NVMe: Remove hctx reliance for multi-namespace
[linux-2.6-block.git] / drivers / block / nvme-core.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/nvme.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/errno.h>
22 #include <linux/fs.h>
23 #include <linux/genhd.h>
24 #include <linux/hdreg.h>
25 #include <linux/idr.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/kdev_t.h>
30 #include <linux/kthread.h>
31 #include <linux/kernel.h>
32 #include <linux/mm.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/pci.h>
36 #include <linux/poison.h>
37 #include <linux/ptrace.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/t10-pi.h>
41 #include <linux/types.h>
42 #include <scsi/sg.h>
43 #include <asm-generic/io-64-nonatomic-lo-hi.h>
44
45 #define NVME_MINORS             (1U << MINORBITS)
46 #define NVME_Q_DEPTH            1024
47 #define NVME_AQ_DEPTH           256
48 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
49 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
50 #define ADMIN_TIMEOUT           (admin_timeout * HZ)
51 #define SHUTDOWN_TIMEOUT        (shutdown_timeout * HZ)
52
53 static unsigned char admin_timeout = 60;
54 module_param(admin_timeout, byte, 0644);
55 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
56
57 unsigned char nvme_io_timeout = 30;
58 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
59 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
60
61 static unsigned char shutdown_timeout = 5;
62 module_param(shutdown_timeout, byte, 0644);
63 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
64
65 static int nvme_major;
66 module_param(nvme_major, int, 0);
67
68 static int nvme_char_major;
69 module_param(nvme_char_major, int, 0);
70
71 static int use_threaded_interrupts;
72 module_param(use_threaded_interrupts, int, 0);
73
74 static DEFINE_SPINLOCK(dev_list_lock);
75 static LIST_HEAD(dev_list);
76 static struct task_struct *nvme_thread;
77 static struct workqueue_struct *nvme_workq;
78 static wait_queue_head_t nvme_kthread_wait;
79
80 static struct class *nvme_class;
81
82 static void nvme_reset_failed_dev(struct work_struct *ws);
83 static int nvme_process_cq(struct nvme_queue *nvmeq);
84
85 struct async_cmd_info {
86         struct kthread_work work;
87         struct kthread_worker *worker;
88         struct request *req;
89         u32 result;
90         int status;
91         void *ctx;
92 };
93
94 /*
95  * An NVM Express queue.  Each device has at least two (one for admin
96  * commands and one for I/O commands).
97  */
98 struct nvme_queue {
99         struct device *q_dmadev;
100         struct nvme_dev *dev;
101         char irqname[24];       /* nvme4294967295-65535\0 */
102         spinlock_t q_lock;
103         struct nvme_command *sq_cmds;
104         volatile struct nvme_completion *cqes;
105         struct blk_mq_tags **tags;
106         dma_addr_t sq_dma_addr;
107         dma_addr_t cq_dma_addr;
108         u32 __iomem *q_db;
109         u16 q_depth;
110         s16 cq_vector;
111         u16 sq_head;
112         u16 sq_tail;
113         u16 cq_head;
114         u16 qid;
115         u8 cq_phase;
116         u8 cqe_seen;
117         struct async_cmd_info cmdinfo;
118 };
119
120 /*
121  * Check we didin't inadvertently grow the command struct
122  */
123 static inline void _nvme_check_size(void)
124 {
125         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
126         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
127         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
128         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
129         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
130         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
131         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
132         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
133         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
134         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
135         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
136         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
137 }
138
139 typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
140                                                 struct nvme_completion *);
141
142 struct nvme_cmd_info {
143         nvme_completion_fn fn;
144         void *ctx;
145         int aborted;
146         struct nvme_queue *nvmeq;
147         struct nvme_iod iod[0];
148 };
149
150 /*
151  * Max size of iod being embedded in the request payload
152  */
153 #define NVME_INT_PAGES          2
154 #define NVME_INT_BYTES(dev)     (NVME_INT_PAGES * (dev)->page_size)
155 #define NVME_INT_MASK           0x01
156
157 /*
158  * Will slightly overestimate the number of pages needed.  This is OK
159  * as it only leads to a small amount of wasted memory for the lifetime of
160  * the I/O.
161  */
162 static int nvme_npages(unsigned size, struct nvme_dev *dev)
163 {
164         unsigned nprps = DIV_ROUND_UP(size + dev->page_size, dev->page_size);
165         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
166 }
167
168 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
169 {
170         unsigned int ret = sizeof(struct nvme_cmd_info);
171
172         ret += sizeof(struct nvme_iod);
173         ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
174         ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
175
176         return ret;
177 }
178
179 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
180                                 unsigned int hctx_idx)
181 {
182         struct nvme_dev *dev = data;
183         struct nvme_queue *nvmeq = dev->queues[0];
184
185         WARN_ON(hctx_idx != 0);
186         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
187         WARN_ON(nvmeq->tags);
188
189         hctx->driver_data = nvmeq;
190         nvmeq->tags = &dev->admin_tagset.tags[0];
191         return 0;
192 }
193
194 static int nvme_admin_init_request(void *data, struct request *req,
195                                 unsigned int hctx_idx, unsigned int rq_idx,
196                                 unsigned int numa_node)
197 {
198         struct nvme_dev *dev = data;
199         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
200         struct nvme_queue *nvmeq = dev->queues[0];
201
202         BUG_ON(!nvmeq);
203         cmd->nvmeq = nvmeq;
204         return 0;
205 }
206
207 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
208                           unsigned int hctx_idx)
209 {
210         struct nvme_dev *dev = data;
211         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
212
213         if (!nvmeq->tags)
214                 nvmeq->tags = &dev->tagset.tags[hctx_idx];
215
216         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
217         hctx->driver_data = nvmeq;
218         return 0;
219 }
220
221 static int nvme_init_request(void *data, struct request *req,
222                                 unsigned int hctx_idx, unsigned int rq_idx,
223                                 unsigned int numa_node)
224 {
225         struct nvme_dev *dev = data;
226         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
227         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
228
229         BUG_ON(!nvmeq);
230         cmd->nvmeq = nvmeq;
231         return 0;
232 }
233
234 static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
235                                 nvme_completion_fn handler)
236 {
237         cmd->fn = handler;
238         cmd->ctx = ctx;
239         cmd->aborted = 0;
240         blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
241 }
242
243 static void *iod_get_private(struct nvme_iod *iod)
244 {
245         return (void *) (iod->private & ~0x1UL);
246 }
247
248 /*
249  * If bit 0 is set, the iod is embedded in the request payload.
250  */
251 static bool iod_should_kfree(struct nvme_iod *iod)
252 {
253         return (iod->private & NVME_INT_MASK) == 0;
254 }
255
256 /* Special values must be less than 0x1000 */
257 #define CMD_CTX_BASE            ((void *)POISON_POINTER_DELTA)
258 #define CMD_CTX_CANCELLED       (0x30C + CMD_CTX_BASE)
259 #define CMD_CTX_COMPLETED       (0x310 + CMD_CTX_BASE)
260 #define CMD_CTX_INVALID         (0x314 + CMD_CTX_BASE)
261
262 static void special_completion(struct nvme_queue *nvmeq, void *ctx,
263                                                 struct nvme_completion *cqe)
264 {
265         if (ctx == CMD_CTX_CANCELLED)
266                 return;
267         if (ctx == CMD_CTX_COMPLETED) {
268                 dev_warn(nvmeq->q_dmadev,
269                                 "completed id %d twice on queue %d\n",
270                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
271                 return;
272         }
273         if (ctx == CMD_CTX_INVALID) {
274                 dev_warn(nvmeq->q_dmadev,
275                                 "invalid id %d completed on queue %d\n",
276                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
277                 return;
278         }
279         dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
280 }
281
282 static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
283 {
284         void *ctx;
285
286         if (fn)
287                 *fn = cmd->fn;
288         ctx = cmd->ctx;
289         cmd->fn = special_completion;
290         cmd->ctx = CMD_CTX_CANCELLED;
291         return ctx;
292 }
293
294 static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
295                                                 struct nvme_completion *cqe)
296 {
297         u32 result = le32_to_cpup(&cqe->result);
298         u16 status = le16_to_cpup(&cqe->status) >> 1;
299
300         if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
301                 ++nvmeq->dev->event_limit;
302         if (status == NVME_SC_SUCCESS)
303                 dev_warn(nvmeq->q_dmadev,
304                         "async event result %08x\n", result);
305 }
306
307 static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
308                                                 struct nvme_completion *cqe)
309 {
310         struct request *req = ctx;
311
312         u16 status = le16_to_cpup(&cqe->status) >> 1;
313         u32 result = le32_to_cpup(&cqe->result);
314
315         blk_mq_free_request(req);
316
317         dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
318         ++nvmeq->dev->abort_limit;
319 }
320
321 static void async_completion(struct nvme_queue *nvmeq, void *ctx,
322                                                 struct nvme_completion *cqe)
323 {
324         struct async_cmd_info *cmdinfo = ctx;
325         cmdinfo->result = le32_to_cpup(&cqe->result);
326         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
327         queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
328         blk_mq_free_request(cmdinfo->req);
329 }
330
331 static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
332                                   unsigned int tag)
333 {
334         struct request *req = blk_mq_tag_to_rq(*nvmeq->tags, tag);
335
336         return blk_mq_rq_to_pdu(req);
337 }
338
339 /*
340  * Called with local interrupts disabled and the q_lock held.  May not sleep.
341  */
342 static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
343                                                 nvme_completion_fn *fn)
344 {
345         struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
346         void *ctx;
347         if (tag >= nvmeq->q_depth) {
348                 *fn = special_completion;
349                 return CMD_CTX_INVALID;
350         }
351         if (fn)
352                 *fn = cmd->fn;
353         ctx = cmd->ctx;
354         cmd->fn = special_completion;
355         cmd->ctx = CMD_CTX_COMPLETED;
356         return ctx;
357 }
358
359 /**
360  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
361  * @nvmeq: The queue to use
362  * @cmd: The command to send
363  *
364  * Safe to use from interrupt context
365  */
366 static int __nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
367 {
368         u16 tail = nvmeq->sq_tail;
369
370         memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
371         if (++tail == nvmeq->q_depth)
372                 tail = 0;
373         writel(tail, nvmeq->q_db);
374         nvmeq->sq_tail = tail;
375
376         return 0;
377 }
378
379 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
380 {
381         unsigned long flags;
382         int ret;
383         spin_lock_irqsave(&nvmeq->q_lock, flags);
384         ret = __nvme_submit_cmd(nvmeq, cmd);
385         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
386         return ret;
387 }
388
389 static __le64 **iod_list(struct nvme_iod *iod)
390 {
391         return ((void *)iod) + iod->offset;
392 }
393
394 static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
395                             unsigned nseg, unsigned long private)
396 {
397         iod->private = private;
398         iod->offset = offsetof(struct nvme_iod, sg[nseg]);
399         iod->npages = -1;
400         iod->length = nbytes;
401         iod->nents = 0;
402 }
403
404 static struct nvme_iod *
405 __nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
406                  unsigned long priv, gfp_t gfp)
407 {
408         struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
409                                 sizeof(__le64 *) * nvme_npages(bytes, dev) +
410                                 sizeof(struct scatterlist) * nseg, gfp);
411
412         if (iod)
413                 iod_init(iod, bytes, nseg, priv);
414
415         return iod;
416 }
417
418 static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
419                                        gfp_t gfp)
420 {
421         unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
422                                                 sizeof(struct nvme_dsm_range);
423         struct nvme_iod *iod;
424
425         if (rq->nr_phys_segments <= NVME_INT_PAGES &&
426             size <= NVME_INT_BYTES(dev)) {
427                 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
428
429                 iod = cmd->iod;
430                 iod_init(iod, size, rq->nr_phys_segments,
431                                 (unsigned long) rq | NVME_INT_MASK);
432                 return iod;
433         }
434
435         return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
436                                 (unsigned long) rq, gfp);
437 }
438
439 static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
440 {
441         const int last_prp = dev->page_size / 8 - 1;
442         int i;
443         __le64 **list = iod_list(iod);
444         dma_addr_t prp_dma = iod->first_dma;
445
446         if (iod->npages == 0)
447                 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
448         for (i = 0; i < iod->npages; i++) {
449                 __le64 *prp_list = list[i];
450                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
451                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
452                 prp_dma = next_prp_dma;
453         }
454
455         if (iod_should_kfree(iod))
456                 kfree(iod);
457 }
458
459 static int nvme_error_status(u16 status)
460 {
461         switch (status & 0x7ff) {
462         case NVME_SC_SUCCESS:
463                 return 0;
464         case NVME_SC_CAP_EXCEEDED:
465                 return -ENOSPC;
466         default:
467                 return -EIO;
468         }
469 }
470
471 #ifdef CONFIG_BLK_DEV_INTEGRITY
472 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
473 {
474         if (be32_to_cpu(pi->ref_tag) == v)
475                 pi->ref_tag = cpu_to_be32(p);
476 }
477
478 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
479 {
480         if (be32_to_cpu(pi->ref_tag) == p)
481                 pi->ref_tag = cpu_to_be32(v);
482 }
483
484 /**
485  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
486  *
487  * The virtual start sector is the one that was originally submitted by the
488  * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
489  * start sector may be different. Remap protection information to match the
490  * physical LBA on writes, and back to the original seed on reads.
