thread = true;
2985                 nvme_thread = NULL;
2986         }
2987         list_add(&dev->node, &dev_list);
2988         spin_unlock(&dev_list_lock);
2989
2990         if (start_thread) {
2991                 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2992                 wake_up_all(&nvme_kthread_wait);
2993         } else
2994                 wait_event_killable(nvme_kthread_wait, nvme_thread);
2995
2996         if (IS_ERR_OR_NULL(nvme_thread)) {
2997                 result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
2998                 goto disable;
2999         }
3000
3001         nvme_init_queue(dev->queues[0], 0);
3002         result = nvme_alloc_admin_tags(dev);
3003         if (result)
3004                 goto disable;
3005
3006         result = nvme_setup_io_queues(dev);
3007         if (result)
3008                 goto free_tags;
3009
3010         nvme_set_irq_hints(dev);
3011
3012         dev->event_limit = 1;
3013         return result;
3014
3015  free_tags:
3016         nvme_dev_remove_admin(dev);
3017         blk_put_queue(dev->admin_q);
3018         dev->admin_q = NULL;
3019         dev->queues[0]->tags = NULL;
3020  disable:
3021         nvme_disable_queue(dev, 0);
3022         nvme_dev_list_remove(dev);
3023  unmap:
3024         nvme_dev_unmap(dev);
3025         return result;
3026 }
3027
3028 static int nvme_remove_dead_ctrl(void *arg)
3029 {
3030         struct nvme_dev *dev = (struct nvme_dev *)arg;
3031         struct pci_dev *pdev = to_pci_dev(dev->dev);
3032
3033         if (pci_get_drvdata(pdev))
3034                 pci_stop_and_remove_bus_device_locked(pdev);
3035         kref_put(&dev->kref, nvme_free_dev);
3036         return 0;
3037 }
3038
3039 static void nvme_remove_disks(struct work_struct *ws)
3040 {
3041         struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
3042
3043         nvme_free_queues(dev, 1);
3044         nvme_dev_remove(dev);
3045 }
3046
3047 static int nvme_dev_resume(struct nvme_dev *dev)
3048 {
3049         int ret;
3050
3051         ret = nvme_dev_start(dev);
3052         if (ret)
3053                 return ret;
3054         if (dev->online_queues < 2) {
3055                 spin_lock(&dev_list_lock);
3056                 dev->reset_workfn = nvme_remove_disks;
3057                 queue_work(nvme_workq, &dev->reset_work);
3058                 spin_unlock(&dev_list_lock);
3059         } else {
3060                 nvme_unfreeze_queues(dev);
3061                 nvme_dev_add(dev);
3062                 nvme_set_irq_hints(dev);
3063         }
3064         return 0;
3065 }
3066
3067 static void nvme_dead_ctrl(struct nvme_dev *dev)
3068 {
3069         dev_warn(dev->dev, "Device failed to resume\n");
3070         kref_get(&dev->kref);
3071         if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
3072                                                 dev->instance))) {
3073                 dev_err(dev->dev,
3074                         "Failed to start controller remove task\n");
3075                 kref_put(&dev->kref, nvme_free_dev);
3076         }
3077 }
3078
3079 static void nvme_dev_reset(struct nvme_dev *dev)
3080 {
3081         bool in_probe = work_busy(&dev->probe_work);
3082
3083         nvme_dev_shutdown(dev);
3084
3085         /* Synchronize with device probe so that work will see failure status
3086          * and exit gracefully without trying to schedule another reset */
3087         flush_work(&dev->probe_work);
3088
3089         /* Fail this device if reset occured during probe to avoid
3090          * infinite initialization loops. */
3091         if (in_probe) {
3092                 nvme_dead_ctrl(dev);
3093                 return;
3094         }
3095         /* Schedule device resume asynchronously so the reset work is available
3096          * to cleanup errors that may occur during reinitialization */
3097         schedule_work(&dev->probe_work);
3098 }
3099
3100 static void nvme_reset_failed_dev(struct work_struct *ws)
3101 {
3102         struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
3103         nvme_dev_reset(dev);
3104 }
3105
3106 static void nvme_reset_workfn(struct work_struct *work)
3107 {
3108         struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
3109         dev->reset_workfn(work);
3110 }
3111
3112 static int nvme_reset(struct nvme_dev *dev)
3113 {
3114         int ret = -EBUSY;
3115
3116         if (!dev->admin_q || blk_queue_dying(dev->admin_q))
3117                 return -ENODEV;
3118
3119         spin_lock(&dev_list_lock);
3120         if (!work_pending(&dev->reset_work)) {
3121                 dev->reset_workfn = nvme_reset_failed_dev;
