NVMe: Set TASK_INTERRUPTIBLE before processing queues
[linux-2.6-block.git] / drivers / block / nvme-core.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17  */
18
19 #include <linux/nvme.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/delay.h>
24 #include <linux/errno.h>
25 #include <linux/fs.h>
26 #include <linux/genhd.h>
27 #include <linux/idr.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/kdev_t.h>
32 #include <linux/kthread.h>
33 #include <linux/kernel.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/pci.h>
38 #include <linux/poison.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/types.h>
42 #include <scsi/sg.h>
43 #include <asm-generic/io-64-nonatomic-lo-hi.h>
44
45 #define NVME_Q_DEPTH 1024
46 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
47 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
48 #define NVME_MINORS 64
49 #define ADMIN_TIMEOUT   (60 * HZ)
50
51 static int nvme_major;
52 module_param(nvme_major, int, 0);
53
54 static int use_threaded_interrupts;
55 module_param(use_threaded_interrupts, int, 0);
56
57 static DEFINE_SPINLOCK(dev_list_lock);
58 static LIST_HEAD(dev_list);
59 static struct task_struct *nvme_thread;
60
61 /*
62  * An NVM Express queue.  Each device has at least two (one for admin
63  * commands and one for I/O commands).
64  */
65 struct nvme_queue {
66         struct device *q_dmadev;
67         struct nvme_dev *dev;
68         spinlock_t q_lock;
69         struct nvme_command *sq_cmds;
70         volatile struct nvme_completion *cqes;
71         dma_addr_t sq_dma_addr;
72         dma_addr_t cq_dma_addr;
73         wait_queue_head_t sq_full;
74         wait_queue_t sq_cong_wait;
75         struct bio_list sq_cong;
76         u32 __iomem *q_db;
77         u16 q_depth;
78         u16 cq_vector;
79         u16 sq_head;
80         u16 sq_tail;
81         u16 cq_head;
82         u16 cq_phase;
83         unsigned long cmdid_data[];
84 };
85
86 /*
87  * Check we didin't inadvertently grow the command struct
88  */
89 static inline void _nvme_check_size(void)
90 {
91         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
92         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
93         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
94         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
95         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
96         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
97         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
98         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
99         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
100         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
101         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
102 }
103
104 typedef void (*nvme_completion_fn)(struct nvme_dev *, void *,
105                                                 struct nvme_completion *);
106
107 struct nvme_cmd_info {
108         nvme_completion_fn fn;
109         void *ctx;
110         unsigned long timeout;
111 };
112
113 static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
114 {
115         return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
116 }
117
118 /**
119  * alloc_cmdid() - Allocate a Command ID
120  * @nvmeq: The queue that will be used for this command
121  * @ctx: A pointer that will be passed to the handler
122  * @handler: The function to call on completion
123  *
124  * Allocate a Command ID for a queue.  The data passed in will
125  * be passed to the completion handler.  This is implemented by using
126  * the bottom two bits of the ctx pointer to store the handler ID.
127  * Passing in a pointer that's not 4-byte aligned will cause a BUG.
128  * We can change this if it becomes a problem.
129  *
130  * May be called with local interrupts disabled and the q_lock held,
131  * or with interrupts enabled and no locks held.
132  */
133 static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx,
134                                 nvme_completion_fn handler, unsigned timeout)
135 {
136         int depth = nvmeq->q_depth - 1;
137         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
138         int cmdid;
139
140         do {
141                 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
142                 if (cmdid >= depth)
143                         return -EBUSY;
144         } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
145
146         info[cmdid].fn = handler;
147         info[cmdid].ctx = ctx;
148         info[cmdid].timeout = jiffies + timeout;
149         return cmdid;
150 }
151
152 static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
153                                 nvme_completion_fn handler, unsigned timeout)
154 {
155         int cmdid;
156         wait_event_killable(nvmeq->sq_full,
157                 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
158         return (cmdid < 0) ? -EINTR : cmdid;
159 }
160
161 /* Special values must be less than 0x1000 */
162 #define CMD_CTX_BASE            ((void *)POISON_POINTER_DELTA)
163 #define CMD_CTX_CANCELLED       (0x30C + CMD_CTX_BASE)
164 #define CMD_CTX_COMPLETED       (0x310 + CMD_CTX_BASE)
165 #define CMD_CTX_INVALID         (0x314 + CMD_CTX_BASE)
166 #define CMD_CTX_FLUSH           (0x318 + CMD_CTX_BASE)
167
168 static void special_completion(struct nvme_dev *dev, void *ctx,
169                                                 struct nvme_completion *cqe)
170 {
171         if (ctx == CMD_CTX_CANCELLED)
172                 return;
173         if (ctx == CMD_CTX_FLUSH)
174                 return;
175         if (ctx == CMD_CTX_COMPLETED) {
176                 dev_warn(&dev->pci_dev->dev,
177                                 "completed id %d twice on queue %d\n",
178                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
179                 return;
180         }
181         if (ctx == CMD_CTX_INVALID) {
182                 dev_warn(&dev->pci_dev->dev,
183                                 "invalid id %d completed on queue %d\n",
184                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
185                 return;
186         }
187
188         dev_warn(&dev->pci_dev->dev, "Unknown special completion %p\n", ctx);
189 }
190
191 /*
192  * Called with local interrupts disabled and the q_lock held.  May not sleep.
193  */
194 static void *free_cmdid(struct nvme_queue *nvmeq, int cmdid,
195                                                 nvme_completion_fn *fn)
196 {
197         void *ctx;
198         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
199
200         if (cmdid >= nvmeq->q_depth) {
201                 *fn = special_completion;
202                 return CMD_CTX_INVALID;
203         }
204         if (fn)
205                 *fn = info[cmdid].fn;
206         ctx = info[cmdid].ctx;
207         info[cmdid].fn = special_completion;
208         info[cmdid].ctx = CMD_CTX_COMPLETED;
209         clear_bit(cmdid, nvmeq->cmdid_data);
210         wake_up(&nvmeq->sq_full);
211         return ctx;
212 }
213
214 static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid,
215                                                 nvme_completion_fn *fn)
216 {
217         void *ctx;
218         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
219         if (fn)
220                 *fn = info[cmdid].fn;
221         ctx = info[cmdid].ctx;
222         info[cmdid].fn = special_completion;
223         info[cmdid].ctx = CMD_CTX_CANCELLED;
224         return ctx;
225 }
226
227 struct nvme_queue *get_nvmeq(struct nvme_dev *dev)
228 {
229         return dev->queues[get_cpu() + 1];
230 }
231
232 void put_nvmeq(struct nvme_queue *nvmeq)
233 {
234         put_cpu();
235 }
236
237 /**
238  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
239  * @nvmeq: The queue to use
240  * @cmd: The command to send
241  *
242  * Safe to use from interrupt context
243  */
244 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
245 {
246         unsigned long flags;
247         u16 tail;
248         spin_lock_irqsave(&nvmeq->q_lock, flags);
249         tail = nvmeq->sq_tail;
250         memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
251         if (++tail == nvmeq->q_depth)
252                 tail = 0;
253         writel(tail, nvmeq->q_db);
254         nvmeq->sq_tail = tail;
255         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
256
257         return 0;
258 }
259
260 static __le64 **iod_list(struct nvme_iod *iod)
261 {
262         return ((void *)iod) + iod->offset;
263 }
264
265 /*
266  * Will slightly overestimate the number of pages needed.  This is OK
267  * as it only leads to a small amount of wasted memory for the lifetime of
268  * the I/O.