491  *
492  * Type 0 and 3 do not have a ref tag, so no remapping required.
493  */
494 static void nvme_dif_remap(struct request *req,
495                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
496 {
497         struct nvme_ns *ns = req->rq_disk->private_data;
498         struct bio_integrity_payload *bip;
499         struct t10_pi_tuple *pi;
500         void *p, *pmap;
501         u32 i, nlb, ts, phys, virt;
502
503         if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
504                 return;
505
506         bip = bio_integrity(req->bio);
507         if (!bip)
508                 return;
509
510         pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
511
512         p = pmap;
513         virt = bip_get_seed(bip);
514         phys = nvme_block_nr(ns, blk_rq_pos(req));
515         nlb = (blk_rq_bytes(req) >> ns->lba_shift);
516         ts = ns->disk->integrity->tuple_size;
517
518         for (i = 0; i < nlb; i++, virt++, phys++) {
519                 pi = (struct t10_pi_tuple *)p;
520                 dif_swap(phys, virt, pi);
521                 p += ts;
522         }
523         kunmap_atomic(pmap);
524 }
525
526 static int nvme_noop_verify(struct blk_integrity_iter *iter)
527 {
528         return 0;
529 }
530
531 static int nvme_noop_generate(struct blk_integrity_iter *iter)
532 {
533         return 0;
534 }
535
536 struct blk_integrity nvme_meta_noop = {
537         .name                   = "NVME_META_NOOP",
538         .generate_fn            = nvme_noop_generate,
539         .verify_fn              = nvme_noop_verify,
540 };
541
542 static void nvme_init_integrity(struct nvme_ns *ns)
543 {
544         struct blk_integrity integrity;
545
546         switch (ns->pi_type) {
547         case NVME_NS_DPS_PI_TYPE3:
548                 integrity = t10_pi_type3_crc;
549                 break;
550         case NVME_NS_DPS_PI_TYPE1:
551         case NVME_NS_DPS_PI_TYPE2:
552                 integrity = t10_pi_type1_crc;
553                 break;
554         default:
555                 integrity = nvme_meta_noop;
556                 break;
557         }
558         integrity.tuple_size = ns->ms;
559         blk_integrity_register(ns->disk, &integrity);
560         blk_queue_max_integrity_segments(ns->queue, 1);
561 }
562 #else /* CONFIG_BLK_DEV_INTEGRITY */
563 static void nvme_dif_remap(struct request *req,
564                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
565 {
566 }
567 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
568 {
569 }
570 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
571 {
572 }
573 static void nvme_init_integrity(struct nvme_ns *ns)
574 {
575 }
576 #endif
577
578 static void req_completion(struct nvme_queue *nvmeq, void *ctx,
579                                                 struct nvme_completion *cqe)
580 {
581         struct nvme_iod *iod = ctx;
582         struct request *req = iod_get_private(iod);
583         struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
584
585         u16 status = le16_to_cpup(&cqe->status) >> 1;
586
587         if (unlikely(status)) {
588                 if (!(status & NVME_SC_DNR || blk_noretry_request(req))
589                     && (jiffies - req->start_time) < req->timeout) {
590                         unsigned long flags;
591
592                         blk_mq_requeue_request(req);
593                         spin_lock_irqsave(req->q->queue_lock, flags);
594                         if (!blk_queue_stopped(req->q))
595                                 blk_mq_kick_requeue_list(req->q);
596                         spin_unlock_irqrestore(req->q->queue_lock, flags);
597                         return;
598                 }
599                 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
600                         req->errors = status;
601                 } else {
602                         req->errors = nvme_error_status(status);
603                 }
604         } else
605                 req->errors = 0;
606         if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
607                 u32 result = le32_to_cpup(&cqe->result);
608                 req->special = (void *)(uintptr_t)result;
609         }
610
611         if (cmd_rq->aborted)
612                 dev_warn(nvmeq->dev->dev,
613                         "completing aborted command with status:%04x\n",
614                         status);
615
616         if (iod->nents) {
617                 dma_unmap_sg(nvmeq->dev->dev, iod->sg, iod->nents,
618                         rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
619                 if (blk_integrity_rq(req)) {
620                         if (!rq_data_dir(req))
621                                 nvme_dif_remap(req, nvme_dif_complete);
622                         dma_unmap_sg(nvmeq->dev->dev, iod->meta_sg, 1,
623                                 rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
624                 }
625         }
626         nvme_free_iod(nvmeq->dev, iod);
627
628         blk_mq_complete_request(req);
629 }
630
631 /* length is in bytes.  gfp flags indicates whether we may sleep. */
632 static int nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod,
633                 int total_len, gfp_t gfp)
634 {
635         struct dma_pool *pool;
636         int length = total_len;
637         struct scatterlist *sg = iod->sg;
638         int dma_len = sg_dma_len(sg);
639         u64 dma_addr = sg_dma_address(sg);
640         u32 page_size = dev->page_size;
641         int offset = dma_addr & (page_size - 1);
642         __le64 *prp_list;
643         __le64 **list = iod_list(iod);
644         dma_addr_t prp_dma;
645         int nprps, i;
646
647         length -= (page_size - offset);
648         if (length <= 0)
649                 return total_len;
650
651         dma_len -= (page_size - offset);
652         if (dma_len) {
653                 dma_addr += (page_size - offset);
654         } else {
655                 sg = sg_next(sg);
656                 dma_addr = sg_dma_address(sg);
657                 dma_len = sg_dma_len(sg);
658         }
659
660         if (length <= page_size) {
661                 iod->first_dma = dma_addr;
662                 return total_len;
663         }
664
665         nprps = DIV_ROUND_UP(length, page_size);
666         if (nprps <= (256 / 8)) {
667                 pool = dev->prp_small_pool;
668                 iod->npages = 0;
669         } else {
670                 pool = dev->prp_page_pool;
671                 iod->npages = 1;
672         }
673
674         prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
675         if (!prp_list) {
676                 iod->first_dma = dma_addr;
677                 iod->npages = -1;
678                 return (total_len - length) + page_size;
679         }
680         list[0] = prp_list;
681         iod->first_dma = prp_dma;
682         i = 0;
683         for (;;) {
684                 if (i == page_size >> 3) {
685                         __le64 *old_prp_list = prp_list;
686                         prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
687                         if (!prp_list)
688                                 return total_len - length;
689                         list[iod->npages++] = prp_list;
690                         prp_list[0] = old_prp_list[i - 1];
691                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
692                         i = 1;
693                 }
694                 prp_list[i++] = cpu_to_le64(dma_addr);
695                 dma_len -= page_size;
696                 dma_addr += page_size;
697                 length -= page_size;
698                 if (length <= 0)
699                         break;
700                 if (dma_len > 0)
701                         continue;
702                 BUG_ON(dma_len < 0);
703                 sg = sg_next(sg);
704                 dma_addr = sg_dma_address(sg);
705                 dma_len = sg_dma_len(sg);
706         }
707
708         return total_len;
709 }
710
711 static void nvme_submit_priv(struct nvme_queue *nvmeq, struct request *req,
712                 struct nvme_iod *iod)
713 {
714         struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
715
716         memcpy(cmnd, req->cmd, sizeof(struct nvme_command));
717         cmnd->rw.command_id = req->tag;
718         if (req->nr_phys_segments) {
719                 cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
720                 cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
721         }
722
723         if (++nvmeq->sq_tail == nvmeq->q_depth)
724                 nvmeq->sq_tail = 0;
725         writel(nvmeq->sq_tail, nvmeq->q_db);
726 }
727
728 /*
729  * We reuse the small pool to allocate the 16-byte range here as it is not
730  * worth having a special pool for these or additional cases to handle freeing
731  * the iod.
732  */
733 static void nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
734                 struct request *req, struct nvme_iod *iod)
735 {
736         struct nvme_dsm_range *range =
737                                 (struct nvme_dsm_range *)iod_list(iod)[0];
738         struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
739
740         range->cattr = cpu_to_le32(0);
741         range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
742         range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
743
744         memset(cmnd, 0, sizeof(*cmnd));
745         cmnd->dsm.opcode = nvme_cmd_dsm;
746         cmnd->dsm.command_id = req->tag;
747         cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
748         cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
749         cmnd->dsm.nr = 0;
750         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
751
752         if (++nvmeq->sq_tail == nvmeq->q_depth)
753                 nvmeq->sq_tail = 0;
754         writel(nvmeq->sq_tail, nvmeq->q_db);
755 }
756
757 static void nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
758                                                                 int cmdid)
759 {
760         struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
761
762         memset(cmnd, 0, sizeof(*cmnd));
763         cmnd->common.opcode = nvme_cmd_flush;
764         cmnd->common.command_id = cmdid;
765         cmnd->common.nsid = cpu_to_le32(ns->ns_id);
766
767         if (++nvmeq->sq_tail == nvmeq->q_depth)
768                 nvmeq->sq_tail = 0;
769         writel(nvmeq->sq_tail, nvmeq->q_db);
770 }
771
772 static int nvme_submit_iod(struct nvme_queue *nvmeq, struct nvme_iod *iod,
773                                                         struct nvme_ns *ns)
774 {
775         struct request *req = iod_get_private(iod);
776         struct nvme_command *cmnd;
777         u16 control = 0;
778         u32 dsmgmt = 0;
779
780         if (req->cmd_flags & REQ_FUA)
781                 control |= NVME_RW_FUA;
782         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
783                 control |= NVME_RW_LR;
784
785         if (req->cmd_flags & REQ_RAHEAD)
786                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
787
788         cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
789         memset(cmnd, 0, sizeof(*cmnd));
790
791         cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
792         cmnd->rw.command_id = req->tag;
793         cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
794         cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
795         cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
796         cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
797         cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
798
799         if (blk_integrity_rq(req)) {
800                 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(iod->meta_sg));
801                 switch (ns->pi_type) {
802                 case NVME_NS_DPS_PI_TYPE3:
803                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
804                         break;
805                 case NVME_NS_DPS_PI_TYPE1:
806                 case NVME_NS_DPS_PI_TYPE2:
807                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
808                                         NVME_RW_PRINFO_PRCHK_REF;
809                         cmnd->rw.reftag = cpu_to_le32(
810                                         nvme_block_nr(ns, blk_rq_pos(req)));
811                         break;
812                 }
813         } else if (ns->ms)
814                 control |= NVME_RW_PRINFO_PRACT;
815
816         cmnd->rw.control = cpu_to_le16(control);
817         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
818
819         if (++nvmeq->sq_tail == nvmeq->q_depth)
820                 nvmeq->sq_tail = 0;
821         writel(nvmeq->sq_tail, nvmeq->q_db);
822
823         return 0;
824 }
825
826 /*
827  * NOTE: ns is NULL when called on the admin queue.
828  */
829 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
830                          const struct blk_mq_queue_data *bd)
831 {
832         struct nvme_ns *ns = hctx->queue->queuedata;
833         struct nvme_queue *nvmeq = hctx->driver_data;
834         struct nvme_dev *dev = nvmeq->dev;
835         struct request *req = bd->rq;
836         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
837         struct nvme_iod *iod;
838         enum dma_data_direction dma_dir;
839
840         /*
841          * If formated with metadata, require the block layer provide a buffer
842          * unless this namespace is formated such that the metadata can be
843          * stripped/generated by the controller with PRACT=1.