3122                 queue_work(nvme_workq, &dev->reset_work);
3123                 ret = 0;
3124         }
3125         spin_unlock(&dev_list_lock);
3126
3127         if (!ret) {
3128                 flush_work(&dev->reset_work);
3129                 flush_work(&dev->probe_work);
3130                 return 0;
3131         }
3132
3133         return ret;
3134 }
3135
3136 static ssize_t nvme_sysfs_reset(struct device *dev,
3137                                 struct device_attribute *attr, const char *buf,
3138                                 size_t count)
3139 {
3140         struct nvme_dev *ndev = dev_get_drvdata(dev);
3141         int ret;
3142
3143         ret = nvme_reset(ndev);
3144         if (ret < 0)
3145                 return ret;
3146
3147         return count;
3148 }
3149 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3150
3151 static void nvme_async_probe(struct work_struct *work);
3152 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3153 {
3154         int node, result = -ENOMEM;
3155         struct nvme_dev *dev;
3156
3157         node = dev_to_node(&pdev->dev);
3158         if (node == NUMA_NO_NODE)
3159                 set_dev_node(&pdev->dev, 0);
3160
3161         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
3162         if (!dev)
3163                 return -ENOMEM;
3164         dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
3165                                                         GFP_KERNEL, node);
3166         if (!dev->entry)
3167                 goto free;
3168         dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
3169                                                         GFP_KERNEL, node);
3170         if (!dev->queues)
3171                 goto free;
3172
3173         INIT_LIST_HEAD(&dev->namespaces);
3174         dev->reset_workfn = nvme_reset_failed_dev;
3175         INIT_WORK(&dev->reset_work, nvme_reset_workfn);
3176         dev->dev = get_device(&pdev->dev);
3177         pci_set_drvdata(pdev, dev);
3178         result = nvme_set_instance(dev);
3179         if (result)
3180                 goto put_pci;
3181
3182         result = nvme_setup_prp_pools(dev);
3183         if (result)
3184                 goto release;
3185
3186         kref_init(&dev->kref);
3187         dev->device = device_create(nvme_class, &pdev->dev,
3188                                 MKDEV(nvme_char_major, dev->instance),
3189                                 dev, "nvme%d", dev->instance);
3190         if (IS_ERR(dev->device)) {
3191                 result = PTR_ERR(dev->device);
3192                 goto release_pools;
3193         }
3194         get_device(dev->device);
3195         dev_set_drvdata(dev->device, dev);
3196
3197         result = device_create_file(dev->device, &dev_attr_reset_controller);
3198         if (result)
3199                 goto put_dev;
3200
3201         INIT_LIST_HEAD(&dev->node);
3202         INIT_WORK(&dev->scan_work, nvme_dev_scan);
3203         INIT_WORK(&dev->probe_work, nvme_async_probe);
3204         schedule_work(&dev->probe_work);
3205         return 0;
3206
3207  put_dev:
3208         device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance));
3209         put_device(dev->device);
3210  release_pools:
3211         nvme_release_prp_pools(dev);
3212  release:
3213         nvme_release_instance(dev);
3214  put_pci:
3215         put_device(dev->dev);
3216  free:
3217         kfree(dev->queues);
3218         kfree(dev->entry);
3219         kfree(dev);
3220         return result;
3221 }
3222
3223 static void nvme_async_probe(struct work_struct *work)
3224 {
3225         struct nvme_dev *dev = container_of(work, struct nvme_dev, probe_work);
3226
3227         if (nvme_dev_resume(dev) && !work_busy(&dev->reset_work))
3228                 nvme_dead_ctrl(dev);
3229 }
3230
3231 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
3232 {
3233         struct nvme_dev *dev = pci_get_drvdata(pdev);
3234
3235         if (prepare)
3236                 nvme_dev_shutdown(dev);
3237         else
3238                 nvme_dev_resume(dev);
3239 }
3240
3241 static void nvme_shutdown(struct pci_dev *pdev)
3242 {
3243         struct nvme_dev *dev = pci_get_drvdata(pdev);
3244         nvme_dev_shutdown(dev);
3245 }
3246
3247 static void nvme_remove(struct pci_dev *pdev)
3248 {
3249         struct nvme_dev *dev = pci_get_drvdata(pdev);
3250
3251         spin_lock(&dev_list_lock);
3252         list_del_init(&dev->node);
3253         spin_unlock(&dev_list_lock);
3254
3255         pci_set_drvdata(pdev, NULL);
3256         flush_work(&dev->probe_work);
3257         flush_work(&dev->reset_work);
3258         flush_work(&dev->scan_work);