269  */
270 static int nvme_npages(unsigned size)
271 {
272         unsigned nprps = DIV_ROUND_UP(size + PAGE_SIZE, PAGE_SIZE);
273         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
274 }
275
276 static struct nvme_iod *
277 nvme_alloc_iod(unsigned nseg, unsigned nbytes, gfp_t gfp)
278 {
279         struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
280                                 sizeof(__le64 *) * nvme_npages(nbytes) +
281                                 sizeof(struct scatterlist) * nseg, gfp);
282
283         if (iod) {
284                 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
285                 iod->npages = -1;
286                 iod->length = nbytes;
287                 iod->nents = 0;
288         }
289
290         return iod;
291 }
292
293 void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
294 {
295         const int last_prp = PAGE_SIZE / 8 - 1;
296         int i;
297         __le64 **list = iod_list(iod);
298         dma_addr_t prp_dma = iod->first_dma;
299
300         if (iod->npages == 0)
301                 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
302         for (i = 0; i < iod->npages; i++) {
303                 __le64 *prp_list = list[i];
304                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
305                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
306                 prp_dma = next_prp_dma;
307         }
308         kfree(iod);
309 }
310
311 static void requeue_bio(struct nvme_dev *dev, struct bio *bio)
312 {
313         struct nvme_queue *nvmeq = get_nvmeq(dev);
314         if (bio_list_empty(&nvmeq->sq_cong))
315                 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
316         bio_list_add(&nvmeq->sq_cong, bio);
317         put_nvmeq(nvmeq);
318         wake_up_process(nvme_thread);
319 }
320
321 static void bio_completion(struct nvme_dev *dev, void *ctx,
322                                                 struct nvme_completion *cqe)
323 {
324         struct nvme_iod *iod = ctx;
325         struct bio *bio = iod->private;
326         u16 status = le16_to_cpup(&cqe->status) >> 1;
327
328         if (iod->nents)
329                 dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
330                         bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
331         nvme_free_iod(dev, iod);
332         if (status) {
333                 bio_endio(bio, -EIO);
334         } else if (bio->bi_vcnt > bio->bi_idx) {
335                 requeue_bio(dev, bio);
336         } else {
337                 bio_endio(bio, 0);
338         }
339 }
340
341 /* length is in bytes.  gfp flags indicates whether we may sleep. */
342 int nvme_setup_prps(struct nvme_dev *dev, struct nvme_common_command *cmd,
343                         struct nvme_iod *iod, int total_len, gfp_t gfp)
344 {
345         struct dma_pool *pool;
346         int length = total_len;
347         struct scatterlist *sg = iod->sg;
348         int dma_len = sg_dma_len(sg);
349         u64 dma_addr = sg_dma_address(sg);
350         int offset = offset_in_page(dma_addr);
351         __le64 *prp_list;
352         __le64 **list = iod_list(iod);
353         dma_addr_t prp_dma;
354         int nprps, i;
355
356         cmd->prp1 = cpu_to_le64(dma_addr);
357         length -= (PAGE_SIZE - offset);
358         if (length <= 0)
359                 return total_len;
360
361         dma_len -= (PAGE_SIZE - offset);
362         if (dma_len) {
363                 dma_addr += (PAGE_SIZE - offset);
364         } else {
365                 sg = sg_next(sg);
366                 dma_addr = sg_dma_address(sg);
367                 dma_len = sg_dma_len(sg);
368         }
369
370         if (length <= PAGE_SIZE) {
371                 cmd->prp2 = cpu_to_le64(dma_addr);
372                 return total_len;
373         }
374
375         nprps = DIV_ROUND_UP(length, PAGE_SIZE);
376         if (nprps <= (256 / 8)) {
377                 pool = dev->prp_small_pool;
378                 iod->npages = 0;
379         } else {
380                 pool = dev->prp_page_pool;
381                 iod->npages = 1;
382         }
383
384         prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
385         if (!prp_list) {
386                 cmd->prp2 = cpu_to_le64(dma_addr);
387                 iod->npages = -1;
388                 return (total_len - length) + PAGE_SIZE;
389         }
390         list[0] = prp_list;
391         iod->first_dma = prp_dma;
392         cmd->prp2 = cpu_to_le64(prp_dma);
393         i = 0;
394         for (;;) {
395                 if (i == PAGE_SIZE / 8) {
396                         __le64 *old_prp_list = prp_list;
397                         prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
398                         if (!prp_list)
399                                 return total_len - length;
400                         list[iod->npages++] = prp_list;
401                         prp_list[0] = old_prp_list[i - 1];
402                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
403                         i = 1;
404                 }
405                 prp_list[i++] = cpu_to_le64(dma_addr);
406                 dma_len -= PAGE_SIZE;
407                 dma_addr += PAGE_SIZE;
408                 length -= PAGE_SIZE;
409                 if (length <= 0)
410                         break;
411                 if (dma_len > 0)
412                         continue;
413                 BUG_ON(dma_len < 0);
414                 sg = sg_next(sg);
415                 dma_addr = sg_dma_address(sg);
416                 dma_len = sg_dma_len(sg);
417         }
418
419         return total_len;
420 }
421
422 /* NVMe scatterlists require no holes in the virtual address */
423 #define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2)   ((vec2)->bv_offset || \
424                         (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
425
426 static int nvme_map_bio(struct device *dev, struct nvme_iod *iod,
427                 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
428 {
429         struct bio_vec *bvec, *bvprv = NULL;
430         struct scatterlist *sg = NULL;
431         int i, old_idx, length = 0, nsegs = 0;
432
433         sg_init_table(iod->sg, psegs);
434         old_idx = bio->bi_idx;
435         bio_for_each_segment(bvec, bio, i) {
436                 if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
437                         sg->length += bvec->bv_len;
438                 } else {
439                         if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec))
440                                 break;
441                         sg = sg ? sg + 1 : iod->sg;
442                         sg_set_page(sg, bvec->bv_page, bvec->bv_len,
443                                                         bvec->bv_offset);
444                         nsegs++;
445                 }
446                 length += bvec->bv_len;
447                 bvprv = bvec;
448         }
449         bio->bi_idx = i;
450         iod->nents = nsegs;
451         sg_mark_end(sg);
452         if (dma_map_sg(dev, iod->sg, iod->nents, dma_dir) == 0) {
453                 bio->bi_idx = old_idx;
454                 return -ENOMEM;
455         }
456         return length;
457 }
458
459 /*
460  * We reuse the small pool to allocate the 16-byte range here as it is not
461  * worth having a special pool for these or additional cases to handle freeing
462  * the iod.