844          */
845         if (ns && ns->ms && !blk_integrity_rq(req)) {
846                 if (!(ns->pi_type && ns->ms == 8)) {
847                         req->errors = -EFAULT;
848                         blk_mq_complete_request(req);
849                         return BLK_MQ_RQ_QUEUE_OK;
850                 }
851         }
852
853         iod = nvme_alloc_iod(req, dev, GFP_ATOMIC);
854         if (!iod)
855                 return BLK_MQ_RQ_QUEUE_BUSY;
856
857         if (req->cmd_flags & REQ_DISCARD) {
858                 void *range;
859                 /*
860                  * We reuse the small pool to allocate the 16-byte range here
861                  * as it is not worth having a special pool for these or
862                  * additional cases to handle freeing the iod.
863                  */
864                 range = dma_pool_alloc(dev->prp_small_pool, GFP_ATOMIC,
865                                                 &iod->first_dma);
866                 if (!range)
867                         goto retry_cmd;
868                 iod_list(iod)[0] = (__le64 *)range;
869                 iod->npages = 0;
870         } else if (req->nr_phys_segments) {
871                 dma_dir = rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
872
873                 sg_init_table(iod->sg, req->nr_phys_segments);
874                 iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
875                 if (!iod->nents)
876                         goto error_cmd;
877
878                 if (!dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir))
879                         goto retry_cmd;
880
881                 if (blk_rq_bytes(req) !=
882                     nvme_setup_prps(dev, iod, blk_rq_bytes(req), GFP_ATOMIC)) {
883                         dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
884                         goto retry_cmd;
885                 }
886                 if (blk_integrity_rq(req)) {
887                         if (blk_rq_count_integrity_sg(req->q, req->bio) != 1)
888                                 goto error_cmd;
889
890                         sg_init_table(iod->meta_sg, 1);
891                         if (blk_rq_map_integrity_sg(
892                                         req->q, req->bio, iod->meta_sg) != 1)
893                                 goto error_cmd;
894
895                         if (rq_data_dir(req))
896                                 nvme_dif_remap(req, nvme_dif_prep);
897
898                         if (!dma_map_sg(nvmeq->q_dmadev, iod->meta_sg, 1, dma_dir))
899                                 goto error_cmd;
900                 }
901         }
902
903         nvme_set_info(cmd, iod, req_completion);
904         spin_lock_irq(&nvmeq->q_lock);
905         if (req->cmd_type == REQ_TYPE_DRV_PRIV)
906                 nvme_submit_priv(nvmeq, req, iod);
907         else if (req->cmd_flags & REQ_DISCARD)
908                 nvme_submit_discard(nvmeq, ns, req, iod);
909         else if (req->cmd_flags & REQ_FLUSH)
910                 nvme_submit_flush(nvmeq, ns, req->tag);
911         else
912                 nvme_submit_iod(nvmeq, iod, ns);
913
914         nvme_process_cq(nvmeq);
915         spin_unlock_irq(&nvmeq->q_lock);
916         return BLK_MQ_RQ_QUEUE_OK;
917
918  error_cmd:
919         nvme_free_iod(dev, iod);
920         return BLK_MQ_RQ_QUEUE_ERROR;
921  retry_cmd:
922         nvme_free_iod(dev, iod);
923         return BLK_MQ_RQ_QUEUE_BUSY;
924 }
925
926 static int nvme_process_cq(struct nvme_queue *nvmeq)
927 {
928         u16 head, phase;
929
930         head = nvmeq->cq_head;
931         phase = nvmeq->cq_phase;
932
933         for (;;) {
934                 void *ctx;
935                 nvme_completion_fn fn;
936                 struct nvme_completion cqe = nvmeq->cqes[head];
937                 if ((le16_to_cpu(cqe.status) & 1) != phase)
938                         break;
939                 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
940                 if (++head == nvmeq->q_depth) {
941                         head = 0;
942                         phase = !phase;
943                 }
944                 ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
945                 fn(nvmeq, ctx, &cqe);
946         }
947
948         /* If the controller ignores the cq head doorbell and continuously
949          * writes to the queue, it is theoretically possible to wrap around
950          * the queue twice and mistakenly return IRQ_NONE.  Linux only
951          * requires that 0.1% of your interrupts are handled, so this isn't
952          * a big problem.
953          */
954         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
955                 return 0;
956
957         writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
958         nvmeq->cq_head = head;
959         nvmeq->cq_phase = phase;
960
961         nvmeq->cqe_seen = 1;
962         return 1;
963 }
964
965 static irqreturn_t nvme_irq(int irq, void *data)
966 {
967         irqreturn_t result;
968         struct nvme_queue *nvmeq = data;
969         spin_lock(&nvmeq->q_lock);
970         nvme_process_cq(nvmeq);
971         result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
972         nvmeq->cqe_seen = 0;
973         spin_unlock(&nvmeq->q_lock);
974         return result;
975 }
976
977 static irqreturn_t nvme_irq_check(int irq, void *data)
978 {
979         struct nvme_queue *nvmeq = data;
980         struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
981         if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
982                 return IRQ_NONE;
983         return IRQ_WAKE_THREAD;
984 }
985
986 /*
987  * Returns 0 on success.  If the result is negative, it's a Linux error code;
988  * if the result is positive, it's an NVM Express status code
989  */
990 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
991                 void *buffer, void __user *ubuffer, unsigned bufflen,
992                 u32 *result, unsigned timeout)
993 {
994         bool write = cmd->common.opcode & 1;
995         struct bio *bio = NULL;
996         struct request *req;
997         int ret;
998
999         req = blk_mq_alloc_request(q, write, GFP_KERNEL, false);
1000         if (IS_ERR(req))
1001                 return PTR_ERR(req);
1002
1003         req->cmd_type = REQ_TYPE_DRV_PRIV;
1004         req->cmd_flags = REQ_FAILFAST_DRIVER;
1005         req->__data_len = 0;
1006         req->__sector = (sector_t) -1;
1007         req->bio = req->biotail = NULL;
1008
1009         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
1010
1011         req->cmd = (unsigned char *)cmd;
1012         req->cmd_len = sizeof(struct nvme_command);
1013         req->special = (void *)0;
1014
1015         if (buffer && bufflen) {
1016                 ret = blk_rq_map_kern(q, req, buffer, bufflen, __GFP_WAIT);
1017                 if (ret)
1018                         goto out;
1019         } else if (ubuffer && bufflen) {
1020                 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen, __GFP_WAIT);
1021                 if (ret)
1022                         goto out;
1023                 bio = req->bio;
1024         }
1025
1026         blk_execute_rq(req->q, NULL, req, 0);
1027         if (bio)
1028                 blk_rq_unmap_user(bio);
1029         if (result)
1030                 *result = (u32)(uintptr_t)req->special;
1031         ret = req->errors;
1032  out:
1033         blk_mq_free_request(req);
1034         return ret;
1035 }
1036
1037 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1038                 void *buffer, unsigned bufflen)
1039 {
1040         return __nvme_submit_sync_cmd(q, cmd, buffer, NULL, bufflen, NULL, 0);
1041 }
1042
1043 static int nvme_submit_async_admin_req(struct nvme_dev *dev)
1044 {
1045         struct nvme_queue *nvmeq = dev->queues[0];
1046         struct nvme_command c;
1047         struct nvme_cmd_info *cmd_info;
1048         struct request *req;
1049
1050         req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC, true);
1051         if (IS_ERR(req))
1052                 return PTR_ERR(req);
1053
1054         req->cmd_flags |= REQ_NO_TIMEOUT;
1055         cmd_info = blk_mq_rq_to_pdu(req);
1056         nvme_set_info(cmd_info, NULL, async_req_completion);
1057
1058         memset(&c, 0, sizeof(c));
1059         c.common.opcode = nvme_admin_async_event;
1060         c.common.command_id = req->tag;
1061
1062         blk_mq_free_request(req);
1063         return __nvme_submit_cmd(nvmeq, &c);
1064 }
1065
1066 static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
1067                         struct nvme_command *cmd,
1068                         struct async_cmd_info *cmdinfo, unsigned timeout)
1069 {
1070         struct nvme_queue *nvmeq = dev->queues[0];
1071         struct request *req;
1072         struct nvme_cmd_info *cmd_rq;
1073
1074         req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
1075         if (IS_ERR(req))
1076                 return PTR_ERR(req);
1077
1078         req->timeout = timeout;
1079         cmd_rq = blk_mq_rq_to_pdu(req);
1080         cmdinfo->req = req;
1081         nvme_set_info(cmd_rq, cmdinfo, async_completion);
1082         cmdinfo->status = -EINTR;
1083
1084         cmd->common.command_id = req->tag;
1085
1086         return nvme_submit_cmd(nvmeq, cmd);
1087 }
1088
1089 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1090 {
1091         struct nvme_command c;
1092
1093         memset(&c, 0, sizeof(c));
1094         c.delete_queue.opcode = opcode;
1095         c.delete_queue.qid = cpu_to_le16(id);
1096
1097         return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
1098 }
1099
1100 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1101                                                 struct nvme_queue *nvmeq)
1102 {
1103         struct nvme_command c;
1104         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1105
1106         /*
1107          * Note: we (ab)use the fact the the prp fields survive if no data
1108          * is attached to the request.
1109          */
1110         memset(&c, 0, sizeof(c));
1111         c.create_cq.opcode = nvme_admin_create_cq;
1112         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1113         c.create_cq.cqid = cpu_to_le16(qid);
1114         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1115         c.create_cq.cq_flags = cpu_to_le16(flags);
1116         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1117
1118         return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
1119 }
1120
1121 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1122                                                 struct nvme_queue *nvmeq)
1123 {
1124         struct nvme_command c;
1125         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
1126
1127         /*
1128          * Note: we (ab)use the fact the the prp fields survive if no data
1129          * is attached to the request.
1130          */
1131         memset(&c, 0, sizeof(c));
1132         c.create_sq.opcode = nvme_admin_create_sq;
1133         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1134         c.create_sq.sqid = cpu_to_le16(qid);
1135         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1136         c.create_sq.sq_flags = cpu_to_le16(flags);
1137         c.create_sq.cqid = cpu_to_le16(qid);
1138
1139         return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
1140 }
1141
1142 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1143 {
1144         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1145 }
1146
1147 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1148 {
1149         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1150 }
1151
1152 int nvme_identify_ctrl(struct nvme_dev *dev, struct nvme_id_ctrl **id)
1153 {
1154         struct nvme_command c = {
1155                 .identify.opcode = nvme_admin_identify,
1156                 .identify.cns = cpu_to_le32(1),
1157         };
1158         int error;
1159
1160         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1161         if (!*id)
1162                 return -ENOMEM;
1163
1164         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1165                         sizeof(struct nvme_id_ctrl));
1166         if (error)
1167                 kfree(*id);
1168         return error;
1169 }
1170
1171 int nvme_identify_ns(struct nvme_dev *dev, unsigned nsid,
1172                 struct nvme_id_ns **id)
1173 {
1174         struct nvme_command c = {
1175                 .identify.opcode = nvme_admin_identify,
1176                 .identify.nsid = cpu_to_le32(nsid),
1177         };
1178         int error;
1179
1180         *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
1181         if (!*id)
1182                 return -ENOMEM;
1183
1184         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1185                         sizeof(struct nvme_id_ns));
1186         if (error)
1187                 kfree(*id);
1188         return error;
1189 }
1190
1191 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
1192                                         dma_addr_t dma_addr, u32 *result)
1193 {
1194         struct nvme_command c;
1195
1196         memset(&c, 0, sizeof(c));
1197         c.features.opcode = nvme_admin_get_features;
1198         c.features.nsid = cpu_to_le32(nsid);
1199         c.features.prp1 = cpu_to_le64(dma_addr);
1200         c.features.fid = cpu_to_le32(fid);
1201
1202         return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, NULL, 0,
1203                         result, 0);
1204 }
1205
1206 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
1207                                         dma_addr_t dma_addr, u32 *result)
1208 {
1209         struct nvme_command c;
1210
1211         memset(&c, 0, sizeof(c));
1212         c.features.opcode = nvme_admin_set_features;
1213         c.features.prp1 = cpu_to_le64(dma_addr);
1214         c.features.fid = cpu_to_le32(fid);
1215         c.features.dword11 = cpu_to_le32(dword11);
1216
1217         return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, NULL, 0,
1218                         result, 0);
1219 }
1220
1221 int nvme_get_log_page(struct nvme_dev *dev, struct nvme_smart_log **log)
1222 {
1223         struct nvme_command c = {
1224                 .common.opcode = nvme_admin_get_log_page,
1225                 .common.nsid = cpu_to_le32(0xFFFFFFFF),
1226                 .common.cdw10[0] = cpu_to_le32(
1227                         (((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
1228                          NVME_LOG_SMART),
1229         };
1230         int error;
1231
1232         *log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
1233         if (!*log)
1234                 return -ENOMEM;
1235
1236         error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
1237                         sizeof(struct nvme_smart_log));
1238         if (error)
1239                 kfree(*log);
1240         return error;
1241 }
1242
1243 /**
1244  * nvme_abort_req - Attempt aborting a request
1245  *
1246  * Schedule controller reset if the command was already aborted once before and
1247  * still hasn't been returned to the driver, or if this is the admin queue.