3259         device_remove_file(dev->device, &dev_attr_reset_controller);
3260         nvme_dev_remove(dev);
3261         nvme_dev_shutdown(dev);
3262         nvme_dev_remove_admin(dev);
3263         device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance));
3264         nvme_free_queues(dev, 0);
3265         nvme_release_cmb(dev);
3266         nvme_release_prp_pools(dev);
3267         kref_put(&dev->kref, nvme_free_dev);
3268 }
3269
3270 /* These functions are yet to be implemented */
3271 #define nvme_error_detected NULL
3272 #define nvme_dump_registers NULL
3273 #define nvme_link_reset NULL
3274 #define nvme_slot_reset NULL
3275 #define nvme_error_resume NULL
3276
3277 #ifdef CONFIG_PM_SLEEP
3278 static int nvme_suspend(struct device *dev)
3279 {
3280         struct pci_dev *pdev = to_pci_dev(dev);
3281         struct nvme_dev *ndev = pci_get_drvdata(pdev);
3282
3283         nvme_dev_shutdown(ndev);
3284         return 0;
3285 }
3286
3287 static int nvme_resume(struct device *dev)
3288 {
3289         struct pci_dev *pdev = to_pci_dev(dev);
3290         struct nvme_dev *ndev = pci_get_drvdata(pdev);
3291
3292         if (nvme_dev_resume(ndev) && !work_busy(&ndev->reset_work)) {
3293                 ndev->reset_workfn = nvme_reset_failed_dev;
3294                 queue_work(nvme_workq, &ndev->reset_work);
3295         }
3296         return 0;
3297 }
3298 #endif
3299
3300 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
3301
3302 static const struct pci_error_handlers nvme_err_handler = {
3303         .error_detected = nvme_error_detected,
3304         .mmio_enabled   = nvme_dump_registers,
3305         .link_reset     = nvme_link_reset,
3306         .slot_reset     = nvme_slot_reset,
3307         .resume         = nvme_error_resume,
3308         .reset_notify   = nvme_reset_notify,
3309 };
3310
3311 /* Move to pci_ids.h later */
3312 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
3313
3314 static const struct pci_device_id nvme_id_table[] = {
3315         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3316         { 0, }
3317 };
3318 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3319
3320 static struct pci_driver nvme_driver = {
3321         .name           = "nvme",
3322         .id_table       = nvme_id_table,
3323         .probe          = nvme_probe,
3324         .remove         = nvme_remove,
3325         .shutdown       = nvme_shutdown,
3326         .driver         = {
3327                 .pm     = &nvme_dev_pm_ops,
3328         },
3329         .err_handler    = &nvme_err_handler,
3330 };
3331
3332 static int __init nvme_init(void)
3333 {
3334         int result;
3335
3336         init_waitqueue_head(&nvme_kthread_wait);
3337
3338         nvme_workq = create_singlethread_workqueue("nvme");
3339         if (!nvme_workq)
3340                 return -ENOMEM;
3341
3342         result = register_blkdev(nvme_major, "nvme");
3343         if (result < 0)
3344                 goto kill_workq;
3345         else if (result > 0)
3346                 nvme_major = result;
3347
3348         result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
3349                                                         &nvme_dev_fops);
3350         if (result < 0)
3351                 goto unregister_blkdev;
3352         else if (result > 0)
3353                 nvme_char_major = result;
3354
3355         nvme_class = class_create(THIS_MODULE, "nvme");
3356         if (IS_ERR(nvme_class)) {
3357                 result = PTR_ERR(nvme_class);
3358                 goto unregister_chrdev;
3359         }
3360
3361         result = pci_register_driver(&nvme_driver);
3362         if (result)
3363                 goto destroy_class;
3364         return 0;
3365
3366  destroy_class:
3367         class_destroy(nvme_class);
3368  unregister_chrdev:
3369         __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
3370  unregister_blkdev:
3371         unregister_blkdev(nvme_major, "nvme");
3372  kill_workq:
3373         destroy_workqueue(nvme_workq);
3374         return result;
3375 }
3376
3377 static void __exit nvme_exit(void)
3378 {
3379         pci_unregister_driver(&nvme_driver);
3380         unregister_blkdev(nvme_major, "nvme");
3381         destroy_workqueue(nvme_workq);
3382         class_destroy(nvme_class);
3383         __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
3384         BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
3385         _nvme_check_size();
3386 }
3387
3388 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3389 MODULE_LICENSE("GPL");
3390 MODULE_VERSION("1.0");
3391 module_init(nvme_init);
3392 module_exit(nvme_exit);