463  */
464 static int nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
465                 struct bio *bio, struct nvme_iod *iod, int cmdid)
466 {
467         struct nvme_dsm_range *range;
468         struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
469
470         range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
471                                                         &iod->first_dma);
472         if (!range)
473                 return -ENOMEM;
474
475         iod_list(iod)[0] = (__le64 *)range;
476         iod->npages = 0;
477
478         range->cattr = cpu_to_le32(0);
479         range->nlb = cpu_to_le32(bio->bi_size >> ns->lba_shift);
480         range->slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_sector));
481
482         memset(cmnd, 0, sizeof(*cmnd));
483         cmnd->dsm.opcode = nvme_cmd_dsm;
484         cmnd->dsm.command_id = cmdid;
485         cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
486         cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
487         cmnd->dsm.nr = 0;
488         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
489
490         if (++nvmeq->sq_tail == nvmeq->q_depth)
491                 nvmeq->sq_tail = 0;
492         writel(nvmeq->sq_tail, nvmeq->q_db);
493
494         return 0;
495 }
496
497 static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
498                                                                 int cmdid)
499 {
500         struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
501
502         memset(cmnd, 0, sizeof(*cmnd));
503         cmnd->common.opcode = nvme_cmd_flush;
504         cmnd->common.command_id = cmdid;
505         cmnd->common.nsid = cpu_to_le32(ns->ns_id);
506
507         if (++nvmeq->sq_tail == nvmeq->q_depth)
508                 nvmeq->sq_tail = 0;
509         writel(nvmeq->sq_tail, nvmeq->q_db);
510
511         return 0;
512 }
513
514 int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
515 {
516         int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
517                                         special_completion, NVME_IO_TIMEOUT);
518         if (unlikely(cmdid < 0))
519                 return cmdid;
520
521         return nvme_submit_flush(nvmeq, ns, cmdid);
522 }
523
524 /*
525  * Called with local interrupts disabled and the q_lock held.  May not sleep.
526  */
527 static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
528                                                                 struct bio *bio)
529 {
530         struct nvme_command *cmnd;
531         struct nvme_iod *iod;
532         enum dma_data_direction dma_dir;
533         int cmdid, length, result = -ENOMEM;
534         u16 control;
535         u32 dsmgmt;
536         int psegs = bio_phys_segments(ns->queue, bio);
537
538         if ((bio->bi_rw & REQ_FLUSH) && psegs) {
539                 result = nvme_submit_flush_data(nvmeq, ns);
540                 if (result)
541                         return result;
542         }
543
544         iod = nvme_alloc_iod(psegs, bio->bi_size, GFP_ATOMIC);
545         if (!iod)
546                 goto nomem;
547         iod->private = bio;
548
549         result = -EBUSY;
550         cmdid = alloc_cmdid(nvmeq, iod, bio_completion, NVME_IO_TIMEOUT);
551         if (unlikely(cmdid < 0))
552                 goto free_iod;
553
554         if (bio->bi_rw & REQ_DISCARD) {
555                 result = nvme_submit_discard(nvmeq, ns, bio, iod, cmdid);
556                 if (result)
557                         goto free_cmdid;
558                 return result;
559         }
560         if ((bio->bi_rw & REQ_FLUSH) && !psegs)
561                 return nvme_submit_flush(nvmeq, ns, cmdid);
562
563         control = 0;
564         if (bio->bi_rw & REQ_FUA)
565                 control |= NVME_RW_FUA;
566         if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
567                 control |= NVME_RW_LR;
568
569         dsmgmt = 0;
570         if (bio->bi_rw & REQ_RAHEAD)
571                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
572
573         cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
574
575         memset(cmnd, 0, sizeof(*cmnd));
576         if (bio_data_dir(bio)) {
577                 cmnd->rw.opcode = nvme_cmd_write;
578                 dma_dir = DMA_TO_DEVICE;
579         } else {
580                 cmnd->rw.opcode = nvme_cmd_read;
581                 dma_dir = DMA_FROM_DEVICE;
582         }
583
584         result = nvme_map_bio(nvmeq->q_dmadev, iod, bio, dma_dir, psegs);
585         if (result < 0)
586                 goto free_cmdid;
587         length = result;
588
589         cmnd->rw.command_id = cmdid;
590         cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
591         length = nvme_setup_prps(nvmeq->dev, &cmnd->common, iod, length,
592                                                                 GFP_ATOMIC);
593         cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_sector));
594         cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1);
595         cmnd->rw.control = cpu_to_le16(control);
596         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
597
598         bio->bi_sector += length >> 9;
599
600         if (++nvmeq->sq_tail == nvmeq->q_depth)
601                 nvmeq->sq_tail = 0;
602         writel(nvmeq->sq_tail, nvmeq->q_db);
603
604         return 0;
605
606  free_cmdid:
607         free_cmdid(nvmeq, cmdid, NULL);
608  free_iod:
609         nvme_free_iod(nvmeq->dev, iod);
610  nomem:
611         return result;
612 }
613
614 static void nvme_make_request(struct request_queue *q, struct bio *bio)
615 {
616         struct nvme_ns *ns = q->queuedata;
617         struct nvme_queue *nvmeq = get_nvmeq(ns->dev);
618         int result = -EBUSY;
619
620         spin_lock_irq(&nvmeq->q_lock);
621         if (bio_list_empty(&nvmeq->sq_cong))
622                 result = nvme_submit_bio_queue(nvmeq, ns, bio);
623         if (unlikely(result)) {
624                 if (bio_list_empty(&nvmeq->sq_cong))
625                         add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
626                 bio_list_add(&nvmeq->sq_cong, bio);
627         }
628
629         spin_unlock_irq(&nvmeq->q_lock);
630         put_nvmeq(nvmeq);
631 }
632
633 static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
634 {
635         u16 head, phase;
636
637         head = nvmeq->cq_head;
638         phase = nvmeq->cq_phase;
639
640         for (;;) {
641                 void *ctx;
642                 nvme_completion_fn fn;
643                 struct nvme_completion cqe = nvmeq->cqes[head];
644                 if ((le16_to_cpu(cqe.status) & 1) != phase)
645                         break;
646                 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
647                 if (++head == nvmeq->q_depth) {
648                         head = 0;
649                         phase = !phase;
650                 }
651
652                 ctx = free_cmdid(nvmeq, cqe.command_id, &fn);
653                 fn(nvmeq->dev, ctx, &cqe);
654         }
655
656         /* If the controller ignores the cq head doorbell and continuously
657          * writes to the queue, it is theoretically possible to wrap around
658          * the queue twice and mistakenly return IRQ_NONE.  Linux only
659          * requires that 0.1% of your interrupts are handled, so this isn't
660          * a big problem.