1248  */
1249 static void nvme_abort_req(struct request *req)
1250 {
1251         struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1252         struct nvme_queue *nvmeq = cmd_rq->nvmeq;
1253         struct nvme_dev *dev = nvmeq->dev;
1254         struct request *abort_req;
1255         struct nvme_cmd_info *abort_cmd;
1256         struct nvme_command cmd;
1257
1258         if (!nvmeq->qid || cmd_rq->aborted) {
1259                 unsigned long flags;
1260
1261                 spin_lock_irqsave(&dev_list_lock, flags);
1262                 if (work_busy(&dev->reset_work))
1263                         goto out;
1264                 list_del_init(&dev->node);
1265                 dev_warn(dev->dev, "I/O %d QID %d timeout, reset controller\n",
1266                                                         req->tag, nvmeq->qid);
1267                 dev->reset_workfn = nvme_reset_failed_dev;
1268                 queue_work(nvme_workq, &dev->reset_work);
1269  out:
1270                 spin_unlock_irqrestore(&dev_list_lock, flags);
1271                 return;
1272         }
1273
1274         if (!dev->abort_limit)
1275                 return;
1276
1277         abort_req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC,
1278                                                                         false);
1279         if (IS_ERR(abort_req))
1280                 return;
1281
1282         abort_cmd = blk_mq_rq_to_pdu(abort_req);
1283         nvme_set_info(abort_cmd, abort_req, abort_completion);
1284
1285         memset(&cmd, 0, sizeof(cmd));
1286         cmd.abort.opcode = nvme_admin_abort_cmd;
1287         cmd.abort.cid = req->tag;
1288         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1289         cmd.abort.command_id = abort_req->tag;
1290
1291         --dev->abort_limit;
1292         cmd_rq->aborted = 1;
1293
1294         dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", req->tag,
1295                                                         nvmeq->qid);
1296         if (nvme_submit_cmd(dev->queues[0], &cmd) < 0) {
1297                 dev_warn(nvmeq->q_dmadev,
1298                                 "Could not abort I/O %d QID %d",
1299                                 req->tag, nvmeq->qid);
1300                 blk_mq_free_request(abort_req);
1301         }
1302 }
1303
1304 static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
1305 {
1306         struct nvme_queue *nvmeq = data;
1307         void *ctx;
1308         nvme_completion_fn fn;
1309         struct nvme_cmd_info *cmd;
1310         struct nvme_completion cqe;
1311
1312         if (!blk_mq_request_started(req))
1313                 return;
1314
1315         cmd = blk_mq_rq_to_pdu(req);
1316
1317         if (cmd->ctx == CMD_CTX_CANCELLED)
1318                 return;
1319
1320         if (blk_queue_dying(req->q))
1321                 cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1322         else
1323                 cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1324
1325
1326         dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
1327                                                 req->tag, nvmeq->qid);
1328         ctx = cancel_cmd_info(cmd, &fn);
1329         fn(nvmeq, ctx, &cqe);
1330 }
1331
1332 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1333 {
1334         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
1335         struct nvme_queue *nvmeq = cmd->nvmeq;
1336
1337         dev_warn(nvmeq->q_dmadev, "Timeout I/O %d QID %d\n", req->tag,
1338                                                         nvmeq->qid);
1339         spin_lock_irq(&nvmeq->q_lock);
1340         nvme_abort_req(req);
1341         spin_unlock_irq(&nvmeq->q_lock);
1342
1343         /*
1344          * The aborted req will be completed on receiving the abort req.
1345          * We enable the timer again. If hit twice, it'll cause a device reset,
1346          * as the device then is in a faulty state.
1347          */
1348         return BLK_EH_RESET_TIMER;
1349 }
1350
1351 static void nvme_free_queue(struct nvme_queue *nvmeq)
1352 {
1353         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1354                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1355         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1356                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1357         kfree(nvmeq);
1358 }
1359
1360 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1361 {
1362         int i;
1363
1364         for (i = dev->queue_count - 1; i >= lowest; i--) {
1365                 struct nvme_queue *nvmeq = dev->queues[i];
1366                 dev->queue_count--;
1367                 dev->queues[i] = NULL;
1368                 nvme_free_queue(nvmeq);
1369         }
1370 }
1371
1372 /**
1373  * nvme_suspend_queue - put queue into suspended state
1374  * @nvmeq - queue to suspend
1375  */
1376 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1377 {
1378         int vector;
1379
1380         spin_lock_irq(&nvmeq->q_lock);
1381         if (nvmeq->cq_vector == -1) {
1382                 spin_unlock_irq(&nvmeq->q_lock);
1383                 return 1;
1384         }
1385         vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1386         nvmeq->dev->online_queues--;
1387         nvmeq->cq_vector = -1;
1388         spin_unlock_irq(&nvmeq->q_lock);
1389
1390         if (!nvmeq->qid && nvmeq->dev->admin_q)
1391                 blk_mq_freeze_queue_start(nvmeq->dev->admin_q);
1392
1393         irq_set_affinity_hint(vector, NULL);
1394         free_irq(vector, nvmeq);
1395
1396         return 0;
1397 }
1398
1399 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1400 {
1401         spin_lock_irq(&nvmeq->q_lock);
1402         if (nvmeq->tags && *nvmeq->tags)
1403                 blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
1404         spin_unlock_irq(&nvmeq->q_lock);
1405 }
1406
1407 static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1408 {
1409         struct nvme_queue *nvmeq = dev->queues[qid];
1410
1411         if (!nvmeq)
1412                 return;
1413         if (nvme_suspend_queue(nvmeq))
1414                 return;
1415
1416         /* Don't tell the adapter to delete the admin queue.
1417          * Don't tell a removed adapter to delete IO queues. */
1418         if (qid && readl(&dev->bar->csts) != -1) {
1419                 adapter_delete_sq(dev, qid);
1420                 adapter_delete_cq(dev, qid);
1421         }
1422
1423         spin_lock_irq(&nvmeq->q_lock);
1424         nvme_process_cq(nvmeq);
1425         spin_unlock_irq(&nvmeq->q_lock);
1426 }
1427
1428 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1429                                                         int depth)
1430 {
1431         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1432         if (!nvmeq)
1433                 return NULL;
1434
1435         nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1436                                           &nvmeq->cq_dma_addr, GFP_KERNEL);
1437         if (!nvmeq->cqes)
1438                 goto free_nvmeq;
1439
1440         nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1441                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
1442         if (!nvmeq->sq_cmds)
1443                 goto free_cqdma;
1444
1445         nvmeq->q_dmadev = dev->dev;
1446         nvmeq->dev = dev;
1447         snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1448                         dev->instance, qid);
1449         spin_lock_init(&nvmeq->q_lock);
1450         nvmeq->cq_head = 0;
1451         nvmeq->cq_phase = 1;
1452         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1453         nvmeq->q_depth = depth;
1454         nvmeq->qid = qid;
1455         dev->queue_count++;
1456         dev->queues[qid] = nvmeq;
1457
1458         return nvmeq;
1459
1460  free_cqdma:
1461         dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1462                                                         nvmeq->cq_dma_addr);
1463  free_nvmeq:
1464         kfree(nvmeq);
1465         return NULL;
1466 }
1467
1468 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1469                                                         const char *name)
1470 {
1471         if (use_threaded_interrupts)
1472                 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1473                                         nvme_irq_check, nvme_irq, IRQF_SHARED,
1474                                         name, nvmeq);
1475         return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1476                                 IRQF_SHARED, name, nvmeq);
1477 }
1478
1479 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1480 {
1481         struct nvme_dev *dev = nvmeq->dev;
1482
1483         spin_lock_irq(&nvmeq->q_lock);
1484         nvmeq->sq_tail = 0;
1485         nvmeq->cq_head = 0;
1486         nvmeq->cq_phase = 1;
1487         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1488         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1489         dev->online_queues++;
1490         spin_unlock_irq(&nvmeq->q_lock);
1491 }
1492
1493 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1494 {
1495         struct nvme_dev *dev = nvmeq->dev;
1496         int result;
1497
1498         nvmeq->cq_vector = qid - 1;
1499         result = adapter_alloc_cq(dev, qid, nvmeq);
1500         if (result < 0)
1501                 return result;
1502
1503         result = adapter_alloc_sq(dev, qid, nvmeq);
1504         if (result < 0)
1505                 goto release_cq;
1506
1507         result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1508         if (result < 0)
1509                 goto release_sq;
1510
1511         nvme_init_queue(nvmeq, qid);
1512         return result;
1513
1514  release_sq:
1515         adapter_delete_sq(dev, qid);
1516  release_cq:
1517         adapter_delete_cq(dev, qid);
1518         return result;
1519 }
1520
1521 static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1522 {
1523         unsigned long timeout;
1524         u32 bit = enabled ? NVME_CSTS_RDY : 0;
1525
1526         timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1527
1528         while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1529                 msleep(100);
1530                 if (fatal_signal_pending(current))
1531                         return -EINTR;
1532                 if (time_after(jiffies, timeout)) {
1533                         dev_err(dev->dev,
1534                                 "Device not ready; aborting %s\n", enabled ?
1535                                                 "initialisation" : "reset");
1536                         return -ENODEV;
1537                 }
1538         }
1539
1540         return 0;
1541 }
1542
1543 /*
1544  * If the device has been passed off to us in an enabled state, just clear
1545  * the enabled bit.  The spec says we should set the 'shutdown notification
1546  * bits', but doing so may cause the device to complete commands to the
1547  * admin queue ... and we don't know what memory that might be pointing at!