661          */
662         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
663                 return IRQ_NONE;
664
665         writel(head, nvmeq->q_db + (1 << nvmeq->dev->db_stride));
666         nvmeq->cq_head = head;
667         nvmeq->cq_phase = phase;
668
669         return IRQ_HANDLED;
670 }
671
672 static irqreturn_t nvme_irq(int irq, void *data)
673 {
674         irqreturn_t result;
675         struct nvme_queue *nvmeq = data;
676         spin_lock(&nvmeq->q_lock);
677         result = nvme_process_cq(nvmeq);
678         spin_unlock(&nvmeq->q_lock);
679         return result;
680 }
681
682 static irqreturn_t nvme_irq_check(int irq, void *data)
683 {
684         struct nvme_queue *nvmeq = data;
685         struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
686         if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
687                 return IRQ_NONE;
688         return IRQ_WAKE_THREAD;
689 }
690
691 static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
692 {
693         spin_lock_irq(&nvmeq->q_lock);
694         cancel_cmdid(nvmeq, cmdid, NULL);
695         spin_unlock_irq(&nvmeq->q_lock);
696 }
697
698 struct sync_cmd_info {
699         struct task_struct *task;
700         u32 result;
701         int status;
702 };
703
704 static void sync_completion(struct nvme_dev *dev, void *ctx,
705                                                 struct nvme_completion *cqe)
706 {
707         struct sync_cmd_info *cmdinfo = ctx;
708         cmdinfo->result = le32_to_cpup(&cqe->result);
709         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
710         wake_up_process(cmdinfo->task);
711 }
712
713 /*
714  * Returns 0 on success.  If the result is negative, it's a Linux error code;
715  * if the result is positive, it's an NVM Express status code
716  */
717 int nvme_submit_sync_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
718                                                 u32 *result, unsigned timeout)
719 {
720         int cmdid;
721         struct sync_cmd_info cmdinfo;
722
723         cmdinfo.task = current;
724         cmdinfo.status = -EINTR;
725
726         cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion,
727                                                                 timeout);
728         if (cmdid < 0)
729                 return cmdid;
730         cmd->common.command_id = cmdid;
731
732         set_current_state(TASK_KILLABLE);
733         nvme_submit_cmd(nvmeq, cmd);
734         schedule();
735
736         if (cmdinfo.status == -EINTR) {
737                 nvme_abort_command(nvmeq, cmdid);
738                 return -EINTR;
739         }
740
741         if (result)
742                 *result = cmdinfo.result;
743
744         return cmdinfo.status;
745 }
746
747 int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
748                                                                 u32 *result)
749 {
750         return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
751 }
752
753 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
754 {
755         int status;
756         struct nvme_command c;
757
758         memset(&c, 0, sizeof(c));
759         c.delete_queue.opcode = opcode;
760         c.delete_queue.qid = cpu_to_le16(id);
761
762         status = nvme_submit_admin_cmd(dev, &c, NULL);
763         if (status)
764                 return -EIO;
765         return 0;
766 }
767
768 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
769                                                 struct nvme_queue *nvmeq)
770 {
771         int status;
772         struct nvme_command c;
773         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
774
775         memset(&c, 0, sizeof(c));
776         c.create_cq.opcode = nvme_admin_create_cq;
777         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
778         c.create_cq.cqid = cpu_to_le16(qid);
779         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
780         c.create_cq.cq_flags = cpu_to_le16(flags);
781         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
782
783         status = nvme_submit_admin_cmd(dev, &c, NULL);
784         if (status)
785                 return -EIO;
786         return 0;
787 }
788
789 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
790                                                 struct nvme_queue *nvmeq)
791 {
792         int status;
793         struct nvme_command c;
794         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
795
796         memset(&c, 0, sizeof(c));
797         c.create_sq.opcode = nvme_admin_create_sq;
798         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
799         c.create_sq.sqid = cpu_to_le16(qid);
800         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
801         c.create_sq.sq_flags = cpu_to_le16(flags);
802         c.create_sq.cqid = cpu_to_le16(qid);
803
804         status = nvme_submit_admin_cmd(dev, &c, NULL);
805         if (status)
806                 return -EIO;
807         return 0;
808 }
809
810 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
811 {
812         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
813 }
814
815 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
816 {
817         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
818 }
819
820 int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
821                                                         dma_addr_t dma_addr)
822 {
823         struct nvme_command c;
824
825         memset(&c, 0, sizeof(c));
826         c.identify.opcode = nvme_admin_identify;
827         c.identify.nsid = cpu_to_le32(nsid);
828         c.identify.prp1 = cpu_to_le64(dma_addr);
829         c.identify.cns = cpu_to_le32(cns);
830
831         return nvme_submit_admin_cmd(dev, &c, NULL);
832 }
833
834 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
835                                         dma_addr_t dma_addr, u32 *result)
836 {
837         struct nvme_command c;
838
839         memset(&c, 0, sizeof(c));
840         c.features.opcode = nvme_admin_get_features;
841         c.features.nsid = cpu_to_le32(nsid);
842         c.features.prp1 = cpu_to_le64(dma_addr);
843         c.features.fid = cpu_to_le32(fid);
844
845         return nvme_submit_admin_cmd(dev, &c, result);
846 }
847
848 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
849                                         dma_addr_t dma_addr, u32 *result)
850 {
851         struct nvme_command c;
852
853         memset(&c, 0, sizeof(c));
854         c.features.opcode = nvme_admin_set_features;
855         c.features.prp1 = cpu_to_le64(dma_addr);
856         c.features.fid = cpu_to_le32(fid);
857         c.features.dword11 = cpu_to_le32(dword11);
858
859         return nvme_submit_admin_cmd(dev, &c, result);
860 }
861
862 /**
863  * nvme_cancel_ios - Cancel outstanding I/Os
864  * @queue: The queue to cancel I/Os on
865  * @timeout: True to only cancel I/Os which have timed out
866  */
867 static void nvme_cancel_ios(struct nvme_queue *nvmeq, bool timeout)
868 {
869         int depth = nvmeq->q_depth - 1;
870         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
871         unsigned long now = jiffies;
872         int cmdid;
873
874         for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) {
875                 void *ctx;
876                 nvme_completion_fn fn;
877                 static struct nvme_completion cqe = {
878                         .status = cpu_to_le16(NVME_SC_ABORT_REQ << 1),
879                 };
880
881                 if (timeout && !time_after(now, info[cmdid].timeout))
882                         continue;
883                 dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d\n", cmdid);
884                 ctx = cancel_cmdid(nvmeq, cmdid, &fn);
885                 fn(nvmeq->dev, ctx, &cqe);
886         }
887 }
888
889 static void nvme_free_queue_mem(struct nvme_queue *nvmeq)
890 {
891         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
892                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
893         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
894                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
895         kfree(nvmeq);
896 }
897
898 static void nvme_free_queue(struct nvme_dev *dev, int qid)
899 {
900         struct nvme_queue *nvmeq = dev->queues[qid];
901         int vector = dev->entry[nvmeq->cq_vector].vector;
902
903         spin_lock_irq(&nvmeq->q_lock);
904         nvme_cancel_ios(nvmeq, false);
905         while (bio_list_peek(&nvmeq->sq_cong)) {
906                 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
907                 bio_endio(bio, -EIO);
908         }
909         spin_unlock_irq(&nvmeq->q_lock);
910
911         irq_set_affinity_hint(vector, NULL);
912         free_irq(vector, nvmeq);
913
914         /* Don't tell the adapter to delete the admin queue */
915         if (qid) {
916                 adapter_delete_sq(dev, qid);
917                 adapter_delete_cq(dev, qid);
918         }
919
920         nvme_free_queue_mem(nvmeq);
921 }
922
923 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
924                                                         int depth, int vector)
925 {
926         struct device *dmadev = &dev->pci_dev->dev;
927         unsigned extra = DIV_ROUND_UP(depth, 8) + (depth *
928                                                 sizeof(struct nvme_cmd_info));