1548  */
1549 static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1550 {
1551         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1552         dev->ctrl_config &= ~NVME_CC_ENABLE;
1553         writel(dev->ctrl_config, &dev->bar->cc);
1554
1555         return nvme_wait_ready(dev, cap, false);
1556 }
1557
1558 static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1559 {
1560         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1561         dev->ctrl_config |= NVME_CC_ENABLE;
1562         writel(dev->ctrl_config, &dev->bar->cc);
1563
1564         return nvme_wait_ready(dev, cap, true);
1565 }
1566
1567 static int nvme_shutdown_ctrl(struct nvme_dev *dev)
1568 {
1569         unsigned long timeout;
1570
1571         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1572         dev->ctrl_config |= NVME_CC_SHN_NORMAL;
1573
1574         writel(dev->ctrl_config, &dev->bar->cc);
1575
1576         timeout = SHUTDOWN_TIMEOUT + jiffies;
1577         while ((readl(&dev->bar->csts) & NVME_CSTS_SHST_MASK) !=
1578                                                         NVME_CSTS_SHST_CMPLT) {
1579                 msleep(100);
1580                 if (fatal_signal_pending(current))
1581                         return -EINTR;
1582                 if (time_after(jiffies, timeout)) {
1583                         dev_err(dev->dev,
1584                                 "Device shutdown incomplete; abort shutdown\n");
1585                         return -ENODEV;
1586                 }
1587         }
1588
1589         return 0;
1590 }
1591
1592 static struct blk_mq_ops nvme_mq_admin_ops = {
1593         .queue_rq       = nvme_queue_rq,
1594         .map_queue      = blk_mq_map_queue,
1595         .init_hctx      = nvme_admin_init_hctx,
1596         .init_request   = nvme_admin_init_request,
1597         .timeout        = nvme_timeout,
1598 };
1599
1600 static struct blk_mq_ops nvme_mq_ops = {
1601         .queue_rq       = nvme_queue_rq,
1602         .map_queue      = blk_mq_map_queue,
1603         .init_hctx      = nvme_init_hctx,
1604         .init_request   = nvme_init_request,
1605         .timeout        = nvme_timeout,
1606 };
1607
1608 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1609 {
1610         if (dev->admin_q && !blk_queue_dying(dev->admin_q)) {
1611                 blk_cleanup_queue(dev->admin_q);
1612                 blk_mq_free_tag_set(&dev->admin_tagset);
1613         }
1614 }
1615
1616 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1617 {
1618         if (!dev->admin_q) {
1619                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1620                 dev->admin_tagset.nr_hw_queues = 1;
1621                 dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
1622                 dev->admin_tagset.reserved_tags = 1;
1623                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1624                 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1625                 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1626                 dev->admin_tagset.driver_data = dev;
1627
1628                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1629                         return -ENOMEM;
1630
1631                 dev->admin_q = blk_mq_init_queue(&dev->admin_tagset);
1632                 if (IS_ERR(dev->admin_q)) {
1633                         blk_mq_free_tag_set(&dev->admin_tagset);
1634                         return -ENOMEM;
1635                 }
1636                 if (!blk_get_queue(dev->admin_q)) {
1637                         nvme_dev_remove_admin(dev);
1638                         return -ENODEV;
1639                 }
1640         } else
1641                 blk_mq_unfreeze_queue(dev->admin_q);
1642
1643         return 0;
1644 }
1645
1646 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1647 {
1648         int result;
1649         u32 aqa;
1650         u64 cap = readq(&dev->bar->cap);
1651         struct nvme_queue *nvmeq;
1652         unsigned page_shift = PAGE_SHIFT;
1653         unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
1654         unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
1655
1656         if (page_shift < dev_page_min) {
1657                 dev_err(dev->dev,
1658                                 "Minimum device page size (%u) too large for "
1659                                 "host (%u)\n", 1 << dev_page_min,
1660                                 1 << page_shift);
1661                 return -ENODEV;
1662         }
1663         if (page_shift > dev_page_max) {
1664                 dev_info(dev->dev,
1665                                 "Device maximum page size (%u) smaller than "
1666                                 "host (%u); enabling work-around\n",
1667                                 1 << dev_page_max, 1 << page_shift);
1668                 page_shift = dev_page_max;
1669         }
1670
1671         result = nvme_disable_ctrl(dev, cap);
1672         if (result < 0)
1673                 return result;
1674
1675         nvmeq = dev->queues[0];
1676         if (!nvmeq) {
1677                 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1678                 if (!nvmeq)
1679                         return -ENOMEM;
1680         }
1681
1682         aqa = nvmeq->q_depth - 1;
1683         aqa |= aqa << 16;
1684
1685         dev->page_size = 1 << page_shift;
1686
1687         dev->ctrl_config = NVME_CC_CSS_NVM;
1688         dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1689         dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1690         dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1691
1692         writel(aqa, &dev->bar->aqa);
1693         writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1694         writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1695
1696         result = nvme_enable_ctrl(dev, cap);
1697         if (result)
1698                 goto free_nvmeq;
1699
1700         nvmeq->cq_vector = 0;
1701         result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1702         if (result)
1703                 goto free_nvmeq;
1704
1705         return result;
1706
1707  free_nvmeq:
1708         nvme_free_queues(dev, 0);
1709         return result;
1710 }
1711
1712 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1713 {
1714         struct nvme_dev *dev = ns->dev;
1715         struct nvme_user_io io;
1716         struct nvme_command c;
1717         unsigned length, meta_len;
1718         int status, write;
1719         dma_addr_t meta_dma = 0;
1720         void *meta = NULL;
1721
1722         if (copy_from_user(&io, uio, sizeof(io)))
1723                 return -EFAULT;
1724
1725         switch (io.opcode) {
1726         case nvme_cmd_write:
1727         case nvme_cmd_read:
1728         case nvme_cmd_compare:
1729                 break;
1730         default:
1731                 return -EINVAL;
1732         }
1733
1734         length = (io.nblocks + 1) << ns->lba_shift;
1735         meta_len = (io.nblocks + 1) * ns->ms;
1736         write = io.opcode & 1;
1737
1738         if (meta_len) {
1739                 if (((io.metadata & 3) || !io.metadata) && !ns->ext)
1740                         return -EINVAL;
1741
1742                 if (ns->ext) {
1743                         length += meta_len;
1744                         meta_len = 0;
1745                 }
1746
1747                 meta = dma_alloc_coherent(dev->dev, meta_len,
1748                                                 &meta_dma, GFP_KERNEL);
1749                 if (!meta) {
1750                         status = -ENOMEM;
1751                         goto unmap;
1752                 }
1753                 if (write) {
1754                         if (copy_from_user(meta, (void __user *)io.metadata,
1755                                                                 meta_len)) {
1756                                 status = -EFAULT;
1757                                 goto unmap;
1758                         }
1759                 }
1760         }
1761
1762         memset(&c, 0, sizeof(c));
1763         c.rw.opcode = io.opcode;
1764         c.rw.flags = io.flags;
1765         c.rw.nsid = cpu_to_le32(ns->ns_id);
1766         c.rw.slba = cpu_to_le64(io.slba);
1767         c.rw.length = cpu_to_le16(io.nblocks);
1768         c.rw.control = cpu_to_le16(io.control);
1769         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1770         c.rw.reftag = cpu_to_le32(io.reftag);
1771         c.rw.apptag = cpu_to_le16(io.apptag);
1772         c.rw.appmask = cpu_to_le16(io.appmask);
1773         c.rw.metadata = cpu_to_le64(meta_dma);
1774
1775         status = __nvme_submit_sync_cmd(ns->queue, &c, NULL,
1776                         (void __user *)io.addr, length, NULL, 0);
1777  unmap:
1778         if (meta) {
1779                 if (status == NVME_SC_SUCCESS && !write) {
1780                         if (copy_to_user((void __user *)io.metadata, meta,
1781                                                                 meta_len))
1782                                 status = -EFAULT;
1783                 }
1784                 dma_free_coherent(dev->dev, meta_len, meta, meta_dma);
1785         }
1786         return status;
1787 }
1788
1789 static int nvme_user_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
1790                         struct nvme_passthru_cmd __user *ucmd)
1791 {
1792         struct nvme_passthru_cmd cmd;
1793         struct nvme_command c;
1794         unsigned timeout = 0;
1795         int status;
1796
1797         if (!capable(CAP_SYS_ADMIN))
1798                 return -EACCES;
1799         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1800                 return -EFAULT;
1801
1802         memset(&c, 0, sizeof(c));
1803         c.common.opcode = cmd.opcode;
1804         c.common.flags = cmd.flags;
1805         c.common.nsid = cpu_to_le32(cmd.nsid);
1806         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1807         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1808         c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1809         c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1810         c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1811         c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1812         c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1813         c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1814
1815         if (cmd.timeout_ms)
1816                 timeout = msecs_to_jiffies(cmd.timeout_ms);
1817
1818         status = __nvme_submit_sync_cmd(ns ? ns->queue : dev->admin_q, &c,
1819                         NULL, (void __user *)cmd.addr, cmd.data_len,
1820                         &cmd.result, timeout);
1821         if (status >= 0) {
1822                 if (put_user(cmd.result, &ucmd->result))
1823                         return -EFAULT;
1824         }
1825
1826         return status;
1827 }
1828
1829 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1830                                                         unsigned long arg)
1831 {
1832         struct nvme_ns *ns = bdev->bd_disk->private_data;
1833
1834         switch (cmd) {
1835         case NVME_IOCTL_ID:
1836                 force_successful_syscall_return();
1837                 return ns->ns_id;
1838         case NVME_IOCTL_ADMIN_CMD:
1839                 return nvme_user_cmd(ns->dev, NULL, (void __user *)arg);
1840         case NVME_IOCTL_IO_CMD:
1841                 return nvme_user_cmd(ns->dev, ns, (void __user *)arg);
1842         case NVME_IOCTL_SUBMIT_IO:
1843                 return nvme_submit_io(ns, (void __user *)arg);
1844         case SG_GET_VERSION_NUM:
1845                 return nvme_sg_get_version_num((void __user *)arg);
1846         case SG_IO:
1847                 return nvme_sg_io(ns, (void __user *)arg);
1848         default:
1849                 return -ENOTTY;
1850         }
1851 }
1852
1853 #ifdef CONFIG_COMPAT
1854 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1855                                         unsigned int cmd, unsigned long arg)
1856 {
1857         switch (cmd) {
1858         case SG_IO:
1859                 return -ENOIOCTLCMD;
1860         }
1861         return nvme_ioctl(bdev, mode, cmd, arg);
1862 }
1863 #else
1864 #define nvme_compat_ioctl       NULL
1865 #endif
1866
1867 static int nvme_open(struct block_device *bdev, fmode_t mode)
1868 {
1869         int ret = 0;
1870         struct nvme_ns *ns;
1871
1872         spin_lock(&dev_list_lock);
1873         ns = bdev->bd_disk->private_data;
1874         if (!ns)
1875                 ret = -ENXIO;
1876         else if (!kref_get_unless_zero(&ns->dev->kref))
1877                 ret = -ENXIO;
1878         spin_unlock(&dev_list_lock);
1879
1880         return ret;
1881 }
1882
1883 static void nvme_free_dev(struct kref *kref);
1884
1885 static void nvme_release(struct gendisk *disk, fmode_t mode)
1886 {
1887         struct nvme_ns *ns = disk->private_data;
1888         struct nvme_dev *dev = ns->dev;
1889
1890         kref_put(&dev->kref, nvme_free_dev);
1891 }
1892
1893 static int nvme_getgeo(struct block_device *bd, struct hd_geometry *geo)
1894 {
1895         /* some standard values */
1896         geo->heads = 1 << 6;
1897         geo->sectors = 1 << 5;
1898         geo->cylinders = get_capacity(bd->bd_disk) >> 11;
1899         return 0;
1900 }
1901
1902 static void nvme_config_discard(struct nvme_ns *ns)
1903 {
1904         u32 logical_block_size = queue_logical_block_size(ns->queue);
1905         ns->queue->limits.discard_zeroes_data = 0;
1906         ns->queue->limits.discard_alignment = logical_block_size;
1907         ns->queue->limits.discard_granularity = logical_block_size;
1908         ns->queue->limits.max_discard_sectors = 0xffffffff;
1909         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1910 }
1911
1912 static int nvme_revalidate_disk(struct gendisk *disk)
1913 {
1914         struct nvme_ns *ns = disk->private_data;
1915         struct nvme_dev *dev = ns->dev;
1916         struct nvme_id_ns *id;
1917         u8 lbaf, pi_type;
1918         u16 old_ms;
1919         unsigned short bs;
1920
1921         if (nvme_identify_ns(dev, ns->ns_id, &id)) {
1922                 dev_warn(dev->dev, "%s: Identify failure\n", __func__);
1923                 return 0;
1924         }
1925
1926         old_ms = ns->ms;
1927         lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
1928         ns->lba_shift = id->lbaf[lbaf].ds;
1929         ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
1930         ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1931
1932         /*
1933          * If identify namespace failed, use default 512 byte block size so
1934          * block layer can use before failing read/write for 0 capacity.
1935          */
1936         if (ns->lba_shift == 0)
1937                 ns->lba_shift = 9;
1938         bs = 1 << ns->lba_shift;
1939
1940         /* XXX: PI implementation requires metadata equal t10 pi tuple size */
1941         pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
1942                                         id->dps & NVME_NS_DPS_PI_MASK : 0;
1943
1944         if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
1945                                 ns->ms != old_ms ||
1946                                 bs != queue_logical_block_size(disk->queue) ||
1947                                 (ns->ms && ns->ext)))
1948                 blk_integrity_unregister(disk);
1949
1950         ns->pi_type = pi_type;
1951         blk_queue_logical_block_size(ns->queue, bs);
1952
1953         if (ns->ms && !blk_get_integrity(disk) && (disk->flags & GENHD_FL_UP) &&
1954                                                                 !ns->ext)
1955                 nvme_init_integrity(ns);
1956
1957         if (id->ncap == 0 || (ns->ms && !blk_get_integrity(disk)))
1958                 set_capacity(disk, 0);
1959         else
1960                 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1961
1962         if (dev->oncs & NVME_CTRL_ONCS_DSM)
1963                 nvme_config_discard(ns);
1964
1965         kfree(id);
1966         return 0;
1967 }
1968
1969 static const struct block_device_operations nvme_fops = {
1970         .owner          = THIS_MODULE,
1971         .ioctl          = nvme_ioctl,
1972         .compat_ioctl   = nvme_compat_ioctl,
1973         .open           = nvme_open,
1974         .release        = nvme_release,
1975         .getgeo         = nvme_getgeo,
1976         .revalidate_disk= nvme_revalidate_disk,
1977 };
1978
1979 static int nvme_kthread(void *data)
1980 {
1981         struct nvme_dev *dev, *next;
1982
1983         while (!kthread_should_stop()) {
1984                 set_current_state(TASK_INTERRUPTIBLE);
1985                 spin_lock(&dev_list_lock);
1986                 list_for_each_entry_safe(dev, next, &dev_list, node) {
1987                         int i;
1988                         if (readl(&dev->bar->csts) & NVME_CSTS_CFS) {
1989                                 if (work_busy(&dev->reset_work))
1990                                         continue;
1991                                 list_del_init(&dev->node);
1992                                 dev_warn(dev->dev,
1993                                         "Failed status: %x, reset controller\n",
1994                                         readl(&dev->bar->csts));
1995                                 dev->reset_workfn = nvme_reset_failed_dev;
1996                                 queue_work(nvme_workq, &dev->reset_work);
1997                                 continue;
1998                         }
1999                         for (i = 0; i < dev->queue_count; i++) {
2000                                 struct nvme_queue *nvmeq = dev->queues[i];
2001                                 if (!nvmeq)
2002                                         continue;
2003                                 spin_lock_irq(&nvmeq->q_lock);
2004                                 nvme_process_cq(nvmeq);
2005
2006                                 while ((i == 0) && (dev->event_limit > 0)) {
2007                                         if (nvme_submit_async_admin_req(dev))
2008                                                 break;
2009                                         dev->event_limit--;
2010                                 }
2011                                 spin_unlock_irq(&nvmeq->q_lock);
2012                         }
2013                 }
2014                 spin_unlock(&dev_list_lock);
2015                 schedule_timeout(round_jiffies_relative(HZ));
2016         }
2017         return 0;
2018 }
2019
2020 static void nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid)
2021 {
2022         struct nvme_ns *ns;
2023         struct gendisk *disk;
2024         int node = dev_to_node(dev->dev);
2025
2026         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
2027         if (!ns)
2028                 return;
2029
2030         ns->queue = blk_mq_init_queue(&dev->tagset);
2031         if (IS_ERR(ns->queue))
2032                 goto out_free_ns;
2033         queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
2034         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
2035         queue_flag_set_unlocked(QUEUE_FLAG_SG_GAPS, ns->queue);
2036         ns->dev = dev;
2037         ns->queue->queuedata = ns;
2038
2039         disk = alloc_disk_node(0, node);
2040         if (!disk)
2041                 goto out_free_queue;
2042
2043         ns->ns_id = nsid;
2044         ns->disk = disk;
2045         ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
2046         list_add_tail(&ns->list, &dev->namespaces);
2047
2048         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2049         if (dev->max_hw_sectors)
2050                 blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
2051         if (dev->stripe_size)
2052                 blk_queue_chunk_sectors(ns->queue, dev->stripe_size >> 9);
2053         if (dev->vwc & NVME_CTRL_VWC_PRESENT)
2054                 blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
2055
2056         disk->major = nvme_major;
2057         disk->first_minor = 0;
2058         disk->fops = &nvme_fops;
2059         disk->private_data = ns;
2060         disk->queue = ns->queue;
2061         disk->driverfs_dev = dev->device;
2062         disk->flags = GENHD_FL_EXT_DEVT;
2063         sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
2064
2065         /*
2066          * Initialize capacity to 0 until we establish the namespace format and
2067          * setup integrity extentions if necessary. The revalidate_disk after
2068          * add_disk allows the driver to register with integrity if the format
2069          * requires it.
2070          */
2071         set_capacity(disk, 0);
2072         nvme_revalidate_disk(ns->disk);
2073         add_disk(ns->disk);
2074         if (ns->ms)
2075                 revalidate_disk(ns->disk);
2076         return;
2077  out_free_queue:
2078         blk_cleanup_queue(ns->queue);
2079  out_free_ns:
2080         kfree(ns);
2081 }
2082
2083 static void nvme_create_io_queues(struct nvme_dev *dev)
2084 {
2085         unsigned i;
2086
2087         for (i = dev->queue_count; i <= dev->max_qid; i++)
2088                 if (!nvme_alloc_queue(dev, i, dev->q_depth))
2089                         break;
2090
2091         for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
2092                 if (nvme_create_queue(dev->queues[i], i))
2093                         break;
2094 }
2095
2096 static int set_queue_count(struct nvme_dev *dev, int count)
2097 {
2098         int status;
2099         u32 result;
2100         u32 q_count = (count - 1) | ((count - 1) << 16);
2101
2102         status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
2103                                                                 &result);
2104         if (status < 0)
2105                 return status;
2106         if (status > 0) {
2107                 dev_err(dev->dev, "Could not set queue count (%d)\n", status);
2108                 return 0;
2109         }
2110         return min(result & 0xffff, result >> 16) + 1;
2111 }
2112
2113 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
2114 {
2115         return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
2116 }
2117
2118 static int nvme_setup_io_queues(struct nvme_dev *dev)
2119 {
2120         struct nvme_queue *adminq = dev->queues[0];
2121         struct pci_dev *pdev = to_pci_dev(dev->dev);
2122         int result, i, vecs, nr_io_queues, size;
2123
2124         nr_io_queues = num_possible_cpus();
2125         result = set_queue_count(dev, nr_io_queues);
2126         if (result <= 0)
2127                 return result;
2128         if (result < nr_io_queues)
2129                 nr_io_queues = result;
2130
2131         size = db_bar_size(dev, nr_io_queues);
2132         if (size > 8192) {
2133                 iounmap(dev->bar);
2134                 do {
2135                         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
2136                         if (dev->bar)
2137                                 break;
2138                         if (!--nr_io_queues)
2139                                 return -ENOMEM;
2140                         size = db_bar_size(dev, nr_io_queues);
2141                 } while (1);
2142                 dev->dbs = ((void __iomem *)dev->bar) + 4096;
2143                 adminq->q_db = dev->dbs;
2144         }
2145
2146         /* Deregister the admin queue's interrupt */
2147         free_irq(dev->entry[0].vector, adminq);
2148
2149         /*
2150          * If we enable msix early due to not intx, disable it again before
2151          * setting up the full range we need.
2152          */
2153         if (!pdev->irq)
2154                 pci_disable_msix(pdev);
2155
2156         for (i = 0; i < nr_io_queues; i++)
2157                 dev->entry[i].entry = i;
2158         vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
2159         if (vecs < 0) {
2160                 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
2161                 if (vecs < 0) {
2162                         vecs = 1;
2163                 } else {
2164                         for (i = 0; i < vecs; i++)
2165                                 dev->entry[i].vector = i + pdev->irq;
2166                 }
2167         }
2168
2169         /*
2170          * Should investigate if there's a performance win from allocating
2171          * more queues than interrupt vectors; it might allow the submission
2172          * path to scale better, even if the receive path is limited by the
2173          * number of interrupts.
2174          */
2175         nr_io_queues = vecs;
2176         dev->max_qid = nr_io_queues;
2177
2178         result = queue_request_irq(dev, adminq, adminq->irqname);
2179         if (result)
2180                 goto free_queues;
2181
2182         /* Free previously allocated queues that are no longer usable */
2183         nvme_free_queues(dev, nr_io_queues + 1);
2184         nvme_create_io_queues(dev);
2185
2186         return 0;
2187
2188  free_queues:
2189         nvme_free_queues(dev, 1);
2190         return result;
2191 }
2192
2193 /*
2194  * Return: error value if an error occurred setting up the queues or calling
2195  * Identify Device.  0 if these succeeded, even if adding some of the
2196  * namespaces failed.  At the moment, these failures are silent.  TBD which
2197  * failures should be reported.
2198  */
2199 static int nvme_dev_add(struct nvme_dev *dev)
2200 {
2201         struct pci_dev *pdev = to_pci_dev(dev->dev);
2202         int res;
2203         unsigned nn, i;
2204         struct nvme_id_ctrl *ctrl;
2205         int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
2206
2207         res = nvme_identify_ctrl(dev, &ctrl);
2208         if (res) {
2209                 dev_err(dev->dev, "Identify Controller failed (%d)\n", res);
2210                 return -EIO;
2211         }
2212
2213         nn = le32_to_cpup(&ctrl->nn);
2214         dev->oncs = le16_to_cpup(&ctrl->oncs);
2215         dev->abort_limit = ctrl->acl + 1;
2216         dev->vwc = ctrl->vwc;
2217         memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
2218         memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
2219         memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
2220         if (ctrl->mdts)
2221                 dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
2222         if ((pdev->vendor == PCI_VENDOR_ID_INTEL) &&
2223                         (pdev->device == 0x0953) && ctrl->vs[3]) {
2224                 unsigned int max_hw_sectors;
2225
2226                 dev->stripe_size = 1 << (ctrl->vs[3] + shift);
2227                 max_hw_sectors = dev->stripe_size >> (shift - 9);
2228                 if (dev->max_hw_sectors) {
2229                         dev->max_hw_sectors = min(max_hw_sectors,
2230                                                         dev->max_hw_sectors);
2231                 } else
2232                         dev->max_hw_sectors = max_hw_sectors;
2233         }
2234         kfree(ctrl);
2235
2236         dev->tagset.ops = &nvme_mq_ops;
2237         dev->tagset.nr_hw_queues = dev->online_queues - 1;
2238         dev->tagset.timeout = NVME_IO_TIMEOUT;
2239         dev->tagset.numa_node = dev_to_node(dev->dev);
2240         dev->tagset.queue_depth =
2241                                 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2242         dev->tagset.cmd_size = nvme_cmd_size(dev);
2243         dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2244         dev->tagset.driver_data = dev;
2245
2246         if (blk_mq_alloc_tag_set(&dev->tagset))
2247                 return 0;
2248
2249         for (i = 1; i <= nn; i++)
2250                 nvme_alloc_ns(dev, i);
2251
2252         return 0;
2253 }
2254
2255 static int nvme_dev_map(struct nvme_dev *dev)
2256 {
2257         u64 cap;
2258         int bars, result = -ENOMEM;
2259         struct pci_dev *pdev = to_pci_dev(dev->dev);
2260
2261         if (pci_enable_device_mem(pdev))
2262                 return result;
2263
2264         dev->entry[0].vector = pdev->irq;
2265         pci_set_master(pdev);
2266         bars = pci_select_bars(pdev, IORESOURCE_MEM);
2267         if (!bars)
2268                 goto disable_pci;
2269
2270         if (pci_request_selected_regions(pdev, bars, "nvme"))
2271                 goto disable_pci;
2272
2273         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2274             dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
2275                 goto disable;
2276
2277         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2278         if (!dev->bar)
2279                 goto disable;
2280
2281         if (readl(&dev->bar->csts) == -1) {
2282                 result = -ENODEV;
2283                 goto unmap;
2284         }
2285
2286         /*
2287          * Some devices don't advertse INTx interrupts, pre-enable a single
2288          * MSIX vec for setup. We'll adjust this later.
2289          */
2290         if (!pdev->irq) {
2291                 result = pci_enable_msix(pdev, dev->entry, 1);
2292                 if (result < 0)
2293                         goto unmap;
2294         }
2295
2296         cap = readq(&dev->bar->cap);
2297         dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
2298         dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
2299         dev->dbs = ((void __iomem *)dev->bar) + 4096;
2300
2301         return 0;
2302
2303  unmap:
2304         iounmap(dev->bar);
2305         dev->bar = NULL;
2306  disable:
2307         pci_release_regions(pdev);
2308  disable_pci:
2309         pci_disable_device(pdev);
2310         return result;
2311 }
2312
2313 static void nvme_dev_unmap(struct nvme_dev *dev)
2314 {
2315         struct pci_dev *pdev = to_pci_dev(dev->dev);
2316
2317         if (pdev->msi_enabled)
2318                 pci_disable_msi(pdev);
2319         else if (pdev->msix_enabled)
2320                 pci_disable_msix(pdev);
2321
2322         if (dev->bar) {
2323                 iounmap(dev->bar);
2324                 dev->bar = NULL;
2325                 pci_release_regions(pdev);
2326         }
2327
2328         if (pci_is_enabled(pdev))
2329                 pci_disable_device(pdev);
2330 }
2331
2332 struct nvme_delq_ctx {
2333         struct task_struct *waiter;
2334         struct kthread_worker *worker;
2335         atomic_t refcount;
2336 };
2337
2338 static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
2339 {
2340         dq->waiter = current;
2341         mb();
2342
2343         for (;;) {
2344                 set_current_state(TASK_KILLABLE);
2345                 if (!atomic_read(&dq->refcount))
2346                         break;
2347                 if (!schedule_timeout(ADMIN_TIMEOUT) ||
2348                                         fatal_signal_pending(current)) {
2349                         /*
2350                          * Disable the controller first since we can't trust it
2351                          * at this point, but leave the admin queue enabled
2352                          * until all queue deletion requests are flushed.