929         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
930         if (!nvmeq)
931                 return NULL;
932
933         nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
934                                         &nvmeq->cq_dma_addr, GFP_KERNEL);
935         if (!nvmeq->cqes)
936                 goto free_nvmeq;
937         memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
938
939         nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
940                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
941         if (!nvmeq->sq_cmds)
942                 goto free_cqdma;
943
944         nvmeq->q_dmadev = dmadev;
945         nvmeq->dev = dev;
946         spin_lock_init(&nvmeq->q_lock);
947         nvmeq->cq_head = 0;
948         nvmeq->cq_phase = 1;
949         init_waitqueue_head(&nvmeq->sq_full);
950         init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
951         bio_list_init(&nvmeq->sq_cong);
952         nvmeq->q_db = &dev->dbs[qid << (dev->db_stride + 1)];
953         nvmeq->q_depth = depth;
954         nvmeq->cq_vector = vector;
955
956         return nvmeq;
957
958  free_cqdma:
959         dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
960                                                         nvmeq->cq_dma_addr);
961  free_nvmeq:
962         kfree(nvmeq);
963         return NULL;
964 }
965
966 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
967                                                         const char *name)
968 {
969         if (use_threaded_interrupts)
970                 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
971                                         nvme_irq_check, nvme_irq,
972                                         IRQF_DISABLED | IRQF_SHARED,
973                                         name, nvmeq);
974         return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
975                                 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
976 }
977
978 static struct nvme_queue *nvme_create_queue(struct nvme_dev *dev, int qid,
979                                             int cq_size, int vector)
980 {
981         int result;
982         struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
983
984         if (!nvmeq)
985                 return ERR_PTR(-ENOMEM);
986
987         result = adapter_alloc_cq(dev, qid, nvmeq);
988         if (result < 0)
989                 goto free_nvmeq;
990
991         result = adapter_alloc_sq(dev, qid, nvmeq);
992         if (result < 0)
993                 goto release_cq;
994
995         result = queue_request_irq(dev, nvmeq, "nvme");
996         if (result < 0)
997                 goto release_sq;
998
999         return nvmeq;
1000
1001  release_sq:
1002         adapter_delete_sq(dev, qid);
1003  release_cq:
1004         adapter_delete_cq(dev, qid);
1005  free_nvmeq:
1006         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1007                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1008         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1009                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1010         kfree(nvmeq);
1011         return ERR_PTR(result);
1012 }
1013
1014 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1015 {
1016         int result = 0;
1017         u32 aqa;
1018         u64 cap;
1019         unsigned long timeout;
1020         struct nvme_queue *nvmeq;
1021
1022         dev->dbs = ((void __iomem *)dev->bar) + 4096;
1023
1024         nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
1025         if (!nvmeq)
1026                 return -ENOMEM;
1027
1028         aqa = nvmeq->q_depth - 1;
1029         aqa |= aqa << 16;
1030
1031         dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
1032         dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
1033         dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1034         dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1035
1036         writel(0, &dev->bar->cc);
1037         writel(aqa, &dev->bar->aqa);
1038         writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1039         writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1040         writel(dev->ctrl_config, &dev->bar->cc);
1041
1042         cap = readq(&dev->bar->cap);
1043         timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1044         dev->db_stride = NVME_CAP_STRIDE(cap);
1045
1046         while (!result && !(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
1047                 msleep(100);
1048                 if (fatal_signal_pending(current))
1049                         result = -EINTR;
1050                 if (time_after(jiffies, timeout)) {
1051                         dev_err(&dev->pci_dev->dev,
1052                                 "Device not ready; aborting initialisation\n");
1053                         result = -ENODEV;
1054                 }
1055         }
1056
1057         if (result) {
1058                 nvme_free_queue_mem(nvmeq);
1059                 return result;
1060         }
1061
1062         result = queue_request_irq(dev, nvmeq, "nvme admin");
1063         dev->queues[0] = nvmeq;
1064         return result;
1065 }
1066
1067 struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
1068                                 unsigned long addr, unsigned length)
1069 {
1070         int i, err, count, nents, offset;
1071         struct scatterlist *sg;
1072         struct page **pages;
1073         struct nvme_iod *iod;
1074
1075         if (addr & 3)
1076                 return ERR_PTR(-EINVAL);
1077         if (!length)
1078                 return ERR_PTR(-EINVAL);
1079
1080         offset = offset_in_page(addr);
1081         count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1082         pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
1083         if (!pages)
1084                 return ERR_PTR(-ENOMEM);
1085
1086         err = get_user_pages_fast(addr, count, 1, pages);
1087         if (err < count) {
1088                 count = err;
1089                 err = -EFAULT;
1090                 goto put_pages;
1091         }
1092
1093         iod = nvme_alloc_iod(count, length, GFP_KERNEL);
1094         sg = iod->sg;
1095         sg_init_table(sg, count);
1096         for (i = 0; i < count; i++) {
1097                 sg_set_page(&sg[i], pages[i],
1098                                 min_t(int, length, PAGE_SIZE - offset), offset);
1099                 length -= (PAGE_SIZE - offset);
1100                 offset = 0;
1101         }
1102         sg_mark_end(&sg[i - 1]);
1103         iod->nents = count;
1104
1105         err = -ENOMEM;
1106         nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1107                                 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1108         if (!nents)
1109                 goto free_iod;
1110
1111         kfree(pages);
1112         return iod;
1113
1114  free_iod:
1115         kfree(iod);
1116  put_pages:
1117         for (i = 0; i < count; i++)
1118                 put_page(pages[i]);
1119         kfree(pages);
1120         return ERR_PTR(err);
1121 }
1122
1123 void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1124                         struct nvme_iod *iod)
1125 {
1126         int i;
1127
1128         dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
1129                                 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1130
1131         for (i = 0; i < iod->nents; i++)
1132                 put_page(sg_page(&iod->sg[i]));
1133 }
1134
1135 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1136 {
1137         struct nvme_dev *dev = ns->dev;
1138         struct nvme_queue *nvmeq;
1139         struct nvme_user_io io;
1140         struct nvme_command c;
1141         unsigned length;
1142         int status;
1143         struct nvme_iod *iod;
1144
1145         if (copy_from_user(&io, uio, sizeof(io)))
1146                 return -EFAULT;
1147         length = (io.nblocks + 1) << ns->lba_shift;
1148
1149         switch (io.opcode) {
1150         case nvme_cmd_write:
1151         case nvme_cmd_read:
1152         case nvme_cmd_compare:
1153                 iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
1154                 break;
1155         default:
1156                 return -EINVAL;
1157         }
1158
1159         if (IS_ERR(iod))
1160                 return PTR_ERR(iod);
1161
1162         memset(&c, 0, sizeof(c));
1163         c.rw.opcode = io.opcode;
1164         c.rw.flags = io.flags;
1165         c.rw.nsid = cpu_to_le32(ns->ns_id);
1166         c.rw.slba = cpu_to_le64(io.slba);
1167         c.rw.length = cpu_to_le16(io.nblocks);
1168         c.rw.control = cpu_to_le16(io.control);
1169         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1170         c.rw.reftag = cpu_to_le32(io.reftag);
1171         c.rw.apptag = cpu_to_le16(io.apptag);
1172         c.rw.appmask = cpu_to_le16(io.appmask);
1173         /* XXX: metadata */
1174         length = nvme_setup_prps(dev, &c.common, iod, length, GFP_KERNEL);
1175
1176         nvmeq = get_nvmeq(dev);
1177         /*
1178          * Since nvme_submit_sync_cmd sleeps, we can't keep preemption
1179          * disabled.  We may be preempted at any point, and be rescheduled
1180          * to a different CPU.  That will cause cacheline bouncing, but no
1181          * additional races since q_lock already protects against other CPUs.