2353                          * FIXME: This may take a while if there are more h/w
2354                          * queues than admin tags.
2355                          */
2356                         set_current_state(TASK_RUNNING);
2357                         nvme_disable_ctrl(dev, readq(&dev->bar->cap));
2358                         nvme_clear_queue(dev->queues[0]);
2359                         flush_kthread_worker(dq->worker);
2360                         nvme_disable_queue(dev, 0);
2361                         return;
2362                 }
2363         }
2364         set_current_state(TASK_RUNNING);
2365 }
2366
2367 static void nvme_put_dq(struct nvme_delq_ctx *dq)
2368 {
2369         atomic_dec(&dq->refcount);
2370         if (dq->waiter)
2371                 wake_up_process(dq->waiter);
2372 }
2373
2374 static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
2375 {
2376         atomic_inc(&dq->refcount);
2377         return dq;
2378 }
2379
2380 static void nvme_del_queue_end(struct nvme_queue *nvmeq)
2381 {
2382         struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
2383         nvme_put_dq(dq);
2384 }
2385
2386 static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
2387                                                 kthread_work_func_t fn)
2388 {
2389         struct nvme_command c;
2390
2391         memset(&c, 0, sizeof(c));
2392         c.delete_queue.opcode = opcode;
2393         c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2394
2395         init_kthread_work(&nvmeq->cmdinfo.work, fn);
2396         return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
2397                                                                 ADMIN_TIMEOUT);
2398 }
2399
2400 static void nvme_del_cq_work_handler(struct kthread_work *work)
2401 {
2402         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2403                                                         cmdinfo.work);
2404         nvme_del_queue_end(nvmeq);
2405 }
2406
2407 static int nvme_delete_cq(struct nvme_queue *nvmeq)
2408 {
2409         return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
2410                                                 nvme_del_cq_work_handler);
2411 }
2412
2413 static void nvme_del_sq_work_handler(struct kthread_work *work)
2414 {
2415         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2416                                                         cmdinfo.work);
2417         int status = nvmeq->cmdinfo.status;
2418
2419         if (!status)
2420                 status = nvme_delete_cq(nvmeq);
2421         if (status)
2422                 nvme_del_queue_end(nvmeq);
2423 }
2424
2425 static int nvme_delete_sq(struct nvme_queue *nvmeq)
2426 {
2427         return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
2428                                                 nvme_del_sq_work_handler);
2429 }
2430
2431 static void nvme_del_queue_start(struct kthread_work *work)
2432 {
2433         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2434                                                         cmdinfo.work);
2435         if (nvme_delete_sq(nvmeq))
2436                 nvme_del_queue_end(nvmeq);
2437 }
2438
2439 static void nvme_disable_io_queues(struct nvme_dev *dev)
2440 {
2441         int i;
2442         DEFINE_KTHREAD_WORKER_ONSTACK(worker);
2443         struct nvme_delq_ctx dq;
2444         struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
2445                                         &worker, "nvme%d", dev->instance);
2446
2447         if (IS_ERR(kworker_task)) {
2448                 dev_err(dev->dev,
2449                         "Failed to create queue del task\n");
2450                 for (i = dev->queue_count - 1; i > 0; i--)
2451                         nvme_disable_queue(dev, i);
2452                 return;
2453         }
2454
2455         dq.waiter = NULL;
2456         atomic_set(&dq.refcount, 0);
2457         dq.worker = &worker;
2458         for (i = dev->queue_count - 1; i > 0; i--) {
2459                 struct nvme_queue *nvmeq = dev->queues[i];
2460
2461                 if (nvme_suspend_queue(nvmeq))
2462                         continue;
2463                 nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
2464                 nvmeq->cmdinfo.worker = dq.worker;
2465                 init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
2466                 queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
2467         }
2468         nvme_wait_dq(&dq, dev);
2469         kthread_stop(kworker_task);
2470 }
2471
2472 /*
2473 * Remove the node from the device list and check
2474 * for whether or not we need to stop the nvme_thread.
2475 */
2476 static void nvme_dev_list_remove(struct nvme_dev *dev)
2477 {
2478         struct task_struct *tmp = NULL;
2479
2480         spin_lock(&dev_list_lock);
2481         list_del_init(&dev->node);
2482         if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2483                 tmp = nvme_thread;
2484                 nvme_thread = NULL;
2485         }
2486         spin_unlock(&dev_list_lock);
2487
2488         if (tmp)
2489                 kthread_stop(tmp);
2490 }
2491
2492 static void nvme_freeze_queues(struct nvme_dev *dev)
2493 {
2494         struct nvme_ns *ns;
2495
2496         list_for_each_entry(ns, &dev->namespaces, list) {
2497                 blk_mq_freeze_queue_start(ns->queue);
2498
2499                 spin_lock_irq(ns->queue->queue_lock);
2500                 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
2501                 spin_unlock_irq(ns->queue->queue_lock);
2502
2503                 blk_mq_cancel_requeue_work(ns->queue);
2504                 blk_mq_stop_hw_queues(ns->queue);
2505         }
2506 }
2507
2508 static void nvme_unfreeze_queues(struct nvme_dev *dev)
2509 {
2510         struct nvme_ns *ns;
2511
2512         list_for_each_entry(ns, &dev->namespaces, list) {
2513                 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
2514                 blk_mq_unfreeze_queue(ns->queue);
2515                 blk_mq_start_stopped_hw_queues(ns->queue, true);
2516                 blk_mq_kick_requeue_list(ns->queue);
2517         }
2518 }
2519
2520 static void nvme_dev_shutdown(struct nvme_dev *dev)
2521 {
2522         int i;
2523         u32 csts = -1;
2524
2525         nvme_dev_list_remove(dev);
2526
2527         if (dev->bar) {
2528                 nvme_freeze_queues(dev);
2529                 csts = readl(&dev->bar->csts);
2530         }
2531         if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
2532                 for (i = dev->queue_count - 1; i >= 0; i--) {
2533                         struct nvme_queue *nvmeq = dev->queues[i];
2534                         nvme_suspend_queue(nvmeq);
2535                 }
2536         } else {
2537                 nvme_disable_io_queues(dev);
2538                 nvme_shutdown_ctrl(dev);
2539                 nvme_disable_queue(dev, 0);
2540         }
2541         nvme_dev_unmap(dev);
2542
2543         for (i = dev->queue_count - 1; i >= 0; i--)
2544                 nvme_clear_queue(dev->queues[i]);
2545 }
2546
2547 static void nvme_dev_remove(struct nvme_dev *dev)
2548 {
2549         struct nvme_ns *ns;
2550
2551         list_for_each_entry(ns, &dev->namespaces, list) {
2552                 if (ns->disk->flags & GENHD_FL_UP) {
2553                         if (blk_get_integrity(ns->disk))
2554                                 blk_integrity_unregister(ns->disk);
2555                         del_gendisk(ns->disk);
2556                 }
2557                 if (!blk_queue_dying(ns->queue)) {
2558                         blk_mq_abort_requeue_list(ns->queue);
2559                         blk_cleanup_queue(ns->queue);
2560                 }
2561         }
2562 }
2563
2564 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2565 {
2566         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2567                                                 PAGE_SIZE, PAGE_SIZE, 0);
2568         if (!dev->prp_page_pool)
2569                 return -ENOMEM;
2570
2571         /* Optimisation for I/Os between 4k and 128k */
2572         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2573                                                 256, 256, 0);
2574         if (!dev->prp_small_pool) {
2575                 dma_pool_destroy(dev->prp_page_pool);
2576                 return -ENOMEM;
2577         }
2578         return 0;
2579 }
2580
2581 static void nvme_release_prp_pools(struct nvme_dev *dev)
2582 {
2583         dma_pool_destroy(dev->prp_page_pool);
2584         dma_pool_destroy(dev->prp_small_pool);
2585 }
2586
2587 static DEFINE_IDA(nvme_instance_ida);
2588
2589 static int nvme_set_instance(struct nvme_dev *dev)
2590 {
2591         int instance, error;
2592
2593         do {
2594                 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2595                         return -ENODEV;
2596
2597                 spin_lock(&dev_list_lock);
2598                 error = ida_get_new(&nvme_instance_ida, &instance);
2599                 spin_unlock(&dev_list_lock);
2600         } while (error == -EAGAIN);
2601
2602         if (error)
2603                 return -ENODEV;
2604
2605         dev->instance = instance;
2606         return 0;
2607 }
2608
2609 static void nvme_release_instance(struct nvme_dev *dev)
2610 {
2611         spin_lock(&dev_list_lock);
2612         ida_remove(&nvme_instance_ida, dev->instance);
2613         spin_unlock(&dev_list_lock);
2614 }
2615
2616 static void nvme_free_namespaces(struct nvme_dev *dev)
2617 {
2618         struct nvme_ns *ns, *next;
2619
2620         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
2621                 list_del(&ns->list);
2622
2623                 spin_lock(&dev_list_lock);
2624                 ns->disk->private_data = NULL;
2625                 spin_unlock(&dev_list_lock);
2626
2627                 put_disk(ns->disk);
2628                 kfree(ns);
2629         }
2630 }
2631
2632 static void nvme_free_dev(struct kref *kref)
2633 {
2634         struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
2635
2636         put_device(dev->dev);
2637         put_device(dev->device);
2638         nvme_free_namespaces(dev);
2639         nvme_release_instance(dev);
2640         blk_mq_free_tag_set(&dev->tagset);
2641         blk_put_queue(dev->admin_q);
2642         kfree(dev->queues);
2643         kfree(dev->entry);
2644         kfree(dev);
2645 }
2646
2647 static int nvme_dev_open(struct inode *inode, struct file *f)
2648 {
2649         struct nvme_dev *dev;
2650         int instance = iminor(inode);
2651         int ret = -ENODEV;
2652
2653         spin_lock(&dev_list_lock);
2654         list_for_each_entry(dev, &dev_list, node) {
2655                 if (dev->instance == instance) {
2656                         if (!dev->admin_q) {
2657                                 ret = -EWOULDBLOCK;
2658                                 break;
2659                         }
2660                         if (!kref_get_unless_zero(&dev->kref))
2661                                 break;
2662                         f->private_data = dev;
2663                         ret = 0;
2664                         break;
2665                 }
2666         }
2667         spin_unlock(&dev_list_lock);
2668
2669         return ret;
2670 }
2671
2672 static int nvme_dev_release(struct inode *inode, struct file *f)
2673 {
2674         struct nvme_dev *dev = f->private_data;
2675         kref_put(&dev->kref, nvme_free_dev);
2676         return 0;
2677 }
2678
2679 static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
2680 {
2681         struct nvme_dev *dev = f->private_data;
2682         struct nvme_ns *ns;
2683
2684         switch (cmd) {
2685         case NVME_IOCTL_ADMIN_CMD:
2686                 return nvme_user_cmd(dev, NULL, (void __user *)arg);
2687         case NVME_IOCTL_IO_CMD:
2688                 if (list_empty(&dev->namespaces))
2689                         return -ENOTTY;
2690                 ns = list_first_entry(&dev->namespaces, struct nvme_ns, list);
2691                 return nvme_user_cmd(dev, ns, (void __user *)arg);
2692         default:
2693                 return -ENOTTY;
2694         }
2695 }
2696
2697 static const struct file_operations nvme_dev_fops = {
2698         .owner          = THIS_MODULE,
2699         .open           = nvme_dev_open,
2700         .release        = nvme_dev_release,
2701         .unlocked_ioctl = nvme_dev_ioctl,
2702         .compat_ioctl   = nvme_dev_ioctl,
2703 };
2704
2705 static void nvme_set_irq_hints(struct nvme_dev *dev)
2706 {
2707         struct nvme_queue *nvmeq;
2708         int i;
2709
2710         for (i = 0; i < dev->online_queues; i++) {
2711                 nvmeq = dev->queues[i];
2712
2713                 if (!nvmeq->tags || !(*nvmeq->tags))
2714                         continue;
2715
2716                 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
2717                                         blk_mq_tags_cpumask(*nvmeq->tags));
2718         }
2719 }
2720
2721 static int nvme_dev_start(struct nvme_dev *dev)
2722 {
2723         int result;
2724         bool start_thread = false;
2725
2726         result = nvme_dev_map(dev);
2727         if (result)
2728                 return result;
2729
2730         result = nvme_configure_admin_queue(dev);
2731         if (result)
2732                 goto unmap;
2733
2734         spin_lock(&dev_list_lock);
2735         if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
2736                 start_thread = true;
2737                 nvme_thread = NULL;
2738         }
2739         list_add(&dev->node, &dev_list);
2740         spin_unlock(&dev_list_lock);
2741
2742         if (start_thread) {
2743                 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2744                 wake_up_all(&nvme_kthread_wait);
2745         } else
2746                 wait_event_killable(nvme_kthread_wait, nvme_thread);
2747
2748         if (IS_ERR_OR_NULL(nvme_thread)) {
2749                 result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
2750                 goto disable;
2751         }
2752
2753         nvme_init_queue(dev->queues[0], 0);
2754         result = nvme_alloc_admin_tags(dev);
2755         if (result)
2756                 goto disable;
2757
2758         result = nvme_setup_io_queues(dev);
2759         if (result)
2760                 goto free_tags;
2761
2762         nvme_set_irq_hints(dev);
2763
2764         dev->event_limit = 1;
2765         return result;
2766
2767  free_tags:
2768         nvme_dev_remove_admin(dev);
2769  disable:
2770         nvme_disable_queue(dev, 0);
2771         nvme_dev_list_remove(dev);
2772  unmap:
2773         nvme_dev_unmap(dev);
2774         return result;
2775 }
2776
2777 static int nvme_remove_dead_ctrl(void *arg)
2778 {
2779         struct nvme_dev *dev = (struct nvme_dev *)arg;
2780         struct pci_dev *pdev = to_pci_dev(dev->dev);
2781
2782         if (pci_get_drvdata(pdev))
2783                 pci_stop_and_remove_bus_device_locked(pdev);
2784         kref_put(&dev->kref, nvme_free_dev);
2785         return 0;
2786 }
2787
2788 static void nvme_remove_disks(struct work_struct *ws)
2789 {
2790         struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2791
2792         nvme_free_queues(dev, 1);
2793         nvme_dev_remove(dev);
2794 }
2795
2796 static int nvme_dev_resume(struct nvme_dev *dev)
2797 {
2798         int ret;
2799
2800         ret = nvme_dev_start(dev);
2801         if (ret)
2802                 return ret;
2803         if (dev->online_queues < 2) {
2804                 spin_lock(&dev_list_lock);
2805                 dev->reset_workfn = nvme_remove_disks;
2806                 queue_work(nvme_workq, &dev->reset_work);
2807                 spin_unlock(&dev_list_lock);
2808         } else {
2809                 nvme_unfreeze_queues(dev);
2810                 nvme_set_irq_hints(dev);
2811         }
2812         return 0;
2813 }
2814
2815 static void nvme_dev_reset(struct nvme_dev *dev)
2816 {
2817         nvme_dev_shutdown(dev);
2818         if (nvme_dev_resume(dev)) {
2819                 dev_warn(dev->dev, "Device failed to resume\n");
2820                 kref_get(&dev->kref);
2821                 if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
2822                                                         dev->instance))) {
2823                         dev_err(dev->dev,
2824                                 "Failed to start controller remove task\n");
2825                         kref_put(&dev->kref, nvme_free_dev);
2826                 }
2827         }
2828 }
2829
2830 static void nvme_reset_failed_dev(struct work_struct *ws)
2831 {
2832         struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2833         nvme_dev_reset(dev);
2834 }
2835
2836 static void nvme_reset_workfn(struct work_struct *work)
2837 {
2838         struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
2839         dev->reset_workfn(work);
2840 }
2841
2842 static void nvme_async_probe(struct work_struct *work);
2843 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2844 {
2845         int node, result = -ENOMEM;
2846         struct nvme_dev *dev;
2847
2848         node = dev_to_node(&pdev->dev);
2849         if (node == NUMA_NO_NODE)
2850                 set_dev_node(&pdev->dev, 0);
2851
2852         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2853         if (!dev)
2854                 return -ENOMEM;
2855         dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
2856                                                         GFP_KERNEL, node);
2857         if (!dev->entry)
2858                 goto free;
2859         dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2860                                                         GFP_KERNEL, node);
2861         if (!dev->queues)
2862                 goto free;
2863
2864         INIT_LIST_HEAD(&dev->namespaces);
2865         dev->reset_workfn = nvme_reset_failed_dev;
2866         INIT_WORK(&dev->reset_work, nvme_reset_workfn);
2867         dev->dev = get_device(&pdev->dev);
2868         pci_set_drvdata(pdev, dev);
2869         result = nvme_set_instance(dev);
2870         if (result)
2871                 goto put_pci;
2872
2873         result = nvme_setup_prp_pools(dev);
2874         if (result)
2875                 goto release;
2876
2877         kref_init(&dev->kref);
2878         dev->device = device_create(nvme_class, &pdev->dev,
2879                                 MKDEV(nvme_char_major, dev->instance),
2880                                 dev, "nvme%d", dev->instance);
2881         if (IS_ERR(dev->device)) {
2882                 result = PTR_ERR(dev->device);
2883                 goto release_pools;
2884         }
2885         get_device(dev->device);
2886
2887         INIT_LIST_HEAD(&dev->node);
2888         INIT_WORK(&dev->probe_work, nvme_async_probe);
2889         schedule_work(&dev->probe_work);
2890         return 0;
2891
2892  release_pools:
2893         nvme_release_prp_pools(dev);
2894  release:
2895         nvme_release_instance(dev);
2896  put_pci:
2897         put_device(dev->dev);
2898  free:
2899         kfree(dev->queues);
2900         kfree(dev->entry);
2901         kfree(dev);
2902         return result;
2903 }
2904
2905 static void nvme_async_probe(struct work_struct *work)
2906 {
2907         struct nvme_dev *dev = container_of(work, struct nvme_dev, probe_work);
2908         int result;
2909
2910         result = nvme_dev_start(dev);
2911         if (result)
2912                 goto reset;
2913
2914         if (dev->online_queues > 1)
2915                 result = nvme_dev_add(dev);
2916         if (result)
2917                 goto reset;
2918
2919         nvme_set_irq_hints(dev);
2920         return;
2921  reset:
2922         if (!work_busy(&dev->reset_work)) {
2923                 dev->reset_workfn = nvme_reset_failed_dev;
2924                 queue_work(nvme_workq, &dev->reset_work);
2925         }
2926 }
2927
2928 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2929 {
2930         struct nvme_dev *dev = pci_get_drvdata(pdev);
2931
2932         if (prepare)
2933                 nvme_dev_shutdown(dev);
2934         else
2935                 nvme_dev_resume(dev);
2936 }
2937
2938 static void nvme_shutdown(struct pci_dev *pdev)
2939 {
2940         struct nvme_dev *dev = pci_get_drvdata(pdev);
2941         nvme_dev_shutdown(dev);
2942 }
2943
2944 static void nvme_remove(struct pci_dev *pdev)
2945 {
2946         struct nvme_dev *dev = pci_get_drvdata(pdev);
2947
2948         spin_lock(&dev_list_lock);
2949         list_del_init(&dev->node);
2950         spin_unlock(&dev_list_lock);
2951
2952         pci_set_drvdata(pdev, NULL);
2953         flush_work(&dev->probe_work);
2954         flush_work(&dev->reset_work);
2955         nvme_dev_shutdown(dev);
2956         nvme_dev_remove(dev);
2957         nvme_dev_remove_admin(dev);
2958         device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance));
2959         nvme_free_queues(dev, 0);
2960         nvme_release_prp_pools(dev);
2961         kref_put(&dev->kref, nvme_free_dev);
2962 }
2963
2964 /* These functions are yet to be implemented */
2965 #define nvme_error_detected NULL
2966 #define nvme_dump_registers NULL
2967 #define nvme_link_reset NULL
2968 #define nvme_slot_reset NULL
2969 #define nvme_error_resume NULL
2970
2971 #ifdef CONFIG_PM_SLEEP
2972 static int nvme_suspend(struct device *dev)
2973 {
2974         struct pci_dev *pdev = to_pci_dev(dev);
2975         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2976
2977         nvme_dev_shutdown(ndev);
2978         return 0;
2979 }
2980
2981 static int nvme_resume(struct device *dev)
2982 {
2983         struct pci_dev *pdev = to_pci_dev(dev);
2984         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2985
2986         if (nvme_dev_resume(ndev) && !work_busy(&ndev->reset_work)) {
2987                 ndev->reset_workfn = nvme_reset_failed_dev;
2988                 queue_work(nvme_workq, &ndev->reset_work);
2989         }
2990         return 0;
2991 }
2992 #endif
2993
2994 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2995
2996 static const struct pci_error_handlers nvme_err_handler = {
2997         .error_detected = nvme_error_detected,
2998         .mmio_enabled   = nvme_dump_registers,
2999         .link_reset     = nvme_link_reset,
3000         .slot_reset     = nvme_slot_reset,
3001         .resume         = nvme_error_resume,
3002         .reset_notify   = nvme_reset_notify,
3003 };
3004
3005 /* Move to pci_ids.h later */
3006 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
3007
3008 static const struct pci_device_id nvme_id_table[] = {
3009         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3010         { 0, }
3011 };
3012 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3013
3014 static struct pci_driver nvme_driver = {
3015         .name           = "nvme",
3016         .id_table       = nvme_id_table,
3017         .probe          = nvme_probe,
3018         .remove         = nvme_remove,
3019         .shutdown       = nvme_shutdown,
3020         .driver         = {
3021                 .pm     = &nvme_dev_pm_ops,
3022         },
3023         .err_handler    = &nvme_err_handler,
3024 };
3025
3026 static int __init nvme_init(void)
3027 {
3028         int result;
3029
3030         init_waitqueue_head(&nvme_kthread_wait);
3031
3032         nvme_workq = create_singlethread_workqueue("nvme");
3033         if (!nvme_workq)
3034                 return -ENOMEM;
3035
3036         result = register_blkdev(nvme_major, "nvme");
3037         if (result < 0)
3038                 goto kill_workq;
3039         else if (result > 0)
3040                 nvme_major = result;
3041
3042         result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
3043                                                         &nvme_dev_fops);
3044         if (result < 0)
3045                 goto unregister_blkdev;
3046         else if (result > 0)
3047                 nvme_char_major = result;
3048
3049         nvme_class = class_create(THIS_MODULE, "nvme");
3050         if (IS_ERR(nvme_class)) {
3051                 result = PTR_ERR(nvme_class);
3052                 goto unregister_chrdev;
3053         }
3054
3055         result = pci_register_driver(&nvme_driver);
3056         if (result)
3057                 goto destroy_class;
3058         return 0;
3059
3060  destroy_class:
3061         class_destroy(nvme_class);
3062  unregister_chrdev:
3063         __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
3064  unregister_blkdev:
3065         unregister_blkdev(nvme_major, "nvme");
3066  kill_workq:
3067         destroy_workqueue(nvme_workq);
3068         return result;
3069 }
3070
3071 static void __exit nvme_exit(void)
3072 {
3073         pci_unregister_driver(&nvme_driver);
3074         unregister_blkdev(nvme_major, "nvme");
3075         destroy_workqueue(nvme_workq);
3076         class_destroy(nvme_class);
3077         __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
3078         BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
3079         _nvme_check_size();
3080 }
3081
3082 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3083 MODULE_LICENSE("GPL");
3084 MODULE_VERSION("1.0");
3085 module_init(nvme_init);
3086 module_exit(nvme_exit);