1182          */
1183         put_nvmeq(nvmeq);
1184         if (length != (io.nblocks + 1) << ns->lba_shift)
1185                 status = -ENOMEM;
1186         else
1187                 status = nvme_submit_sync_cmd(nvmeq, &c, NULL, NVME_IO_TIMEOUT);
1188
1189         nvme_unmap_user_pages(dev, io.opcode & 1, iod);
1190         nvme_free_iod(dev, iod);
1191         return status;
1192 }
1193
1194 static int nvme_user_admin_cmd(struct nvme_dev *dev,
1195                                         struct nvme_admin_cmd __user *ucmd)
1196 {
1197         struct nvme_admin_cmd cmd;
1198         struct nvme_command c;
1199         int status, length;
1200         struct nvme_iod *uninitialized_var(iod);
1201
1202         if (!capable(CAP_SYS_ADMIN))
1203                 return -EACCES;
1204         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1205                 return -EFAULT;
1206
1207         memset(&c, 0, sizeof(c));
1208         c.common.opcode = cmd.opcode;
1209         c.common.flags = cmd.flags;
1210         c.common.nsid = cpu_to_le32(cmd.nsid);
1211         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1212         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1213         c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1214         c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1215         c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1216         c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1217         c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1218         c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1219
1220         length = cmd.data_len;
1221         if (cmd.data_len) {
1222                 iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
1223                                                                 length);
1224                 if (IS_ERR(iod))
1225                         return PTR_ERR(iod);
1226                 length = nvme_setup_prps(dev, &c.common, iod, length,
1227                                                                 GFP_KERNEL);
1228         }
1229
1230         if (length != cmd.data_len)
1231                 status = -ENOMEM;
1232         else
1233                 status = nvme_submit_admin_cmd(dev, &c, &cmd.result);
1234
1235         if (cmd.data_len) {
1236                 nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
1237                 nvme_free_iod(dev, iod);
1238         }
1239
1240         if (!status && copy_to_user(&ucmd->result, &cmd.result,
1241                                                         sizeof(cmd.result)))
1242                 status = -EFAULT;
1243
1244         return status;
1245 }
1246
1247 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1248                                                         unsigned long arg)
1249 {
1250         struct nvme_ns *ns = bdev->bd_disk->private_data;
1251
1252         switch (cmd) {
1253         case NVME_IOCTL_ID:
1254                 return ns->ns_id;
1255         case NVME_IOCTL_ADMIN_CMD:
1256                 return nvme_user_admin_cmd(ns->dev, (void __user *)arg);
1257         case NVME_IOCTL_SUBMIT_IO:
1258                 return nvme_submit_io(ns, (void __user *)arg);
1259         case SG_GET_VERSION_NUM:
1260                 return nvme_sg_get_version_num((void __user *)arg);
1261         case SG_IO:
1262                 return nvme_sg_io(ns, (void __user *)arg);
1263         default:
1264                 return -ENOTTY;
1265         }
1266 }
1267
1268 static const struct block_device_operations nvme_fops = {
1269         .owner          = THIS_MODULE,
1270         .ioctl          = nvme_ioctl,
1271         .compat_ioctl   = nvme_ioctl,
1272 };
1273
1274 static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1275 {
1276         while (bio_list_peek(&nvmeq->sq_cong)) {
1277                 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1278                 struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
1279                 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
1280                         bio_list_add_head(&nvmeq->sq_cong, bio);
1281                         break;
1282                 }
1283                 if (bio_list_empty(&nvmeq->sq_cong))
1284                         remove_wait_queue(&nvmeq->sq_full,
1285                                                         &nvmeq->sq_cong_wait);
1286         }
1287 }
1288
1289 static int nvme_kthread(void *data)
1290 {
1291         struct nvme_dev *dev;
1292
1293         while (!kthread_should_stop()) {
1294                 set_current_state(TASK_INTERRUPTIBLE);
1295                 spin_lock(&dev_list_lock);
1296                 list_for_each_entry(dev, &dev_list, node) {
1297                         int i;
1298                         for (i = 0; i < dev->queue_count; i++) {
1299                                 struct nvme_queue *nvmeq = dev->queues[i];
1300                                 if (!nvmeq)
1301                                         continue;
1302                                 spin_lock_irq(&nvmeq->q_lock);
1303                                 if (nvme_process_cq(nvmeq))
1304                                         printk("process_cq did something\n");
1305                                 nvme_cancel_ios(nvmeq, true);
1306                                 nvme_resubmit_bios(nvmeq);
1307                                 spin_unlock_irq(&nvmeq->q_lock);
1308                         }
1309                 }
1310                 spin_unlock(&dev_list_lock);
1311                 schedule_timeout(round_jiffies_relative(HZ));
1312         }
1313         return 0;
1314 }
1315
1316 static DEFINE_IDA(nvme_index_ida);
1317
1318 static int nvme_get_ns_idx(void)
1319 {
1320         int index, error;
1321
1322         do {
1323                 if (!ida_pre_get(&nvme_index_ida, GFP_KERNEL))
1324                         return -1;
1325
1326                 spin_lock(&dev_list_lock);
1327                 error = ida_get_new(&nvme_index_ida, &index);
1328                 spin_unlock(&dev_list_lock);
1329         } while (error == -EAGAIN);
1330
1331         if (error)
1332                 index = -1;
1333         return index;
1334 }
1335
1336 static void nvme_put_ns_idx(int index)
1337 {
1338         spin_lock(&dev_list_lock);
1339         ida_remove(&nvme_index_ida, index);
1340         spin_unlock(&dev_list_lock);
1341 }
1342
1343 static void nvme_config_discard(struct nvme_ns *ns)
1344 {
1345         u32 logical_block_size = queue_logical_block_size(ns->queue);
1346         ns->queue->limits.discard_zeroes_data = 0;
1347         ns->queue->limits.discard_alignment = logical_block_size;
1348         ns->queue->limits.discard_granularity = logical_block_size;
1349         ns->queue->limits.max_discard_sectors = 0xffffffff;
1350         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1351 }
1352
1353 static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int nsid,
1354                         struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1355 {
1356         struct nvme_ns *ns;
1357         struct gendisk *disk;
1358         int lbaf;
1359
1360         if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1361                 return NULL;
1362
1363         ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1364         if (!ns)
1365                 return NULL;
1366         ns->queue = blk_alloc_queue(GFP_KERNEL);
1367         if (!ns->queue)
1368                 goto out_free_ns;
1369         ns->queue->queue_flags = QUEUE_FLAG_DEFAULT;
1370         queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
1371         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1372         blk_queue_make_request(ns->queue, nvme_make_request);
1373         ns->dev = dev;
1374         ns->queue->queuedata = ns;
1375
1376         disk = alloc_disk(NVME_MINORS);
1377         if (!disk)
1378                 goto out_free_queue;
1379         ns->ns_id = nsid;
1380         ns->disk = disk;
1381         lbaf = id->flbas & 0xf;
1382         ns->lba_shift = id->lbaf[lbaf].ds;
1383         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1384         if (dev->max_hw_sectors)
1385                 blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
1386
1387         disk->major = nvme_major;
1388         disk->minors = NVME_MINORS;
1389         disk->first_minor = NVME_MINORS * nvme_get_ns_idx();
1390         disk->fops = &nvme_fops;
1391         disk->private_data = ns;
1392         disk->queue = ns->queue;
1393         disk->driverfs_dev = &dev->pci_dev->dev;
1394         sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
1395         set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1396
1397         if (dev->oncs & NVME_CTRL_ONCS_DSM)
1398                 nvme_config_discard(ns);
1399
1400         return ns;
1401
1402  out_free_queue:
1403         blk_cleanup_queue(ns->queue);
1404  out_free_ns:
1405         kfree(ns);
1406         return NULL;
1407 }
1408
1409 static void nvme_ns_free(struct nvme_ns *ns)
1410 {
1411         int index = ns->disk->first_minor / NVME_MINORS;
1412         put_disk(ns->disk);
1413         nvme_put_ns_idx(index);
1414         blk_cleanup_queue(ns->queue);
1415         kfree(ns);
1416 }
1417
1418 static int set_queue_count(struct nvme_dev *dev, int count)
1419 {
1420         int status;
1421         u32 result;
1422         u32 q_count = (count - 1) | ((count - 1) << 16);
1423
1424         status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
1425                                                                 &result);
1426         if (status)
1427                 return -EIO;
1428         return min(result & 0xffff, result >> 16) + 1;
1429 }
1430
1431 static int nvme_setup_io_queues(struct nvme_dev *dev)
1432 {
1433         int result, cpu, i, nr_io_queues, db_bar_size, q_depth;
1434
1435         nr_io_queues = num_online_cpus();
1436         result = set_queue_count(dev, nr_io_queues);
1437         if (result < 0)
1438                 return result;
1439         if (result < nr_io_queues)
1440                 nr_io_queues = result;
1441
1442         /* Deregister the admin queue's interrupt */
1443         free_irq(dev->entry[0].vector, dev->queues[0]);
1444
1445         db_bar_size = 4096 + ((nr_io_queues + 1) << (dev->db_stride + 3));
1446         if (db_bar_size > 8192) {
1447                 iounmap(dev->bar);
1448                 dev->bar = ioremap(pci_resource_start(dev->pci_dev, 0),
1449                                                                 db_bar_size);
1450                 dev->dbs = ((void __iomem *)dev->bar) + 4096;
1451                 dev->queues[0]->q_db = dev->dbs;
1452         }
1453
1454         for (i = 0; i < nr_io_queues; i++)
1455                 dev->entry[i].entry = i;
1456         for (;;) {
1457                 result = pci_enable_msix(dev->pci_dev, dev->entry,
1458                                                                 nr_io_queues);
1459                 if (result == 0) {
1460                         break;
1461                 } else if (result > 0) {
1462                         nr_io_queues = result;
1463                         continue;
1464                 } else {
1465                         nr_io_queues = 1;
1466                         break;
1467                 }
1468         }
1469
1470         result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1471         /* XXX: handle failure here */
1472
1473         cpu = cpumask_first(cpu_online_mask);
1474         for (i = 0; i < nr_io_queues; i++) {
1475                 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1476                 cpu = cpumask_next(cpu, cpu_online_mask);
1477         }
1478
1479         q_depth = min_t(int, NVME_CAP_MQES(readq(&dev->bar->cap)) + 1,
1480                                                                 NVME_Q_DEPTH);
1481         for (i = 0; i < nr_io_queues; i++) {
1482                 dev->queues[i + 1] = nvme_create_queue(dev, i + 1, q_depth, i);
1483                 if (IS_ERR(dev->queues[i + 1]))
1484                         return PTR_ERR(dev->queues[i + 1]);
1485                 dev->queue_count++;
1486         }
1487
1488         for (; i < num_possible_cpus(); i++) {
1489                 int target = i % rounddown_pow_of_two(dev->queue_count - 1);
1490                 dev->queues[i + 1] = dev->queues[target + 1];
1491         }
1492
1493         return 0;
1494 }
1495
1496 static void nvme_free_queues(struct nvme_dev *dev)
1497 {
1498         int i;
1499
1500         for (i = dev->queue_count - 1; i >= 0; i--)
1501                 nvme_free_queue(dev, i);
1502 }
1503
1504 /*
1505  * Return: error value if an error occurred setting up the queues or calling
1506  * Identify Device.  0 if these succeeded, even if adding some of the
1507  * namespaces failed.  At the moment, these failures are silent.  TBD which
1508  * failures should be reported.
1509  */
1510 static int nvme_dev_add(struct nvme_dev *dev)
1511 {
1512         int res, nn, i;
1513         struct nvme_ns *ns, *next;
1514         struct nvme_id_ctrl *ctrl;
1515         struct nvme_id_ns *id_ns;
1516         void *mem;
1517         dma_addr_t dma_addr;
1518
1519         res = nvme_setup_io_queues(dev);
1520         if (res)
1521                 return res;
1522
1523         mem = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1524                                                                 GFP_KERNEL);
1525
1526         res = nvme_identify(dev, 0, 1, dma_addr);
1527         if (res) {
1528                 res = -EIO;
1529                 goto out_free;
1530         }
1531
1532         ctrl = mem;
1533         nn = le32_to_cpup(&ctrl->nn);
1534         dev->oncs = le16_to_cpup(&ctrl->oncs);
1535         memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1536         memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1537         memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
1538         if (ctrl->mdts) {
1539                 int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
1540                 dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
1541         }
1542
1543         id_ns = mem;
1544         for (i = 1; i <= nn; i++) {
1545                 res = nvme_identify(dev, i, 0, dma_addr);
1546                 if (res)
1547                         continue;
1548
1549                 if (id_ns->ncap == 0)
1550                         continue;
1551
1552                 res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
1553                                                         dma_addr + 4096, NULL);
1554                 if (res)
1555                         memset(mem + 4096, 0, 4096);
1556
1557                 ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
1558                 if (ns)
1559                         list_add_tail(&ns->list, &dev->namespaces);
1560         }
1561         list_for_each_entry(ns, &dev->namespaces, list)
1562                 add_disk(ns->disk);
1563         res = 0;
1564         goto out;
1565
1566  out_free:
1567         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1568                 list_del(&ns->list);
1569                 nvme_ns_free(ns);
1570         }
1571
1572  out:
1573         dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
1574         return res;
1575 }
1576
1577 static int nvme_dev_remove(struct nvme_dev *dev)
1578 {
1579         struct nvme_ns *ns, *next;
1580
1581         spin_lock(&dev_list_lock);
1582         list_del(&dev->node);
1583         spin_unlock(&dev_list_lock);
1584
1585         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1586                 list_del(&ns->list);
1587                 del_gendisk(ns->disk);
1588                 nvme_ns_free(ns);
1589         }
1590
1591         nvme_free_queues(dev);
1592
1593         return 0;
1594 }
1595
1596 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1597 {
1598         struct device *dmadev = &dev->pci_dev->dev;
1599         dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
1600                                                 PAGE_SIZE, PAGE_SIZE, 0);
1601         if (!dev->prp_page_pool)
1602                 return -ENOMEM;
1603
1604         /* Optimisation for I/Os between 4k and 128k */
1605         dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
1606                                                 256, 256, 0);
1607         if (!dev->prp_small_pool) {
1608                 dma_pool_destroy(dev->prp_page_pool);
1609                 return -ENOMEM;
1610         }
1611         return 0;
1612 }
1613
1614 static void nvme_release_prp_pools(struct nvme_dev *dev)
1615 {
1616         dma_pool_destroy(dev->prp_page_pool);
1617         dma_pool_destroy(dev->prp_small_pool);
1618 }
1619
1620 static DEFINE_IDA(nvme_instance_ida);
1621
1622 static int nvme_set_instance(struct nvme_dev *dev)
1623 {
1624         int instance, error;
1625
1626         do {
1627                 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
1628                         return -ENODEV;
1629
1630                 spin_lock(&dev_list_lock);
1631                 error = ida_get_new(&nvme_instance_ida, &instance);
1632                 spin_unlock(&dev_list_lock);
1633         } while (error == -EAGAIN);
1634
1635         if (error)
1636                 return -ENODEV;
1637
1638         dev->instance = instance;
1639         return 0;
1640 }
1641
1642 static void nvme_release_instance(struct nvme_dev *dev)
1643 {
1644         spin_lock(&dev_list_lock);
1645         ida_remove(&nvme_instance_ida, dev->instance);
1646         spin_unlock(&dev_list_lock);
1647 }
1648
1649 static void nvme_free_dev(struct kref *kref)
1650 {
1651         struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
1652         nvme_dev_remove(dev);
1653         pci_disable_msix(dev->pci_dev);
1654         iounmap(dev->bar);
1655         nvme_release_instance(dev);
1656         nvme_release_prp_pools(dev);
1657         pci_disable_device(dev->pci_dev);
1658         pci_release_regions(dev->pci_dev);
1659         kfree(dev->queues);
1660         kfree(dev->entry);
1661         kfree(dev);
1662 }
1663
1664 static int nvme_dev_open(struct inode *inode, struct file *f)
1665 {
1666         struct nvme_dev *dev = container_of(f->private_data, struct nvme_dev,
1667                                                                 miscdev);
1668         kref_get(&dev->kref);
1669         f->private_data = dev;
1670         return 0;
1671 }
1672
1673 static int nvme_dev_release(struct inode *inode, struct file *f)
1674 {
1675         struct nvme_dev *dev = f->private_data;
1676         kref_put(&dev->kref, nvme_free_dev);
1677         return 0;
1678 }
1679
1680 static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1681 {
1682         struct nvme_dev *dev = f->private_data;
1683         switch (cmd) {
1684         case NVME_IOCTL_ADMIN_CMD:
1685                 return nvme_user_admin_cmd(dev, (void __user *)arg);
1686         default:
1687                 return -ENOTTY;
1688         }
1689 }
1690
1691 static const struct file_operations nvme_dev_fops = {
1692         .owner          = THIS_MODULE,
1693         .open           = nvme_dev_open,
1694         .release        = nvme_dev_release,
1695         .unlocked_ioctl = nvme_dev_ioctl,
1696         .compat_ioctl   = nvme_dev_ioctl,
1697 };
1698
1699 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1700 {
1701         int bars, result = -ENOMEM;
1702         struct nvme_dev *dev;
1703
1704         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1705         if (!dev)
1706                 return -ENOMEM;
1707         dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1708                                                                 GFP_KERNEL);
1709         if (!dev->entry)
1710                 goto free;
1711         dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1712                                                                 GFP_KERNEL);
1713         if (!dev->queues)
1714                 goto free;
1715
1716         if (pci_enable_device_mem(pdev))
1717                 goto free;
1718         pci_set_master(pdev);
1719         bars = pci_select_bars(pdev, IORESOURCE_MEM);
1720         if (pci_request_selected_regions(pdev, bars, "nvme"))
1721                 goto disable;
1722
1723         INIT_LIST_HEAD(&dev->namespaces);
1724         dev->pci_dev = pdev;
1725         pci_set_drvdata(pdev, dev);
1726         dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1727         dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1728         result = nvme_set_instance(dev);
1729         if (result)
1730                 goto disable;
1731
1732         dev->entry[0].vector = pdev->irq;
1733
1734         result = nvme_setup_prp_pools(dev);
1735         if (result)
1736                 goto disable_msix;
1737
1738         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1739         if (!dev->bar) {
1740                 result = -ENOMEM;
1741                 goto disable_msix;
1742         }
1743
1744         result = nvme_configure_admin_queue(dev);
1745         if (result)
1746                 goto unmap;
1747         dev->queue_count++;
1748
1749         spin_lock(&dev_list_lock);
1750         list_add(&dev->node, &dev_list);
1751         spin_unlock(&dev_list_lock);
1752
1753         result = nvme_dev_add(dev);
1754         if (result)
1755                 goto delete;
1756
1757         scnprintf(dev->name, sizeof(dev->name), "nvme%d", dev->instance);
1758         dev->miscdev.minor = MISC_DYNAMIC_MINOR;
1759         dev->miscdev.parent = &pdev->dev;
1760         dev->miscdev.name = dev->name;
1761         dev->miscdev.fops = &nvme_dev_fops;
1762         result = misc_register(&dev->miscdev);
1763         if (result)
1764                 goto remove;
1765
1766         kref_init(&dev->kref);
1767         return 0;
1768
1769  remove:
1770         nvme_dev_remove(dev);
1771  delete:
1772         spin_lock(&dev_list_lock);
1773         list_del(&dev->node);
1774         spin_unlock(&dev_list_lock);
1775
1776         nvme_free_queues(dev);
1777  unmap:
1778         iounmap(dev->bar);
1779  disable_msix:
1780         pci_disable_msix(pdev);
1781         nvme_release_instance(dev);
1782         nvme_release_prp_pools(dev);
1783  disable:
1784         pci_disable_device(pdev);
1785         pci_release_regions(pdev);
1786  free:
1787         kfree(dev->queues);
1788         kfree(dev->entry);
1789         kfree(dev);
1790         return result;
1791 }
1792
1793 static void nvme_remove(struct pci_dev *pdev)
1794 {
1795         struct nvme_dev *dev = pci_get_drvdata(pdev);
1796         misc_deregister(&dev->miscdev);
1797         kref_put(&dev->kref, nvme_free_dev);
1798 }
1799
1800 /* These functions are yet to be implemented */
1801 #define nvme_error_detected NULL
1802 #define nvme_dump_registers NULL
1803 #define nvme_link_reset NULL
1804 #define nvme_slot_reset NULL
1805 #define nvme_error_resume NULL
1806 #define nvme_suspend NULL
1807 #define nvme_resume NULL
1808
1809 static const struct pci_error_handlers nvme_err_handler = {
1810         .error_detected = nvme_error_detected,
1811         .mmio_enabled   = nvme_dump_registers,
1812         .link_reset     = nvme_link_reset,
1813         .slot_reset     = nvme_slot_reset,
1814         .resume         = nvme_error_resume,
1815 };
1816
1817 /* Move to pci_ids.h later */
1818 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
1819
1820 static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1821         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1822         { 0, }
1823 };
1824 MODULE_DEVICE_TABLE(pci, nvme_id_table);
1825
1826 static struct pci_driver nvme_driver = {
1827         .name           = "nvme",
1828         .id_table       = nvme_id_table,
1829         .probe          = nvme_probe,
1830         .remove         = nvme_remove,
1831         .suspend        = nvme_suspend,
1832         .resume         = nvme_resume,
1833         .err_handler    = &nvme_err_handler,
1834 };
1835
1836 static int __init nvme_init(void)
1837 {
1838         int result;
1839
1840         nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
1841         if (IS_ERR(nvme_thread))
1842                 return PTR_ERR(nvme_thread);
1843
1844         result = register_blkdev(nvme_major, "nvme");
1845         if (result < 0)
1846                 goto kill_kthread;
1847         else if (result > 0)
1848                 nvme_major = result;
1849
1850         result = pci_register_driver(&nvme_driver);
1851         if (result)
1852                 goto unregister_blkdev;
1853         return 0;
1854
1855  unregister_blkdev:
1856         unregister_blkdev(nvme_major, "nvme");
1857  kill_kthread:
1858         kthread_stop(nvme_thread);
1859         return result;
1860 }
1861
1862 static void __exit nvme_exit(void)
1863 {
1864         pci_unregister_driver(&nvme_driver);
1865         unregister_blkdev(nvme_major, "nvme");
1866         kthread_stop(nvme_thread);
1867 }
1868
1869 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1870 MODULE_LICENSE("GPL");
1871 MODULE_VERSION("0.8");
1872 module_init(nvme_init);
1873 module_exit(nvme_exit);